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Random walks of molecular motors arising from diffusional encounters
with immobilized filaments
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Movements of molecular motors on cytoskeletal filaments are described by directed walks on a line. De-
tachment from this line is allowed to occur with a small probability. Motion in the surrounding fluid is
described by symmetric random walks. Effects of detachment and reattachment are calculated by an analytical
solution of the master equation in two and three dimensions. Results are obtained for the fraction of bound
motors, their average velocity, displacement, and dispersion. The analytical results are in good agreement with
results from Monte Carlo simulations and confirm the behavior predicted by scaling arguments. The diffusion
coefficient parallel to the filament becomes anomalously large since detachment and subsequent reattachment,
in the presence of directed motion of the bound motors, leads to a broadening of the density distribution. The
occurrence of protofilaments on a microtubule is modeled by internal states of the binding sites. After a
transient time, all protofilaments become equally populated.
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I. INTRODUCTION rected movements along filaments and nondirected diffusion

in the surrounding fluid, as shown schematically in Fig. 1.

Molecular motors are proteins tha.lt convert the free e hese random walks have been discussed by Ajdari using
released from chemical reactions into directed movements

[1,2]. Here, we focus on linear cytoskeletal motors that movesca(ljlnlg ?rggmeqtb@].thRecendtly, we Pkavefl?;roducted lattice
cessive in the sense that a single motor molecule can move a ' ’ .
cargo over a large distance. The most prominent example@present the fllamen{9,10]. When bound to these lines, the

are (conventional kinesin and certain types of myosins, motors perform directed random walks. Detachment from

: . 2 these lines is allowed to occur with a small but nonzero
which move along microtubules and actin filaments, respec-

tively. In the cell, these motors are involved in transport pro—pmbab'“ty' Diffusive motion in the surrounding fluid is de-

cesses, reorganization of the cytoskeleton, and cell divisioﬁcr_'rbhzdsgﬁiydmege;:g (;22??:2 dvzg”;; dv generic proverties of
[1]. However, experiments on the movements of molecular 9 y9 prop

motors can also be dorie vitro, which has lead to the de- motor movements, but they can also be used to describe

. . specific motor molecules, since all model parameters can be
velopment of various single molecule assays. In these experl—p P

ments, one can measure the velocities, step sizes, walki gtermined from the measured transport prope(ses Ref.

distances, and forces for single motor molecut e.g n[ ]). In addition, motor—-motor interactions can be easily in-
[2]). In addition, they have stimulated a lot of theoretical cluded into these models, for example, mutual exclusion of

work devoted to the walks of molecular motors along fila- Moters from the binding sites of the filaments, which leads to
ments(see, e.9.[3]) 9 self-organized density profiles in closed systef8% and

In the experiments, one observes that even processive me-
tors unbind from their filamentous tracks after a certain

walking distance, which is typically of the order ofum. ey
For a kinesin molecule, this means that it makes about 10( gy k4 T
steps of 8 nm before unbindirjg,5]. Myosin V motors have M e r"
a comparable walking distance, but a larger step size of Rl
36 nm, so that they detach after about 30-50 S{ERE. s e s i 2
Unbound motors then diffuse in the surrounding fluid until —
they rebind to the same or to another filament and continue t\—----/’ ‘\\
their directed walk. e it
On larger scales, the motors thus perform complex ran- \‘\\7' s
dom walks, which consist of alternating sequences of di- Yemeee -7

FIG. 1. Random walk of a molecular motor;: The motor per-
forms directed movement along a filam&gtay rod and unbinds

*Electronic address: nieuwenh@science.uva.nl from it after a certain walking distance. The unbound motor diffuses
Electronic address: klumpp@mpikg-golm.mpg.de in the surrounding fluid until it rebinds to the filament and resumes
*Electronic address: lipowsky@mpikg-golm.mpg.de directed motion.
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boundary-induced phase transitions in open tube system ° ©° 9 9 9 Ouu° °
[11] (see also Ref[12]). 1/4 g} 14

For the random walks of single motors or, equivalently, ° o o e} O4—0—»0 o
for an ensemble of noninteracting motors, we have obtainec #1/4
a number of exact results for the cases of a single filameng m o o o o o o o o
embedded in two-dimensional or three-dimensional space, a 52 9) 1-y-8/2—¢/2
reported in[10]. In particular, these random walks exhibit € oo ==
anomalous drift behavior; the average position of the motor n &¢
advances slower than linearly with time. The same drift be- . . Y v /4 o . . . .
havior is found for the movement along a single filament
immobilized in open compartments with the same dimen-

o @) (@) @] (@] @] @) @]

sionality, which is more easily accessible to experim@nt
In the present article, we present a detailed derivation of the £15 5 The random walks of molecular motors are modeled as

analytical results of Ref[10] for movements in two and | angom walks on a lattice. A line of lattice sites, which is indicated

three dimensions without confining boundaries. here as a black line, represents a filament. Motors at filament sites
Analytical results are obtained by the following method, perform directed random walks, while motors at nonfilament sites

which is a variant of the method of Fourier—Laplace trans-undergo symmetric random walks. For the movement in two dimen-

forms for random walks in homogeneous sp#see, €.g., sions, the jump probabilities at nonfilament sites are 1/4 for each of

[13,14): By using Fourier-Laplace transforms of the prob- the four neighbor sites. At filament sites, a motor steps forward with

ability distributions, the master equations of the random walkprobability 1—y-56/2—-€/2 and backward with probabilitys/2;

can be transformed into a set of algebraic equations, one gdimps to each of the adjacent nonfilament sites that lead to unbind-

which, however, requires the evaluation of a nontrivial inte-ing occur with probabilitye/4. The dwell probability isy.

gral. Solving these algebraic equations, solutions for the

Fourier-Laplace transformed probability distributions andity to jump from (n,0) to (n, 1) equals;e, while jumps to

the_lr moments are obta}lned, and clqsed expressions in ter.neﬁJrl,O) have a probability 1 —%6—%5; the probability to

of integrals can be derived for the time-dependent probabil- 1 o .

ity distributions and moments. These can, on the one hand. P to(n—.l,O) Is 36, and the probak?|llty to make no jump

be evaluated numerically to obtain results for all times; onIé y_(s_ee F'g' 2‘ The_latter_parametgr IS needed _fo_r mo_dellng

the other hand, asymptotic results for small and large time ef.il's.t'c situations, in which the d_|ffu5|on coeffluen_t in the

can be obtained fully analytically by using the Tauberian u'?j IS mUC”T _Iarger éhan on thehﬂlarTC])e[;}Jge oréjlrlalry

theorems, which we summarize in the Appendix. In this Way{/?/n ohm”vva n twoh |mﬁn5|ons a5 b Bé'i » an "6_ :

we derive expressions for the fraction of bound motors, the _e shall assume that the escape probabity small. For

=0, the problem amounts to a directed random walk on the

average displlacer_nent anc_l _dispersion, and 'ghe effective Vﬁhe with m=0. The average speed of a motor particle on the
locities and diffusion coefficients. The analytical results are )

. . . _ e _l . i
compared to data from Monte CaxlblC) simulation and are f|larlnent line isv,=1-7y-&-;e Per step, there is a probabil
found to be in very good agreement. ity 5€to unbind. The probability that the motor is still bound

In addition to the anomalous drift behavior, the random@aftert steps is
walks of molecular motors also exhibit strongly enhanced
diffusion in the direction parallel to the filament. - 1
Our article is organized as follows: We start with the two- (1 B '6) - exp(— Ed)'
dimensional case in Sec. Il and discuss the three-dimensional The master equation for this dynamics reads
case in Sec. lll. In both cases, we derive probability distri-
butions and their moments for both the bound and unbound
motors. The fact that filaments may consist of several 1 1 1 1
protofilaments is taken into account in the final subsections ~ Pam(t+1) = —Pniim+ ~Pram* 2 Pamis+ 7 Pom1
. 4 4 4 4
of Secs. Il and Ill, where these are modeled by several inter-
nal states of the bound motors. In Sec. IV, we extend the (m#0, 1), (2
discussion to include a variable sticking probability for mo-
tors arriving at the filament. At the end, we include a short

1)

summary of our results. 1 1 1 1
Pno(t+1)= an,1+ an,—l'l' (1 Y- 56_ 55> Pn-1,0
Il. RANDOM WALKS IN TWO DIMENSIONS
Consider a discrete time random walk on a two- *5Peot ¥Pno )

dimensional square lattice with lattice sites labeled by inte-

ger coordinategn, m). At each step, a particle has a prob-

ability 1/4 to jump into any of the four directions. For 1 1 .

modeling the motion of a motor on a filament, we choose a P (t+1)=-P +-p +p .+ 5p 4
different behavior on the line witm=0. Here, the probabil- nat+ D=7 Presa® 7 Prosa (P2t Pro (4)
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1 1 1 € glam+im
Pr-a(t+1) =7 Prig 1+ 2 Pogat 7 Paa® 7 Pao. (9 P(g,r,s) = 2 2 ————— Py (). (8)
t=0 m,n=-= (1 )
As an initial condition, we take an ensemble of particles atThe master equations are then reduced to an algebraic equa-
n=m=0, so that tion relatingPy(r,s) andP(q,r,s), as given by
l+s- 1 1 P( ) =1
Poun(t=0) = 8,00mo. (6) S5 cosq -5 cost IP(Gr.s) =
Let us now define the Fourier-Laplace transforms of the + ([1_7_ is_f] _l)eir + (é_ 1>e—ir
probability distribution along the filamerf,(n,t)= P, o(t) 2 2| 4 2 4

and the full distributionP, () as 1-¢
+y- > cosq [ Py(r,s). (9
n
o(r,S) = E E ———Pno(® (7)  Here, the first line is what one would get in the case of a
=0 n=— (1+9) symmetric random walk in two dimensions, and the second
line corrects those terms that are changed by the presence of
and the filament. This equation has the obvious solution

1+ ['y(l —cosr) + —( - e)(cosr - cosq) +ivp Sin r]Pb(r s)
s+1 —5 cosq - 5 cosr

P(q,r,s) = (10

By integrating this result oven, we also obtairP,(r,s) on  walk in one dimensiopand fory=0, §=3, ande=1 (nonbi-
the left-hand side. It thus satisfies a linear equation that caased random walk in two dimensions
be easily solved. Introducing the variallevia

coshu = 2 + 25— cosr A. Properties of the motors bound to the line

1. Survival fraction

or
In the following, we extract the transport properties of the
sinhu = \/(2 +2s—cosr)’-1, (11 motor’s random walks from the solutiaid3). The value at
N r=0 gives us the Laplace transfoiy(s) of the probability
we may use the equalities No(t) ==, P o(t) that the motor particle is bound to the fila-
ment line withm=0:
f dq 1 1
2mcoshu - cosq  sinhp’ S Nt
0  — cosq Iz o(t)
N
(12 o(8) = E * (1+9)!
2mdq  cosq e+
27 coshy - cosq - sinhu’ S
° S+ %e(l -e*)
After some computation, we then end up with the probability 1
distribution = , . (14)
(1-¢e)s+eVs(1l+59)
1 . .
P.(r,s) = . _ The inverse is
o(r s+1l-y- (1 - y-326- %e)e'r — 1o - LeeH
_ 1 No(t) = sﬁ (1 +5)No(9)
s+(1-17)(1 - cosr) + 2e(cosr — e ) - ivp sinr
2 (13) _f d_X 6(1 _X)[+l/2
o X[+ (1-2e)x]
for the motors bound to the filaments. The probability distri- Py (1-edy)L2
bution for all motors, bound and unbound, follows via Eq. :f y "€y (15)
(10). It is easy to check that this is correct fex0 (random o TAY[1+(1-2¢)y]
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0 i

10 1(*
-= f dyy”'“r”z(e'yfz”t +yet-1)
mJo
ezt 3/2—n 3
_ (@ (3
T 2
(2)*2"_ T(n+3)
- 107 =" 3 1 (19
z ] 7 (n=3)n-3)
“’{ in the limit of smalln, where we used that in dimensional
: regularization, integrals of powers are set equal to zero. The
1 limit n— 0 can now be taken. Using the same procedure for
1 the other terms, we obtain
eVt 4432
' ' : : No) = 1-2-=+€t—-——+-- 20
10° 10 10° 10° 10° 10° ol® Jar 37 (20)

for smallt, which represents a series in powerSeQ‘f. For

FIG. 3. FractionN, of motors bound to the filament as a func- t<1/¢, this is somewhat surprising: although the motors
tion of time t for the two-dimensional case. The three curves cor-detach at times-1/¢, the recurrent behavior of the random
respond toe=0.03 (circles, €=0.05 (squarel and €=0.08 (dia- walk brings them mostly back to the filament. Re% 1/62,
mond3. Lines are obtained from the exact integ¢ab), the data  this just says that the motor did not have enough time to
points from MC simulation. In the simulations, the other parameterscape from the line. The half-integer powers are related to
have been chosen as=0, 5=0.6, but the results shown here de- the long-range diffusion away from the filament.
pend only one. Note that, for the short-time limit, we have assumed that
t>1; that is, that is large compared to the time required for

This expression is exact. It holds for &land for alle, Sand ~ One step of the random walk. In that interval, the approxima-

can be evaluated numerically. Values fdg(t) obtained in  tion (16) holds, with the termey's being due to diffusion.

this way are shown in Fig. @ines) for three different values ~ For smaller times, the random walk exhibits discrete

of the detachment rate Comparison to results of MC simu- Stéps. Our short-time result would hold for arbitrarily small

lations (data points shows that the agreement is very good. imes in thell|m|t in which the walk on _the Ilne_becomes a
Let us now derive the asymptotic behavior for small andcontinuous-time random walk. A continuous-time random

large times, respectively. ¥ is small andt> 1, we have walk with exponential waiting time distribution is obtained
approximately, if 1—y is small, which is the case for realistic

applications of our model to molecular motor set{@ks The

No(s) = 1 =. (16)  same remark holds for all the short-time results discussed in
S+ evVs the following.
Another way to derivg20) is to expand14) in powers of
The inverse then behaves as 1/ys and to use the Tauberian theorem, which states that the
inverse Laplace transform &y(s)=as™“ is given by
oo t w ~yét
Noft) = f & & f YT ap No(t) = -t (21
iw 2 s+ eVs Jo mlyy+1 I'(a)

_ . . o _ _ (see the Appendix and, e.g., R¢L5]). This theorem holds
The second integral is an obvious limit of the last integral inpoth for positive and negative values @f It also shows that
Eq. (15). For deriving the short-time behavior, we may startpositive integer powers of of Ny(s) in the limit of smalls

from the series of equalities, as given by do not contribute to long-time tails.
For large timeg> 1/€%, expression(17) for Ny(t) can be
eVt 1 eVt 1 eVt_1 & evaluated using the expansion(1#y)~1-y+y? for small
= + = + + .
v+l y+1 v+l v+l y y+1 y, which leads to
v 1 1 3
eYelyyet—1 Ntz:(l——.‘._‘ 22
g, a9 W=zt oatam) @

Alternatively, one can expand4) in powers ofy's and again
The integrals over the exponential terms are most easily cause the Tauberian theorem. It follows frq2p) that for large
ried out using dimensional regularization. To show how that, the probability to be bound to the filament decays 8%,
works, let us consider the last term. We need to consider thim agreement with scaling argumen(i8,9]. Let us finally
expression mention that the inverse Laplace transform(b6) may be

061911-4
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expressed in terms of a Mittag-Leffler functiomy(t)
~E;o(—Vé%t), from which we could also obtain the
asymptotic behaviof16].

2. Average position and speed on the filament line

Expression (13) for the Fourier-Laplace transformed
probability distributionP(r,s) contains much more informa-

tion. At linear order irr, we get the Laplace transform of the ,Cg
average position of motor particles along the filament line, |2

. d
Ny() = 20 nPoo(t) = =i~ Py(r,0)r=0 (23
n
We obtain
Ub
N4(s) = v,N3(s) = , 24
(9= = e (@)
In the limit of small e and larget, this implies
Up
Ny(s) = ————. 25
= (25)

We invert the Laplace transform by taking theslterm
apart.
asymptotic behavior

- vaff
0

for larget. The exact expression is

_20p(1-¢) (7 N1-éy[1-(1-€Y)]
no=220 ) e WL +y(1-20P

dx e v ["dyl-e”
mx(E+X? )y \y (L+y)?

(26)

Up

Nl(t) = 62

(27)

which deviates fron(26) for times of order unity. The full

expression(27) is evaluated numerically and is plotted in
Fig. 4. The same figure contains data points as obtained fro

MC simulations that confirm the analytical res(2f7).
For short times, we proceed as above. We expand

_ 2up xét  1-xét- e‘xezt]

7€)y Vx| (1+x)? X2

8 e\t
:Ubt<1 -z L)

3 r
This leads toN;=uv,t. Thus, the average positiom, and
speedv,, of the motors bound to the filament are given by

ZUb

N, (1)

(28)

N ( 2 E\E>
Ny(t) = —— =t 1 --—= |,
b(t) No(D) P 3 Vn
_ (29
— dn, e\t
=—~yl1-2,
ot ”b( \77)

For the average position, we then obtain th

PHYSICAL REVIEW E 69, 061911(2004)

10°
1c

FIG. 4. Displacement of motors as a function of tina the
two-dimensional case, as obtained from the exact integlialkss)
and MC simulationgdata points Open circles show the average
positionn, of the bound motors, diamonds the average positign
of the unbound motors, and full circles indicate the displacement
averaged over all motors, which interpolates between the curve for

qhe bound motors at small times and the curve for the unbound

motors at large times. The parameters are0.05, y=0, and §
=0.6.

For large times, the asymptotic express{@6) leads to

@(1_ 2

N, (t) = 2 m)

(30

This result for the displacement can also be understood in the
following way: After a large time, the motor has returned to
e filament~t times[8] and each encounter with the fila-
ment resulted in a displacement-eb,/ €, which leads to the
scaling given by30).

Therefore, for large, the average speed of bound motors
behaves as

_ v\ T
vp(t) = ——= = —Ny(Hvp.
b e 5 NolUup

I

(31

The last relation confirms the scaling(t) ~v,No(t), which
has been used in the scaling approg@jh The effective mo-
tor velocity is reduced by a factorNy(t), that is, by the
probability that a motor is in the bound state. The relation
vp~Ngp, also applies to a simple two-state random walk,
where motion is directed in one of the states only. In contrast
to the simple two-state random walk, however, the probabil-
ity Np is time-dependent here. The factaf2 in (31) is
solely due to the fact that only the bound motors are consid-

wherewv,, is the average speed if the particles did not leaveered. We will show, in subsection B, that this factor is absent

the line.

if all motors, bound and unbound, are considered.

061911-5
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3. Dispersion and diffusion coefficient on the filament line F Nyt X 2(1 6 E\E) (Lot 2y-1 et\rq
i ; ; = ~v - - —_—
By expanding expressiofil3) for the Fourier—Laplace b No(t) b 5Vm I 3 r
transformed probability,(r,s) up to second order in, the (35)
second moment of the distribution of bound motors is found
to behave as and the dispersion
— 202 etzv/f 2y-1 et\rrt
Na(s) = 3 2Py q(9) I T
n Y 15 \N T 3 N
(36)

€
= 20iN3(s) + | 1 - y— e+ —=—= INj(9). (32 . o o . .
voNo(S) ( [ 4\s+ 52) o). (32 This result holds again in the limit of continuous time; that

is, for v close to 1. The leading term taking into account the

The Laplace transform is again inverted by complex integralime discretization is(1—-y—uy)t; that is, the dispersion at
tion. In the contour integral foN,(t), we may replacestby  Short times, which arises from the walks along the filament,
e%'-1, since the subtracted integral vanishes, as can be selsysmaller in discrete than in continuous time. For the large-

by closing the contour of integration in the right half plane. Ime result, which we will derive next, the choice of continu-
Closing the contour along the negative real axis, we obOuUs or discrete time makes no difference. The relative dis-

tain persion
—_— Anb 2 G\yt
6ve(l-€)? (2 [(1-xé)'-1]V1 - e = ~ 5 (37)
Ny(t) = 7 X r o v
e [1+(1-2¢e)x]3Vx ) . . . . 2
is small sincet<1/€2. Using the dispersiorn;, we may
B ZLE)JE'Z dX[(l -xéd)t=1](1 - )32 also calculate the time-dependent diffusion coefficient
4 _ 3,312
met ) [1+(1 - 2e)x] D(t):}dAn§~1(l_ )+iv_§ 3t3,2+2y_—16j
L20-y= [ [1-(1-xHN1-x VT2t 20 Y elnes 4 n
e 0 [1+(1- ZG)X]ZV/)—( (38)
1 2 dx In the scaling regime~ 1/€?, Dy(t) is much larger than its
47é? ), limiting value %(l—y) for e=0. This enhanced diffusion

B Ut o arises from the fact that each motor may detach from the
x(l 26[(1 = xe)' = 1 +€xtl[1 ~ (1 = 2e)x] microtubule with a probability exp-7) for any value ofr

[1+(1 - 2e)x]>3%1 - € =Zet, according to Eq.(1). This leads to a considerable
- 2L§J°° 1 —e‘szt)(l ~ 3 . 2(1-y) broadening of the bound motor distribution.

~— 75 For larget, one can make a change of variables in the
e Jo (1 +x)° é integral expressioli33) and usey = €’tx as the new integra-
tion variable. This leads to the asymptotic behavior

r dx 1=t 1 (“dx(1-e*)(1-x)

X| ———=+— — 2 [ — _ In
o m(A+AX 4€)o T (1+x%X Ny(t) = 4“’“(1 -§ﬂf> +3 7(1 - 2~) L
(33) SV 2 e\t é eNmt) 2eVw
(39
We have evaluated this exact expression numerically angmd
compared it with simulation data. As shown in Fig. 6, the
agreement is again very good. vﬁ 2\ 1-y — t
For short times, we proceed as above: Ang=~ | 4-m——F |t+ vat+ . (40)
62 eVt € 2
202 (* (Xezt - %X264t2)(1 -3) The diffusion coefficient behaves as
No(t) =~ — | d — —
met)o (1+x%2 vE v\ Q-ym 1
Do) = -5 4-m——F |+——F—+ (4]
2€ eVt devt 4

+3

712

e — 1 +xet - %xze“tz}
X

for large t. The limiting value of the diffusion coefficient,
166t 8- 7 etk Dp(2) ~ (vp/ €)?, is large compared to the diffusion coeffi-
:U§t2<1-€i_) +(1-yt+ VTE—\_ (34)  cient of the one-dimensional random walk along the fila-

[
/

N N ment, D,(0)=(1-7)/2. This broadening of the distribution
occurs since the unbound motors lag behind the bound ones,
This implies the normalized second moment which implies that the rebinding motors also lag behind

061911-6
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T T

those that have been bound for some time. The scaling of the
dispersion can again be understood by considering the num- 1=2000
ber of returns to the filament until time Its variance be- 0.001r /\
haves as~\t, which, together with the walking distance
~uvy/ € per encounter with the filament, leads to a dispersion

——

An~ (vp/ €)?t. z
4. The density profile on the filament
At large times,?b scales as_wﬁ, and one may look for a P
scaling form of the density. For smatl and smallr, the 0.000 2= ‘ -
Fourier—Laplace transformed probability distributiBg(r ,s) 0 2000 n 4000 6000

as in(13) behaves as
FIG. 5. Density profilePy(n,t) =Py o(t) of motors bound to the
1 filament as a function of the spatial coordinateparallel to the
Py(r,s) = . T (42) filament for different timeg. The profiles are normalized with re-
ST lupl + Vs spect to the probabilitiNy to be bound at the filament. The lines
indicate the analytical result from E@l5); data points are from MC

The inverse Fourier transform follows from the continuum’. f
simulations. The parameters ae0.05 andy=6=0.

limit of Eq. (7). It then follows that, in this limit,P, o(s)=0
for n<0, while for positiven, one finds )
B. Properties of the unbound motors
P (s) ~ ie_n(5+6\;§)/vb 43) Eventually, every motor will unbind and diffuse in the

no Up ' surrounding fluid. We now discuss the effects of the filament

on the behavior of the unbound motors. The Fourier—Laplace
The inverse Laplace transform of this expression now leadgansformP(q,r,s) of the probability distributiorP, (t) of
to Pn'o(t):O for n>uvt, which implies that the overall mo- bound and unbound motors, as given by ELD), can be

tion is slower than ballistic. Fon<uvt, we obtain rewritten as
I —_
l @ nvs P(eras) - Pb(rys) + P b(q:ras) (47)
Pro() ~ — f dse=Mwsin == (4 . . o . |
‘ TR J g Up The first part isPy(r,s) as given by Eq(42), which describes

_ the bound motors. The second part describes the correspond-
After a change of variables from to u=\s, the u-integral  ing probability distribution
can be taken over the whole real ax& the expense of a
factor of 5). Evaluation of this Gaussian integral leads to Pun(a.r,9)

en 62n2 = E E elamim Pn,m(s)
Pno(t) =~ = P(‘ —> (45) m#0 n
' 2\mvp(vpt = n)*2 4vp(vpt =) 1
for n=0. This expression vanishes linearly-as for smalln s+1-3cosq- 3 cosr
and even exponentially fast asapproachest from below. 1-e o
The density profile®, o(t), as given by45), is plotted in Fig. . ¥(1 - cosr) + =5=(cosr — cosq) + v, sinr .

5 for several values of the time Comparison with the re-
sults of MC simulations shows that the asymptotic expres-
sion, as given by45), is very good for times that exceed XPy(r,9). (48)
about 8000 time steps. At smaller times, the asymptotic ex-

i , ; - ~"of the unbound motors. For smad] smallr, and smallq,
pression overestimates the maximumRyf, and underesti- taking into account that ~s and g~ s, expression(47)
mates the tails oP,, for large n (see Fig. 3. Simulation 9 q=\s exp

1 1
s+ 1-3cosq—; cosr

data are obtained by averaging ovex %0’ realizations of leads to
the random walk. P(q,r,s) = Py(r,s) + Pys(a,r,s)

It is somewhat tedious to show that the momexgsN,, -
and N,, as obtained from45), agree with the previously _ 1 ., devs
derived expressions. To verify this, one may, in an interme- S—ivr+eVs  (s—ivpr + eVs) (g +4s)
diate step, use the substitutior 2v,t(\y+y?—y), which im- (49)
plies

P, o(Ddn= /ev‘tdy e‘€21y: eztdyfoc d_,)_(e—(x+y+xy)e2t_ 1. Position and longitudinal diffusion

V(1 +y) ™ Jo VX

Expanding(48) or, for large times(49), in powers ofr
(46) and q yields the moments of the distribution of unbound
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motors. The total fraction of unbound motors, as obtained o — b b
from (47) for r=q=0, is, of courseN3(t)=1-Nq(t), ex- v(t) =vpNo +vuNg = vpNg = Jret (55
pressing motor conservation. The average longitudinal posi-

.  th S .
tion of the unbound motors is given by at large times, as follows froni22), (31), and (54), and

b : . .
NUb(g) = nP. (s Ng’=~1. The effective (time-dependent velocity at large
1 % ,go (S times is v(t) =v,Ny(t), as predicted by scaling arguments
p [8,9]. This can also be obtained by inspection(66). The
=- iEP“b (q,r,s)|r:q:0 displacement of all motors is given by
No(s No(s)
_ b o(s) ~Ny(s) N (s) + Nﬁb(s) = vp Os . (56)
€Up

~ e, (500  The normalization factor for all motors is unity. The effective
VS(s+ €Vs) velocity is obtained from the inverse:

as follows from(48) and (49). The last equality holds for

small € and smalls; that is, for larget. i) = d [ ds eNy(s) _ ds Ny(9) = 0 No(D)
For smallt, one has, from the exact expression(50), VW= | o s Vb o © Mo T UbNOW:
det?( 3 — (57)
N§P(t) = = (1 ——elmt), (51) . _
\ Figure 4 shows the displacement of the bound and un-

] ] bound motors, obtained by numerical evaluation of the exact
which leads, respectively, to integrals (dotted line$ and corresponding simulation data
(circles for the bound motors and diamonds for the unbound
oney. The displacement averaged over all motarsn,N,
and +nypNg°, is also shown in Fig. 4solid line and squargsFor

o small times, it is equal to the displacement of the bound

Vb= %vb(l - gev"wt) (520  motors, whereas for intermediate times, it interpolates to the

curve for the unbound motors. Since almost all motors are

for the average position and speed of the unbound motorgetached for large times, the displacement of all motors is
For larget, the asymptotic expression given (0) leads to  then equal to the displacement of the unbound ones.
The longitudinal position has the second moment

o= Zunt(1 - eV'mt)

w ~élts
Up 1-e
Nt =~ =2 | ds—=—, 53
l() ’7762 0 33/2(S+ 1) ( ) " 1 va 7_(1_6)/2
o N5(8) = 25 = No(s) + ~INy(8) = ————No(9)
which implies 2 S S
2
In — 2evy,
2vpVt IV =~="F. 58
N{2(t) = ,ﬂ (1 - __r), Vs(s+ eVs)® (58)
\TTEe 2 e\t
- At short times, this means
. 2upt
nUb =~ ’!'_6 1 (54) 16 15 r
N eVt
NYP(t) =~ ——= vzet5’2<1 - ——) (59)
2 15V7 b 16 \'/7_7
1%
vp(t) = rb -
VeVt and thus
Whereas each individual motor has zero average velocity in -
the fluid, the statistical velocity,, is nonzero, since it is o~ 8 V22 _l‘i’t
driven by unbinding from the cloud of motors moving on the ubT 15 b 16 VTT ’
filament. The cloud of unbound motors advances, because (60)
motors rebind to the filament and others detach from it, and 4 15&
those detaching have propagated a certain distance compared An?(t) = vﬁt2 — (l - —?>
to those rebinding. 45 8\m

Since for large times, all motors are detached from the
filament most of the timgp4) gives the asymptotic displace- The last relation implies that, in the longitudinal direction,
ment of a motor, if averages are taken over all bound andhe released motors spread in a broad cloud, not narrowly
unbound motors; that is, centered around its average.
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At long times, one obtains

20t

ub __ b

Nl - —
e

(61) Anb2

02 1
np= (2 1)

This implies the dispersion and the diffusion coefficient as

given by
20mr-2w2 1
Ang, ~ (Tb + E)t'
, (62)
(m=2vf 1
Dy~ 22+,
! e ¥ 4

FIG. 6. Diffusion of motors parallel to the filament &2 and
The order of magnitude of the diffusion coefficient is againd=3. Dispersion of bound motors parallel to the filameg, as a
vﬁ/ez. The prefactorl-2/7=0.36 is slightly smaller than functi(_)n of timet. The QIotted_ Iin(_as indicqtg the linear bghavior
the prefactor 2-w/2=0.43 of Eq.(41). The order of mag- described by the large-time d_lffu5|o_n coeffl_mdb_qg(t:_oo) as given
nitude D||~v§/62 tells us that, as on the line, longitudinal py Eqgs.(41) and(99). In two dimensions, this diffusion coefficient

diffusion is strongly enhanced by the unbinding from and's anomalously high; in three dimensions, it is given by the diffu-
binding back to the line sion away from the filament but exhibits large logarithmic correc-

tions. The parameters are the same as in Fig. 4.

2. Transverse diffusion space. The quantitAn?(t) is plotted in Fig. 7. There are

The diffusion behavior perpendicular to the filament issmall deviations in comparison to the simulations at small
determined by(49) up to quadratic order ig. The average times arising from the time discretization.
transverse position vanishes and the dispersion of the trans- ) ) _
verse position is given by 3. Spatio-temporal density profile of the unbound motors

Finally, we derive the density profile of the unbound mo-

AmA(s) :F(s) = 1 1-e No(S) =~ € tors. After inversion of the Fourier-Laplace transforms, the
28 2s 25°%(s+ €Vs) profile (49) becomes, in real space,
63 ns (n -
(63 Pom(®) ~ — exp[— =_ (—6 + 2|m|> \"s} . (69
and Up vy \Up
_ e [* eSt—1+st Comparing with(43), we have a shifted value fan and an
AmPA(t) = mé(t) = o J dsm. (64)  extra factore. The temporal form thus becomes
m™Jo
o 10° . . .
This implies o
2 t3/2
Amz(t) =~ 6/_ ’ 4
3w 10" - 1
_ (65
eVt
Dl(t) B 2\”7_7 Ng 102 = /ﬁ"“— _
at short times. It is small because the motors started in a stat 4
bound to the line. At large times, one has
10° - .
1 1
AmA(t) = —t(l -2 _). (66) Roal
2 eVt

The transverse diffusion coefficient ! ! ! L \

1 1 1
D,()~~ <1- h) =~ [1=No(t)] (67) t
4 eymt) 4

FIG. 7. Diffusion of motors perpendicular to the filamentdn
approaches the free valqﬁe Thus, the transverse diffusion =2. Transverse dispersian? as a function of time. The param-

starts out very small, and finally reaches its value in freeeters are the same as in Fig. 4.
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oy _clen+ 2mloy) (en+ 2|m|vb>2> AR S
nm\l) = 7= - ©------ S C I PO Su— B S S C o
2V mvp(vpt —n)32 Avy(vpt = N) ot %‘7%1465 e
T . POON s 1 S I N
(69) 5 1/6
. . . o o O o (] [¢] o o
for m#0 andn=0. This again vanishes far—uvt. Forn
—0itis finite whenm is f|_n|te,_ while it is zero for negative m o o &g « & & & &
n, in the present approximation. Although detachment fol- my ‘Q e é(cb\“'
lowed by diffusion to negativé may occur, the attainable TR e
values are of order unity, and vanish to leading order in Nno o oM L o
v/ €. R S o
C. Pinning line with several tracks FIG. 8. Random walk probabilities for movements in three di-

. . . . . mensions: At a nonfilament site, a motor jumps with probability 1/6
Microtubules, the filament tracks of kinesin and dyneiny, each of the six neighbor sites; at a filament site, a forward step

motors, consist of 13 parallel protofilamenfig], each of  nas probability 1~ 8/2-2¢/3, a backward step/2, and a jump
which provides a possible track for these motors. To iNCOrg each of the six adjacent nonfilament sites has probalailiy As
porate this in our model, we assume that the pinning line a two dimensions, a motor does not step at all with probabijity
m=0 hask internal states in whick may be equal to 13. The As in Fig. 2, the line of black lattice sites represents the filament.
average occupation of each of these states is denoteﬂ’(by The shaded areas with white lattice sites indicate the planes spanned
with j=0,... k=1. There is a small probabilitygg, that a by then andm,; axes of the lattice perpendicular to the paper plane.
motor goes from track to j+1 within one time step, and

similarly for going to trackj—1. To take into account the PY(r,2)

cylindrical structure of the microtubule, we identify k with o

j=0. We assume that after detaching, the motor may ran- _ 2
domly go to the right or to the left of the tubule; likewise, 2+ 25— (2-2y- 5- )" -2y - 8" + 2{(1 - cosw)
when attaching to the tubule either from the right or from the (74)
left, the motor has an equal probability to attach to any of the
tracks. The surviving fractions on the individual tracks are found
In this model, the total fraction of motors at position  from the expressions far=0. In the time representation, the
along the tubule is surviving fractions behave as
K i i 1 1 -ij w2 et-¢(1-cosw)t
Pro= > Plo. (70) Pi(t) = % Pho(t) = No(®) + >, e lve :
=1 @

. . . . 7
The dynamics given by Eq§2)—5) remains valid and leads (75)
to the same solution, as it is insensitive to the internal distri-The first term describes the symmetric distribution of the

bution over the tracks. motors over thek tracks; in Eq.(17) we showed that it de-
The motion on the individual tracks is described by acays algebraically. The second term represents the asymme-
master equation analogous to Eg) and is given by try arising from the initial condition that only one track is
populated. There are two decay mechanisms of this asymme-
Pl (t+1)= i(Pn AP, )+ (1 . 1. 16) Py try. The term exf-2et) expresses that detachment and sub-
’ 4k ’ 2 2 ’ sequent reattachment to randomly chosen tracks restores the

5 ;o ' _ symmetry. This happens in particular for motors that return
+_-Pliiot —(Pﬁ{ol + P{;&) +(y= 0Py (71)  quickly to a randomly chosen track, implying ordinary expo-

2 2 nential decay. The factor ekpl(1—cosw)t] expresses that
When summed ovej, this indeed leads back to E¢). To hopping to neighboring tracks also re_stores2 the symmetry.
solve Eq.(71), another Fourier transform is needed, which isFOr 1argek, the smallest of these rates isZ/k2 Thus, the

defined by e?ghange process dominates when this value is larger than
€l L.
ko o Therefore, the asymmetry between the average occupa-
no= > PJn,oe”’”, (72) tion of the various tracks disappears after the discussed tran-
=1 sient time.

with w=27¢/k and€=0, ... k—1. We assume that, &0,
all motors are located on the tragk0, which corresponds to . RANDOM WALKS IN THREE DIMENSIONS

the initial condition Now, let us consider the same kind of random walk on a

PL,m(t:0)25n,05m,o5jo (73) t_hree-dlmensmnal <_:ub|c lattice, in which the_ lime, =m,
=0 represents the filament that attracts and binds the motors.
Going to the Fourier-Laplace transform, we find Away from the filament, the jump probabilities are equal to
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1 while on the filament, they are given by 1/—15—:%6 and

)

are equal toy to make no step(see Fig. 8 The average
short-time velocity |va 1-y-6-2 3€, while the sticking

probability is exp-Zet).
We denote the transverse coordinateres(m,,m,). The
master equations for this dynamics have the form

1 1 1
Pam(t+1)= éPn+1,m + épn—l,m + 62 Pom+p (M #0,p),
p
(76)
1 2 1
l:)n,O(t +1)= 62 F>n,p + (1 -Y- ée_ §5> Pn-10
p
1
+ §5Pn+1,0 + ')’Pn,Oy (77)

501in the forward and backward directions, respectively; they
are equal tc; e for each of the four sideward directions, and

3+[3y+3(5-6y—4e-38)€" - 3(1-35)e™ - (1 -€)(cosq, + cosgy) |Py(r,9)

PHYSICAL REVIEW E 69, 061911(2004)

1 1
2 Prpp + 2

(t"'l) Pri1pt ZPn-1,t 2
v6 ! 6,/p) 6

Epnyo.

(78)

In these equationsp and p’ denote the four transverse
nearest-neighbor vectors that connect a filament site to the
four adjacent nonfilament siteg=(0,+1), (+1,0). The
summations ovep in (76) and(77) or p’ run over the four
possible values. Equatiai@8) holds for any of the four val-
ues ofp, with the sum ovep’ running over the other three
vectors. We can follow the same steps as in the two-
dimensional case, again using the Fourier—Laplace trans-
forms. The Fourier transformation in the perpendicular direc-
tions leads to a transverse Fourier vectpr(qg;,q,). The
equivalent of Eq(10) becomes

(79

P(q,r,s) =

By doing the integrals ovey, andd,, we derive the expres-
sion for P,(r,s). The necessary integral is

l(r S) B fZﬂ' dqlJ'Zﬂ' 1
R 27 3 + 35— COSI — COSQ; — COSQ,
'\’

= —K(m)

with

3+ 3s-cosr —

€0SQ; — COSQ,

.
(3+3s-cosr)?’

where K(m)=[7?d¢/\1-msir? ¢ is the complete elliptic
integral of the first kind. We also use the relation

fZﬂ' dq fZﬂ'

(80')

m

COS(); + COSQ,

Pb(r,S) =

For large's, one may usel(s)=

(80) 27 3 + 35— COSr — cosq; — CosQ,
=(3+3s-cosn)l(r,s) -1, (81)
wherel(r,s) is given by(80). We then get
|
3I(r,s)
1 —ir 1 ir ' (82)
+ [3(1 —€)s+;(e—-30)(e" -1)-35(6-6y—35-5¢)(e" - 1)]I(r,s)
|
1/(3s), to verify that 1
Pu(r,s) = ————— 83
(19 S—ivyr +J(s) 83

Pb(r ,5)z
all motors started atn;=m,=n=0.

A. Behavior on the filament

For smalle, r, ands, we may approximaté82) as

1/s, which is required by our initial condition that

with
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J(s) = (83)

€
31(0,9)°

which is analogous t¢42). This implies in real space that

1
Pro(s) = sl (84)
Up

for n=0. Decomposingl(-s+i0)=J;(s)xiJ,(s), the inverse Z
Laplace transform leads to

" ds nJy(s
Pn,O(t) = J —e—S(t—n/vb)—nJl(s)/ub S|n 2( ) (85)
0 TUp b

For large times, the variablewill be small. SinceK(m)
~(1/2)In[16/(1-m)] for m=1 [17], we may conclude that
diverges as

I(r,s) =~ - i |n{7-0<3+ }rZ)} (86) FIG. 9. FractionNy of bound motors as a function of time for
2m 6 the three-dimensional case. The two curves are£d.03(circley

with and e=0.05(diamond$. The other parameters afe=0 and§=0.6.

= i ’ _ - d_S _st [Jl(s) B S]‘]Z(S)
= 16 (86 ) Nl(t) = Zl)b . 77_e {[Jl(s) ~ 3]2 N J%(S)}Z .

70

(90)

for smalls andr. This implies in particular that . ) ) .
For small times, this behaves againugt corresponding to

27e the velocityvp=1-y- 5—§e. For large times, we find

J(s) = - ,
© 3In s

3 2
Ny(s) = Ub(Z_ﬂ'e) In?(s7o),
(87) (91)

y, F . 16 va( 16t )
N, (t) = dsestin —= —>-|In—+
) =5 2a] 3s 2m2&t\ 3 E
e o

3 [In s+ 72 _ . .
[In 7os] to leading order in 1t wherey=0.577 215 is Euler’s con-
The Laplace transformed survival fractidiy(s) is equal  stant. This implies the respective average position and veloc-

2me  In 7S

M= Tin s 2

Jy(s) =

to Py(0,9). It then follows from(83) that ity
“ds e5U,(s)
No(t) = f — : (88) i~ 2 L
o m[-s+I(9PP+3(9 Mo(®) =\ In -+ e
Fort>1/e, using(87) and neglecting with respect to Irs, (92)
we get, for the number of particles on the line, the simple () = 3vp = 2Ny(t)vp.
result et
No(t) =~ : d_53e_5t = 3 (89) The position of bound motors as a function of time is shown
0 o T 2¢ 2met’ in Fig. 10. The agreement between the analytical result and
the simulations is again quite good.
which confirms the scalindly(t) ~t™* predicted by the scal- For the second moment, we obtain

ing approach9]. We can also derive the latter result from
No(s)=[3/(2me)]In(7yS) using the Tauberian transforms

summarized in the Appendix. The survival fraction is shown 202 { =y > SJZ(S)
in Fig. 9 for two values of. Again, the exact integraB8) is Ny(s) = ——b - YZENy(9) + 225 5. (93
evaluated numericallylines) and compared to simulation [s+J(s)] Up [s+J(9)]

data(data points The agreement is good.
Computation of the first momentN,(s)=-i(d/dr)  where we have taken into account the quadratic correction
X Py(r,9)|,=o With P, as given by(83) leads to term tol(s,r=0), and
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3

10 T T T T

Dy(t) = . In Tl + 75] : (99
Notice that, at typical times~ 1/e, this is still of order 1§,

and, thus, much larger than the value without the unbinding
mechanism. In contrast to the two-dimensional case dis-
cussed above, the leading term in three dimensions is given
by the usual diffusion in the unbound state, but there are
large logarithmic corrections of ordév,/e)?. This can be
seen in Fig. 6, wheran, is shown for both cases.

1. Density profile of the bound motors

As in the two-dimensional case, the spatial distribution of
the motors bound to the line can be derived in a somewhat
explicit form. Forn=0, one has

10° 10’ 10° 10° 10 10° > gs
t Pno(t) = f o e’ (100
—joo 7T|Ub
FIG. 10. Average positiom;, of the motors bound to the fila- ith
ment as a function of timein three dimensions. The parameters are
the same as in Fig. 9. n
A=—[s+J(s)] -st. (100)
Up
203 [ & Y3[- s+ J1(9]2Jx(s) - I3(s
No(t) = ﬂf d 8l il )]2 2(2) 32( i For largen andt, we may use the saddle point approxima-
™ Jo {[=s+ (9] + Ja(s)} tion. The conditionA’ =0 yields
21-y=¢o (7 e{[I(s) ~ s} 2ren
+ ds 2 122 S=————5— (101
T o {l[=s+u(9]"+ (9} 3(vgt = N) In? 78
- ijw dse_St[Jg(S) ~ 84(9)35(9) + JH(5)135(9)] For very smalle andvgt—n~n, this means thas is indeed
melo {[=s+ (9 + (S small
1 21en
+—. S~ —————. 102
2me (94) 3(vt—n) In? e (102
The last term emerges from the singularitysa0 in the third The saddle point values are
term of Nx(s) [Eq. (93)], and represents diffusion in the un- 2mren ( 1 ) 2mren
bound state. Fc_)r large times, this expression leads to the 30, I 75 In 705 30, In(1/e) (103
asymptotic relations
o 3 3 . 1 v 2en ( 2 ) _ 2men (104
No(s) ~ - 2Ub<2_776) In® s7o + 2mes’ (95) 3%, In? 75 In o8/ 3w, In?e’
The second derivative has a negative sign, which allows us
3 \31[ t 2 2] 1 to choose the contour fromy , —io to sg, +ic, wheresg, is
Ny(t) = 20?,(2—) " 3<In —+ yE> Y + Py the saddle point value given if101). The integration over
mes L 7o 4 eme Gaussian fluctuations yields
(96)
Paolt) = \/ ———s €™
- o[ 3 2 t 2 2] 1 no 27A"v?
Ao =2l ol o) - 5] 30 0 Jan 2me
- t—n)\3up, B~ 3vy, In(1/e) n):
and (vp \'SUp b
(109
AR2(t) = sz<i>2 (In t + )2_ 7’_2 + }t (98) As a function ofn, this curve starts at 0, has a maximum,
b 0 £ ’ and goes to zero at=vyt. The apparent divergence naar

=vpt of the last expression is an artifact of the saddle point
with 7,=3/16, as in(86). The longitudinal diffusion coeffi- approximation.
cient is We can check the normalization
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0.004 . . ‘
~ J(s)
P.(q,r,s) = - 10
/\(\‘\\v‘\ ub(q ) (S+ % qz)[s— irvp + J(S)] ( 7)
“‘\\;\ for smallr, g, ands. The term linear irr implies
o A A}
Z 0.002 [ Up vpd(S)
s ; N NYB(s) = =2Ng(s) = Ny(s) =~ —>——
M O = No(®) ~Nu(®) =~ 7
| (108
J— 30b< t )
=~ |In—+y].
2me\ 1

0.000
0

200 800

The last result is just half of the value for the bound particles
(92). As in the two-dimensional case, the latter result also
FIG. 11. Density profileP,(n)=Ppo of motors bound to the gijves the average position of all motors, bound and unbound,
filament for the three-dimensional case as a function of the spatialt large times. The logarithmic growth of the average posi-
coordinaten parallel to the filament at times=2000 (solid line, tion and the corresponding time-dependent velocity confirm
circles andt=10" (dashed line, diamongisLines are obtained by the predictions of scaling arguments, which giv) ~In t

numerical evaluation of the approximate analytical expressio — Lo o
(100); data points are from MC simulations. The parameters are th%?’g'r;ehﬁrgsse dependent velocity is again givendgiy(t)

same as in Fig. 4.
For the second moment, we get

2-y-2¢/3 2v;,

vpt/2 1
f dn P, o(t). (106 Ngb(s) = —52 - Ny(s) + ?

No(s) +
0 3

Ny (s).

(109
This differs from the exact value by a factor of order For small s or |arge t, this expression leads to the
vIn(1/e), which is, in any case, only logarithmic. This oc- asymptotic relations
curs because the smaillbehavior has not been treated prop-

erly by the saddle point approximation. NB(g) ~ 1 N ng\](s)

We have compared the profiles of the bound motors ob- 2 3 gs+J(s)
tained from the saddle point approximation with simulation
data, evaluating Eq.105) with s taken from the numerical o t o2 t 2
solution of Eq.(101) and normalizing the saddle point pro- Ny~ = + Zb [(In —+ 'yE> - 1],
file. As expected, agreement with the simulation data is only 3 2me 7o
good for largen. Therefore, we have also taken the inverse (110
Laplace transform of100) numerically. The result is shown A2 ~ t + 9v§ (In t + )2 5
in Fig. 11 for t=2000 andt=10000 in comparison with b= 3T 422 7 T :
simulation results. To obtain the simulated profiles, simula-
tions were performed again with>510’ motors particles, 1 92 t
most of which are, however, detached from the filament at D==+ —b[m —+ 'yE:|,
the times the density profile was measured. While agreement 6 4n’ét 7o

is good for largen, there are deviations in the region around,,here the logarithmic correction to the free diffusion coeffi-
the maximum, which are probably due to the approximationsient is half of the correction to the bound diffusion coeffi-
used in EqG(83). cient(99). That such leading singularities have different nu-
merical prefactors in different quantities could have been
anticipated, since the cloud of random walkers is smeared,
with a spread as large as the averaged#$2, the effect was

For the motors that detached from the pinning line, westronger, since the leading terms already had different nu-
can follow the steps of subsection A. At large times, themerical prefactorgcf. Eq. (41) for D, with Eq. (62) for D].
transport properties obtained for the unbound motors also For transversal transport, the situation is much simpler:
dominate the results that are obtained if averages are taken )

B. Behavior of the unbound motors

over all motors, bound and unbound, because at large times, AmZ(s) = Am(s) = me(s) =ma= —————. (111)
the motors spend most of the time detached from the fila- 3s7s+J(s)]
ment.

For larget, one has smal, so thats<J(s). This implies

1. Average position and dispersion of unbound motors t 1 t
9ep P A (t) =1 o) ~ = - ;(In —+ vE>, (112)
From Eq.(79), we now find the Fourier-Laplace trans- 0

form of the distribution of unbound motors to be given by and the transverse diffusion coefficient is given by
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1 1 1 1
D, == - ——=2[1-Nyb)]. (113 A=-=[(n-uvg)s+n(s) + mu,\6s]
6 4met 6 Up
—
The limiting values are just those without the pinning line. = _ 27" ( 1 ) Zzsn mvb\3/(2/s)
They are reached far>1/e. 3up In 78 In 758/ 3In° 7Syt — n—vpmy3/(29)
(120
2. Density profile of unbound motors
and
Finally, we derive an expression for the probability distri- —
bution (or, equivalently, the density profile in the case of A= 2men ( 2 my3/8
many noninteracting motoraway from the filament, again 3%, In? 78 In 7os s3/2
using the saddle point approximation. Frqd07), we de- —
3spIn?e 2
2 iq- ]
dq ™ :f dg 9Jo(am) = iKO(m\s"G—s) with the saddle point value of as given by
(2m?q?+6s Jo 2w g?+6s 2w '
(114 o= 2menuy, (122
31 reSupt — N —v,My3/(25)]

for m=|m| # 0, whereK, is a modified Bessel function. This
leads to the profile C. Pinning line with several tracks

As before, we can assume that the line kasternal
states, which, fok=13, model the protofilaments on the mi-
crotubule. The motion on the individual tracks is described
by a master equation analogous to E2):

3 dS .
Pom(t) = — f —eKo(myBs)e s, (115
TV 2l

For closing the contour around the negative real axis we 1 1 2\
need Pho(t+1) = &Ep‘, Prp+ (1 Y- 55‘ §f> Ph-10
i i iy
A=y M@= T i 1. £ i i~ -
Koliz) = > Ho'(-2) = > Hg (2) = 2[Yo(Z) +ido(2)]. + §5P’n+1,o+ 5(ng§+ PI) +(y= Pl
(116 (123
We get a result of the type 'I;éh(;s can be analyzed as in tlle=2 case. One finds, fop
Pym(t) = J“’ ds @stnls=31(9)vp Po(r,s)
' 2’7Tl)b 0 1
nJ,(s — nJ,(s - —(1=-v=15=-2¢)d = y=1geTr - '
X{COS 495 s - sin ™2y (mie9 | s+1-(1-y-15-2¢)e - y— 1567 + (1 - cosw)
Ub Ub (124)

(117) The surviving fractions on the individual protofilaments are

] ] ) found by inserting=0. In the time representation, it reads

The saddle point approximation can be done for large

enoughm, where Pt =3, Pl y(t) = %No(t) . % S grilog(3/2)a-d1- cosot
n w#0

Ko(2) = \/ée‘? (118 (125

The asymmetry decays as éxb%ﬁ {~{ cosw) t]. As in the

We then get for the distribution away from the filament, thattWo-dimensional situation, the asymmetry has no influence
on the total occupatio®®,,==; P}, of site n along the mi-

is form+#0, - n, 7 :

crotubule, which was the subject of study in previous sub-
3 ds R 3 R sections.
Pam(®=—= | e —¢"= 14 e
mUp J 2i(6S) N am uL(69) V= 2mA’ IV. VARIABLE STICKING PROBABILITY
(119 We now want to incorporate the possibility that a motor

need not bind to the line when it collides with it. We consider

where the saddle point values are two approaches.
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A. Tubule above a two-dimensional plane €
Let us now consider a tubule located above the lime Po(r) = sinhpu + ne‘“P(r)' (133
=0 of a two-dimensional plane. We consider the following

jump rates. Detaching: line planese; attaching: plane Eliminating P, now yields

—line %77; reduced jumps in the plane away from position

below the line:(1-#)/4. The probability to jump from the P(r,s) = {s+ (1-7)(1 - cosr)

tubule to the line wittm=0 is equal to%e, and the probabil-

ity to jump from the line withm=0 to the tubule is given by 1 7 -1

%77. In addition, the motor particle jumps with a probability + Ee[cosr - ﬁ} —ivpsinr( .
(1-7)/4 from the line withm=0 to a neighboring line with sinhp 7€

m=+1. Thus, for»=0, no reattachment occurs. Fgr=1, (139

the other extreme occurs: one cannot jump from the iime N ~

=0 to the rest of the plane; if initially all walkers were on the FOr 7=3, the 7-dependent term becomes; thus, the pre-
tubule, they will go no further than below it, and hence will Vious situation is recovered. Foj=1, one can check that
not wander in the plane. P(q,r,s)=Py(r,s), showing that no motors reach the fluid

Thus, we consider the master equations (total sticking.
For small parameters, one has

1 1
Pim(t+1) = ZE Pn+p1,m+p2(t) + 5m,OE€Pn(t) 1 1 11-9 -1
p P(r,s)=|s+-{1-y-<e r’+ e Mm—ivpr
2 2 2 7

Y
= 2 0ma+ Gn-0)Pno(D), (126) = (s+ VS — ivpr) L (135
Thus, the only effect is the effective detaching probability

1 1 1
Po(t+1) = yPu(t) + (1 -Y- 56_ 56) Pp-a(t) + 55Pn+1(t) 1-7

(136)

€— Egff = €
1
¥ EWP”’O(I)' (129 For the probability to be in the fluid, no subtraction as in

. . (49 is needed. We have, immediately,
As an initial condition, we choose all motors on the location

n=0 of the tubule: e
P(q,r,s) =
P.(0) =0, 4s+4 -2 cosg— 2 cosr
128 e "+ sinhu — 7 cos
Pn(0) = & (29 x A = 720 bt 9)
n(0) = dho ne* +sinhu

The Fourier-Laplace transforms yield de ﬁ\g
o\

1 1 1 1 (0P + 45)(S+ egs— ip) (30
EcffVS— IV
1+s——cosr - = cosq |P(q,r) = —eP(r) — =5 cosqPy(r) g eff b
2 2 2 2 We can now look for the enhancement of the speed on the
(129 tubule; it was a factor ofr/2 in Eq.(31). Let us assume that

7 is small, so that there is a large time domain in which we

and may neglect it. Let us thus set
[1+s—y-(1-y-36-3¢)e —20e|P(r) = 1 + 3 7Py(r). .
(130) s=7fo, t= ?, and e= 7. (138
We can integraté(q,r) overq: We then get
P(r) — n cosqPq(r
Po(r)=f%€() 7 C0SqP(r) 1 1+2/s
272 + 25— cOSr — cosq No(s) = — Y (139
. 7 o(l+2Vo)+eNo
= el PO R0] (18D g
With 1+ 2o 2
Ny(s) = U—i( =2 . (140)
coshu =2 + 25— cosr, (132 7' \a(l+2Vo) +eVo
it follows that There are two domains:
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(1) 7<1, o>1. Here, Ny(t)=e 1/ Zeo=g1/2et N (1) Tag Tag 1 1
=vte /24 Thus, N(t)=v,t and v(t)=v,. This is still a Prolt+ 1) == Prat = Pyt (1 BRANCY 55) Pn-10
sharp profile. Although particles have detached, the remain- S
ing ones go firmly with the bare speeg. + —Pri1ot YPno (141
(2) >1, o<1. This we have already discussed(81). 2
The relationv(t):%m;bNo(t) just says thab(t) <uv,. and

Pn,il(t + 1) = %Pn+1,il+ %Pn—l,tl"' %Pn,tz + ipn,O
B. Variable sticking probability
1-m

Let us now include a variable sticking probability in our + Tadpn,ﬂ- (142
model: If a motor reaches the filament, it rebinds to it with a
probability 7,4 while it is reflected from the filament with The equivalent of Eq(9) now contains an additional term
probability 1-m,4 Such a behavior can be due to steric con-With P,(r,s), the Fourier-Laplace transform of the probabil-
straints; if, for example, a motor with an attached bead difty distributionP, 1(t) along the lines witm=+1 adjacent to
fuses close to the filament, but with the bead between théhe filament line:
motor and the filament. In the long-time regime, the intro-
duction of this additional parameter is expected to reduce t({
the probability that a motor is bound to the filament and thus
the effective time-dependent velocity by a fac This Taq— 1 3-2-26
has been confirmed %y simulations );orythe catsmeJdOf random ~ 17 2 (1-cosa)Py(r,s) + [7+ ( 4 - 7)
walks in open compartmen{®]. In this section, we show

1 1
1l+s- > cosq - > cosr |P(q,r,s)

analytically that this is indeed the case. Xl — 1- 25e—ir _ 1—_6cosq} Py(r,S). (143
4 2
1. The two-dimensional case Py(r,s) andPy(r,s) are related via the Fourier-Laplace trans-
form of Eq.(142):

Let us begin with the simpler cagsb=2. To include the 5 c s
sticking probability, the master equations for=0, +1 have Py(r,s) = _{ {1 +5— (1 —y—— - _)eir
to be modified: On the linem=+1, the rate for hopping to Tad 2 2
m=0 (i.e., to the filamentis m,4/4, while there is a rat€l S5
— 1,9 /4 not to jump. Equivalently, a motor on these lines - Ee_" - 7] Py(r,s) = 17. (144

attempts to hop to the filament with the usual rate 1/4, but
the jump is rejected with probability 17, The modified Using this expression foP,(r,s), we can proceed in the

master equations are same way as above and obtain
|
1 — Tad
1+ (1-e#
Tad
Py(r,s) = (145
€ 1-myq €
s+(1-7y)(1-cosr)+—cosr—iv,sinr || 1+ 1-e*) | ——e*
2 Tad 2
[
For smallr ands, this leads to the asymptotic relation de\s
Pub(q-rys) = - ‘J/— 2 ’ (147)
. s—ivpl + €/ mag) VS| (02 + 4s)
Po(r.g)~———, (146)
S—ivr + i\g which corresponds to Eq49), again with the effective de-
Tad tachment ratee/ m,q Hence, in the long-time regime, the

only effect of the sticking probabilityr,yis a rescaling of the
which has exactly the form of E@42), but with an effective detachment rate. Thus, the probability for a motor to be
detachment rate/ ¢ Doing the analogous calculations for bound to the filament for large times decays Igt)
the unbound motors, we find ~ g (Vmet??), and the average displacement grows as
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~(madl €) \t; that is, both quantities are reduced by a factorsection 1: A motor at a neighboring site of the filament at-

a0 @S expected from the scaling approgeh tempts to jump to the filament with rate 1/6 as usual, but the
. . attempt is only successful with a probabiliyy so that the
2. The three-dimensional case motor remains at its site with a probabilitf — 7,9 /6. The

For d=3, the calculation is completely analogous. Theprobability distributionsP(q,r,s), P(r,s), and Py(r,s) are
sticking probability is introduced in the same way as in sub-thus related via

Py(r,s) = 2

3 [1+ —(1— _2_e_§> i Ogrir }P -1 148
o s Y=3 7 3)8 T8 T Y|Pl (148

and
3+[3y+1(5-6y-4e-30)€" - 1(1-35)e™ - (1 -e)(cosq, + cosay) |Py(r,9)
3+ 3s— cosr — cosq; — CosQ,

N (1 = mag[2 — cosqy = €0 ]P4(r,s)
3+ 3s—-cosr —cosq; - cosg,

P(q,r,s) =

(149

From these two equations, we obtain a rather complicatederived analytical solutions for the cases of a single filament

expression foPy(r,s), which, in the limit of smalls andr, in two or three dimensions using Fourier—Laplace trans-
can be reduced to forms. We have obtained closed expressions for the probabil-
ity distributions of bound and unbound motors and their mo-
1 ments, which can be evaluated numerically for all times. The
Py(r,s) = : (150 : y :

asymptotic behavior at small and large times was obtained
_ fully analytically. In this way, we derived the fraction of
with bound motors, the average position, and dispersion, as well
as effective velocities and diffusion coefficients. All these

S—ivyr +3(s)

9 =—7—"7"—, (150)  results were found to be in excellent agreement with results
3mad(r=0,9) from MC simulations.
wherel(r,s) is the integra(80). For the unbound motors, we ~ 1he random walks of molecular motors exhibit anoma-
find lous drift behavior. In two dimensions, the average position
of both the bound and unbound motors grows-ag at large
3(3) timest, while in three dimensions, the displacements grow
Pu(Q,r,s) = > —2v- (151  only logarithmically. In addition, diffusion parallel to the

[s—ivyr +3(s)](s+ % + %) filament is strongly enhanced. In the two-dimensional case,

the diffusion coefficient has an anomalously high value,

Both equations differ from those without the parametgg ~ "Which is of the order(vy/€)?, where e denotes the small
(i.e., from the caser,4=1) only by a rescaling of the detach- detachment probabilitysee(41)]. In the three-dimensional
ment rate, just as in the two-dimensional case discusse€fSe there are large logarithmic corrections to the usual dif-
above. Therefore, in this case as well, the long time displacd¥sion behavior, again of the Ord(i."b/.f)2 [see(99)].

ment and the probability to be bound to the filament are Finally, let us emphasize that similar behavior is also ob-

reduced by a factotr,q as these quantities are proportional tained for random walks in confined geometries that have
to €L effectively the same dimensionalify]. These geometries

are accessible tm vitro experiments. In addition, unbinding

of motors from filaments and rebinding to them might also
V. SUMMARY AND CONCLUSIONS be important for the design of nanotechnological devices us-
we have calculated various transport proper"9 molecular motors as transport systems, which has been

In summary,
Y s.proposed by several groups8—2Q.

ties arising from the random walks of molecular motor
Over large length scales1 um), molecular motors per-
form random walks that consist of alternating sequences of

directed movements along filaments and nondirected Brown- Th.M.N. expresses his gratitude for hospitality at the Max
ian motion in the surrounding fluid. Here, we have describedPlanck Institute in Golm, where a major part of his work was
these walks as random walks on a cubic lattice and haveone.
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APPENDIX: TAUBERIAN THEOREMS tal
_ _ LYs?In?s]= —[aln’t+2Int-2aInty(1 +a)
The Tauberian theorems allow one to obtain the I'l+a)

asymptotic behavior of a functiof(t) at large timeg from o1+ a) + 1+
the smalls behavior of its Laplace transforrf(s)=L[f(t)] Y1+ a)+ aff(1+a)
(see, e.g.[15]). The following inverse Laplace transforms

L7[f(s)] are used for the random walks of molecular mo- LY~ 1n®s] ~ }{3“”“ ye)2— 77_2] (A1)
tors: t 3
a-1
s~ 2
. I'1l+a) In these expressionsl’ is the Gamma function,I'(z)
Sl ca ™ B =[otZletdt,  the Psi function defined by y(2)
L7=s"Ins]= ra+ a)[l taint-ayl+a], =d[InT'(2)]/dz and y=0.577 215 is Euler’s constant.
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