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Unzipping of DNA with correlated base sequence
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We consider force-induced unzipping transition for a heterogeneous DNA model with a correlated base
sequence. Both finite-range and long-range correlated situations are considered. It is shown that finite-range
correlations increase stability of DNA with respect to the external unzipping force. Due to long-range corre-
lations the number of unzipped base pairs displays two widely different scenarios depending on the details of
the base sequence: either there is no unzipping phase transition at all, or the transition is realized via a sequence
of jumps with magnitude comparable to the size of the system. Both scenarios are different from the behavior
of the average number of unzipped base p@ion-self-averaging The results can be relevant for explaining
the biological purpose of correlated structures in DNA.
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[. INTRODUCTION the genetic code. The polymerase may function if only they
. ] unzip the needed part of the DNA molecule, so that the bases
Structural transformations of DNA under changing of ex-are exposed to the environment. This is the main reason why
ternal conditions are of importance for molecular biol¢dly  DNA unzipping, in particular, under an external force is im-
and biophysicg2]. They take place in transcription of ge- portant for functioning of all living organisms. Force-
netic information from DNA and in duplication of DNA dur- induced unzipping has been actively investigated only re-
ing cell division [1]. The common scenario of these pro- cently [3-7] motivated by the new generation of
cesses is unwinding of the double-stranded structure of DNAnicromanipulation experimenis,g].
under influence of external forces. Recall that DNA consists It is expected that features of the unzipping process de-
of two strands with one winded around the other. These twgend on the base sequence of DNA, because AT and GC base
strands interact via hydrogen bonds due to which the doublepairs do have different formation energies. It is more difficult
helix structure is formed. The individual strand is con-to break a single GC base pair, since it is made of three
structed by covalent bonds whose strength is thus mucRydrogen bonds, while a single AT base pair is made of two
larger than the interstrand coupling. Each strand is a polymdpydrogen bonds only. Thus, the formation energy difference
based on nucleotides. A nucleotide is a deoxyribose sugdietween AT and GC base pairs is of the order of one hydro-
molecule bearing on one side purine or pyrimidine groupden bond energy, that is, 0.1-0.2 eV. This is comparable
(the basgand on the other a phosphate group. The purineﬁ'th the average formation energy itself. We note in qdd|t|on
can be of two types: adenir@) and guaningG), whereas at for a given DNA molecule the overall concentrations of

N . ; . AT and GC base pairs are approximately equal This is
pyrimidines are cytosin€C) and thyming(T) [an additional : , : :
purine uracil(U) is found in RNA. A, G, C, and T groups especially true for higher organisms, e.g., the concentration

) . . . ) of GC base pairs for primates is between 49% and $1P6
differentiate the nucleotides and constitute the genetic code The above energy difference may not be relevant for cer-

carried by a DNA molecule. The bounds between I"‘aighborfain bulk properties of DNA. Therefore, the latter is fre-

ing nucleotides within one strand are formed via the corre- uently modeled assuming a homogeneous base sequence.

spondlngdphosp?ate gdroqphs. Hbyd'&ogret:\ bonds tl;etweenbopp owever, in natural conditions the energy supplied for un-

Sé'.te stra;]n zare oAr\mg %'t erdxr - ra]lsgs OL gei a5€Jipping can be comparable to the average formation energy,
ince the bases A, G, C, and T are hydrophobic, they arg4 hen the heterogeneous character of the base sequence

located at the core of the double helix. In contras'g,.the SU9%ecomes relevant. One of the first steps in this direction was
molecules and the phosphate groups are hydrophilic and th%ade in Ref[6], where it was shown that short-range het-

are located in the outside part of the DNA molecule. Thus 'nerogeneity does influence the unzipping process in the region

a regular DNA molecule the letters of the genetic code arg pare the energy supplied by an external unzipping force is
hidden from the molecular environment. This appears as omparable to the average formation energy of a DNA base
problem for the polymerase enzymes whose role is to rea air
Our main purpose is to make the next step towards real
DNAs and to analyze force-induced unzipping for a DNA

*Electronic address: armena@science.uva.nl model, where the structural features of the base sequence are
"Electronic address: gevorkia@phys.sinica.edu.tw taken into account. One of the known features of DNA is that
*Electronic address: huck@phys.sinica.edu.tw its base sequence displays substantial correlations which, in
SElectronic address: mcwu@phys.sinica.edu.tw particular, can be of long-range charactf¥s12: two base
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pairs separated from each other by thousands of pairs appesuch a way that the latter case contributes to the Hamiltonian
to be statistically correlated. Initial studies reported long-a binding energyp(x;), whereas the former case brings noth-
range correlations for noncoding regions of DNjiAtrons. ing. As we stressed in the Introduction, different types of
For higher organisms, e.g., humans, these regions constitubase pairs do have different binding energies: even when
more than 90% of DNA1]. It was believed for some time considering the ideal situation, where there are no “wrong
that coding regions, which carry the majority of genetic in-base pairs” such as AC and GT, the “correct” base pairs AT
formation, can have only short-range correlations. Howeverand GC are different with respect to energy needed to unbind
more recent results indicate on the existence of weak longthem. Thusg(x;) is a random quantity with an average):
range correlations in coding regions as wdll] (this point

was controversial for a while, but the general consensus on (%) = () + n(x). (1)

its validity emerged gradually Moreover, systematic (iv) An external force is acting on the left emea of the
changes were found in the structure of correlations dependys,giecule pulling apart the two strands. Thus, if a boni

ing on the evolutionary category of the DNA carrfd0]. In - pqren all the base pairg with j<i are broken as well.
spite of ubiquity of long-range correlations, their biological £5:h broken bond brings additionally to the Hamiltonian a
reason remains largely unexplored. Some attempts in thig, ., —F, whereF is proportional to the acting force.

direction were made in Ref13], where it was studied why (v) Summarizing all of these, one comes to the Hamil-
long-range correlations are absent in certain biologically acsnian

tive proteins.

Our basic purpose in the present paper will be to deter- X X
mine how statistical correlations, in particular long-range H(X) == Fx+ 2 (%) = () = FIx+ 2 (%), (2)
correlations, influence on the unzipping process. Due to the =1 =1
biOlOgical relevance of UnZipping, indications of such influ- wherex is the number of broken base pairs_
ences can provide useful information for explaining the pres- |n the thermodynamical limit, wheile, M > 1, one applies
ence of long-range correlations in DNA. the continuum description withx being a real number,

This paper is organized as follows. The basic model wey <x< |, and ends up with the following Hamiltonian:
work with is described in Sec. Il. The situation with finite-

range correlated base sequence is investigated in Sec. Il A.
The next three sections study various aspects of the long-
range correlated situation. We conclude with a summary of
our results. Several technical points are outlined in appenwheref=(¢)-7 and 8=1/T is the inverse temperatufég
dixes. =1).
(vi) For characteristic time scales of unzipping experi-
ments we can certainly neglect any changes of the base se-
l. THE MODEL quence for a single DNA molecule. Thus, once it is modeled

There are three basic mechanisms which determine th@@ the random noisey, it is legitimate to assume that this
physics of the unzipping process: An external force tending'0ise is frozen, ie., its single realization corresponds to' a
to unbind the double-helix structure of a DNA molecule, Single molecule. It is assumed that the DNA molecule is
thermal noise generated by an equilibrium environment int¢mbedded into a thermal bath with temperatiyend had
which the molecule is embedded, and finally structural feaSufficient time to reach equilibrium. Thus, the partition func-
tures of the molecule itself. Among various structural fea-tion and the free energy corresponding to the Hamiltonian
tures which may be of relevance, the most important ones are) read
connected with the base sequence of the molecule. L

.-

H() = (x—a)f + fden(S), (3

We shall work with a model which takes into account dx e F=-TIn Z. (4)

these three physical ingredients in the most minimal way. It

was recently proposed in ReB] for studying DNA unzip-  these guantities are still random together withAverage
ping. o ) results of many experiments with various realizationsyof
(i) ADNA molecule is lying along the axis between the .54 be described with help of the average free en¢fy

pointsx=a andx=L. our order ; ;
- parameter is the number of broken base péirs
(i) Among all degrees of freedom of the molecule WeAlong with its average it is defined fd=0 as

consider only base pairs; they are located at poits
a<x<L, i=1,... M. Indeed, for that range of external X=0F, (X)=9KF). (5)
force where the molecule is close to be unbound completely,

those degrees of freedom which are related to hydrogen

bonds have much shorter characteristic times as compared to ~ A. Finite-range and long-range correlated situations
other degrees of freedom. The latter ones can therefore be |; remains to specify the properties of the noigewithin

considered as adiabatically frozen, and excluded from thg,e 5qopted description we assume it is a Gaussian stationary

a

effective description we are developing. process with an autocorrelation function
(iii) Any base pair can be in one of two states: bound or
disconnectedbroken. We choose the overall energy scale in Kt—t) =(nt)nt")), K)=K(-1). (6)
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Two major classes can now be distinguished depending B. Reduction to Langevin equation
on the behavior oK(t) for larget. The finite-range correlated The basic method of solving the present model will be to
situation is defined by requiring that the integral reduce it to the physics of a Brownian particle whose dynam-
o ics is described by a stochastic differential equation. In Eq.
D= f ds K(s) (7) (4 one fixesL, and viewsa as a parameter varying from the
0 highest possible value, whereZ=0, to the lowest possible

determining the total intensity of the noise is finite. There arevalue which we define to ba=0. The quantityt=—a will
three particular cases of the finite-range correlated situatiof?'uS monotonically increase and can be interpreted as a time

The white-noise case variable. DifferentiatingZ in Eq. (4) overa and changing the
variable ag=-a, one gets
K(t) =Da(t) ) 4z
describes completely uncorrelated noise. The physical situa- i 1-pfz-pytz, -L<t<O, (12)

tion given by Eqs(3) and(8) is well known, and was used to

describe interfaces, random walks in a disordered media, arlhere we usedy(t)=7(-t), as follows from the Gaussian
population dynamicg14]. It was recently applied for the stationary property of the noise. This is a Langevin equation
unzipping transition in DNA6]. Similar models were con- with a multiplicative noise. From Eq12) one can obtain a

sidered in Refs[5,15]. stochastic equation fdF=-T In Z:

The second case corresponds to the noise having some
finite—though possibly large—correlation lengthThe sim- dF +V/(F) = 5(t), V(F)=T2 - fF. (13)
plest and most widely used model for this case is provided dt

by Ornstein-UhlenbeckOU) noise This is the basic stochastic equation we will work with.

_D__w

K() = i 7 9) IIl. FINITE-RANGE CORRELATED NOISE
whereD is the total intensity of the noise ands the corre- A. Ornstein-Uhlenbeck noise
lation time; 7— 0 corresponds to the white noise. The third  Our main purpose here is to study the process of unzip-
case is wherK(t) has a power-law dependence for latge ping in the presence of the finite-range correlated noise given
but still decays sufficiently quickly so that the integral in Eq. by Eq.(9). We wish to understand how the magnituderof
(7) is finite: K(t) = [t|=% with 6> 1. influences unzipping.

The second major class is the long-range correlated situ- Note that the OU noisg¢9) can itself be modeled via a
ation, where the integral in Eq7) is infinite, that is, when White noise:

K(t) for sufficiently larget behaves according to a power law . =

[1(0;: Y ? b ™ =—n+ D&Y, (14)
u where&(t) is a Gaussian noise witb-correlated spectrum:

K(t) = (n(t)7(0)) = ot|™*, (10
where (€)= 26t -1). (15
Indeed, Eq(9) is recovered directly from Eq¢14) and(15),
O<a<l1 (11 since their exact solution is

is the exponent characterizing the long-range correlation, and , D\ D ,

where o is the (local) intensity. Note that(t) has to be (pt)pt)) =t )’7(072(0))— —) +—e T (16)

regular and finite for smati [12], as one would expect from T

physical reasons. We get back from here to E¢Q) under an additional consis-

The OU noise(9), as the typical representative of the tency conditior77(0))=D/ 7. Moreover, 7(t) is a Gaussian
finite-range correlated situation, and the long-range corrergndom process, becaugé) is Gaussian and Eql4) is
lated noise(10) are relevant for modeling correlations in jinear17].
base sequence of DNP9-12,16. Note, however, that the 1o handle Eq(13) one differentiates it ovet and uses

real noise distributions in DNA can be much more compli- Egs.(14) and(15). Changing the variable ast/\7 one gets
cated[10,17]. In particular, this concerns the Gaussian prop-1g

erty we assumesee in this context Sec. V A, where we study

a model of a non-Gaussian noise to show that its predictions d’F dF \6

in the thermodynamic limit do not differ from those given by d2 + V(F)d_s =-V'(F)+ mg(s), 17
the corresponding Gaussian ngideor the long-range corre-

lated situation there can exist several characteristic expovhere

nents for different ranges df Nevertheless, Eqg9) and YF) = 7124 () A2, (19)

(10) are certainly the minimal models of noise which are
sufficiently simple and which allow to study both finite- and Equation(17) has the same form as a Langevin equation for
long-range correlations. a particle with unit mass in the potenti(F) and subjected
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to a white noise and B-dependent friction with a coefficient (29
¥(F). Note that the potential(F) is confining only forf >0:
V(F)— oo for F— oo, When deriving Egs(25) and (26) we used integration by

We can rewrite Eq(17) introducing an additional variable parts, and the following standard boundary conditions:

E(s)zdF(s)/ds, which in the above language of the Brown- _ _
ian motion corresponds to the velocity: P(F,F,s)—0 if F— to or if F— oo,

dF ~ (29

—=F, (19

ds These conditions are physically meaningful if the potential
_ V(F) is confining, and thus the motion of the corresponding

dF ~ \D Brownian particle takes place in a finite domain. According

E:_V(F)F_V (F)J’ﬂtf(s)- (20) to the above discussion on the confining character of the

potential V(F) =T?efF - fF, the boundary condition®9) are
As £(t) is a Gaussian white noise, one uses the standargliable only forf>0.

tools, see, e.g., Refl7], and writes down from Eqg19) Recall that the “time variablet moves between || and
and (20) a Fokker-Planck-Klein-Kramers equation for the 0. For large lengths, i.e., far>1 (thermodynamic limitand
common probability distribution: as the consequente s— 0, any solution of Eq(22) relaxes

P(F,Flz,s) = (8(F - F(s))ﬁ(lz —E(s))}, (21) towards the unique stationary distributi®g(F,F). A rather

general proof of this fact is presented in REf7].
whereF(s) andF(s) are particular noise-dependent solutions e shall now use Eqg25) and(26) to get explicitly the
of Egs.(19) and(20), and where the average is taken overStationary distribution functiorPs(F) of F. Putting to zero

the white noiset(t) given by Eq.(15): the left-hand sidgLHS) of Eq. (25) one gets thaQ; «(F)
does not depend oFf. Taking into account the boundary
dP(F.F,s) ~dP(F,F,9 ( )afEP(F:E,s)] condition(29) one concludes that it is equal to zero:
=-F + Y(F
as JdF E
IF Qus(F)=0. (30)
+V’(F)&P(F;F’S) + %&P(EF’S)_ Putting to zero the LHS of Eq26) and using Eq(30) we
JF ™ R get
(22
. L. L. . i &QZ,st(F) _ ’

Our interest is in the largedimit of this equation(thermo- — ===V (F)QuF). (31

dynamic limi), and we want to have the reduced probability Ik

distribution P(F ,s) of F only: It remains to determin€, ¢(F) putting to zero the LHS of

Eqg. (27). One can conjecture that the stationary state
PS[(FE) is symmetric with respect t&-—-F, and then
Q3 s(F)=0 in the same way as fdD; ;(F) in Eq. (30). Al-
ternatively, one can assume thgf) andD are sufficiently
. _ large so that the termiQ; o(F)/JF can be simply dropped in
Qu(F,9) = f dFF"P(F,F,s), n=0,1,2,3..., (24) the right-hand sidéRHS) of Eq. (27). If V"(F) is of order 1,
then a largey(F) is realized both for large and small[18].
whereQq(s)=P(F,s). From Eq.(22) one gets an infinite set Thus we conclude from Eq27):
of coupled equations fo®,(F,s):

P(F,s):<5(F—F(s))>:fd'EP(F,'E,s). (23)

To this end let us introduce

D
IQo(F.s) _ _dQu(F,9) , (25 WF)Q, oF) = 71—/2Q0’51(|:)_ (32)
Js JF
In view of Egs.(31) and (32) one has a single differential
Fy F, .
aQE(s 7= aQ;(F D M EQUFEI -V FIQFS, RN
D 3 (Q S&F>> ,

26 D 9 (QusF)__

I QaF,s) __9Qs(F,9)

e SE 2V’ (F)Qu(F,s) = 21(F)Q,(F,s) and gets foiQq «(F) = Pg(F),

2D 1
* 12 Qu(F.9), (27) Pg(F) = y(F)exp[— %[V’(F)]2 —oVE .

061908-4



UNZIPPING OF DNA WITH CORRELATED BASE SEQUENCE

fF T(T-fefr

7T?
Pi(F)=N1+ TeBF)eXp[— -

BF
!
(34)

where\ is the normalization factor. The white-noise; 0,
limit of Pg(F) was obtained in Refg6,14].
According to Eqs(5) and (34) the average free energy

reads
* 1 T? T?
f du In(u)<~r+ —)u“exp{(,ur— —)u - T—uz]
o u D) 2D

F=T—0x= 1 2\ 2,
dul 7+ — Jutexp | u7— — Ju———u
0 u D 2D

(35

where

_Tf

D (36)

Y72

Note that both integrals in Eq.35) can be expressed

through the Gamma functiohi(x) and the confluent hyper-
geometric(Kummep function ;F4(a,b;z), since

* 1 c c 3 p?
J du Lfeauz‘b“:—a‘l*”21“<1+—> b1F1<1+—,—,—>
o 2 2 2'2'4a
-~ [(1+c1 b2>
aFy | 2 |. 37
Ve 1( 2 '2'4a ] 37

Similar formulas can be written fafgdu U(In u)”eﬁuz‘bu for

PHYSICAL REVIEW &9, 061908(2004

(%)
RN W s gy ]

f

FIG. 1. (X) for Ornstein-Uhlenbeck noise witB=10, T=1.
From right to left:7=0, 7=10, 7=100. It is seen that, for a fixed
(X) decreases upon increasing

for some fixed value of. This dependence is displayed in
Fig. 1 following Eqs(5) and(35). It is seen that the behavior

of (X) for very smallf depends onr rather weakly. Indeed,

as follows from Eq(34), for f — 0 the relevant domain ¥
contributing into(F) is F~-D/f. As it does not depend on

7, we get back Eq(39). However, a nontrivial dependence

on 7 does exist for moderately small values fofwhere as
seen in Fig. 1{X) is a decreasing function affor a fixedf:
longer correlations present in the base sequence increase the
stability of the DNA molecule, since larger external forcés
needed to achieve the same average amount of broken base
pairs. This is our main qualitative conclusion on how a finite
correlation length influences the unzipping process.

n=1,2. These representations facilitate numerical C"’“Cl‘”""'B. Arbitrary finite-range correlated noise at low temperatures

tions.
The average number of broken base p@€scan be cal-

culated from Eqs(5) and(34). Note that for the white-noise
situationt— 0 a simple formula is obtained:

— (38)

where ) =I'(u) /T (1). For u—0, (X) does not depend
on temperature and onand becomes very large:

(Xy=Df72, (39)

In the preceding section we reduced the nonlinear equa-
tion (13) with the finite-range correlated nois®) to a
Fokker-Planck equation, and solved the latter exactly in the
thermodynamic limit. The essential feature that made this
analytical solution possible is that the OU noise has a single
and well-defined characteristic time and due to this allows
representationgl4) and (15).

In general it is impossible to solve E@L3) for an arbi-
trary Gaussian noise, and, in particular, for the situation
given by Eq.(10): there is no exact Fokker-Planck equation
for this case. There is, however, a particular case which al-

for f—0. When the external force reaches its critical value |0WS analytical treatment. For very low temperatur®s; 0,

the average number of broken base pairs diverges in the the?"® €&n approximately substituéF) in Eq. (13) by —fF for
modynamic limit. F<0 and by an infinite potential wall standing &t=0.

To study the influence of on this unzipping phase tran- Thus, all valued=>0 become prohibited. For this particular
sition, one should keep in mind the realistic situation, wherd'm Of potential one can get a Fokker-Planck equation for

DNA molecules belonging to different evolutionary classes P(F,t) = (&(F = F[n,t])) (40)
have different correlation properties of their base sequences. ) ] o

[10]. At the same time the concentratidiraction) of AT and ~ With anarbitrary Gaussian noise in the RHS of H3.3). The
GC base pairs is known to liapproximately equal for suf- ~ derivation goes as follows. Write E(L3) as

ficiently long DNA molecules in natural conditiori4,19]. dF
Therefore, in comparing two situations having different cor- at =f+ (),
relation characteristics, it is legitimate to keep fixed the in-

tensity of the noise defined by E(/) —this corresponds to where the stochastic variable is restricted to be negative
fixed concentration of various base pairs — and to study hovdue to the above infinite wall. Differentiating(F,t) in Eq.
the average number of broken base paXsdepends o (40) overt one gets

(41)
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JP(F) _ dP(FY d )
at f IF &F<7l(t)5(F Flnt]). (42

It remains to handle the last term in this equation. One use

Novikov’s theorem[20]

t
(n0aF - Flnh =~ [ ds -9

OF[t]
x\ 8(F -F[ ,t])—>, (43)
< 7 sn(e)
where 6/ 57(s) is the variational derivative andF[t]/ 57(s)
is obtained from Eq(41):

d oFt] _ OFI _
where6(t-s) is the step function. Combining Eq&l2)—(44)
we get finally

(44)

IR __ IP(FY F#P(F,t) 45
gt 9F L
t+L
Dt:fo ds K(s). (46)

PHYSICAL REVIEW E 69, 061908(2004)

(X)=Df?, (52)

which has the samedependence as the white-noise case for
gmallf; see EQq(39). We conclude that, not unexpectedly, for
low temperatures the behavior ¥fis determined only by the
total intensity of the noise. All other details &f(t) do not
matter. It remains to stress that the present analysis certainly
does not apply to the long-range correlated situatibd),
since the total intensitp diverges in the thermodynamical
limit.

In closing this section, let us note that E&2) can be
applied to finite-range correlated noise that fefL has the
same autocorrelation function as Hd0). As an example
take

Ke(t) = alt|™™ for (53)

t| <1

=0 for [t|>1, (54)

wherel is some parameter thatfisiite in the thermodynami-
cal limit L—oo. Therefore, the noise given by E3) is
obviously finite-range correlated. Equati@®) now reads

X)= ﬁll‘“f‘z. (55)

If one chooses to takle~ (X) then(X)~ =2« as predicted in
Ref. [6]. However, there is no ang priori reason for this

Equation (45) should additionally be supplemented by achoice, and at any rate this result refers to the finite-range
boundary condition which reflects the presence of the infinitecorrelated nois&y,. The real long-range correlated situation,
wall at F=0. Equation(45) can be written as the continuity wherel~L, is still not described by it.

equation
IP(F,t) dJ(F,t dP(F,t
(F) GIED o ey g IPED
at dF JF

(47)

where J(F,t) is the probability current. The infinite wall at

F=0 is now implemented by requiring

0
f dF P(F,t)=1, (48)

JO,t) =0, (49

for all t. Conditions(48) and(49) are imposed on any solu-

tion of Eq. (45).
In the thermodynamic limit — o andt=0 one gets from
the stationarity conditio@P(F,t)/dt=0

f fF
P(F)=—exp| —| for F<O (50
D D
=0 for F=0, (51

where the total intensity, as given by E{), is finite for the

IV. LONG-RANGE CORRELATED SITUATION:
THE FROZEN NOISE LIMIT

The present and the following section are devoted to the
long-range correlated situation, where according to (EQ)
the autocorrelation functioK(t) of the noise has a power-
law behavior with the single characteristic exponent
1>a>0.

To start with, let us consider the case with—0. The
noise is now completely frozeny(s) in Eq. (3) does not
depend ors. This situation is less physical as compared to
that with o> 0. However, it is exactly solvable, and one can
hope it catches at least some features of the realistic situation
whereq is larger than zero, but certainly smaller than 1. This
intuitive expectation will be confirmed later on.

The problem witha=0 is easily solved from Eq(3).
Moreover, the exact solution can be obtained for an arbitrary
value ofL:

X

[ = aBLE+ )], (56)
1 1

ox]=7 -1 (57)

considered short-range correlated situation. Note that in the

thermodynamical limit condition&48) and(49) are satisfied
automatically as seen from Eq$0) and(51). It is now seen
from Eq. (5) that

It is seen that in the thermodynamical linkit— o, g BL(f
+7)] behaves as roughly the step functigiBL(f + 7)]= 6(
—n—f): for any single realization of the noise there is a sharp
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phase transition with a jump at the realization-dependent O dé¢ (E-pH2| 1~ d¢
point f=—7. Exactly at this pointf=-# one hasg(0)=1/2 :f > T T ouR + [f [Py
and(X)=L/2. o 2703 op o &N2mopB
Let us now study the behavior ¢K). Since the noise is ><<ex =07 ] €+ B2 ) (64)
completely frozen, the calculation ¢X) reduces to the av- 203° 2032
eraging over a Gaussian variable with dispersioiVe have
1% d¢ (E-pD° (£+pH°
X) dy 7 1 f =( e
- (glpL(f+n)]) = Ny exp -5 glBL(f + 7)] Lo &2mop? & 2032 ex 2082
(65
d (- Bf)?
- f - * exp| - o ﬁz olLél, (58) . 2 )
2mop o . gj dé (ex _ (&8 ] _ex{_ (£+ B0) ]
where we changed the integration variableéag(7+f). In 2)o N2mop? 2032 2032 '
the thermodynamical limiL — o, we shall obtain foKX)/L (66)

the main term of orde®(L%), and the first correction to it )
which will appear to be of orde®(1/L). To this end, let us One notes that both EqESS) and(66) are of ordetO(1/L7).
divide the integration in the RHS of Eq58) into three  This can be verified by directly expanding integrals in Egs.

pieces: (65) and(66) for small 2/L. Skipping these terms, one gets
[ e B e
= » + ™ + " . (59) L st \5’2770',82 ZO'BZ L o f\’Z’TTO',BZ
For each piece we shall use the following approximate ex- ><<ex -7 ] €+ B2 )
pressions obtained from E¢G7): 203 2032
L ! f L 2 60 fw o exp[ £ } + 1 exp{ F }
= — = = —_— — _—
g[ g] Lg or f ~ &y ( ) Bt \3’2’7TO'B2 20’B2 O'BZL 20
Bf §2
1 X .
glLé]= 5 for -2=<L¢é(s2, (61) JO de exp{ 20,82] €7

When obtaining the last term in the RHS of E&.7), we
1 used a tabulated identity for the error function.
gLE=1 +L_§ for Lé<-2. (62) For f not very large as compared tar, the first term in
the LHS of Eq.(67) is dominating{X)/L is of order 1/2. In
To obtain Egs(60) and (62) we neglected terms of order particular, it is exactly equal to 1/2 fd=0 as can be de-
O(e™#Ifl). For Eq.(61) which corresponds to the second in- duced directly from Eq(58). The dependence ) on f
tegration piece in Eq59), we have taken the value gfL{]  pecomes thus very weak for 0. The second, subdominant
at ¢=0. The boundary points df¢ were chosen such as to term becomes non-negligible fof>\o, where using
ensure a continuous matching. However, neither the precisgsymptotic identitiegsee Appendix B
value ofg[Lé&] within the second piece of integration in Eg. ,
(59) nor the precise values of the points separating this piece f” dE e, €7 ’2(
from the remaining ones are important, since as we show a \,E_re B av%
below the contribution coming from this second piece as
well as the contributions from the boundary points of the two

1——2+--->, a>1, (69
a

2
other integration pieces produce factors of or@¢t /L?) at fa dé e,52/2 - fa d¢ egz/zz iﬁ(l + l) + as>1
best. 0 0 a?) '
The same concerns factors of ordﬁte‘BL“‘) that were (69)
neglected in Eqs(60)—62). Combining Eqs(60)—62) with _
Eq. (58) one gets one gets from Eq(67) notinga=f/\o
X) f‘Z’L dé (5—,6’f)2]< 1 ) 1(. o o 2
—= exp - 1+— Xy=—=|1+5+—L -—1]. 70
L ). 2nof? 20 Le R = o\t et P P T o, (70
. }fm dé oxd - (£- Bf)z} Note that forf >\, (X) has — within the leading order —
2) on \N2mop? 2032 the same 1f dependence as it will be in the completely
. g _gn2] 1 homogeneous situation without noi&e=0). In the consid-
+J € ol - (¢ ﬁz) }_, (63)  ered regime, the noise only renormalizes this behavior modi-
o \N2mwa B2 206 JLE fying the subdominant terms.
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I The quantity(X?) can be calculated in the same way as in
Egs.(63) and (67). We shall bring the result only fof not
very large as compared tar, that is, when(X2)« 2

0.6 p[ f2]
0.4\\‘ @: T__d¢ exp[ 52] 2 (L)—ex 20

L>  Jgr V2mop? 2082 ’ Eln 2) \orps
. ‘ V2mBo
0.2 1
- +0 E . (72
O --------
0.5 1 2 2.5 . . .
£ Substituting this into Eq.(71), we see that ((X?)
—(X)?)/{X)? remains finite in the thermodynamical limit:
FIG. 2. X(f)/L for a particular realizationsolid curve and " 2
(X(f))/L (dotted curvevs f; T=o=1, andL=10% f dé p[_ 5 ]
XA -2 Jp \2mop? 203

As compared toX/L which has a jump at a realization- = T > 5=
dependent poinf=17, (X)/L is seen to behave smoothly. It X f dé oxpl — &
displays a crossover between sm@)/L for a largef and gt \2ma 2032
(X)=L/2 for f=0: the sharp transition disappears; see Fig. 2.

This indicates that the situation for the totally correlated (73
noise is essentially non-self-averaging: in the thermodynamikn particular, forf—0

cal limit the averaged order parametet) does not repro- ) )

duce the behavior oX for a typical realization. Recall that 1Al % 1, (74)

for disordered systems all observables such as free energy, (X)?
order parameters, correlation functions, etc., depend on the ,. . . .
realization of the disorder, i.e., they are random quantities. |1[nd|cat|ng essef‘“a' nqn-self—averagmg.

is of the immediate interest to know their most probable N closing this section, let us repeat that the character of
(typical) values, since they will be met in experiments. If for the thermodynamical for the considered case0 is differ-

a given quantity its typical value in the thermodynamic limit ent from that of the f|n|te_-range correlatlon_snuatlon, where
coincides with its average, one speaks on self-averaging; see; for L — — the behavior ofX) becomes independent of
e.g., Refs[21,22. In practice this means that it is sufficient L at least in the physical range of other parameters.,

to study averages as they are representative in the single>f>0, T>0, etc). For thea=0 case, as seen from Egs.
sample measurements. It is known on the general ground théd7) and (70), there is an explicit dependence &anin the

in the proper thermodynamic limit, that is, when the linearwhole range of physical range of the involved parameters.
sizeL of the system is much larger than any other characterAccording to Eq.(70), if L is kept large but finite, then this
istic length and provided the distribution of the disorder iSdependence is very weak for external forces far form their
finite-range correlated, quantities that scale with the volumeyitical valuef=0, that is, forf> . There are no reasons
of the studied random system — these are extensive quanijr taking this explicit dependence dnas something un-
ties such as free energy, order parameter, but not the statisfhysical. In contrast, the actual size of physically relevant

%‘?]I. sum " argz exgecte(;l] tol disp]!aiy self-avekr)agﬁagﬁza. examples of DNA is never more than~10°— 1%, see Ref.
is result is based on the law of large numbers. However11 This | inl h ler than th 23]
this need not be true if the distribution of the disorder is[ 1. This is certainly much smaller than the number=10

long-range correlated, since now the correlation length of th which in the standard statistical physics is taken as the typi-

disorder has the same order of magnitude as the linear siz‘:éaal SIz€. Therefore, it is ra';her natural to study the physics of
u[mppmg for a large but fixed.

and the arguments based on the law of large numbers do no For the considered frozen situation, we could solve the

apply. The above situation is just of this sort. problem analytically for a given realization. However, for
A. Dispersion as a measure of non-self-averaging a>>0 this is not pOSSible, and one has to rely on numerical

It is desirable to have more quantitative indications of themethOdS' This is what we intend to do in the following sec-

above indicated non-self-averaging effect. To characterizgon'

fluctuations ofX from one realization to another, it is natural

to employ the corresponding dispersi¢X?)—(X)?> which V. NUMERICAL RESULTS

tells us how the quantityX) fluctuates from one realization  As we have seen in the preceding section, there are rea-

to another. Then the statement of self-averaging will read sons to expect that for the long-range correlated situation,
(X2) = (X2 especially for sufficiently small index, the typical — that
—oo  —0 for L—o. (71)  is, frequently met among many independent realizations of

%Y the noise — behavior aX(f) in the thermodynamic limit is
In contrast, if((X2)-(X)2)/(X)2 remains finite fol.—, we  not described adequately by the average quagiy(non-
have non-self-averaging. self-averaging We note in this context that the correlator
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(X3 =(X)3)/(X)? studied in Sec. V can indicate on non-self- 1000
averaging, but by itself does not provide any direct informa- ’
tion on typical realizations. It is perhaps needless to stres: 800
that once we expect the effect of non-self-averaging, the at-

tention should be shifted towards typical realizations, since :
they do have a direct physical meaning for single-moleculex 600 |-|:
experiments. "

In the present section we study numerically the behavior q6

of the number of broken base pakXsas a function off both
for the long-range correlated situation and for the uncorre- B
lated noise. For the discrete version of the model the parti- 200 [H\
tion function reads
L k 0 = ; :
Z=> exp| - ﬁ(fk+ > 7/i) , (75) 0.0 0.6 0.8 1.0
k=1 i=1 f
where for the long-range correlated situatigrare Gaussian FIG. 3. (Color onling Solid curvesX(f) for several realizations

random variables with the autocorrelation function given byqf the white uncorrelated noise. Dotted cur¢(f)) obtained by
Eq. (10). Note that for the purposes of numerical computa-ayeraging over frealizationsT=D=1, L=5x 10%.

tions the behavior dK(t) in Eq. (10) was regularized at short
distances so as to avoid superfluous short-range singularities
see Appendix A for details. The generation of, i
=1,... L is described in Appendix A following optimized
recipes proposed in Ref23]. For numerical computations

' It is seen from Fig. 4 that the white and dichotomic noise
produce very similar results. This is to be expected for the
considered large values bf(law of large numbens Figure 5
shows that the power lagX) o f~2 for the white-noise case is

we have choseii=1 andL=10* or L=5X 10", ) : ) o
. P, .., recovered by direct averaging over various realizations. In-
As L is now explicitly finite, one should be careful with L oS
deed, it is seen from this figure that one recovers

the selection of the thermodynamical domain, since due to
the very statement of the problem the linhit- < is taken (X) oc f7184 (76)
beforef — 0. As a plausible estimate of this domain, one can . o . .
use a conditionfyL>1. We confirmed it in several ways, aftér averaging over f0 realizations in the domain

reproducing predictions which were made in the thermody9-05<f<0.25. This result is stable upon increasing the
namical limit L —s co. number of realizations, e.g., from 3@ 2x 10°,

A. Uncorrelated noise B. Long-range correlated noise

Let us start with the uncorrelated-noise case, whgie 1. Typical realizations
are independent Gzaussian variables with zero average, The situation for the long-range correlated noise for
=0, and variancep’=D=1 (white noisg, and whereX is = =g 5 T=¢=1 is illustrated by Figs. 6-9. The first point to
given by Eqs(5) and(75). For comparison we also studied a
case, wherey, are independent random variables assuming 1000
valuesz;=+1 with equal probabilitydichotomic noisg

The results are illustrated by Figs. 3 and 4, where we

display (X) and X for several typical realizations. It is seen 800 1
that (X) and X do not coincide exactly, as it is in general
expected due to the finite magnitudeloif not by any other 600 1

reason. However, in the considered thermodynamical domair<
of f the behavior of various typical realizations qualitatively
resembles each other, and, therefore, resembles that ¢ 400
(X(f)). In particular, for all typical realizationX(f) grows '
for f — 0. In that sens&€=0 is a special point for both typical 200 H[i
X and(X). It should be mentioned that fdr=0.05 we have
seen realizations containing relatively sudden jumps at

realization-dependent values ©f This differs from the be- %.0 0.2 0.4 0.6 0.8 1.0
havior of (X) and is in agreement with the results of Ri&. ¢

However, such small values dfare not in the thermody-

namical domain. Acknowledging reservations connected FiG. 4. (Color onling Solid curvesX(f) for several realizations
with the numerical character of our study, we, neverthelesssf the dichotomic uncorrelated noige;=+1 with equal probabil-
conclude that the uncorrelated-noise situation is selfity). Dotted curvexX(f)) obtained by averaging over @ealiza-
averaging at least for not very smalkL> 1, values off. tions. T=1, L=5X 10"
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In f f
FIG. 5. (Color onling The dependence of <X(f)) on In f for FIG. 7. (Color onling Realizations oiX(f) from the first class of

various values of. and forT=D=1. The quantityX(f)) was ob-  typicality. T=0=2a=1, L=5x 10"

tained by direct averaging over 3 fealizations. Solid line indicates . .

linear fitting —IN(X(f))=A+1.841 79 Inf for L=5x 10%, whereA is one of th?_ ab_ove C|af]365f_. fhr:|5>< 10;( ¥v_e prescrlbeo'ihe

a constant. The emergence of the power (@) is thus displayed glvgn _refa 'Zat'on_ to the first class X(f=0)>4.8x10,

explicitly. while it is prescribed to the second classXiff=0) <102
These criteria appeared to be sufficiently adequate, as they

note is that now there are typical realizations with radic:allyare consistent with the fact of preseriéer the first clasgof

different properties. The first type of realizations is presente@bsenﬁgfor thehse<f:ond C|a$j$f S?ddeu julmps foX(f). .
by Figs. 6 and 7:X(f) increases by several sudden jumps. In this way the frequencies of each class were estimated

- : N le of 1®realizations. It appeared fdr=5x 10*
followed by flat regions. It is seen thxf;— is either equal to na s_am_p = : . .
its maximal possible valué or is close to it. Points where andT=o=2a=1 that the first scenario is met 1a84% of all

X(f) has jumps vary from one realization to another. HOW_cases(8?_>9 in 10 realizations, Wh.“e the se_conq scenario is
ever, the overall number of jumps when varyihdpetween present in—129% of all cas.e$118 n 10 rea!lzatlon$ These
zero,and one is typically two or three fractions are stable upon increasing the size of the sample on

In contrast to this, Figs. 8 and 9 present a strictly differentWhlch the above estimations were carried out. Interestingly

situation: It is characterized by very smooth behavioX(f) ﬁngﬁgp' fr?ﬁ“Z:SOCS t\:,vvhe(f[é(f) ass :r;unﬁ?or;lof:@;ill |fntc|)|
for f=0. In particular,X|;—g is much smaller thai (typi- elther of the above wo classe ount only=&7 ot a

; o . possible cases.
?L?rilé/tik()))r/] E‘;V g[ﬁ?{]‘z %2::?933(]3):1(3;Sthse“!\:egggoutgg;iz d It is relevant to note that the fractions of the two classes

by the external unzinping force is equal to teeracebind- show tendency to move towards each other upon decreasing
oy pping fore q 9¢ the size of the system. For instance, the fractions of the first
ing energy of a base pair — is by no means special.

0, 0 I
To estimate the frequency by which each scenario is m nd the second class amount to 18% and 76%, respectively,

among all possible realizations, we have taken the followingcOr L=10" (T=0'=2a=1). These fractions were estimated by
criteria for deciding whether a given realization belongs to fiteria X(f=0)>0.8x 10" and X(f=0) <1C%, respectively.

50
10000 -
40 |-
8000 |- L
30
6000 |-
x | 8 20
4000 |-
2000 |- 1 T 10
0 L L\ L S | R 0 = T i T
0.0 0.5 1.0 1.5 2.0 2 3 4 5
f f
FIG. 6. (Color onling Realizations oX(f) from the first class of FIG. 8. (Color online Realizations ofX(f) from the second
typicality. T=o=2a=1, L=10" class of typicality T=o0=2a=1, L=10".
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50 typically defined in the thermodynamical limit and one needs
e special tools of finite-size scaling for their identification in
40 L results of numerical computations which are necessarily
done on finite systems. The idea of the finite-size scaling is
thus to extrapolate these results to the thermodynamical
B limit. However, there is another, somewhat different line of
Py ) ™~ thought [24] which identifies the proper thermodynamical
20 \ quantities (such as entropy, free energy, order parameter,
\ etc) directly for finite systems, and then searches in the
\ space of parameters some points having a special character
10 \ for these quantities. This approach well recommended itself
8 for studying phase transitions in atomic and nuclear physics,
0 L I T ; I I I and in systems with long-range interactiof@sg., a gas of
0 1 2 3 4 5 self-gravitating particles For the present study of DNA
f there is a related aspect that should be taken into account: in
natural conditions the number of base pairs is laly, fi-
FIG. 9. (Color onling Realizations ofX(f) from the second nite. HereL is of order of 16—1C, see, e.g., Ref§1,2], as
class of typicality.T=0=2a=1, L=5x 10%. we have mentioned already. It is, therefore, clear that the
considered finite size aspect of DNA is something generic,
Recall in this context that the chosen values lfoare sen- and not only connected with natural limitations of numerical

sible, since the typical DNA samples used in experimeninéthods.

havel ~ 10°~10; see, e.g., Refd1,2] and also the follow- Let us now return to the situation presented in Figs. 7-9.
ing section. ' We are going to use the analogy with the case of the totally

Since there are typical realizations which are so muciforrelated noise described in Sec. IV. It was seen already that
different from each other, we conclude that this Iong-rangéh's analogy helped us to draw useful qualitative conclusions
situation is essentially non-self-averaging in the whole physi®n the numerical data. For the totally correlated noise the
cal domain O< f<1 and, in particular, in the thermodynami- POINt of the phase transition is unambiguously identified with
cal domain off. This fact distinguishes between the uncor- the realization-dependent valéie -». At this point the order
related(white nois¢ and long-range correlated situations. It ParameteX has a jump of ordet; see Eqs(56) and(57). It
should be noted that due to the law of large numbers an{@ be useful to repeat that the most unusual aspect of this
non-self-averaging present in the whole domain o<1 is phase transition is that its point is strictly realization depen-
certainly impossible for the uncorrelatédr weakly corre- d.ent. The same philosophy can now be applied to Figs. 6 and
lated noise[21,23. For the long-range correlated case the,7- there are realization-dependent values,ofvhereX has

very law of large numbers does not apply, and the abové!MPS of order ofL/2 (recall that for the figures we have
effect becomes possible. takenL=10 or L=5X10%. It is seen as well that there can

Our discussion of the frozen noise presented in Sec. \P€ Several such phase transitions for a single syssémgle

allows to provide a qualitative explanation for features of the'€@lization of noisg The latter fact can by itself appear to be

above two classes of typical realizations. One notes that Fher surprising. However, it is known that some disordered
sizable portion of long-range correlated noise realizationd22l, Or deterministic but strongly frustratg@3], systems

can be seen as several pieces of the frozen noise with diffef@n €xperience several phase transitions; there can even exist
ent’s put next to each other. Now recall from E&6) that ~duasicontinuous domains of criticalif25]. With the same
every sufficiently long piece of that type has a single first-logic one sees that the typical re_a_lllzatl_ons presen';ed in Figs.
order phase transition with a jump proportional to its length.8 @nd 9 do not have phase transitions in the domairf & 1

The same reasoning can be applied for the understandirfyj €ast for the considered valueslof
of the existence of the second class, whé(® is a smooth
function of f and X(f=0) <L. Here one should note that — C. The behavior of (X)
within the above qualitative image of a long-range correlated
random sequence — there are realizations of the noise Wheggl
all #'s are positive, and thus all jumps ¥ff) can occur only
for negativef <0, that is, beyond the domain of our interest.

30

As we already noted, once the effect of non-self-
eraging is present, the basic physical quantities are the
typical realizations, since it is these features that are directly
observed in experiments. It is, however, still of relevance to
know the behavior of the average number of unzipped bonds
2. Inferring phase transitions (X, since it illustrates what are the precise differences as
Let us finally discuss on whether we can infer phase trancompared to typical realizations.
sitions by studying the typical realizations. First of all, it is ~Here we report on two features ¢X) as a function off.
obvious that once we do not have self-averaging, phase trafd-he first one is how doe&) depend orf for small values of
sitions should be studied on typical scenarios of behavior fof. In particular, is there any power-law dependence similar to
X and not on the behavior of its avera@e. There is another  (X(f))= {2 present in the uncorrelated-noise situation, and
aspect which is certainly more subtle: phase transitions areerified by us numerically in Sec. V A? Note that for the
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0 2
2 =0.01 . — L=1x10°
L =005 & 1) f
4 T =0.5 o L=5x10* /i
A [ AR = e Lu1x10° :
><V 6 L 7,1“’ A 1
8 |- $ <
-12 1 1 1 1 1 1 1 0 1 | 1 | 1 1 L 1 1
-4 -3 -2 -1 0 -5 -4 -3 -2 -1 0
In f In f
FIG. 10. (Color onling -In{X) vs In f for the long-range corre- FIG. 11. (Color onling —In[(X)(L/2)"1~%=)] vs In f for various
lated noise with various’s andL=5x 10*, T=¢=1. The quantity L’s andT=¢=1, «=0.25, 6=0.0625. The quantityX(f)) was ob-
(X(f)) was obtained by direct averaging over®¥8alizations. tained by direct averaging over 3 fealizations.

Two important features of resulf8) are to be mentioned.
First, as seen from Figs. 11-13 the value(¥j(f=0) ad-
equately characterizes the whole domain of srhiaince the
dependence ofX) on f is weak. Second, as seen from Fig.
14, the functiond(«) increases withw, but saturates for

was recently predicted for small see Ref[6]. The most =0.5at6=0.08. It appears that the same re¢u8) with the
adequate way to look for the power laws is to plot({pas  ndex 6=0.08 holds for the uncorrelated noise, but there its
a function of Inf, then a power law should display itself via region Of"\;a“d'ty IS r;estnctc;c{for L=5x 10", ;zlAzl) by

a straight line. Figure 10 displays such a plot obtained fo€"Y Smallf <0.01 values of, in contrast to the long-range
various values ofx and L=5x 10, The quantity(X) was situation. Thus, as far as the smaltharacteristics are con-

calculated by direct averaging over3l@alizations and the fﬁ;?g(d ;hcea;]eigst/?)ths:i?riéos?:tuingfrcsrili’cglni?] (Ijticlzs“?r?li/he
results were checked for stability upon increasiby two @

time9 the number of realizations. As seen, this figure showé’sual theory of phase trapsitions. . I

very weak dependence of <¥) on In f. There are ho con- We conclude by repeating two main qualitative features of
T ' . the average numbé&K(f)) of unzipped bonds as revealed by

vincing indications of a power law. In particular, when de-

creasinga the dependence of <) on Inf does become our numerical analysis: in the long-range situation and for

) . . . small forcesf, the behavior of X(f)) as a function off does
weaker in obvious contrast with the prediction made by Eq. . . .
(77). For a— 0 this behavior coincides with those of the not display any power law, and is governed by its value at
exact solution discussed in Sec. IV f=0. The latter one satisfies to power |&#8) as a function

long-range correlated situation with the index such a
power law

(X) o f2 (77)

It should be noted that —{(iX) is a perfectly smooth func- of L.
tion of In f: all jumps and flat regions present for the first 4
class of typical realizations — which involves the majority
of realizations — became washed out when averaging ove i — L=1x10°
10° realizations. This gives another indication that the point¥ = 3L  ----L=1x10*
of jumps in the above class are completely random and var)'_’N\ ------- L=5x10"
from one realization to another. 3 i ——— L=1x10°

Once we realized that in a rather wide intervalfsf — X oL
typically In f <-0.5, as seen in Fig. 10 — the dependence of 3§
(X) on f is weak, we have studied the behavior f(f r-0
=0)) as a function ofL and a. As shown by Figs. 11-13 1Lk
numerical results fit well into the following scaling equation:

1+3a) 0 _ 1 | ‘u -~ 1 1 1 1 | 1
X(f— 0 = (2) ' (78) 5 4 3 2 4 0
In f

The values of5(«) for severala’s are shown by Fig. 14. For

a=0, we get5=0.01 which is in a good agreement with  FIG. 12. (Color onling The same as in Fig. 11 but with
exact values(a=0)=0 obtained in Sec. IV. =0.5 and6=0.075.
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8 Let us now summarize our results starting from the finite-
range correlated situation. In Sec. Ill A we have shown that
— L=1x10° the presence of a finite correlation lengthlays a stabilizing
6F ----L=1x10* [ role for the unzipping process: for a fixed external fof¢ke
------- L=5x10" average number of broken base pairs decreases under in-
e L=1x10° creasingr. If only finite-range correlations are present, the
process of unzipping does not depend much on the detailed
structure of the base sequence: all typical — i.e., frequently
met among all possible base sequences — scenarios of un-
zipping have the same qualitative pattern of behavior, that is,
the number of the broken base pairs diverges as the external
force approaches its critical valué:— 0. This divergence
can be adequately understood by studying the average —
over all possible base sequences — number of broken base
pairs. All by all, one can say that the basic influence of finite-
In f range correlations is in stabilizing the DNA molecule with
n respect to the external unzipping force.
FIG. 13. (Color onling The same as in Fig. 11 but with The influence of long-range correlations is certainly more
-0.75 ands=0.08. drastical. Possibly the most important aspect is that the situ-
ation is essentially non-self-averaging: there are two radi-
VI. SUMMARY AND CONCLUSION cally different scenarios of typical unzipping which depend

In the present paper we have studied how statistical cor2” the detailed structure of the base sequence and which do

relations present in the base sequence of a DNA moleculnot coincide with the behavior averaged over all possible
. P > S€q ase sequences. Within the first scenario, the number of bro-
influence the process of unzipping. There were two relate

o X en base pair¥(f) shows as a function of the external force
motivations for our study. On the one hand, the existence o

h lati h h both. fini a sequence of sharp jumps at sequence-dependent values of
these correlations — that can have both finite-range ang the overall number of jumps is nearly constant within the

long-range character — is by now a well-established fact|ass. Each jump has the magnitude comparable Withat
[9-12. It is, therefore, legitimate to study how they influ- js ynder small change dfa large number of base pairs can
ence on the DNA physics. On the other hand, general qualipe opened. The poirft=0 is special, sinc&(0) either coin-
tative predictions drawn on the above influence can be usegldes withL or at least is very close to it. We argued in Sec.
for explaining the reason of rich correlated structures foundy that it is sensible to describe this scenario as a sequence of
in the base sequence of DNA. Recall that various segmenishase transitions. Such an effect is known from other disor-
of a DNA molecule can have different — finite-range or dered or strongly frustrated systefi2,25.
long-rangg 11,12 — correlation structures. Moreover, DNA  The second typical scenario is crucially different. N¥w
molecules belonging to different evolutionary classes havés a smooth, slowly changing function of the external fofce
different correlation properties of their base sequerités in the whole relevant domain<0f <1. There is no sign of
The model we studied contains only the most minimalphase transition, and the valfie 0 is not distinguished from
number of ingredients needed to describe unzipping, and tb>0 as far asX is concerned. DNA molecules which due to
account for correlations in the base sequence of DNA. Therethe structure of their base sequence fall into this class are
fore, many realistic features of the unzipping process remaifus rather stable with respect to the external unzipping
beyond our study. We, nevertheless, believe that the obtaind@rce-

results will be useful especially for drawing qualitative con- It @ppears, interestingly enough, that the qualitative and
clusions. even some quantitative features of the long-range correlated

situation can be understood via the analytical solution of the
0.10 model with the totally correlatedrozen noise, which we
presented in Sec. IV. In particular, this allows us to explain

-In(<X>/(L/2)"")

0.08 why there exist two typical scenarios with widely different
behavior of the number of unzipped base pairs, and provides
—~  0.06 rather robust analytical indications for the phenomenon of
=2 non-self-averaging.
“© Summarizing features of these two scenarios, one can say
0.04 that long-range correlations increase the adaptability of the
corresponding DNA molecule, since in some typical sce-
0.02 narios it becomes more stable with respect to the féaoy
; sharp transition is absentwhile in others the unzipping is
0.00 ! s . ! realized via a sequence of sharp phase transitions. The actual
0.0 0.2 0.4 06 0.8 1.0 scenario for a single molecule will crucially depend on the
a detailed structure of the base sequence.

We also studied how the average numper of unzipped
FIG. 14. &(a) defined by Eq(78) vs a. base pairs depends on the applied fofcdn contrast to
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white-noise situation, where the behavior @€ for small
(that is, critica) forcesf—0 is governed by a power law
(Xy~ 72, we found numerically no indications of a power

law for small forces in the long-range correlated situation. Inwhere 7, are complex Gaussian random variables with
contrast, the dependence f(f)) on f for small f's is very
(7 = 8N+ m), (A8)

weak and to a large extent is governed @§(f=0)). The
Iatter guantity displays a pgvyer-law 'behav(dB) as afunc-  where 5(0)=1 and 8(k)=0 for k#0. Indeed, oncey, are
tion of L. The region of validity of this power law appeared gssumed to be Gaussian(t) is Gaussian as well; it is seen

to be unexpectedly wide. as well that Eq(A1) is valid. Complex random variables,

We hope that these results will contribute to the underap pe conveniently expressed via real random variables:
standing of the role and the purpose of correlation structures

in DNA.

77: E Vr"k_nnne—inwot,

n=-o

(AT)

1
M= ,—E(an+ ib,) for n=1, (A9)
\r
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APPENDIX A: GENERATION OF THE LONG-RANGE 7= > V2k-[a,cognegt) + b,sin(Nagt) ] + Vkeao.
CORRELATED NOISE n=1
Using ideas of Ref[23] we shall here describe a method (A13)
for numerical generation of a Gaussian random noj&g Let us consider an example:
with zero average and an arbitrary symmetric autocorrelation
function: Kit)y=0 for t<1
Kt=t) =(nt)n(t"), (A1) o
:_C[ for t=1. (A14)
K(t) = K(~1). (A2) !
. o _ This represents a long-range correlated noise regularized for
Assume that the noise is periodic with peribt smallt. For this autocorrelation function the coefficietis
(1) = (t+M). (A3) read from Eq(A6):

ThereforeK(t) is also periodic with the same period and can
be expanded as

k0_20<L5_i)
W™ M)’

[

2T

Kt)= > koo,  wo=—, (A4) osinnwy) 20 [ — ( V2n )1
=0 M ko= + Fe(v2n) - Fe| — | |,
n n J \*’m C( ) C \e‘JM/Z
wherek, is given by Fourier formula (A15)
M/2
k,= 1 f dtK(t)gneot (A5) whereF¢(x) is Fresnel’sC function:
MJ w2 ' .
t?
SinceK(t) is a real and symmetric functiok,=k;,=k_,, and Fe(x) = fo dt COS(?)- (A16)

thus

M/2
ky=— J dt K(t)cognwgt).
MJo

(AB) Numerical implementation

EquataiongA13) and (A15) are sufficient for generating

It is now straightforward to see that the noigewe are
looking for is represented as

long-range correlated, periodic Gaussian random noise.
However, for numerical implementations this noise has to be
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periodic random noiséwith period M), while our problem

does not have any periodicity. Therefore, we have chosen ~0 0

M=2L, and took discrete values df=1,2,...L in Eq. (B2)
(A13), thereby generatindg. long-range correlated random
numbers without any periodicity. Note that Eg\13) con-
tains infinity as the upper limit of the summation in its RHS. " dE % d[e—gz/z] g a2 % d[e—gz/z]
For numerics this infinity should obviously be substituted by f et?= —f — = f T
some number larger thah, and additionally one should a &27m  av2w Ja &V2w
check that the situation is stable with respect to varying this (B3)

number. As for concrete calculations we have used, k.g., i
=10%, we found sufficient to take for this upper summation For the second relation one notes thatdor 1 the relevant

limit 10%. domain of integration ig~a. In more details,

discretized. First we note that the above method produces ra a 12 1
212 _ 212 _ -
déet = | déet’ = 1+ |+, a>1

The first one is easliy done via integration by parts:

a V2w

the Gaussian independent random variables generated by th
“gasdev” algorithm of Ref[26]. The long-range correlated 0
noise was generated following the scheme proposed in this (B4)
appendix.

Numerical simulations in Sec. V were performed by using (a % @12 a2
4 d¢ e§2/2 - ea2/2 f dé e—a§+§2/2 _= f dy e—y+y2/(2a2)_
0 a Jo

Now one can expand inside of the second exponent in the
RHS of Eq.(B4), since the main contribution to the integral

APPENDIX B: DERIVATION OF TWO ASYMPTOTIC comes fromy~0 (the other side, that isj~ 2, is strongly
RELATIONS suppressed as seen

. . . . . e.32/2 a2 e.32/2 2 2
Here we derive the following asymptotic identities used in " f dye—ay+y2/<2a2) - f dy e‘y(l + y_2 +-- )

the main text: 0 a Jo
(BS)
“dé _» gl . . .
f ?e—f /2:?<1__2 +> a>1, (Bl Neglecting exponentially small terms, one gets get finally
a V2w av2mw a Eq. (B2).
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