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In a growing number of publications it is claimed that epileptic seizures can be predicted by analyzing the
electroencephalograEEG) with different characterizing measures. However, many of these studies suffer
from a severe lack of statistical validation. Only rarely are results passed to a statistical test and verified against
some null hypothesibly in order to quantify their significance. In this paper we propose a method to statisti-
cally validate the performance of measures used to predict epileptic seizures. From measure profiles rendered
by applying a moving-window technique to the electroencephalogram we first generate an ensemble of surro-
gates by a constrained randomization using simulated annealing. Subsequently the seizure prediction algorithm
is applied to the original measure profile and to the surrogates. If detectable changes before seizure onset exist,
highest performance values should be obtained for the original measure profiles and the null hypothesis. “The
measure is not suited for seizure prediction” can be rejected. We demonstrate our method by applying two
measures of synchronization to a quasicontinuous EEG recording and by evaluating their predictive perfor-
mance using a straightforward seizure prediction statistics. We would like to stress that the proposed method is
rather universal and can be applied to many other prediction and detection problems.
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I. INTRODUCTION ducibility of reported claimg21,22. For an overview refer

The hallmark of epilepsy is the occurrence of intermittenttO Refs.[23-23. : o P .
functi f the brain k : In the elect Typically in a study on the predictability of epileptic sei-
maffunctions ot th€ brain known as SeIZures. In the Eleclroy, e first 3 certain characterizing measure is calculated from

encephalogranEEG) most of these so-calledtal states are

multichannel EEG using a moving-window technique. The
easily recognized by their rhythmic high-amplitude activity - using VIng-wincow 'qu

. o esulting measure profiles are then scanned for prominent
reflecting the a_bnorr.nall synghromzauon of_a Iargg number 0Eeatures which can be related to the actual seizure times.
neurons[1]. With this in mind, the question arises as to

hether it is al ibl discrimi he i | These features might be drops or pe&&sg., quantified as
whether it Is also possible to discriminate the intervals prey, agpolg crossingor any other distinct pattern in the mea-
ceding seizuregpre-ictal period§ from the intervals far g, nrofile. In a second step the measures’ capability to
away from any seizure activignter-ictal periods. Provided  qiqiin g jish the pre-ictal from the inter-ictal interval is evalu-
that the analysis of the EEG would allow one to reliably

X . : . ated with a test statistics quantifying the occurrence of these
d_etect a_p.rt'ajlctal state In a prospective setting, new therapeysaiires relative to the seizure times and resulting in some
tic possmllltles(e.g., seizure prevention strategiesn be |4 of performance value. If this performance is high, it
envisaged2]. . . . . . might on the one hand reflect the existence of a pre-ictal state

Therefore, it is not surprising to find a very rich and di-

i deall ih th dicti ¢ eoilent . and the capability of the applied measure to detect it, but it
verse literature dealing with the prediction of epileptic Sel-,;ohi o the other hand also be due to statistical fluctuations
zures. Starting from earliest approaches based on pattern r

- 3 d e d o4 o | & some(unknowr) bias in the algorithm.

ognition [3] and spike etectllon[ aﬂ’ .a; |r|§t mostly In the design of a seizure prediction algorithm there are
unlvl_arlate Smiasyres were Lemp 03]’;3 , either _InE&ir]] OF many subtle points to be considered carefully. Typically the
nonlinear[8-11) in nature. Later efforts reporting the pre- .o ation of the measure as well as the later statistical
d|ctap|I|ty of eplllep.t|c seizures by .applymg these two differ- evaluation involves the choice of certain parameters. In this
ent kinds of univariate measures include Hag] and .Ref.s. context, much care needs to be taken to avoid in-sample
[13,14, respec.tlveily. It is only recently that bivariate optimization of these parameters. Certainly, what is true for a
[15-17 or multivariate[18] measures have been added to

he wid f h dlv bei bl d single measure holds also for a larger number of different
the Wide range of approaches reportedly Deing able to detegloasures. The application of a huge variety of measures to
a pre-ictal state. The current impact of this topic is stresse

; e EEG might yield a measure with seemingly good results
[?l]St by chancgparticularly on a limited databageSecond,
there are many degrees of freedom in the statistical evalua-
%ion. In the case of univariate measures often a best channel
selection is performed, and for bivariate measures, which
evaluate the dependences between two channels, there are
*Electronic address: t.kreuz@fz-juelich.de even more channel combinations to choose from. Finally the

proaches for the prediction of epileptic seizuf&8,20 and
even more striking by studies raising doubts about the repr
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same argument holds for different patients as well. Provocamethod of surrogates the property to test for is destroyed in
tively speaking, manyspuriou$ claims about the existence the surrogates. And in the present case the object under in-
of a pre-ictal state might just be due to some “best paramvestigation is the measure rather than the sequence of sei-
eter,” “best measure,” “best channel,” and/or “best patient’zures. More specifically, the aim is to test the measure for its
selection. capability to extract information from the EEG that enables
Since usually these problershich have, at least in part, the prediction of the original seizures and not to test the
also been addressed in Reff26,27) cannot be solved dur- sequence of seizures whether they resemble the measure pro-
ing the design of a seizure prediction statistics, the questiofiles.
arises as to how to interpret a nonzero performance value. Within either of these methods there are certain properties
This value might correctly reflect the existence of a detectof the original which should be preserved for the surrogates.
able pre-ictal state, but it might also be the spurious result oln the case of seizure time surrogates it has been proposed to
statistical fluctuations. Therefore, to assess the performangeeserve the total number of seizures, the distribution of time
yielded by a seizure prediction algorithm, a method to judgentervals between consecutive seizures, and as the case may
its statistical validity is needed. The result should be verifiecbe, any clustering of the seizurd26]. This has been
against some null hypothesis and its level of significanceachieved by a random permutation of the original seizure
should be estimated. This can be achieved using the concejpitervals. As indicated already in RdR6], this approach is
of surrogateg28,29, in which the validity of a given test applicable only if the number of seizures and hence the num-
result is evaluated by applying the test not only to the origi-ber of possible permutations are large enough to allow the
nal data but also to an ensemble of surrogate data generatgdneration of the number of surrogates needed to obtain the
by means of a Monte Carlo randomization. In our case thelesired significance. The number of possible permutations is
null hypothesisH, to test against can be stated as follows:even further diminished in the presence of recording gaps,
The measure under investigation is not suited for seizursince then permutations have to be discarded whenever one
prediction. If this null hypothesis is fulfilled, it might be due of the surrogate seizures falls into such a gap. To prevent a
to two different reasons. Either a pre-ictal state does not exidtias between the original and surrogates, also ictal and post-
(and thus there is no measure suited for seizure predjation ictal intervals as well as all other events known to possibly
a pre-ictal state does exist, but the measure is not able twause changes in the EEG have to be avoiflatthe sake of
detect it. On the other hand, the null hypothesis can only bérevity, in the following these intervals will also be referred
rejected if both inverse conditions are fulfilled: There areto as recording gapsBut even when a sufficient number of
specific changes before a seizure and the measure is sensitpermutations remain, much care has to be taken to ensure
to these changes. that the inter-ictal interval as well as any possible pre-ictal
The performance of any seizure prediction algorithm cru-interval are equally well represented in the original and in all
cially depends on whether the sequence of actual seizures i the seizure time surrogates.
matched by some corresponding structure in the measure In the method of measure profile surrogates these issues
profiles. Therefore to test for statistical significance of a goodare easily addressed, since the original seizure times are not
performance by using the method of surrogates, any sucthanged at all. Rather they are correctly considered as given
structure should be destroyed by the randomization. Essemronditions based upon which the measure profiles are probed
tially, this can be done in two different ways. Andrzejak andfor their predictive performance. But also in this method
colleagues[26] recently introduced the method of seizure there exist some constraints—i.e., properties which should
time surrogates in which the seizure times are randomizedye extracted from the original measure profile and imposed
while the measure profiles are maintained. In this paper wen the surrogate measure profiles. First of all a suitable ran-
propose thenethod of measure profile surrogatescomple-  domization should maintain all existing recording gaps. Fur-
mentary approach, in which the seizure times are kept fixethermore, it is advisable not only to preserve the amplitude
and instead a constrained randomization of the measure prdistribution but also to maintain essential parts of the auto-
files is performed using the method of simulated annealingcorrelation function. The preservation of these features guar-
The concept of surrogates as a means to test a null hyantees that, when regarded independently from the seizure
pothesis is applied equivalently in both methods: The seizurémes, the original as well the surrogate measure profiles can
prediction algorithm is run using the original measure pro-be considered as a possible original measure profile. The
files (seizure timepand its performance is compared to the most important property that might remain different is the
results of the same algorithm using an ensemble of measumrrespondence to the seizure times and this is exactly the
profile surrogategseizure time surrogatgsProvided that a  property under investigation.
pre-ictal state exists and the prediction algorithm is able to To illustrate our method, we use two different evaluation
detect it, its performance should be highest for the originakchemes to investigate the predictive performance of two bi-
measure profilegseizure timeg In this case the null hypoth- variate measures of synchronization, thean phase coher-
esis could be rejected at the level of significance determinednceas a measure for phase synchronizatitg] and the
by the number of measure profile surrogafssizure time recently proposedvent synchronizatiofi30]. These mea-
surrogatep sures are calculated from the same quasicontinuous EEG re-
Both methods are reasonable statistical approaches to aderding of an epilepsy patient already analyzed in R28).
dress the correspondence between measure profiles and sElte seizure prediction statistics applied to the resulting mea-
zure times, but we argue that the method of measure profilsure profiles and their surrogates is straightforward, simply
surrogates is the more natural choice: Usually, within thecomparing amplitude distributions of pre-ictal and inter-ictal
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1. Phase synchronization

RO1 LO1

The mean phase coherenRe[15], a measure for phase
synchronization, has already been applied in previous seizure
prediction studie$17,20,27. For its calculation first instan-
taneous phaseg,(t) and ¢,(t) are extracted from two time
seriesx andy of lengthN using the analytic signal approach

[32,33:
R10 L10 o (t) = arctar:)@, (1)
X(t)
where
R L X(t) = - P.V.Lo t—t’dt 2

is the Hilbert transforn{(*P.V.” denoting the Cauchy princi-
pal valug. From this we obtain the mean phase coherence

) ) ) ) defined as
intervals[27]. The remainder of the text is organized as fol-

lows: First we describe the dat&ec. Il A), the measures

(Sec. 1B, and the seizure prediction statisti¢Sec. 11 § R=
used to demonstrate our method of measure profile surro-

gates. This method is introduced in Sec. Il D. In Sec. lll wewith V denoting the circular variand@4]. The mean phase
show the results of our application, before we draw our coneoherencer is confined to the intervdl,1] with larger val-
clusions in Sec. IV. ues indicating a higher degree of synchronization.

FIG. 1. Schematic view of implanted depth electrodes.

1 N
_E gloxt=ay(t)]
=1

=1-V, (3)

2. Event synchronization
Il. METHODS L
The recently proposed event synchronizati@n [30]

A. Data guantifies the overall level of synchronicity from the number

We analyzed quasicontinuous multichannel EEG recorde@f duasisimultaneous appearances of certain eveste de-
from an epilepsy patient over 5 days during which the patienfined as local maxima and miniman a first step the respec-
had ten epileptic seizures. The EEG was recorded prior tgvg time series are scanned for these evenFs, and the t|_mes of
and independently from the design of this study during theéheir occurrence are marked asand tf (i=1,... mg]
presurgical work-ug31]. Furthermore, the patient was not =1, ...,m,) with m, andm, denoting the respective number
selected for this study according to aaypriori knowledge of events. Allowing a maximum time interva, in which
of predictability or nonpredictability in the recordings. Using two events are still regarded as simultaned@ss obtained
two implanted depth electrodes each equipped with ten sep&y counting the number of times the same eveng., maxi-
rate contactgdenoted as LOL,.,L10 and RO1,.,R10, the =~ mMum or minimum occurs simultaneously in both time se-
EEG was measured directly within the braaf. Fig. 1) ata  ries. To cover the intervdD,1] it is normalized by the num-
high signal-to-noise ratio. EEG data were sampled at 200 Hper of events:
using a 16-bit analog-to-digital converter and filtered within
a frequency band of 0.5—-85 Hz. The EEG contains one ma-
jor and two minor recording gaps. In addition to the ten ictal
and post-ictal intervalgdefined from seizure onset until
30 min after seizure terminatigrfour other events known to with
be associated with changes in the EE@Gree subclinical {

2 (4)
Jmm,

1ifos[f-t|<r,

seizures and one period of hyperventilajiomok place dur- L=
0 otherwise.

ij =

(5

ing the acquisition.

B. Measures C. Seizure prediction statistics

From these data two measures of synchronization were For the design of a seizure prediction statistics we follow
calculated using a moving-window technique with nonover-our earlier wor{27,39 by using a straightforward approach,
lapping segments of 20.48 s corresponding to N=4096 datsimply comparing amplitude distributions of pre-ictal and
points. In order to focus on local synchronization effects, ininter-ictal intervals using receiver-operating characteristics
this study only the 18 neighboring channel combinationgROC’s) (cf. [36]). This statistics will be applied to the origi-
(LO1-L02,...,L09-L10 and R0O1-R02,.,R09-R10 were ana- nal as well as to the surrogate measure profiles. Within this
lyzed. statistics, a threshold for amplitude values is continuously
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a) .
) 05 TNV iy,
0.6 u FIG. 2. lllustration of the seizure prediction
0.4 statistics:(a) Original measure profilé&smoothed
using a 5-min moving average filjeof the best
B2 channel combinationR08-R09 for the mean

0 . . . T . phase coherencR with a pre-ictal interval of
4

b) 1 2 Tim: Days]  ©) 8 240 min. Seizures are 'marked b_y vertical _Iines:
0.04] 1 day ticks denote midnight. Pre-ictal and inter-
0.8 ictal intervals are depicted in bright and dark col-
P (R) 2 ors, respectivelyb) Distributions of values from
a5 % 06 these two intervals.(c) Corresponding ROC
’ 804 curve yielding the maximum performance value
0.2 A=0.68.

0
0 02 04 06 08 1
1 - Specificity

shifted across these distributions, and the fraction of ampliing the best channel combination. Thus in the first evaluation
tudes of the first distribution below this threshold is plottedscheme we have two different values to choose from for each
against the respective fraction of the second distributionchannel combination. Accordingly in the second scheme the
With respect to the chosen hypothesis of separahiétg., final performance value for each measure is chosen as the
values from the pre-ictal distribution are lower than thosemaximum of 16x 18=288 different values. In Fig. 2 the sei-
from the inter-ictal distributionthis corresponds to plotting zure prediction statistics is illustrated using the measure pro-
the sensitivity(ratio of true positives to total number of posi- file, for which the maximum performance value is obtained
tives) against 1 minus the specificityatio of true negatives when applying this optimization scheme.
to total number of negativesThe capability of a measure to
distinguish between the inter-ictal and the pre-ictal
interval—i.e., its potential predictive performance—can then To test against a certain null hypothesis via a constrained
be quantified by the area between the resulting ROC curveandomization of time series is a well-known concept within
and the diagonal. Identical distributions lead to a zero areahe framework of nonlinear time series analyi€9,37. The
while for distributions that are completely nonoverlapping,original algorithm[28] and a number of expansions or re-
ROC values of 0.5 or —0.5 are attained, depending on whiclfinements[38,39 are each designed to impose specific con-
hypothesis is used for the definition of sensitivity and specistraints on the surrogates and thus to address one particular
ficity. To cover the range fromi—1, 1] we here renormalize null hypothesis. In contrast to these standard approaches the
this areaA by a factor of 2. Note that this definition differs method of simulated annealiig0] provides a rather univer-
from common practice in ROC statistics where values besal means for generating random time series with a wide
tween 0 and 1 are used. variety of possible constraints and therefore allows testing of
This is a rather simple statistics, but still its applicationalmost arbitrary null hypotheses. Furthermore, the standard
involves, as usual, the choice of certain parameters. If comalgorithms act in the Fourier domain and therefore can pro-
putationally feasible, a common practice in such a case is tduce artifacts because of their implicit assumption of peri-
evaluate many different combinations of parameters and todic continuation. The resulting edge effect is due to the fact
choose the most successful one. Without statistical validatiothat when preserving the amplitude spectrum, according to
this is a typical example of “in-sample” optimization, but the Wiener-Khinchin theorem only the periodic sample auto-
with a proper use of surrogates this is made legitimate. Irtorrelation function is maintained. In contrast, the method of
this context, however, much care has to be taken to avoid ansimulated annealing acts in the time domain and thus is able
bias between the original and surrogates: i.e., exactly theo preserve the original autocorrelation function. Simulated
same optimization should be applied to both. annealing is also clearly superior when it comes to the con-
In our case it is not known beforehand which are thestrained randomization of data with recording gaps. Coping
prominent features to be extracted from our measure profilewith these gaps is a nontrivial problem for Fourier-based
(e.g., drops or peaksat what times before a seizure, and in randomization schemes. To treat each segment independently
which channel combination they occur. The first point is ad-is not a good approach since it is desirable to preserve auto-
dressed by testing for both a pre-ictal decrease as well as aorrelations between different data sets as well. Interpolation
increase of synchronization, thereby judging ROC valties schemes might offer a solution for quasicontinuous data sets,
by their absolute value. The length of the pre-ictal interval isbut become unfeasible when confronted with long recording
set to 240 min, motivated by recently reported predictiongaps. Again, the method of simulated annealing offers a bet-
times in the literatur¢12,17. For every measure the evalu- ter approach since in the time domain the missing values due
ation of this statistics is then carried out twice, first regardingto the recording gaps can be set to zero and thus can be
each channel combination separately and second after selecieglected in the autocorrelation function.

D. Method of measure profile surrogates
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Simulated annealingfor an overview seg4l]) as a 1 :
method for combinatorial minimization with false minima !
was introduced in Ref42] and was first applied to the gen- 05k :
eration of surrogates from time series by Schreiber and |

Schmitz[29]. In short, constraints are specified in terms ofa - AV /

cost function which is then minimized among all possible © ° %77 \T‘ N
1

permutations of the original measure profile. This cost func-
tion can be interpreted as the enefgyf a thermodynamic -0.5}
system which is annealed slowly towards the global mini-
mum. In this process, starting from an initial random permu-
tation of the original measure profile, randomly chosen pairs
of values are exchanged repeatedly until a desired accuracy
(i.e., a sufficiently low value of the cost functipis reached. FIG. 3. Four exemplary autocorrelation functions of original
In each iteration step the cost function is updated and demeasure profiles for the mean phase coheréhce

pending on the present temperatireahe exchange is ac-

A e e

ime [Days]

cepted with probability mum time lagr . is set to 4600 windows, thereby ensuring
{ SAET AE>0 that the first 26 h of the autocorrelation functi¢given a
P(AE,T) = ' ' (6)  window length of 20.48 sare maintained. Without such pe-
1, AE=<O. culiarities present, a reasonable choice could have been the

Exchanges with increasing energy are also accepted witfi'st zero crossi_ng of the origina! autocorrelation fur_lction.
nonzero probability to allow escaping from local minima. ~_The second issue to be considered when choosing appro-
Whenever a certain number of either tested or accepted eR/iate weights is the computational cost. Typically the num-
changes has been performed, the temperature is slowly dBer of iterations is quite large and in each iteration step an
creased according to some cooling sche®e., Tpew=Tou update of the_cost function has to be performed. Fortunately
X a with 1> o> 0). this only requires t_he recaICl_JIat|on of those terms of the au-

In our application of this method the three different Con_tocorrelatlon_ function to Wh_lch the two values of the ex-
straints mentioned in the Introduction can easily be impose§hanged pair actually contribute. These can be further re-
on the measure profile surrogates. First of all, recording gapduced by setting every other weight to zero. Given the
are preserved by excluding the missing values in the gapgmoothness of th_e autocorrelan_on function, _the (_)ml_ttgd
from the permutation scheme. Since all surrogates are peferms are then adjusted automatically. To avoid periodicity
mutations of the original measure profile, the amplitude dis&rtifacts the very first weights are not set to zero. In order to
tribution is maintained by construction. The last constraint is9ive higher importance to small lags, the remaining terms are

the approximate preservation of the autocorrelation functiofveighted by 1#. Many further tricks to reduce the high
computational cost can be found in Ref29,4(Q.

N-m1 Using this method of simulated annealing for each mea-
C()=—"— 2 XuXn 7=0. (7)  sure profile from every channel combination, an ensemble of
N =T n=0 . . .

19 different measure profile surrogates is generated. Subse-

This constraint is formulated in the cost function qu_e_ntly the seizure prediction statistics is applied to the
original as well as to the measure profile surrogates. As

N-1 _ stated already in Sec. Il C, the evaluation of this statistics is

E= 2 ]C%(7) - C(7), (8)  carried out twice. Since each measure profile surrogate is

=1

generated by a constrained randomization of a single mea-
sure profile from one channel combination, in the first evalu-
ation scheme the performance of the two synchronization

{1/7 if 7< 70 measures is compared for each channel combination sepa-
wT:

0 otherwise. 9 rately. For the original measure profile as well as for each of

with weights here defined as

the 19 surrogates exactly the same optimization is per-

A proper choice of these weights is essential. First, theyformed, thereby choosing the one out of two different param-
offer the possibility to define the part of the autocorrelationeters(pre-ictal increase and decreaskat yields the maxi-
function that should be preserved. This crucially depends omum performance. In the second evaluation scheme for each
the original autocorrelation function. Four typical examplesmeasure the best channel combination is selected addition-
for the measures and patient analyzed are depicted in Fig. ally. Here each measures’ final performance value is thus
While the autocorrelation function of most channel combinachosen as the maximum value out of a set of 36 different
tions decays rather fast and does not show any long-ranggossibilities. In each of the two schemes the respective null
correlations, some channel combinations clearly seem to révypothesis can be rejected with a significance levelpof
flect the circadian rhythm resulting approximately in a 24-h=0.05 if highest values are yielded for the original measure
periodicity. This different behavior can be judged as an esprofiles.
sential property of the individual measure profiles worth pre- Both evaluation schemes test the general null hypothesis:
serving. To guarantee this, for each measure profile the maxihat the measure under investigation is not suited for seizure
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0) 1 1) LO1-L02 1| LO2-L03 1; LO3-L04 1| LO4-L05 1| LO5-L06
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1
T
1
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2T
0.5\"w,(*M -1 -1 -1 -1 -1
oo N A A A 1 RO6-R07 1| RO7-R08 1; R08-R09 1; ROS-R10
s,) § A

: W MNWMMWM(H o o 0 o
0.5

) \ \ A A -1 -1 -1 -1
L 2 3 4 5

Time [Daye) FIG. 5. Performance values for the first evaluation schgrae

FIG. 4. Original measure profiléd) of the mean phase coher- rameter optimization is performed for each channel combination
enceR for the first channel combination LO1-L02 and four exem- sepqratel){of t_he mean pha§e cohereridor the original measure
plary surrogates(S,—S,), all of them again smoothed using a profiles (highlighted by solid bajsand the surrogates. For each

5-min moving-average filter. Seizures are marked by solid verticaf“hamnel comblnatlon_of the right and "?ft depth electrode sgned
lines. ROC valuedA are depicted, sorted by their absolute value. Asterisks

mark channel combinations yielding maximum performance for the

original measure profile.
prediction. But actually they can be regarded as conceptually
different tests with different extended nuII'hypothese.s, SinC(?espect to its correspondence of the seizure times. To answer
gilr?éll :rceh grc::] glas(;ar?] l;)lz ;anzagtrar ::sgr%gt;%ntséslﬁggﬁglrgaart);gﬁi_s _question, the seiz_ure prediction statist_ics is applied to the
sible predictive feature consisting of a significantly highqrlglnal measure profiles as well as to the|r_surr_oga_1tes. In the
. > first evaluation scheme each channel combination is regarded
number of local effects. Selecting the best channel Comb'n.as'eparately, performing exactly the same optimization for the

tion, on the other hand, is aiming at prediction by a maX"original measure profile as well as for each of the 19 surro-
mum local effect. Apart from these two many other evalua-

tion schemes are conceivabl27]. Averaging over all gates. The resulting performance values are shown in Fig. 5

channel combinations, to name one further example Woul(];or the mean phase cohererReand in Fig. 6 for the event
X . pie, We synchronizationQ. Signed ROC value#\ are depicted to
test for a global effect. In fact, the choice of an evaluation

scheme for the surrouate test constitutes a new dearee ir}dicate whether a pre-ictal decrease or increase of synchro-
g 9 Rlzation is observed for the respective profiles. In order to

freedom which has to be considered carefully. The respectlwﬁhOW the rank of the original performance inside the distri-

iCh(e)mis(i:gu'ed, Intrﬁ)élr:):(ltpel ﬁasésﬁu%ehmcghp;srz t?gr ';éhseeggl tion of the values obtained for the surrogate measure pro-
ypP - €0, yP iles, all performances are sorted by their absolute value.

I . .
\S/gz,ﬁma%% f:lrjll(i ﬁiﬁ: tfgliic:wvésr.na;kr]r?umelgsglr;fuenccti:r Irr(]a When considering the performances obtained for the
9 P original measure profiles only, highly nonuniform results can

dictive of epileptic seizures. be observed. For most channel combinations ROC values

]
i
i
I

§

i
H

IIl. RESULTS
1(L01-L02 1, L02-L08 1 L03-L04 1/ L04-L05 1 LO5-L06

For an exemplary channel combination the original mea-*
sure profile of the mean phase cohereRcand four surro-
gates are depicted in Fig. 4. By construction all measure -1 -1 -1
profiles are identical in certain characteristic properties, A 1|L06o7  fplor-los fploe-loe ) Los-Lio
the recording gaps, the amplitude distribution, and the auto-"
correlation function up to the maximum time bagnd in this
respect each of them can be regarded as a possible origini - -1
measure profile. However, the surrogates can clearly be dis, [ R0'-?% 1/ R02-R03 1) RO3-RO4 1) RO4-ROS 1| RO5-R0G
tinguished from the original measure profile as well as from ¢ 0
one another by the temporal distribution of drops, peaks, anc
quasiplateaus. The variety among the surrogates clearly dernr ~
onstrates that the imposed constraints leave enough degrea
of freedom for the randomization and do not overspecify the o
surrogates. »

The remaining and most crucial question is whether the
original measure profile stands out from the surrogates with  FIG. 6. Same as Fig. 5, but for event synchronizatpn
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close to zero are obtained, reflecting the fact that pre-icta® [
and inter-ictal amplitude distributions are almost indistin- 4

guishable. But for some channel combinatiqesy., R0O2- oll_lﬂ |_| |_| [ 1]

RO3, RO5-R06, and RO8-RPAigh ROC values indicating a I8 |
considerable degree of discrimination between these distri:

butions can be observed, no matter which of the two mea-b)
sures is used. This might correctly reflect the existence of ¢

pre-ictal state which can be detected using either measure

gg;;t could also be the spurious result of statistical fluctua- o Uuuﬂluuuuﬂuuuuﬂuuﬂuu

This ambiguity can be resolved by the method of measure
profile surrogates. First of all, the information gathered by  ~ Sorted distribution
the surrogates is nonredundant to the information of the
original performance values. This can be seen, e.g., whe

_turning our atten_tion_ to the results of event synch_ronizatiorgolid bap and the surrogates, again sorted by their absolute value:
in channel comb|nat|_0ns_ L04-L05 and RO4-R@5. Fig. 6). (a) mean phase coherenBe (b) event synchronizatio.

In the channel combination from the left hemisphere the ab-

solute performance value obtained for the original measurgsisH! —that the measure is not suitable to find a significant
profile is quite low, but still larger than all values yielded by nymber of local effects predictive of epileptic seizures—can
the surrogates, whereas in the right channel combination ge rejected for both measures.

higher absolute performance value is observed, which, how- \yhen the surrogate test is performed for each channel

ever, does not prove to be significant. combination separately, the mean phase coherence already
In contrast to the high consistency in the two measuresseemed to show a slightly higher level of statistical validity.
ROC values regarding the original measure profiles onlyhis difference becomes more striking and even leads to a
qualitatively different results are obtained in a comparison ofyrincipal distinction in significance in the second evaluation
the performances yielded for the original measure profilegcheme. Here for each measure and for the original as well as
with the ones observed for the surrogates. For the meagy the 19 surrogates the channel combination with the high-

phase coherence results appear to be significant for 9 out @kt performance is chosen. The resulting distributions of the
18 channel combinationgL04-L0S, LO6-LO7, LO8-LO9, ~gyerall performance values are shown in Fig. 7. While for
L09-L10, RO2-R03, R03-R04, R04-R05, R08-R09, and R09the mean phase coherence results prove to be significant,

R10). For event synchronization in 5 channel combinationsengering the highest overall performance value for an origi-
(|704'|-05’ L05-L06, RO5-RO6, RO6'R0_7* and R08'30_9 nal measure profile, this time the corresponding null hypoth-
highest absollute ROC values are obtained for the orlgmaésing (already stated at the end of Sec. ) Bannot be
measure profiles. _ , o rejected for event synchronization. Here the performance
~ If a hypothesis test with a nominal sizeis performedq  yajye of the best original measure profile falls into the dis-
times, the likelihoodP to get at least rejections merely by  yihytion obtained for the ensembles of surrogates.

chance is given by A closer look on the results obtained for event synchroni-
q zation in Figs. 6 and (b) reveals that in the second evalua-
p=> (q)pk(l_p)q—k_ (10) tion scheme the best performance yielded by the original
er \K measure profile of channel combination R05-R06 is sur-
passed by performances obtained from surrogate measure
Here a one-sided test with 19 surrogateencep=0.05 is  profiles from other channel combinations—namely, R04-R05
performed forq=18 different channel combinations. This once and R02-R03 twice. This effect is due to the fact that
yields probabilitiesP(r=9) <107 for the mean phase co- here an ensemble surrogate test is performed. For each mea-
herence and®(r=6)~ 102 for event synchronization. The sure the best performance yielded by the entirety of the 18
calculation of these values of significance is based on thdifferent original measure profiles is compared to the maxi-
implicit assumption that measure profiles from differentmum performance values of 19 surrogate ensembles. These
channel combinations can be regarded as independent. Burrogate ensembles preserve the properties of the ensemble
verify this assumption empirically, the correlation betweenof original measure profiles as a whole, since they consist of
all combinations of measure profiles is estimated. Most val18 surrogate measure profiles each of which individually
ues are close to zero and only rarely is a distinct dependencibstitutes one of the original measure profiles. When the
observed. Furthermore, as can be seen from Figs. 5 and 6yerall optimization from the second evaluation scheme is
also the performance values obtained for the original meanow applied to the original as well as to the surrogate en-
sure profiles do not show any clustering for values fromsembles, it thus can happen that the channel combination
neighboring channel combinations. But even when a slighyielding the best performance is not the same for the original
reduction in the number of independent channel combinameasure profiles and the surrogate ensembles. This effect is
tions is taken into account, the effect remains that the numrequired to investigate the statistical validity of the optimi-
ber of channel combinations to show significant ROC valuegation procedure performed, in this case the best channel
by itself is significant. Thus the corresponding null hypoth-selection.

-1

FIG. 7. ROC valuesA of the second evaluation scherttgest
annel selectgdor the original measure profilghighlighted by a
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IV. DISCUSSION gate$. Thus we would like to stress that also the results
obtained with this method should be interpreted with care
Within the method of measure profile surrogates, resultsind jumping to conclusions too quickly should thoroughly be
yielded by a seizure prediction algorithm are tested againstvoided. In particular, the additional degree of freedom in-
the fundamental null hypothedtit,: The measure under in- troduced in the choice of a suitable null hypothesis should
vestigation is not suited for the prediction of epileptic sei-always be considered. Furthermore, whenever a null hypoth-
zures. To demonstrate our approach we have used two diésis is rejected, it is always very important to keep in mind
ferent evaluation schemes to investigate the predictivéhat the complementary hypothesis is very comprehensive
performance of two measures of synchronization—namelyand might include many different reasons that are possibly
mean phase coherence and event synchronization—by mearesponsible for this rejection.
of a straightforward seizure prediction statistics. Measure Concerning the practical implementation of our method,
profile surrogates have been generated by a constrained ran-some cases the computational cost can be lowered by sim-
domization of the original measure profiles. In the firstplifying the randomization scheme. Some characterizing
evaluation scheme the significance of the measures’ originaheasures from time series analy@sg., the effective corre-
performance values has been tested for each channel comition dimension evaluated for seizure prediction in Refs.
nation separately, resulting in a higher number of significanf10,22 or the degree of nonlinear determinism applied in
values for the mean phase coherence. Finally after choosirigef. [26]) show measure profiles with a distinct ceiling ef-
the best channel combination for each measure in the secoffieict. For these measures most values lie at the upper or lower
scheme an ensemble surrogate test has been performed. Herel of the definition range, and only rarely can sparse devia-
only the mean phase coherence has reached a significant pgens (i.e., drops or peaksbe found. In such cases the
formance value. Thus for event synchronization only nullmethod of simulated annealing does not seem to be appro-
hypothesisH{) is rejected. For the mean phase coherence bothriate. A suitable randomization of the original measure pro-
null hypothesedH, and Hj could have been rejected. Note file could be achieved by performing a random shuffle of
that positive results in a statistical approach like the one usethese deviations instead.
in this study only constitute a necessary but not yet a suffi- The application of the proposed method of measure pro-
cient condition for the suitability of the measures for seizurefile surrogates is not restricted to the problem of seizure pre-
prediction. Whether these measures allow one to reliablgliction. In principle it is rather universal and can be used for
predict epileptic seizures with both values of sensitivity andthe statistical validation of the performance of time-resolved
specificity sufficient for a clinical application remains to be measures in many other detection and prediction problems.
shown in an algorithmic and prospective setting. The only requirement is that a finite number of observables
A method to statistically validate the performance of epi-is measured and from their analysis certain circumscribed
leptic seizure prediction algorithm&uch as the proposed events are to be detected or predicted. Thus many other ap-
method of measure profile surrogates or, if computationallylications are also conceivable.
infeasible, alternatively the method of seizure time surro- Regarding the particular application considered in this pa-
gates[26]) should be applied whenever there is the slightesper we would like to emphasize that it was not the aim of this
chance of any “in-sample” overoptimization. This is the gen-study to prove or disprove the existence of a pre-ictal state,
eral case since so far rarely a sufficient amount of data arkut rather to supply a general means to reliably evaluate the
available to perform a proper “out-of-sample” study, wherestatistical validity of the performance of a seizure prediction
the recordings are divided into a training set on which allalgorithm. In future applications, we expect measure profile
algorithm parameters are adjusted and a test set on whicurrogates to be a powerful tool to distinguish between mea-
later on the performance of the algorithm is evaluated. sures and algorithms unsuited for the prediction of epileptic
In our opinion the method of measure profile surrogates iseizures and more promising approaches.
suited to serve the need for statistical validation of seizure
prediction results. On the other hand, also in the application ACKNOWLEDGMENT
of this method there might be some caveats and pitfalls., This work was supported by the Deutsche Forschungsge-
a hidden bias between the original profiles and the surromeinschaftGrant No. SFB TRB

[1] Epilepsy: A Comprehensive Textboadited by J. Engel, Jr. troencephalogr. Clin. Neurophysidh6, 543 (1983).
and T. A. PedleyLippincott-Raven, Philadelphia, 1997 [6] Z. Rogowski, I. Gath, and E. Bental, Biol. Cyberd2, 9

[2] C. E. Elger, Curr. Opin. Neurol14, 185 (2001). (1981).

[3] S. S. Viglione and G. O. Walsh, Electroencephalogr. Clin. [7] R. B. Duckrow and S. S. Spencer, Electroencephalogr. Clin.
Neurophysiol. 39, 435 (1975. Neurophysiol.82, 415(1992).

[4] J. Gotman, J. Ives, P. Gloor, A. Olivier, and L. Quesney, Epi- [8] L. D. lasemidis, J. C. Sackellares, H. P. Zaveri, and W. J.
lepsia 23, 432(1982. Williams, Brain Topogr2, 187 (1990.

[5] H. H. Lange, J. P. Lieb, J. Engel, Jr., and P. H. Crandall, Elec- [9] C. E. Elger and K. Lehnertz, Eur. J. Neurost0, 786(1998.

061915-8



MEASURE PROFILE SURROGATES: A METHOD TQO PHYSICAL REVIEW E 69, 061915(2004)

[10] K. Lehnertz and C. E. Elger, Phys. Rev. Le80, 5019(1998. 22, 57 (2003.

[11] J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. [26] R. G. Andrzejak, F. Mormann, T. Kreuz, C. Rieke, A. Kraskov,
Clemenceau, B. Renault, and F. J. Varela, Nat. MiBdY.) 4, C. E. Elger, and K. Lehnertz, Phys. Rev.62, 010901(2003.
1173(1998. [27] F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov,

[12] B. Litt et al, Neuron 30, 51 (2002). P. David, C. E. Elger, and K. Lehnertz Clin. Neurophysi{to.

[13] M. Le Van Quyen, J. Martinerie, V. Navarro, P. Boon, M.
D’Havé, C. Adam, B. Renault, M. Baulac, and F. J. Varela,
Lancet 357, 183(200D.

[14] V. Navarro, J. Martinerie, M. Le Van Quyen, S. Clemenceau,
C. Adam, M. Baulac, and F. Varela, Brait25 640 (2002.

[15] F. Mormann, K. Lehnertz, P. David, and C. E. Elger, Physica

be publishey

[28] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D.
Farmer, Physica 68, 77 (1992.

[29] T. Schreiber and A. Schmitz, Physica D42, 346 (2000.

pl30I R. Quian Quiroga, T. Kreuz, and P. Grassberger, Phys. Rev. E

144, 358(2000. 66, 941904(2003. _ o
[16] L. D. lasemidis, P. Pardalos, J. C. Sackellares, and D. S. Shiad31] Surgical Treatment of the Epilepsjesdited by J. Engel, Jr.
J. Comb. Optim.5, 9 (2001). (Raven Press, New York, 1993
[17] F. Mormann, T. Kreuz, R. G. Andrzejak, P. David, K. Leh- [32] D. Gabor, Proc. IEEE Londo®3, 429(1946.
nertz, and C. E. Elger, Epilepsy Re53, 173(2003. [33] P. Panter, Modulation, Noise, and Spectral Analysis
[18] K. Schindler, R. Wiest, M. Kollar, and F. Donati, J. Clin. (McGraw-Hill, New York, 1963.
Neurophysiol. 113 604 (2002. [34] K. Mardia, Probability and Mathematical Statistics: Statistics
[19] P. E. McSharry, L. E. Smith, and L. Tarassenko, Nat. Med. of directional data(Academy Press, London, 1972
(N.Y.)) 9, 241(2003. [35] F. Mormann, Ph.D. thesis, University of Bonn, Germany,
[20] F. Mormann, R. G. Andrzejak, T. Kreuz, C. Rieke, P. David, C. 2003.
E. Elger, and K. Lehnertz, Phys. Rev. &7, 021912(2003). [36] J. A. Hanley and B. J. McNeil, Radiolog$43 29 (1982.
[21] W. De Clerq, P. Lemmerling, S. van Huffel, and W. van Paess-{37] H. Kantz and T. Schreibefonlinear Time Series Analysis
chen, Lancet361, 970(2003. (Cambridge University Press, Cambridge, UK, 1997

[22] R. Aschenbrenner-Scheibe, T. Maiwald, M. Winterhalder, H.[38
U. Voss, J. Timmer, and A. Schulze-Bonhage, Bratg, 2616  [39
(2003. [40] T. Schreiber, Phys. Rev. Let80, 2105(1998.

[23] B. Litt and J. Echaux, Lancet Neurol, 22 (2002. [41] Applied Simulated Annealingedited by R. V. V. Vidal

[24] B. Litt and K. Lehnertz, Curr. Opin. Neurofl5, 173(2002. (Springer-Verlag, Berlin, 1993

[25] K. Lehnertz, F. Mormann, T. Kreuz, R. G. Andrzejak, C. [42] S. Kirkpatrik, C. D. Gelatt, and M. P. Vecchi, Scien220, 671
Rieke, P. David, and C. E. Elger, IEEE Eng. Med. Biol. Mag. (1983.

i

D. Prichard and J. Theiler, Phys. Rev. Let3, 951 (1994).
T. Schreiber and A. Schmitz, Phys. Rev. L€, 635(1996.

—_ =

061915-9



