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Analytical analysis of a vesicle tumbling under a shear flow
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Vesicles under a shear flow exhibit a tank-treading motion of their membrane, while their long axis points
with an angle<w/4 with respect to the shear stress if the viscosity contrast between the interior and the
exterior is not large enough. Above a certain viscosity contrast, the vesicle undergoes a tumbling bifurcation,

a bifurcation which is known for red blood cells. We have recently presented the full numerical analysis of this
transition. In this paper, we introduce an analytical model that has the advantage of being both simple enough
and capturing the essential features found numerically. The model is based on general considerations and does
not resort to the explicit computation of the full hydrodynamic field inside and outside the vesicle.
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[. INTRODUCTION the various competing phenomena leading to tumbling. It is
the main aim of the present paper to deal with this question.

Vesicles are closed membranes, which are suspended in The present theory bypasses the tedious computation of
an aqueous solution. They represent an attractive biomimetige velocity field around the ellipsoighote that in the gen-
system, which has revealed several interesting static and dgral case, no analytical solution of the Stokes flow is knpwn
namical features that bear a strong resemblance with sonfid is based on the assumption that the forces acting on each
behavior of real cells. Among these features we can citdiece of the vesicle membrane are proportional to the actual
equilibrium shape$1] revealing forms similar to red blood relative velocity at the membrane with respect to the applied
cells, and tumb“ng known for these Cdg] It is known that flow. It follows from our Study that Simp|e enough notions
red cells, as well as vesicl¢3], orient themselves at a given account remarkably well for many features and render each
angle with respect to the shear flow at high hematdbigh effect transparent. In addition, this work offers a promising
enough concentration of red céllsvhile at low hematocrit basis for more elaborate models, including, for example, the
(where cells behave as being individubbthin vitro andin  €ffect of membrane stretching or shear elasticity.
vivo observations reveal a tumbling motion, where the long The scheme of this paper is as follows. In Sec. I, we
axis of the red cell rotates in a periodic fashion. It has beeresent the basic ingredients of the model. Section Il is de-
recognized for a long time that the viscosity ratio betweervoted to the derivation of the dynamical equation that gov-
the internal fluid and the ambient one is a decisive famw erns the motion of the vesicle. This pal’t is based on a tOI’que
more viscous is the internal fluid in comparison to the exterPalance. Section IV presents a complementary ingredient that
nal one, the easiest is the tumblingnother relevant ingre- Serves to put the evolution equation in a closed form. This is
dient is the swelling ratio: a flatten out cell would tumble based on an energy balance between the inner fluid of the
more easily than a swollen one. Several attempts in under-
standing the tumbling transition have been made in the lit-
erature, the most prominent one is the work of Keller and
Skallak[4]. This work uses the solution of the hydrodynami-
cal equations in the Stokes regirtirertial effects are negli-
gibly small for biological blood transportaround an ellip-
soid which involve quite complex expressions. But still
several assumptions had to be made in order to solve the
problem. Recently, a full numerical analysis has been pre-
sented[5] and provided the boundaries in the parameter
spacegbasically the viscosity contrast, and the swelling ratio
separating the regions of tumbling and those of tank tread-
ing. That work focused on vesicles that correspond to a sim-
plified model of red blood cells, and especially ignored the
elastic properties of the membrane, a fact which though turns
out to lead to some interesting qualitative changes will not be
accounted for here either.

Due to the interplay of several effects in the tumbling
transition, it is highly desirable to have at our disposal an
analytical theory, which, on the one hand, should reproduce
the basic essential features of the tumbling transition and, on FIG. 1. Decomposition of the shear floi8) in a rotational part
the other, should be simple enough in order to shed light oiiR) and an elongational pa(E).
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FIG. 2. Decomposition of the velocity field around the vesicle subjected to a tumbling motion and a tank-treading motion of its
membrane in a simple shear flow.

© ®)

vesicle and the work provided by the ambient one. The main (1) Due to the linearity of the Stokes equations, the super-
outcomes of the analytical theory together with their con-position principle for given boundary conditions applies: the
frontation with the full numerical analysis are presented invelocity field around a vesicle subjected to a tank treading
Sec. VI. and a tumbling motion in a simple shear flow is the sum of
the velocity fields obtained for the three following configu-
II. BASIC INGREDIENTS OF THE MODEL rations(see Fig. 2

() As in Ref.[4], we will assume the shape of the vesicle (i) A simple shear flow acting on a rigid body fixed in the
e {Iow at a constant orientation anglee with a fluid velocity

to be an undeformable ellipse, with the long and the shor :
axes denoted bg andb, respectively. It will be recognized €dual to zero on the contour of the vesicle. _

that the theory can be used for arbitrary prescribed shapes. (i) The flow created by a rigid elliptic body rotating at a

For definitness we shall, however, specialize our discussiofPtation velocitydy/dt in a quiescent fluid. _

to an elliptical shape. The enclosed area is denoteS dnyd (iit) The flow created by an elliptic body subjected to a
the perimeter byP. The fluid embedded into the vesicle has tank-treading motion of its contour and fixed at a constant
a viscosityu;, and the ambient ong,;. 7 is the swelling  orientationy in a quiescent fluid.

ratio of the vesicle defined in two dimensiofaD) as 7 (2) The second ingredient, which follows from the previ-
=47S/P2. For a circler=1 and it is smaller than one oth- ous one, is an extension of a general result valid in Stokes
erwise. flows for a solid which is in relative motion at a velocity

(b) The vesicle is subjected to a linear shear flowy, ( with respect to the surrounding fluid. The drag force on the
=vy,vy=0) wherevy is the shear rate. Since the vesicles ofsolid scales ab 4;,g= AV, Where\ is (a drag coefficienta
interest have a fluid membrane, each material point on theunction of the geometry of the bodyThere is a linear rela-
membrane will be transported by the flow, so that the memtion between the force and the relative velocity of the body
brane moves in a tank-tread fashion. with respect to the applied flow. We view the elliptic contour

Let us make a remark, which will prove to be useful latergg being represented by adjacent segments. The key hypoth
in this paper. A simple shear flow characterized by the (2esis of the following analysis is to apply this property, i.e.,

X 2) shear rate matrix the linearity between forces and relative velocities, on each
segment of the membrane. Let us make some important com-

0 vy ments about the meaning of this assumption. The external

(0 0) force applied on an elementary segment of the membrane is

provided, on the one hand, by the flow imposed externally,
can be decomposed into two parts: a symmetric one given bynd, on the other hand, by the backflow due to the presence
of the vesicle. This retroaction of the vesicle on the applied
0 2 flow is a complex piece of study and an exact determination
( Y ) of its effect requires sophisticated numerical treatments such
vi2 0

and an antisymmetric one given by IMore precisely, the Stokes force exerted on a solid of typical

lengthL in a translational motion at speédl, in a quiescent New-
( 0 y/2> tonian fluid of viscosityu, scales indeed as

-2 0 F~uUL.

o ) i ] __ More formally, we can write a linear relation between the force and
As shown in Fig. 1, the antisymmetric part provides a rigidthe velocity:

like clockwise rotation of the vesicl@R), while the symmet- Fe AU D

ric part corresponds to an elongatiofait strain flow, which _ Lo ’“A” I : . .

tends to orient the vesicle along4 (E). Aijj is a tensor vyhlch is symmet_rlcal for a New_tonlan fluid, and in a
Our calculation is based on the following two propertiessloemfIC frame linked to the solid, one can write

of the Stokes equations. Fi=—pNU; 2
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FIG. 3. The different frames involved in the model.

as the boundary integral methd@,7]. In our model, the dF,=— mouhnVadl, ©)
basic assumption stated above takes into account this com-

plex interaction in an effective manner: the effect of thewhere \; and \,, are phenomenological parameters of the
backflow is included in the coefficierX, which links the  model associated, respectively, to the transverse and the nor-
effective force to the relative velocity of the segment with mal motions to the segmemtl. \, and \,, have positive
respect to the applied flow. In the framework of our model,values with the choice of Eqé3). They have a dimension of
this coefficient is chosen to be independent of the particulathe inverse of a length. The crux of the analysis is to decom-
elementary segment considered. This is reminiscent of pose the local velocity in three pieces as stated above, and
“mean-field”-like approximation. This coefficient is alse  evaluate various torques.

priori nonisotropic, i.e., takes different values depending on
whether we consider the normal direction or the transverse
direction of the elementary segment considered. These two
values will be denoted as; and\, and their determination o
will be discussed in Sec. VI. To some extent this model is [N the laboratory frame g ,e,), the velocity field of a
akin to the Rouse model for polymer rofJ, where hydro- ~ Simple shear flow takes the form

dynamical interactions between adjacent pieces are ignored.

A. Torque of the force acting on the body
in a simple shear flow

Ux="7Ys

IIl. MECHANICAL EQUILIBRIUM FOR THE VESICLE IN vy=0.

THE SHEAR FLOW . o .
v is the shear rate, which fixes the time scale of the flow.

_As stated above, the main idea is to use the linear genetritten in the local coordinate systene (e,), the relative
alized Stokes law at the local level of each segment of theelocity reads

contour, and to compute the torque associated with the force.
Since we shall decompose the velocity field into an applied Vshea= ~ VY& &,
shear, a tank-treading motion, and a tumbling one, we shall
have to deal with three types of forces separately. Once each
torque is evaluated, we sum up the three contributions, and
set the resultant to be zero, owing to the absence of inertia.
Once the expressions of the forces are specified, the remain-
ing pieces of the work are purely algebraic with some spe&S
cific integrals involving the geometry of the vesicle. as
Since the Stokes law relating the force to the relative ve-
locity is local, we find it convenient to first, write it in the
frame linked to the vesicle, and then, to express the torque
elements in the laboratory frame for ease of computations.
We refer to Fig. 3 for the different frames used here. Theysing the coordinates linked with the natural axes of the
laboratory frame has the basis denotedesg(). The rotat-  ellipse (for a convenient calculationwe easily find
ing frame, which is linked to the principal axes of the ellipse,
is specified by its basis denoted & (g)). The local frame
associated to an elementary segment on the elliptic contour is M shear™ Mout¥

specified by & ,e,).

¢ In thedlocal fralmze"e”r)]’ the components (I)f theh I_ocar: with the convention that a positive torque corresponds to a
orce (or rag applied on the segment per unit length in the |\, \yise rotation(see Fig. 1 L, andLg, are elliptic inte-
transverse direction can be expressed as functions of the rel Fals:

tive velocities ¥;,V,) exerted upon a membrane element:

Vshearn: —YYE .6

Using Eq.(3), we determine the associated forces denoted
Fshear andd Fshear » from which the torque is computed

Mshear écr X dFgpear 4

L2 +L% L%-L2
312 52+ 312 3200321//)

)

2

LZ=[\f(a,b)—n,f(b,a)]+|=| [\g(a,b)+\,f(b,a)],

dFi=— uouVidl, 5
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a\? C. Torque of the force acting on the ellipsoid related to the
L& =[N\ f(a,b)—\,f(b,a)]+ o [Ag(b,a)+\pf(b,a)] tank-treading motion
The tank-treading velocity is tangential to the membrane:
with
Viank= Viani& (10)
x' 2y’ 2 and the force is simpl
@)= ¢ — Y, >
¢ b y'2+ 2 x'2 Frank= — Kouth tViani&: - (11
The associated torque is
Xr4
g(a,b): %C a\? P b\? 2d|. Mtank: § r><C“:tank-
RANFTRS ¢

The integration provides us with
According to the linear decomposition of Fig. 2, we can _
identify from Eq.(5) the torque associated with the rotational Mian= ~ KoutViand L1+ L2), (12

part of the flow where

L3 Ld IEWN CNi

— - 2 _ oy’ 2 _ ’2 . ’2
M ot= HoutY 2 (6) Li=h %C(ax )/ (b) Xt a y _d|,

and the torque associated with the elongational part of the a ., [[a)\? 5 2 2'
ﬂOW LZZ)\I %C By’ B X’ + 5 y, dl

2 z Because the inertial effects are sm@hd thus neglected

M _ s1”— bLs2 2 7
elong™ HoutY 75 cod2y). () the sum of the three torques must vanish. Summing up the
three contribution§Egs. (5), (9), and (12)], one finds the

_ o _ . evolution equation for the angular velocity of the vesicle:
B. Torque of the force acting on a rigid ellipse with a rotation

speeddy/dt dv 13
—_= +we+ ,
The tumbling velocity at a position of the membrane is dr  @rot™ @ @elong (13
iven b
g Y where we have defined the three quantities on the right-hand
Vtumble= WXT, (8)  side of Eq.(13) as
wherew= (d¢/dt)e, is the instantaneous angular velocity of Oy =— % (14)

the vesicledy/dt and its components in the local frame are

d d wherew,,; represents the rotational velocitye., a torque in
Vtumble[:( d d ) the Stokes framewojkarising from the rotational part of the

X/_ P — ’
dty Y ™ flow and is responsible for the global rotation of the shape.
d w d w Ll + LZ
=| + — [ — rl w :V SR 15)
Vtumblen X dt ey Yy dt € ) [ tankL§1+ L§2 (
We use Eq(3) to determine the force and then we computeWherewc is the contribution of the tank-treading motion of
the torque as the membrane to the effective angular velodty/dt of the
vesicle.
M wumbie= 45 X dFumbe- L3 -L3
tumble c tumble Y Ls1 SZCOS(2¢), (16)

Welong™ ~ 5 T2 2
2 le+ Lsz
This yields, after elementary integration, to where wejong is the effective elongational velocity which
represents the main contribution of the elongational flow and
Y I— td_‘/’(l_21+ L22). 9) tends to qrient the vesicle along_ a direction making an angle
umple - Frout gg 2 s s = ml4 with respect to the applied flow.
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It is interesting to note at this point that for a sphere, the The velocity V, at a pointr of the membrane can be
various integrals can easily be computed written in the same frame as

Li+L,=2m\@% L4 +L%5=2\ma’. Vi=Vian&+wXr, (18)

wherew= (d¢/dt)ezis the instantaneous angular velocity of
the vesicle.

An elementary forcalF acting on an elemerd| of the
membrane can be decomposed according to the preceding
section as

Reporting into Eqs(14) and(15), and requiring in Eq(13)
thatd¥/dt=0 (since for a sphere the contribution to tum-
bling vanishe®, we obtain

Y
Viank=5 a. 17
tank™ o dF=dFspeait dFyumpiet dFiank-

This is the expected value of the tank-treading velocity in theThe sum of the torques applied on the vesicle is equal to
case of a sphere with a radias Interestingly, this result Zero, entailing
holds whatever the prescription for the parametegsand

Ay is. . . . § dF-(wxr)dl= fﬁ w-(rxdF)dI=0. (19)
Inspection of Eqs(13)—(16) reveals, in particular, that for

a rigid membrane wher€,,,=0, no stationnary solution is ) Lo -

: - . Hence, only the first contribution of the velocity in E4.8
possible: a rigid elliptic body should always tumble, as one atters Tﬁ/e total power provided by the rovx)// hasE(th; fol-
expects. This can be interpreted by the fact that the rotationfiw '

velocity |w,| is always bigger than the elongational veloc- owing contributions:

ity |weiong - If allowance is made for a tank-treading motion E. —FE..+E FE. L (20)
(due to the membrane fluidity and the finite viscosity of the tot sheart tumble T tank
internal liquid then o #0. Equations(13)—(15) show in- (a) The contribution from the simple shear flow By,

deed that the tank-treading motion described by the velocity= §dFg..; Vo€ and upon integration on the contour, we
w, results in an effective reduction of the global rotation find

wrot, Provided that the tank-treading veloci®,, has a

positive value. A stationargnontumbling tank-treading mo- Li+L, Li—L,

tion of the shape is thus possible if the velociteiong, Eshear HoutVianky| — — + —5 €082¢)|, (21)
representing the elongational part of the flow, can balance the

effective tumbling velocity|w,,+ w¢|. This can occur for where the length&; andL, have been defined previously
sufficiently high values of the tank-treading velocity. Hith- [Egs.(12)]. Following the spirit of the last section, we write
erto, the tank-treading velocity has been introduced as a ph&sgpea= Erot T Eeiong in order to identify the contributions
nomenological quantity, and it must be computed indepenfrom the rotational part of the shear flow

dently. This step is necessary in order to have an evolution

equation in a closed form. The tank-treading velocity is E o— v LitLl,
clearly limited by the viscous friction of the internal fluid, rot~ HoutVtank¥ ™5
and this piece of information must be evoked in order to
complete the analysis. and the elongational part of the shear flow
L,—Lo
IV. DETERMINATION OF THE TANK-TREADING Eelong= MoutVtaanCOS(Zw)-
VELOCITY

Following Ref.[4], the tank-treading velocity,,,.can be  This decomposition will be useful in the discussion of the
determined by considering the energy dissipated in the sygesults.
tem. The energy injected by the flow is dissipated by viscous (b) The contribution from the tumbling motion Bympe
friction in the fluid inside the vesicle. The energy rdtw  =$dFnpe Vian, Yielding
powel provided by the fluid to an elementary segment in the

; . d
laboratory frame is equal tdF-V;. S MoutVtankd—lf(Lﬁ L,). 22)

Djstinguishing between tumbling and tank treading for a sphere (€) The contribution from the tank-treading motion is
might seem a bit confusing. The case of a sphere is degeneratEiank=$dFank Viant» @and upon integration one finds
since one can view the dynamics as being of pure tank-treading or
pure tumbling nature. Indeed requiring either tdt/dt=0, as we Etank= — MoutVtzan . (23)
did here, oV, =0, provides the same velocity along the contour.
For continuity reasons with the case where there is a slight deviawhereP’=¢ .\ dl=\P
tion from a sphere, we interpret the motion under question as being By using the above results, the total pow2®) takes the
of tank-treading type. form

061914-5



RIOUAL, BIBEN, AND MISBAH PHYSICAL REVIEW E 69, 061914 (2004

Etot= Moutl thzanka BVian s (24) linear to the tangent at the membrémd this continL_les to
represent a reasonable approximation. Let us estimate the
energy dissipated in the vesicle. This is given by

where
EZMina,Vtzank! (28)
(Li+Ly)2 where «' is a constant depending oa and b: «'
172 , !
=z P (25  =1lgzab(b/a®?—1/b)? in the present case.
sl =s2 Using Egs.(24) and (28), we arrive at
_ 2 _ 2 fa
_ {Lz Ly Litl, Lzz Lzlcos(Z‘If) . (26 Viank= — Tycog(zxy), (29)
n
2 2 L52+le fz_ fl
Mout

In the particular case of a circular shape, the total powe{yhere
provided by the external fluid to the internal one can easily

be determined: indeed, we havé,ftL,)?=4\2(7a?)?; ;1 1 b

L2 +L%,=2\ma% P'=2\ma, and Li=L,, Lg=Le. fi=a =5 mabl g=— ], (30)
sl s2 t g t ' 1 29 sl s2

This implies that both coefficienta and 8 vanish, and so

does the total power. This result is conforting since inside a (Li+Ly)2

sphere the fluid executes a rigidlike rotati@here is no dis- 22W‘ " 3D

sipation) and thus no energy can be transferred. It is only s1° =s2

when the shape deviates from a cir@e a sphere in 3Dthat L—L Lol L2 L2

dissipation is permissible. Note that we arrived at this result fo=—t L 2752 7Sl (32)

before using any information about dissipation in the en- 2 2 13+L4

closed fluid, and this points to a consistency of the model.

The energy dissipated by viscous friction in the volume of ~AS could be anticipated, the tank-treading velocity is di-
the vesicle is of the form rectly proportional toy which fixes the time scale of the

imposed flow. We also note that the tank-treading velocity
enjoys the same symmetry as the elongational flow does: it
1 Vi IV 2d vanishes fory= =+ 7r/4 and is maximal fory=0.
“T2H Fﬁs (9_xj+ ax; s @7 Some remarks are in order. As explained in Sec. lll, a

shear flow can always be split into a rotational part and an
In general, we have to determine the velocity field, which€longational onésee Fig. 2 In order to understand the ori-
satisfies the Stokes equations inside the vesicle and subject@if ©f the tank-treading motion, it is appropriate to specify
to boundary conditions at the surface of the ellipse. Our ainihe role of both the elongational and the rotational compo-
is not to determine the velocity field exactly, which is not an"ents of the flow. ,
easy task in generdand an exact result is the exception ©On the one hand, f%r a purely rotational flow, Hg4)
rather than the rule Rather we wish to capture the main ShOWS tha€o= pouaVignk Since=0. Equating Eqs(24)
ingredients and remain within a heuristic analysis. For thafnd (28) leads to the conditioVi,,=0, provided that the
purpose, it will be sufficient to make use of an approximateShape is not circular. This corresponds to a global solidlike
solution inferred from simple considerations based on théotation. On the other hand, for a purely elongational flow,
result relative to a spherical shape. In order to anticipate th&ds. (24) and (28) lead to Vi~ cos(2/). A nonzero tank-
main ingredient, we shall take the case of a slightly deformedreading velocity is possible with the proviso that the orien-
circle as a reference in order to serve as a guide for ouf@tion angle is different fromy=(w/4) [cos(2/)#0]. The
reasoning. Considex=(b—a)/a to be small. The following torque applied on the vesicle arising from the elongational
velocity field fulfills the prescribed conditiong.e., to be a  flow is [see EQ.(7)] M¢jong~C0S(24). An inspection of the
solution of the Stokes equations in the inner domain of thdalance of the torques for the elongational flow, as done in

vesicle: Sec. lll, leads to the dynamical equatidr)/dt~cos(2)).
V., =V Y_’ 30ther prescriptions for the flow could have been used. In particu-
x' = Vitank b’ lar,
y!
Vo :Vtankg!
V,=—-V — . !
Y tank a2 Vy’ = _Vtankg

. o This flow ensures a constant value for the tank-treading velocity
It must be noted that despite the fact that the velocity is nohlong the contour but the velocity is not collinear to the tangential
exactly constant along the contour, the velocity remains coldirection of the contour.
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= m/4 is thus, the only steady equilibrium position, with a This is the general condition which can be tabulated numeri-
tank-treading velocity equal to zero. Hence, the existence ofally, provided that the two drag coefficients and\,, are

a tank-treading motion of the membrane is only a conseknown, which is exactly the case for several shafubsks,
quence of the coupling between the rotational and the elorellipses, and sphergsThus, the condition relates uniquely
gational part of the flow. The total effect of the shear can behe viscosity contrast to geometrical quantities which are
interpreted as follows: the rotational part tends to push thdéunctions of the swelling ratio. In order to gain more insight
orientation angle of the vesicle axis towards lower valuesowards an analytical progress we can explore the situation
thany= 7/4. As soon as this is achieved the vesicle acquire®f a small deformation around the spherical shape. This
a nonzero tank-treading velocity since there, the elongationgiroves to be sufficient to capture the essential features. For

part enters into actiofsee Eq(16)].% that purpose, we s&t=b—a and treate as a small param-
eter. The integral& ;,L, ..., that enter in Eq(36) can be
V. DYNAMICAL EQUATION FOR THE ORIENTATION evaluated explicitly, so that the critical condition for tum-
ANGLE bling is expressed in a simple form in terms of the viscosity

ratio and the swelling ratio:
Plugging Eq.(29) into Eq.(13), we can express explicitly

w¢ (which involves the tank-treading motion of the vesjcle Min  1/4\a
and this leads to the general dynamical equation for the ori- tout  1—7 (37)
entation angley of the vesicle:
and the dissipation rat@8) scales as
dy
Gt~ AtBcod2y), (33 €= uinVad1— 7). (38)

This law for the dissipation rate is in a good agreement
with previous numerical resultsee Ref[5]). We find here
that the closer is the shape to a sphere, the more difficult

A= — Z, (34) does tumbling occur; the viscosity contrast for tumbling di-
2 verges as 1/(+ 7).

where

VI. QUANTITATIVE AND QUALITATIVE ANALYSES OF
THE MODEL

We have seen that the model presented here captures the
essential features and sheds light on the various competing
effects that fix the tank-treading and tumbling motions. We

(L3-L2) may ask the question whether the model can be made more

(Lo—Ly)—(LitLy) quantitative. As stated before, the model requires the intro-

2 2
+L,) (Leotla duction of two drag parametebs, and \,, which are the
Lo+l prs Hin L2 412 proportionality constants relating the force and velocity in
(Latlz) Mout“ (Latls) the normal and the tangential directions. Let us recall that

these two drag coefficients describe the effect of the hydro-
dynamic interaction felt by a membrane element. This in-

A purely tank-treading motion corresponds to the situationVOIVeS the geometry of the shape around a given element of

where the inclination angle is constant. This is expressed bmembrar}e and these drag parametersagrgori function of
- S i, ; e position of the element considered on the contour. If one
dy/dt=0 which implies the condition- A/B<1. This con- wishes to go beyond a qualitative discussion we must deter-
straint leads, in particular, to a condition on the viscositymine thesg WO }éra a?ameters which can be made in gen-
ratio between the inner and the outer fluid: aragp PO . e ing
eral only numerically. For a sphere with a radausoving in

(39

L2 a Stokes flow, it is known that on a local segment of the
Hin <i (Ly+Ly| 1+ st E—P’ _ (36) spherical contour we have,=\,=3/2a (see Ref[9]). In-
Bout a'| 2L stead of evaluating the exact values of these parameters for

each elementary elements of the membrane, we shall rather
estimate them from the best fit with the full numerical simu-

“Note that the tank-treading velocity is the result of an energylatIOnS obtained previously5]. Note that each membrane

balance which involves the coupling between the rotational and th@ortion C,an be approximated locally as an arc of a circle.
elongational part of the flow. Since energetic quantities are qual NUS: @s in the case of a sphere we chose equal values for the

dratic functions of the velocity field, the tank-treading velocity is drag coefficients in the normal and in the transverse direc-
not simply the sum of the tank-treading motions associated, respeélons with respect to the contoux;=\,. We consider now
tively, to the elongational component and the rotational componen@ Vesicle with an aspect ratio=0.8 and determine several
considered independently. Such a summation would result in a varfjuantities.

ishing tank-treading velocity. The results have been compared to the full numerical
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computation and the values ®f and\ , have been guessed. + wy/ya) as a function of the swelling ratie, r = zir/ sray=2.

For various tests made so far, we found thagt\ =4 per
unit length in the transverse direction provide the most rea-

sonable fit. We present in Fig. 4 the evolution of the equlllb'to mention. Following the considerations in Sec. 1V, the tank-

rium angle as a function of the viscosity ratiowhich cor- 04 4ing motion is a result of the competition between the
responds to the stable branch of the saddle-node bifurcatiqRyational part of the flow and the elongational component.
[10]. The prediction of the model qualitatively reproducesjore precisely, the rotational component pushes the vesicle
the bifurcation branctithis is always the case regardless of gig away from the elongational main axig<¢ 7/4), allow-

the chosen parameleand is fairly in reasonable agreement jng the membrane to acquire a nonzero tank-treading motion.
on the quantitative level. The point at which the angle is zeraone may say that part of the rotation torque is transferred to
corresponds to the threshold of the tumbling bifurcation.the tank-treading one. Increasing the viscosity of the inner
This threshold depends on the swelling ratio. Consequentlyjuid results in a global reduction of the tank-treading veloc-
the two parameters controlling the bifurcation are the viscosity since the internal dissipation penalizes velocity gradients
ity contrast and the swelling ratio. Figure 5 represents thenside the vesicle(see Fig. 9. From Fig. 8 the effective
boundary between the region of the phase diagram whergmbling velocity should thus increase, reducing further the
pure tank-treading motion takes plagew r and highr) and  value of . However, thanks to the cosgp variation of the
that, where the motion is of tumbling tygehich is favored  tank-treading velocity, a new equilibrium position can be
at larger and smallr). The results are compared with the found at a value ofy which is a decreasing function of the
full numerical calculation. It is also worthwhile to represent yiscosity ratio. In the extreme limit wherng.,=0, the elon-
some other physical quantities. Of particular interest are thgational velocity wejong reaches its maximum and cannot
g'og)a| rotation velocity and the tank-treading velodiygs.  overcome the rotational velocity on further increase of the

Before concluding some additional comments are worth

y T T y T
0.5
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FIG. 5. Evolution of the critical viscosity ratioc as a function FIG. 7. Evolution of the tank-treading velociy,,,/va as a
of the swelling ratior for a=1. function of the swelling raticr.
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+w|/ya) as a function of the viscosity ratig the swelling ratio is ~ function of the viscosity ratio, 7=0.84.

equal tor=0.84. There are several important effects that have been disre-

arded, however. We have restricted most of our discussion
2D shapes. In view of the result of Keller and Skalldk

e do not expect a qualitative change when 3D shapes are
considered, provided that the shape is prescribed. If the
shape is free to evolve, the shear may induce a shape trans-
rmation, such as a prolate/oblate transition, and this con-
itutes an important task for future investigations. In addi-
on, we did not include the fact that the two monolayers

internal viscosity: the steady-state solution does not exi
anymore whereby a new dynamical solution takes place il;}v
the form of tumbling. Figure 4 illustrates the evolution of the
equilibrium angle as a function of the viscosity ratio.

The above discussion was made on the assumption th
the swelling ratio is constant. The swelling ratio is a measure,
of the deviation from a spherical shape. For the particulalii

case of a circular Sh‘?p(“”ofr?spo”d'”g o a sv_velllng ratio forming the vesicle membrane may slide with respect to each
7=1), the total velocity arising from the rotational part of

. . ! other[11]. In that case one has to include two tank-treading
the flow is completely transferred in the tank-treading mo-

" t th b that the effective tumbli locit velocities, one for each layer, and evaluate the membrane
lon ot the membrané so that the eftective tumbling VeIoCtjnte g dissipation. It will be an interesting point to clarify

!wf°t+‘”‘3|:o (in reality, as Com”.‘e.me‘?' above, this situation e jnfluence of this fact on tumbling. For biological cells,
IS degenerate and th'ere IS no d|§t|nct|0n between rigid rot such as red cells, further refinement of the model is clearly
tion and tank treading For a circular shape, the tank- nocessary. For example, red blood cells tuniblgivoin the
treadmg_velocny IS maximal and equ_al W= (v/2)a, same manner as vesicles do. There is however a notable
wherea is the radius of the circle. This result has already gifterence between vesicles and red cells. The transition to
beer_l obtained directly in Sec. IlI. _ tumbling depends on the shear rg#8. This dependence is
Flgures 6 gnd 7 represent _the evoll_mon of t_he tank'completely absent for vesicles since there is only one time

treading velocity and the effective tumbling velocioi  gcale 14 which is imposed by the flow. This points to the
+wg| as a function of the swelling ratie. As the shape ;0 that there should exist a relevant intrinsic time scale for
deviates from a circular one, the effective velocity respon+aq celis. A natural candidate is the elagtic even viscoelas-
sible for tumbling|w.o+ w| increases(Fig. 6 since the ¢ response of the cytoskeleton. A natural time scale is
tank-treading velocity decreasésig. 7). This explains that /G, whereG is the (2D) shear modulus of the spectrin
the transition to a tumbling regime can be achieved for Ioweﬁetw’ork forming the red cell cytoskeleton, and is the
vaI_ue_s pf the viscosi.ty ratio as the syvelling ratio decrease%embrane viscosity. Available data @ [12]’ and u [13]
This is indeed what is observed in Fig. 5. provide us withu/G of the order of 102—10"1 s, which is

not far from 14 in ordinary experiment$2]. We are pres-

ently using a simple model for elasticity in order to analyze

VII. CONCLUSION the qualitative features of this effelt4].

We have presented a simple model bypassing the calcula-
tion of the Stokes flow. We have captured the essential fea-
. X . ACKNOWLEDGMENT
tures of the transition tank treading/tumbling, and have a CKNO © S
transparent view of the various competing phenomena. This This work benefitted from financial support from CNES
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