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Analytical analysis of a vesicle tumbling under a shear flow
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Vesicles under a shear flow exhibit a tank-treading motion of their membrane, while their long axis points
with an angle,p/4 with respect to the shear stress if the viscosity contrast between the interior and the
exterior is not large enough. Above a certain viscosity contrast, the vesicle undergoes a tumbling bifurcation,
a bifurcation which is known for red blood cells. We have recently presented the full numerical analysis of this
transition. In this paper, we introduce an analytical model that has the advantage of being both simple enough
and capturing the essential features found numerically. The model is based on general considerations and does
not resort to the explicit computation of the full hydrodynamic field inside and outside the vesicle.
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I. INTRODUCTION

Vesicles are closed membranes, which are suspende
an aqueous solution. They represent an attractive biomim
system, which has revealed several interesting static and
namical features that bear a strong resemblance with s
behavior of real cells. Among these features we can
equilibrium shapes@1# revealing forms similar to red blood
cells, and tumbling known for these cells@2#. It is known that
red cells, as well as vesicles@3#, orient themselves at a give
angle with respect to the shear flow at high hematocrit~high
enough concentration of red cells!, while at low hematocrit
~where cells behave as being individual! both in vitro and in
vivo observations reveal a tumbling motion, where the lo
axis of the red cell rotates in a periodic fashion. It has be
recognized for a long time that the viscosity ratio betwe
the internal fluid and the ambient one is a decisive factor~the
more viscous is the internal fluid in comparison to the ext
nal one, the easiest is the tumbling!. Another relevant ingre-
dient is the swelling ratio: a flatten out cell would tumb
more easily than a swollen one. Several attempts in un
standing the tumbling transition have been made in the
erature, the most prominent one is the work of Keller a
Skallak@4#. This work uses the solution of the hydrodynam
cal equations in the Stokes regime~inertial effects are negli-
gibly small for biological blood transport! around an ellip-
soid which involve quite complex expressions. But s
several assumptions had to be made in order to solve
problem. Recently, a full numerical analysis has been p
sented@5# and provided the boundaries in the parame
space~basically the viscosity contrast, and the swelling rat!
separating the regions of tumbling and those of tank tre
ing. That work focused on vesicles that correspond to a s
plified model of red blood cells, and especially ignored t
elastic properties of the membrane, a fact which though tu
out to lead to some interesting qualitative changes will not
accounted for here either.

Due to the interplay of several effects in the tumbli
transition, it is highly desirable to have at our disposal
analytical theory, which, on the one hand, should reprod
the basic essential features of the tumbling transition and
the other, should be simple enough in order to shed ligh
1539-3755/2004/69~6!/061914~10!/$22.50 69 0619
in
tic
y-
e

te

g
n
n

r-

r-
t-
d

l
he
-
r

d-
-

e
s
e

n
e
n
n

the various competing phenomena leading to tumbling. I
the main aim of the present paper to deal with this quest

The present theory bypasses the tedious computatio
the velocity field around the ellipsoid~note that in the gen-
eral case, no analytical solution of the Stokes flow is know!,
and is based on the assumption that the forces acting on
piece of the vesicle membrane are proportional to the ac
relative velocity at the membrane with respect to the app
flow. It follows from our study that simple enough notion
account remarkably well for many features and render e
effect transparent. In addition, this work offers a promisi
basis for more elaborate models, including, for example,
effect of membrane stretching or shear elasticity.

The scheme of this paper is as follows. In Sec. II, w
present the basic ingredients of the model. Section III is
voted to the derivation of the dynamical equation that go
erns the motion of the vesicle. This part is based on a tor
balance. Section IV presents a complementary ingredient
serves to put the evolution equation in a closed form. Thi
based on an energy balance between the inner fluid of

FIG. 1. Decomposition of the shear flow~S! in a rotational part
~R! and an elongational part~E!.
©2004 The American Physical Society14-1
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FIG. 2. Decomposition of the velocity field around the vesicle subjected to a tumbling motion and a tank-treading motion
membrane in a simple shear flow.
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vesicle and the work provided by the ambient one. The m
outcomes of the analytical theory together with their co
frontation with the full numerical analysis are presented
Sec. VI.

II. BASIC INGREDIENTS OF THE MODEL

~a! As in Ref.@4#, we will assume the shape of the vesic
to be an undeformable ellipse, with the long and the sh
axes denoted bya andb, respectively. It will be recognized
that the theory can be used for arbitrary prescribed sha
For definitness we shall, however, specialize our discus
to an elliptical shape. The enclosed area is denoted byS and
the perimeter byP. The fluid embedded into the vesicle h
a viscositym in and the ambient onemout . t is the swelling
ratio of the vesicle defined in two dimensions~2D! as t
54pS/P2. For a circlet51 and it is smaller than one oth
erwise.

~b! The vesicle is subjected to a linear shear flow (vx
5gy,vy50) whereg is the shear rate. Since the vesicles
interest have a fluid membrane, each material point on
membrane will be transported by the flow, so that the me
brane moves in a tank-tread fashion.

Let us make a remark, which will prove to be useful la
in this paper. A simple shear flow characterized by the
32) shear rate matrix

S 0 g

0 0D
can be decomposed into two parts: a symmetric one give

S 0 g/2

g/2 0 D
and an antisymmetric one given by

S 0 g/2

2g/2 0 D .

As shown in Fig. 1, the antisymmetric part provides a rig
like clockwise rotation of the vesicle~R!, while the symmet-
ric part corresponds to an elongational~or strain! flow, which
tends to orient the vesicle alongp/4 ~E!.

Our calculation is based on the following two properti
of the Stokes equations.
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~1! Due to the linearity of the Stokes equations, the sup
position principle for given boundary conditions applies: t
velocity field around a vesicle subjected to a tank tread
and a tumbling motion in a simple shear flow is the sum
the velocity fields obtained for the three following config
rations~see Fig. 2!:

~i! A simple shear flow acting on a rigid body fixed in th
flow at a constant orientation anglec with a fluid velocity
equal to zero on the contour of the vesicle.

~ii ! The flow created by a rigid elliptic body rotating at
rotation velocitydc/dt in a quiescent fluid.

~iii ! The flow created by an elliptic body subjected to
tank-treading motion of its contour and fixed at a const
orientationc in a quiescent fluid.

~2! The second ingredient, which follows from the prev
ous one, is an extension of a general result valid in Sto
flows for a solid which is in relative motion at a velocityV
with respect to the surrounding fluid. The drag force on
solid scales asFdrag5mlV, wherel is ~a drag coefficient! a
function of the geometry of the body.1 There is a linear rela-
tion between the force and the relative velocity of the bo
with respect to the applied flow. We view the elliptic conto
as being represented by adjacent segments. The key hyp
esis of the following analysis is to apply this property, i.
the linearity between forces and relative velocities, on e
segment of the membrane. Let us make some important c
ments about the meaning of this assumption. The exte
force applied on an elementary segment of the membran
provided, on the one hand, by the flow imposed externa
and, on the other hand, by the backflow due to the prese
of the vesicle. This retroaction of the vesicle on the appl
flow is a complex piece of study and an exact determinat
of its effect requires sophisticated numerical treatments s

1More precisely, the Stokes force exerted on a solid of typi
lengthL in a translational motion at speedU, in a quiescent New-
tonian fluid of viscositym, scales indeed as

F'mUL.
More formally, we can write a linear relation between the force a
the velocity:

Fi52mAijUj . ~1!

Ai j is a tensor which is symmetrical for a Newtonian fluid, and in
specific frame linked to the solid, one can write

Fi52mliUi ~2!
4-2
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FIG. 3. The different frames involved in the model.
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as the boundary integral method@6,7#. In our model, the
basic assumption stated above takes into account this c
plex interaction in an effective manner: the effect of t
backflow is included in the coefficientl, which links the
effective force to the relative velocity of the segment w
respect to the applied flow. In the framework of our mod
this coefficient is chosen to be independent of the partic
elementary segment considered. This is reminiscent o
‘‘mean-field’’-like approximation. This coefficient is alsoa
priori nonisotropic, i.e., takes different values depending
whether we consider the normal direction or the transve
direction of the elementary segment considered. These
values will be denoted asl t andln and their determination
will be discussed in Sec. VI. To some extent this mode
akin to the Rouse model for polymer rods@8#, where hydro-
dynamical interactions between adjacent pieces are igno

III. MECHANICAL EQUILIBRIUM FOR THE VESICLE IN
THE SHEAR FLOW

As stated above, the main idea is to use the linear ge
alized Stokes law at the local level of each segment of
contour, and to compute the torque associated with the fo
Since we shall decompose the velocity field into an app
shear, a tank-treading motion, and a tumbling one, we s
have to deal with three types of forces separately. Once e
torque is evaluated, we sum up the three contributions,
set the resultant to be zero, owing to the absence of ine
Once the expressions of the forces are specified, the rem
ing pieces of the work are purely algebraic with some s
cific integrals involving the geometry of the vesicle.

Since the Stokes law relating the force to the relative
locity is local, we find it convenient to first, write it in th
frame linked to the vesicle, and then, to express the tor
elements in the laboratory frame for ease of computatio
We refer to Fig. 3 for the different frames used here. T
laboratory frame has the basis denoted as (ex ,ey). The rotat-
ing frame, which is linked to the principal axes of the ellips
is specified by its basis denoted as (ex8 ,ey8). The local frame
associated to an elementary segment on the elliptic conto
specified by (et ,en).

In the local frame (et ,en), the components of the loca
force ~or drag! applied on the segment per unit length in t
transverse direction can be expressed as functions of the
tive velocities (Vt ,Vn) exerted upon a membrane elemen

dFt52moutl tVtdl,
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dFn52moutlnVndl, ~3!

where l t and ln are phenomenological parameters of t
model associated, respectively, to the transverse and the
mal motions to the segmentdl. l t and ln have positive
values with the choice of Eqs.~3!. They have a dimension o
the inverse of a length. The crux of the analysis is to deco
pose the local velocity in three pieces as stated above,
evaluate various torques.

A. Torque of the force acting on the body
in a simple shear flow

In the laboratory frame (ex ,ey), the velocity field of a
simple shear flow takes the form

vx5gy,

vy50.

g is the shear rate, which fixes the time scale of the flo
Written in the local coordinate system (et ,en), the relative
velocity reads

Vsheart
52gyex .et ,

Vshearn
52gyex .en .

Using Eq.~3!, we determine the associated forces deno
asdFsheart

anddFshearn
, from which the torque is compute

as

M shear5 R
C
r3dFshear. ~4!

Using the coordinates linked with the natural axes of
ellipse ~for a convenient calculation!, we easily find

M shear5moutgFLs1
2 1Ls2

2

2
1

Ls1
2 2Ls2

2

2
cos~2c!G , ~5!

with the convention that a positive torque corresponds t
clockwise rotation~see Fig. 1!. Ls2 andLs1 are elliptic inte-
grals:

Ls2
2 5@l t f ~a,b!2lnf ~b,a!#1S b

aD 2

@l tg~a,b!1lnf ~b,a!#,
4-3



an
a

th

of
re

te

ne:

the

and

e.

f

h
nd
gle

RIOUAL, BIBEN, AND MISBAH PHYSICAL REVIEW E 69, 061914 ~2004!
Ls1
2 5@l t f ~a,b!2lnf ~b,a!#1S a

bD 2

@l tg~b,a!1lnf ~b,a!#

with

f ~a,b!5 R
C

x8 2y8 2

S a

bD 2

y8 21S b

aD 2

x8 2

dl,

g~a,b!5 R
C

x8 4

S a

bD 2

y8 21S b

aD 2

x8 2

dl.

According to the linear decomposition of Fig. 2, we c
identify from Eq.~5! the torque associated with the rotation
part of the flow

Mrot5moutg
Ls1

2 1Ls2
2

2
~6!

and the torque associated with the elongational part of
flow

Melong5moutg
Ls1

2 2Ls2
2

2
cos~2c!. ~7!

B. Torque of the force acting on a rigid ellipse with a rotation
speeddcÕdt

The tumbling velocity at a positionr of the membrane is
given by

Vtumble5w3r , ~8!

wherew5(dc/dt)ez is the instantaneous angular velocity
the vesicledc/dt and its components in the local frame a

Vtumblet
5S x8

dc

dt
ey82y8

dc

dt
ex8D ,

Vtumblen
5S 1x8

dc

dt
ey82y8

dc

dt
ex8D .

We use Eq.~3! to determine the force and then we compu
the torque as

M tumble5 R
C
r3dFtumble.

This yields, after elementary integration, to

M tumble5mout

dc

dt
~Ls1

2 1Ls2
2 !. ~9!
06191
l

e

C. Torque of the force acting on the ellipsoid related to the
tank-treading motion

The tank-treading velocity is tangential to the membra

Vtank5Vtanket ~10!

and the force is simply

Ftank52moutl tVtanket . ~11!

The associated torque is

M tank5 R
C
r3dFtank.

The integration provides us with

M tank52moutVtank~L11L2!, ~12!

where

L15l t R
C
S b

a
x8 2D YAF S a

bD 2

x8 21S b

aD 2

y8 2Gdl,

L25l t R
C
S a

b
y8 2D YAF S a

bD 2

x8 21S b

aD 2

y8 2Gdl.

Because the inertial effects are small~and thus neglected!,
the sum of the three torques must vanish. Summing up
three contributions@Eqs. ~5!, ~9!, and ~12!#, one finds the
evolution equation for the angular velocity of the vesicle:

dC

dt
5v rot1vc1velong, ~13!

where we have defined the three quantities on the right-h
side of Eq.~13! as

v rot52
g

2
, ~14!

wherev rot represents the rotational velocity~i.e., a torque in
the Stokes framework!, arising from the rotational part of the
flow and is responsible for the global rotation of the shap

vc5Vtank

L11L2

Ls1
2 1Ls2

2
, ~15!

wherevc is the contribution of the tank-treading motion o
the membrane to the effective angular velocitydc/dt of the
vesicle.

velong52
g

2

Ls1
2 2Ls2

2

Ls1
2 1Ls2

2
cos~2c!, ~16!

where velong is the effective elongational velocity whic
represents the main contribution of the elongational flow a
tends to orient the vesicle along a direction making an an
c5p/4 with respect to the applied flow.
4-4
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It is interesting to note at this point that for a sphere,
various integrals can easily be computed

L11L252pl ta
2; Ls1

2 1Ls2
2 52l tpa3.

Reporting into Eqs.~14! and ~15!, and requiring in Eq.~13!
that dC/dt50 ~since for a sphere the contribution to tum
bling vanishes2!, we obtain

Vtank5
g

2
a. ~17!

This is the expected value of the tank-treading velocity in
case of a sphere with a radiusa. Interestingly, this result
holds whatever the prescription for the parametersln and
l t is.

Inspection of Eqs.~13!–~16! reveals, in particular, that fo
a rigid membrane whereVtank50, no stationnary solution is
possible: a rigid elliptic body should always tumble, as o
expects. This can be interpreted by the fact that the rotatio
velocity uv rotu is always bigger than the elongational velo
ity uvelongu. If allowance is made for a tank-treading motio
~due to the membrane fluidity and the finite viscosity of t
internal liquid! then vcÞ0. Equations~13!–~15! show in-
deed that the tank-treading motion described by the velo
vc results in an effective reduction of the global rotati
v rot , provided that the tank-treading velocityVtank has a
positive value. A stationary~nontumbling! tank-treading mo-
tion of the shape is thus possible if the velocityuvelongu,
representing the elongational part of the flow, can balance
effective tumbling velocityuv rot1vcu. This can occur for
sufficiently high values of the tank-treading velocity. Hit
erto, the tank-treading velocity has been introduced as a
nomenological quantity, and it must be computed indep
dently. This step is necessary in order to have an evolu
equation in a closed form. The tank-treading velocity
clearly limited by the viscous friction of the internal fluid
and this piece of information must be evoked in order
complete the analysis.

IV. DETERMINATION OF THE TANK-TREADING
VELOCITY

Following Ref.@4#, the tank-treading velocityVtank can be
determined by considering the energy dissipated in the
tem. The energy injected by the flow is dissipated by visc
friction in the fluid inside the vesicle. The energy rate~or
power! provided by the fluid to an elementary segment in
laboratory frame is equal todF•Vt .

2Distinguishing between tumbling and tank treading for a sph
might seem a bit confusing. The case of a sphere is degene
since one can view the dynamics as being of pure tank-treadin
pure tumbling nature. Indeed requiring either thatdC/dt50, as we
did here, orVtank50, provides the same velocity along the conto
For continuity reasons with the case where there is a slight de
tion from a sphere, we interpret the motion under question as b
of tank-treading type.
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The velocity Vt at a point r of the membrane can b
written in the same frame as

Vt5Vtanket1w3r , ~18!

wherew5(dc/dt)ez is the instantaneous angular velocity
the vesicle.

An elementary forcedF acting on an elementdl of the
membrane can be decomposed according to the prece
section as

dF5dFshear1dFtumble1dFtank.

The sum of the torques applied on the vesicle is equa
zero, entailing

R dF•~w3r !dl5 R w•~r3dF!dl50. ~19!

Hence, only the first contribution of the velocity in Eq.~18!
matters. The total power provided by the flow has the f
lowing contributions:

Etot5Eshear1Etumble1Etank. ~20!

~a! The contribution from the simple shear flow isEshear
5rdFshear•Vtanket and upon integration on the contour, w
find

Eshear5moutVtankgFL11L2

2
1

L12L2

2
cos~2c!G , ~21!

where the lengthsL1 and L2 have been defined previousl
@Eqs.~12!#. Following the spirit of the last section, we writ
Eshear5Erot1Eelong in order to identify the contributions
from the rotational part of the shear flow

Erot5moutVtankg
L11L2

2

and the elongational part of the shear flow

Eelong5moutVtankg
L12L2

2
cos~2c!.

This decomposition will be useful in the discussion of t
results.

~b! The contribution from the tumbling motion isEtumble
5rdFtumble•Vtanket , yielding

Etumble5moutVtank

dc

dt
~L11L2!. ~22!

~c! The contribution from the tank-treading motion
Etank5rdFtank•Vtanket , and upon integration one finds

Etank52moutVtank
2 P8, ~23!

whereP85rcl t dl5l tP
By using the above results, the total power~20! takes the

form

e
te,
or

.
a-
g

4-5
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Etot5mout~aVtank
2 1bVtank!, ~24!

where

a5F ~L11L2!2

Ls1
2 1Ls2

2
2P8G , ~25!

b5gFL22L1

2
2

L11L2

2

Ls2
2 2Ls1

2

Ls2
2 1Ls1

2
cos~2C!G . ~26!

In the particular case of a circular shape, the total pow
provided by the external fluid to the internal one can ea
be determined: indeed, we have (L11L2)254l t

2(pa2)2;
Ls1

2 1Ls2
2 52l tpa3; P852l tpa, and L15L2 , Ls15Ls2.

This implies that both coefficientsa and b vanish, and so
does the total power. This result is conforting since insid
sphere the fluid executes a rigidlike rotation~there is no dis-
sipation! and thus no energy can be transferred. It is o
when the shape deviates from a circle~or a sphere in 3D! that
dissipation is permissible. Note that we arrived at this res
before using any information about dissipation in the e
closed fluid, and this points to a consistency of the mode

The energy dissipated by viscous friction in the volume
the vesicle is of the form

e5
1

2
m R

S
S ]Vi

]xj
1

]Vj

]xi
D 2

ds. ~27!

In general, we have to determine the velocity field, wh
satisfies the Stokes equations inside the vesicle and subje
to boundary conditions at the surface of the ellipse. Our a
is not to determine the velocity field exactly, which is not
easy task in general~and an exact result is the exceptio
rather than the rule!. Rather we wish to capture the ma
ingredients and remain within a heuristic analysis. For t
purpose, it will be sufficient to make use of an approxim
solution inferred from simple considerations based on
result relative to a spherical shape. In order to anticipate
main ingredient, we shall take the case of a slightly deform
circle as a reference in order to serve as a guide for
reasoning. Considere5(b2a)/a to be small. The following
velocity field fulfills the prescribed conditions~i.e., to be a
solution of the Stokes equations in the inner domain of
vesicle!:

Vx85Vtank

y8

b
,

Vy852Vtankx8
b

a2
.

It must be noted that despite the fact that the velocity is
exactly constant along the contour, the velocity remains c
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linear to the tangent at the membrane3 and this continues to
represent a reasonable approximation. Let us estimate
energy dissipated in the vesicle. This is given by

e5m ina8Vtank
2 , ~28!

where a8 is a constant depending ona and b: a8
5 1

2 pab(b/a221/b)2 in the present case.
Using Eqs.~24! and ~28!, we arrive at

Vtank52
f 3

f 22
m in

mout
f 1

gcos~2C!, ~29!

where

f 15a85
1

2
pabS 1

b
2

b

a2D , ~30!

f 25
~L11L2!2

Ls1
2 1Ls2

2
2P8, ~31!

f 35
L22L1

2
2

L11L2

2

Ls2
2 2Ls1

2

Ls2
2 1Ls1

2
. ~32!

As could be anticipated, the tank-treading velocity is
rectly proportional tog which fixes the time scale of the
imposed flow. We also note that the tank-treading veloc
enjoys the same symmetry as the elongational flow doe
vanishes forc56p/4 and is maximal forc50.

Some remarks are in order. As explained in Sec. III
shear flow can always be split into a rotational part and
elongational one~see Fig. 2!. In order to understand the ori
gin of the tank-treading motion, it is appropriate to spec
the role of both the elongational and the rotational com
nents of the flow.

On the one hand, for a purely rotational flow, Eq.~24!
shows thatEtot5moutaVtank

2 sinceb50. Equating Eqs.~24!
and ~28! leads to the conditionVtank50, provided that the
shape is not circular. This corresponds to a global solidl
rotation. On the other hand, for a purely elongational flo
Eqs. ~24! and ~28! lead toVtank;cos(2c). A nonzero tank-
treading velocity is possible with the proviso that the orie
tation angle is different fromc5(p/4) @cos(2c)Þ0#. The
torque applied on the vesicle arising from the elongatio
flow is @see Eq.~7!# Melong;cos(2c). An inspection of the
balance of the torques for the elongational flow, as done
Sec. III, leads to the dynamical equationdc/dt;cos(2c).

3Other prescriptions for the flow could have been used. In part
lar,

Vx85Vtank

y8

b
,

Vy852Vtank

x8

a
.

This flow ensures a constant value for the tank-treading velo
along the contour but the velocity is not collinear to the tangen
direction of the contour.
4-6
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c5p/4 is thus, the only steady equilibrium position, with
tank-treading velocity equal to zero. Hence, the existenc
a tank-treading motion of the membrane is only a con
quence of the coupling between the rotational and the e
gational part of the flow. The total effect of the shear can
interpreted as follows: the rotational part tends to push
orientation angle of the vesicle axis towards lower valu
thanc5p/4. As soon as this is achieved the vesicle acqu
a nonzero tank-treading velocity since there, the elongatio
part enters into action@see Eq.~16!#.4

V. DYNAMICAL EQUATION FOR THE ORIENTATION
ANGLE

Plugging Eq.~29! into Eq.~13!, we can express explicitly
vc ~which involves the tank-treading motion of the vesic!
and this leads to the general dynamical equation for the
entation anglec of the vesicle:

dc

dt
5A1B cos~2c!, ~33!

where

A52
g

2
, ~34!

B52
g

2F Ls2
2 2Ls1

2

Ls1
2 1Ls2

2
1~L2

1L1!

~L22L1!2~L11L2!
~Ls2

2 2Ls1
2 !

~Ls2
2 1Ls1

2

~L11L2!22S P81
m in

mout
a8D ~Ls1

2 1Ls2
2 !
G .

~35!

A purely tank-treading motion corresponds to the situat
where the inclination angle is constant. This is expressed
dc/dt50 which implies the condition2A/B,1. This con-
straint leads, in particular, to a condition on the viscos
ratio between the inner and the outer fluid:

m in

mout
,

1

a8
F ~L11L2!S 11

Ls1
2

Ls2
2 D L2

Ls2
2

2P8G . ~36!

4Note that the tank-treading velocity is the result of an ene
balance which involves the coupling between the rotational and
elongational part of the flow. Since energetic quantities are q
dratic functions of the velocity field, the tank-treading velocity
not simply the sum of the tank-treading motions associated, res
tively, to the elongational component and the rotational compon
considered independently. Such a summation would result in a
ishing tank-treading velocity.
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This is the general condition which can be tabulated num
cally, provided that the two drag coefficientsl t and ln are
known, which is exactly the case for several shapes~disks,
ellipses, and spheres!. Thus, the condition relates unique
the viscosity contrast to geometrical quantities which
functions of the swelling ratio. In order to gain more insig
towards an analytical progress we can explore the situa
of a small deformation around the spherical shape. T
proves to be sufficient to capture the essential features.
that purpose, we sete5b2a and treate as a small param-
eter. The integralsL1 ,L2 . . . , that enter in Eq.~36! can be
evaluated explicitly, so that the critical condition for tum
bling is expressed in a simple form in terms of the viscos
ratio and the swelling ratiot:

m in

mout
5

1/4l ta

12t
~37!

and the dissipation rate~28! scales as

e5m inVtank
2 ~12t!. ~38!

This law for the dissipation rate is in a good agreem
with previous numerical results~see Ref.@5#!. We find here
that the closer is the shape to a sphere, the more diffi
does tumbling occur; the viscosity contrast for tumbling
verges as 1/(12t).

VI. QUANTITATIVE AND QUALITATIVE ANALYSES OF
THE MODEL

We have seen that the model presented here capture
essential features and sheds light on the various compe
effects that fix the tank-treading and tumbling motions. W
may ask the question whether the model can be made m
quantitative. As stated before, the model requires the in
duction of two drag parametersl t and ln , which are the
proportionality constants relating the force and velocity
the normal and the tangential directions. Let us recall t
these two drag coefficients describe the effect of the hyd
dynamic interaction felt by a membrane element. This
volves the geometry of the shape around a given elemen
membrane and these drag parameters area priori function of
the position of the element considered on the contour. If o
wishes to go beyond a qualitative discussion we must de
mine these two drag parameters, which can be made in
eral only numerically. For a sphere with a radiusa moving in
a Stokes flow, it is known that on a local segment of t
spherical contour we havel t5ln53/2a ~see Ref.@9#!. In-
stead of evaluating the exact values of these parameter
each elementary elements of the membrane, we shall ra
estimate them from the best fit with the full numerical sim
lations obtained previously@5#. Note that each membran
portion can be approximated locally as an arc of a circ
Thus, as in the case of a sphere we chose equal values fo
drag coefficients in the normal and in the transverse dir
tions with respect to the contour:l t5ln . We consider now
a vesicle with an aspect ratiot50.8 and determine severa
quantities.

The results have been compared to the full numer

y
e

a-

c-
nt
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computation and the values ofl t andln have been guessed
For various tests made so far, we found thatl t5ln.4 per
unit length in the transverse direction provide the most r
sonable fit. We present in Fig. 4 the evolution of the equil
rium angle as a function of the viscosity ratior, which cor-
responds to the stable branch of the saddle-node bifurca
@10#. The prediction of the model qualitatively reproduc
the bifurcation branch~this is always the case regardless
the chosen parameter!, and is fairly in reasonable agreeme
on the quantitative level. The point at which the angle is z
corresponds to the threshold of the tumbling bifurcatio
This threshold depends on the swelling ratio. Conseque
the two parameters controlling the bifurcation are the visc
ity contrast and the swelling ratio. Figure 5 represents
boundary between the region of the phase diagram wh
pure tank-treading motion takes place~low r and hight) and
that, where the motion is of tumbling type~which is favored
at larger and smallt). The results are compared with th
full numerical calculation. It is also worthwhile to represe
some other physical quantities. Of particular interest are
global rotation velocity and the tank-treading velocity~Figs.
6–9!.

FIG. 4. Equilibrium angle as a function of the viscosity rati
the saddle-node bifurcation (t50.84–model;t50.8–simulations!.

FIG. 5. Evolution of the critical viscosity ratiorc as a function
of the swelling ratiot for a51.
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Before concluding some additional comments are wo
to mention. Following the considerations in Sec. IV, the tan
treading motion is a result of the competition between
rotational part of the flow and the elongational compone
More precisely, the rotational component pushes the ves
axis away from the elongational main axis (c,p/4), allow-
ing the membrane to acquire a nonzero tank-treading mot
One may say that part of the rotation torque is transferred
the tank-treading one. Increasing the viscosity of the in
fluid results in a global reduction of the tank-treading velo
ity since the internal dissipation penalizes velocity gradie
inside the vesicle~see Fig. 9!. From Fig. 8 the effective
tumbling velocity should thus increase, reducing further
value ofc. However, thanks to the cos(2c) variation of the
tank-treading velocity, a new equilibrium position can
found at a value ofc which is a decreasing function of th
viscosity ratio. In the extreme limit whereceq50, the elon-
gational velocityvelong reaches its maximum and cann
overcome the rotational velocity on further increase of

FIG. 6. Evolution of the effective tumbling velocity (uv rot

1vcu/ga) as a function of the swelling ratiot, r 5m in /mout52.

FIG. 7. Evolution of the tank-treading velocityVtank/ga as a
function of the swelling ratiot.
4-8
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internal viscosity: the steady-state solution does not e
anymore whereby a new dynamical solution takes place
the form of tumbling. Figure 4 illustrates the evolution of th
equilibrium angle as a function of the viscosity ratio.

The above discussion was made on the assumption
the swelling ratio is constant. The swelling ratio is a meas
of the deviation from a spherical shape. For the particu
case of a circular shape~corresponding to a swelling rati
t51), the total velocity arising from the rotational part
the flow is completely transferred in the tank-treading m
tion of the membrane so that the effective tumbling veloc
uv rot1vcu50 ~in reality, as commented above, this situati
is degenerate and there is no distinction between rigid r
tion and tank treading!. For a circular shape, the tank
treading velocity is maximal and equal toVtank5(g/2)a,
wherea is the radius of the circle. This result has alrea
been obtained directly in Sec. III.

Figures 6 and 7 represent the evolution of the ta
treading velocity and the effective tumbling velocityuv rot
1vcu as a function of the swelling ratiot. As the shape
deviates from a circular one, the effective velocity respo
sible for tumbling uv rot1vcu increases~Fig. 6! since the
tank-treading velocity decreases~Fig. 7!. This explains that
the transition to a tumbling regime can be achieved for low
values of the viscosity ratio as the swelling ratio decreas
This is indeed what is observed in Fig. 5.

VII. CONCLUSION

We have presented a simple model bypassing the calc
tion of the Stokes flow. We have captured the essential
tures of the transition tank treading/tumbling, and have
transparent view of the various competing phenomena. T
work has added a piece to our understanding of tumbl

FIG. 8. Evolution of the effective tumbling velocity (uv rot

1vcu/ga) as a function of the viscosity ratior, the swelling ratio is
equal tot50.84.
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There are several important effects that have been di
garded, however. We have restricted most of our discus
to 2D shapes. In view of the result of Keller and Skallak@4#
we do not expect a qualitative change when 3D shapes
considered, provided that the shape is prescribed. If
shape is free to evolve, the shear may induce a shape tr
formation, such as a prolate/oblate transition, and this c
stitutes an important task for future investigations. In ad
tion, we did not include the fact that the two monolaye
forming the vesicle membrane may slide with respect to e
other @11#. In that case one has to include two tank-tread
velocities, one for each layer, and evaluate the membr
internal dissipation. It will be an interesting point to clarif
the influence of this fact on tumbling. For biological cell
such as red cells, further refinement of the model is clea
necessary. For example, red blood cells tumblein vivo in the
same manner as vesicles do. There is however a not
difference between vesicles and red cells. The transition
tumbling depends on the shear rate@2#. This dependence is
completely absent for vesicles since there is only one t
scale 1/g which is imposed by the flow. This points to th
fact that there should exist a relevant intrinsic time scale
red cells. A natural candidate is the elastic~or even viscoelas-
tic! response of the cytoskeleton. A natural time scale
m/G, where G is the ~2D! shear modulus of the spectri
network forming the red cell cytoskeleton, andm is the
membrane viscosity. Available data onG @12# and m @13#
provide us withm/G of the order of 102221021 s, which is
not far from 1/g in ordinary experiments@2#. We are pres-
ently using a simple model for elasticity in order to analy
the qualitative features of this effect@14#.
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FIG. 9. Evolution of the tank-treading velocityVtank/ga as a
function of the viscosity ratior, t50.84.
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