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Quantifying the dissimilarity(or distance) between two sequences is essential to the study of action potential
(spike) trains in neuroscience and genetic sequences in molecular biology. In neuroscience, traditional methods
for sequence comparisons rely on techniques appropriate for multivariate data, which typically assume that the
space of sequences is intrinsically Euclidean. More recently, metrics that do not make this assumption have
been introduced for comparison of neural activity patterns. These metrics have a formal resemblance to those
used in the comparison of genetic sequences. Yet the relationship between such metrics and the traditional
Euclidean distances has remained unclear. We show, both analytically and computationally, that the geometries
associated with metric spaces of event sequences are intrinsically non-Euclidean. Our results demonstrate that
metric spaces enrich the study of neural activity patterns, since accounting for perceptual spaces requires a
non-Euclidean geometry.
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I. INTRODUCTION

Marked point processes are constructs widely used for
representing sequences that contain multiple types of discrete
events[1]. These constructs have at least two important ap-
plications in biology. In molecular biology, genetic se-
quences can be viewed as marked point processes on a dis-
crete domain, in which each nucleotide or amino acid is
viewed as an event of a particular type[2,3]. In neuro-
science, neuronal population activity can be viewed as a
marked point process on a continuous domain(time), with
each action potential(spike) labeled according to the neuron
that fired it[4,5]. In both settings, it is important to quantify
the similarity(or dissimilarity) of two sequences. In molecu-
lar biology, dissimilarity can be considered the evolutionary
distance between two sequences. In neuroscience, dissimilar-
ity helps characterize neural variability and coding. A mea-
sure of dissimilarity between two sequences can be thought
of as the distance between them in some abstract topological
space, in which each sequence corresponds to a particular
point. Provided that the notion of dissimilarity satisfies the
triangle inequality(which it does, in the above applications),
this topological space is a metric space, whose intrinsic prop-
erties are determined by the pairwise distances between all
sequences.

The starting point for analysis of such sequences is typi-
cally an embedding into a high-dimensional vector space[6].
For neural activity, this embedding consists of discretizing
the sequence into bins and representing the number of events
of each type in each bin as a separate Euclidean coordinate.
(For genetic sequences, there is no need for discretization.)
These methods present both practical and theoretical prob-

lems [4,7]. The practical problem is that a very high-
dimensional space is required, and thus experimental data
typically represent only a very sparse sample. This makes it
difficult to estimate quantities such as information and en-
tropy in a rigorous fashion. A more fundamental issue is that
the vector space representation forces the sequence space to
have an intrinsically Euclidean geometry. The geometry of
perceptual spaces, however, is typically not Euclidean[8,9].
Since, presumably, perceptual similarities are based on pat-
terns of neural activity[8,10], it would be problematic if the
intrinsic geometry of spike train sequences were required to
be Euclidean.

As a solution to these problems, Victor and co-workers
[4,5,11] proposed a metric space formalism for measuring
dissimilarities of action potential sequences(spike trains).
This formalism is closely related to the quantification of evo-
lutionary distances defined by Sellers[2] for genetic se-
quences, which takes into account the local features of a
sequence rather than the long-range structure[12]. For neural
activity, these notions of dissimilarity take into account the
number of spikes in a spike train, the timing of individual
spikes, and, for multineuronal responses[5], the neuron of
origin of each spike. Further, the model parametrizes the
relative importance of these three aspects, allowing a con-
tinuum of different neural coding schemes to be analyzed.
Distances provided by spike train metrics have been used for
measuring the variability[13,14] and stimulus-dependent
clustering[4,5,11,15–18] of neural responses in a number of
sensory systems, as well as for investigating the coding of
visual stimulus features by reconstructing neural response
spaces[4,5]. The multineuronal metrics have also been used
to investigate the mechanisms of joint coding by populations
of neurons[5].

Although spike train metrics solve the above-mentioned
practical issues, their mathematical relationship with dis-
tances based on a traditional vector space embedding of*Corresponding author. Email address: da2006@columbia.edu
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spike trains has remained unclear.A priori, metric-space dis-
tances between spike trains might be equivalent to Euclidean
distances in some vector space, even if not the “obvious” one
yielded by the natural embedding. For instance, a recently
proposed alternative that is in some ways similar to the Vic-
tor and Purpura metric[19] is demonstrably Euclidean. If the
metric-based distances were also equivalent to Euclidean dis-
tances, the metric space approaches would not provide for a
richer set of geometries that appear to be necessary for the
representation of perceptual spaces. Although empirical
analyses demonstrate that metric spaces are superior to
vector-based methods in tasks such as stimulus-dependent
clustering[20], the lack of a mathematical relationship be-
tween the two methods has made the choice between them
problematic.

Here, we present analytical and computational analyses
demonstrating that spike train metrics and Euclidean dis-
tances are not equivalent under any transformation that pre-
serves the metrics’ essential properties. The theoretical im-
portance of this result is that metric-space methods do more
than merely address practical problems in spike train analy-
sis. Rather, our result shows that the notion of dissimilarity
underlying the metric-space analysis of spike trains and ge-
netic sequence analysis isfundamentallyricher and more
general than that of ordinary Euclidean distances and is bet-
ter suited for the study of sensory perception.

II. METHODS

Numerical calculations were performed withMATLAB and
C programming languages.

III. RESULTS

Our goal is to establish the mathematical relationship be-
tween spike train metrics and Euclidean distances. Although
sequence metrics are not restricted to neuroscience applica-
tions, we adopt the neuroscience terminology and refer to
events as “spikes” and sequences of events as “spike trains.”
If a spike train contains discharges of multiple neurons, each
spike is marked according to its neuron of origin, and we
refer to the resulting sequence as a “labeled spike train.” We
first discuss the space of spike trains and some topological
issues associated with it.

A. Spike train metrics

In general, a sequence of marked events can be consid-
ered a single point in an abstract topological space. If the
geometric properties of this space represent certain meaning-
ful aspects of the sequence, the space will provide a useful
way to analyze experimental data. For instance, the dissimi-
larity of any two sequences of events, quantified in some
way, can be represented as the distance between correspond-
ing points in the abstract space. With this choice, clusters of
points correspond to sequences that are similar, and separate
clusters correspond to sequences that are readily discrim-
inable.

The distances are defined by a functiond that operates on
pairs of sequences, which we denoteA,B, . . .. For theresult-

ing space to be considered a metric space,d must satisfy(i)
nondegeneracy:dsA,Ad=0, (ii ) non-negativity:dsA,Bdù0,
(iii ) symmetry: dsA,Bd=dsB,Ad, and (iv) the triangle in-
equality:dsA,CdødsA,Bd+dsB,Cd.

In the spike train metrics of Victor and Purpura[11], the
distance between two spike trains is defined as the minimal
“cost” of transforming one spike train into the other via a
sequence of elementary steps. Two of the elementary steps
consist of deleting or inserting a spike, and are assigned a
cost of 1. The third elementary step consists of shifting a
spike in time by an amountDt, for a cost ofquDtu. If spike
trains contain discharges of multiple neurons, there is a
fourth elementary step that consists of changing the label of
a spike(i.e., the identity of the neuron that fired it) for a cost
of k.

The two metric parameters,q andk, have a simple inter-
pretation for neural coding. The parameterq is measured in
sec−1 and quantifies the temporal precision relevant to spike
timing. If q=0, there is no cost for shifting a spike in time. In
such a case, the metric ignores the timing of individual
spikes and degenerates into merely the difference in the
number of spikes. Ifq.0, spikes in two trains can be poten-
tially matched if they occur within 2/q of each other(if they
are separated by a greater amount, then the cost of shifting
one spike to coincide in time with the other is greater than
the cost of deleting the two of them). The parameterk is
dimensionless and quantifies the importance of distinguish-
ing individual neurons. Ifk=0, there is no cost for changing
the label of a spike, and spikes originating from different
neurons are not distinguished from each other. Ifkù2,
spikes from different neurons are never considered similar,
since deleting two spikes for a cost of 2 is not more expen-
sive than matching their labels. For 0,k,2, differently la-
beled spikes can be potentially matched if they occur within
s2−kd /q of each other. A sample transformation of one la-
beled spike train into another is illustrated in Fig. 1.

We wish to determine whether the distances defined
above are in any way equivalent to a Euclidean distance.
Thus, we ask whether any set of spike trains in a metric

FIG. 1. A minimal transformation path between two spike trains
that contain simultaneously recorded discharges of two neurons.
Each spike is shaded according to its neuron of origin. Solid lines:
shifts linking identically labeled spikes. Dashed lines: shifts accom-
panied by label reassignments linking differently labeled spikes.
Dotted lines with circles: insertions and deletions of spikes.
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space can be embedded into a set of points in a Euclidean
space of some dimension in a way that preserves all pairwise
distances. It is not hard to see that embeddings preserving
exactdistances are generally impossible. For instance, a set
of four labeled spike trains that demonstrates this is illus-
trated in Fig. 2(a). A and D are at a distance 2k from each
other, whileB and C are both at a distancek from A and
from D. In Euclidean geometry, bothB andC would have to
be midpoints of the line segment connectingA and D, and
thus be the same. Therefore, the pairwise distances between
these spike trains are inconsistent with the uniqueness of a
midpoint, which is one of the properties of Euclidean geom-
etry.

This example shows that there is no embeddingf in
which the metric-space distancedsA,Bd is equal to the
vector-space distanceufsAd−fsBdu. Thus, a more interesting
question is whether there is an embedding preserving the
distances up to some transformation that preserves certain
crucial properties of the metric(in a sense to be made precise
below). That is, we ask whether there is a transformation
Fsxd and a vector-space embeddingf, such that
FfdsA,Bdg= ufsAd−fsBdu. For instance, a transformation of
distances in Fig. 2(a) with Fsxd=x1/2 maps the four points
into vertices of a square with a side of lengthÎk [Fig. 2(b)].
At least for this set of spike trains, the transformationFsxd
=x1/2 evidently provides a meaningful representation of the
original metric. However, it is not clear whether this ap-
proach will work more generally. Note that the embedding
problem we address is distinct from the question that is often
asked about metrics, namely whetherapproximateembed-
dings are possible in a finite dimensional space[21].

We now state our formal requirements for a transforma-
tion F that preserves the geometrical properties of a spike
train metric. First,F must preserve the order of distances.
That is,

Fsbd . Fsad if b . a. s1d

Second, we require that the transformationF be scale-
invariant. Specifically, two geometrically similar figures in
the original metric must remain similar after the transforma-
tion. That is,

Fscad
Fscbd

=
Fsad
Fsbd

for c . 0. s2d

This property is also necessary for a sensible transforma-
tion function. A function that is not scale-invariant may
transform one shape in the original metric into multiple dis-
tinct shapes that depend on the unit of length used to specify
the pairwise distances between the points. However, since
the unit of length already has a meaning in spike train met-
rics (the cost to insert or delete a single spike), we do not
want to introduce a second scale via the transformationF.
Scale invariance guarantees that a figure in the original met-
ric is transformed into the same figure regardless of the unit
of length used forF.

One can show that a functionF satisfying Eqs.(1) and(2)
must be in the formFsxd=axp, wherea.0 and 0,pø1 in
the following way. Equation(2) implies that the quantity
Fscad /Fsad (for c.0) is independent ofa. We denote this
quantity by Gscd. We then consider the valuesc=c1 and
a=c2b with Eq. (2). By rearranging the equation and divid-
ing both sides by Fsad, we can then obtain
Gsc1c2d=Gsc1dGsc2d. With Hscd=ln Gsexp cd, this property
is equivalent toHsa+bd=Hsad+Hsbd. This implies thatHscd
is a linear functionHscd=pc+b. Consequently,Gscd, and
henceFsxd, is a power-law function, with exponentp. In
order to satisfy Eq.(1), the exponentp must be greater than
0. Further, in order to preserve the triangle inequality neces-
sary for distances to form a metric space, the inequality
Fsa+bdøFsad+Fsbd or sa+bdpøap+bp must hold for all
non-negative distancesa andb. This implies thatp must be
not greater than 1.

Had we allowed more general forms forF, there would
likely be trivial solutions to the embedding problem. For
example, transforming all nonzero distances to values very
close to 1 would turn every shape into a nearly regular sim-
plex, and thus allow an embedding in a Euclidean space(but
one that destroys the original shape). Conversely, a scale-
invariant transformation can provide a Euclidean embedding
in at least some cases of the spike metric, such as the one in
Fig. 2. Moreover, the power-law transformationFsxd=x1/2

allows for a Euclidean embedding of points in simple Rie-
mannian manifolds, such as the points on the circumference
of a circle (with the distance between points defined as the
arc length). Thus, our choice of the scale-invariance con-
straint(a) precludes trivial solutions to the embedding prob-
lem, but also(b) is sufficiently rich so that at least some
non-Euclidean metrics can be transformed to a Euclidean
one.

Therefore, we now ask whether there exists a transforma-
tion satisfying Eqs.(1) and(2) (i.e., a power-law transforma-
tion) that will allow for a distance-preserving embedding of
any set of spike trains. Our first main result is that no such

FIG. 2. Sample set of spike trains that cannot be embedded into
a Euclidean space in a way that preserves all pairwise metric space
distances.(a) The four spike trains contain simultaneously recorded
discharges of two neurons, and each spike is shaded according to its
neuron of origin. Spikes in each spike train are separated by at least
2/q to prevent shifting of spikes in a minimal transformation path.
The pairwise metric distances(arrows) are inconsistent with Euclid-
ean geometry.(b) The four spike trains can be mapped to vertices of
a square in a Euclidean space after all pairwise distances are trans-
formed withFsxd=x1/2.
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function exists if there are at least three labels available for
spikes. The proof consists of two components:(i) a rule for
constructing sets of spikes trains whose pairwise distances
form particularly simple and symmetric configurations, and
(ii ) a demonstration, taking advantage of these properties,
that no transformation function can embed each of these sets
into a Euclidean space. In view of the above considerations,
this shows that the spike metrics are intrinsically non-
Euclidean, in a sense that is much stronger than the well-
known fact that generic Riemannian metrics need not be Eu-
clidean. Our second result is strong computational evidence
demonstrating that such an embedding function does not ex-
ist for sets of spike trains with fewer than three labels as
well.

B. General criteria for nonembeddability

At most N dimensions are required to embed a set of
N+1 points whose pairwise distances are consistent with a
Euclidean geometry. If all pairwise distances are known,
these points can be thought of as vertices of a simplex(i.e.,
triangle, tetrahedron, etc.) in N dimensions with known edge
lengths. The content, or volume generalized to any number
of dimensions, of this simplex can then be determined using
the Cayley-Menger determinant[22],

VN
2 =

s− 1dN+1

2NsN!d2 det3
0 1 1 . . . 1

1 0 d12
2 . . . d1,N+1

2

1 d21
2 0 . . . d2,N+1

2

A A A � A
1 dN+1,1

2 dN+1,2
2 . . . 0

4
s3d

wheredij is the distance between pointsi and j . In two di-
mensionssN=2d, this equality reduces to the famous Heron’s
formula for the area of a triangle. If the right side of Eq.(3)
is negative,VN is not a real number, and the distances cannot
correspond to edges of a simplex. Thus, the sign of the
Cayley-Menger determinant of the pairwise distances can be
used to identify nonembeddable sets of points.

C. Two-group arrangements of spike trains

We seek to find configurations of spike trains that are
likely to be inconsistent with Euclidean geometry. One such
configuration was shown in Fig. 2(a). There, the four spike
trains can be thought of as two groups of points—one con-
taining A and D and the other containingB and C. In this
two-group arrangement, the distance between points from
the same groups2kd is larger than the distance between any
two points from different groupsskd. In general, a set of four
points arranged symmetrically in two groups can be embed-
ded into a Euclidean space as a square if the ratio of these
two distances isÎ2 [Fig. 2(b)]. If this ratio is smaller than
Î2, the four points can also be embedded, but the figure is no
longer coplanar(and becomes a tetrahedron). For a ratio
greater thanÎ2, the points are not embeddable. Since the
ratio of distances in Fig. 2(a) is 2k/k=2, a transformation

function Fsxd=xp with pø1/2 is required to embed this set
of spike trains.

Here, we develop a method to construct similar two-group
arrangements with more than two spike trains per group.
Because such arrangements are very symmetric, they can be
easily studied using Cayley-Menger determinants. We use
this method to show that such arrangements are indeed in-
creasingly “harder” to embed into a Euclidean space as the
number of spike trains per group increases. Specifically, we
will construct a sequence of arrangements that require suc-
cessively smaller transforming powersp. Since the limit of
the sequence of powers is 0, we conclude that no transfor-
mation function[which requiresp.0 to satisfy Eqs.(1) and
(2)] will suffice for an embedding of any given set of spike
trains.

Note that a limiting argument involving a sequence of
increasingly larger sets of points is necessary to demonstrate
nonembeddability rigorously. For anyfinite set of N spike
trains, there is a smallest and a largest pairwise distance.
Consequently, for a transforming powerp sufficiently close
to 0, thepth power of all of the pairwise distances will all be
within a factor 1+« of each other(for arbitrarily small«).
For sufficiently small«, the transformed pairwise distances
can therefore be recovered from ansN−1d-dimensional ap-
proximately regular simplex. Thus, any given set of metric-
space distances can be embedded into a Euclidean space, but
the number of dimensions necessary to embed them grows
without a bound with the number of spike trains. This is
fundamentally different from binning techniques, which
force points into a Euclidean space of a fixed number of
dimensions independently of how many spike trains are be-
ing analyzed. As we will show, no fixed number of dimen-
sions, however, suffices to embedany set of metric-space
distances.

Thus, to demonstrate nonembeddability, we will construct
a sequence of sets of spike trains for which any fixed choice
of p.0 will eventually fail. Each of these sets is a two-
group arrangement analogous to that in Fig. 2. The two-
group arrangements have an increasing numberN of spike
trains in each group. In each arrangement, the distance be-
tween any two points from thesamegroup is a constant,rN,
and the distance between any two points fromdifferent
groups is a second constant,zN. As will be shown later, to
guarantee nonembeddability, the ratio of distancesrN/zN in
these sets must be a constant greater than 1 for allN. The set
in Fig. 2 is an example of such an arrangement withN=2
and r2/z2=2k/k.1. To construct more constraining two-
group arrangements, we concatenate spike trains with known
pairwise distances to construct arrangements with more and
longer spike trains.

Suppose 2M spike trains of equal length, numbered 0
through 2M −1, form a two-group arrangement with one
group containing spike trains0,2,4, . . . ,2M −2 and the other
containing1,3,5, . . . ,2M −1. Suppose the distance between
any two spike trains from the same group isv and the dis-
tance between any two spike trains from different groups is
w. We use these spike trains as “tiles” and concatenate them
in time to create larger trains. If individual tiles are separated
in time by an interval of at least 2/q, no spike is shifted from
one tile to another in a minimal transformation path used to
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calculate the distance between two spike trains. Let
Tsa1,a2, . . . ,and denote a spike train formed by concatenat-
ing tiles a1,a2, . . . ,an. Then the distance between two spike
trains is the sum of the distances between individual tiles,

d„Tsa1,a2, . . . ,and,Tsb1,b2, . . . ,bnd… = o
i=1

n

d„Tsaid,Tsbid….

s4d

Now, consider constructing sets of spike trains by concat-
enating tiles in a way shown in Fig 3(a). The first row of
each array always contains the 0 tile or the 1 tile. The re-
maining rows of each array constitute a table whose columns
list all sN−1d-digit numbers that are composed of even digits
in a base 2M system for one group and all numbers com-
posed of odd digits for the other group. To construct 2N
spike trains,MN−1 tiles are concatenated by reading across
each array. Thus, the distance between two spike trains
drawn from different groups iszN=MN−1w, since spike trains
from two groups contain no matching tiles. Two spike trains
in the same group, however, are constructed such that exactly

1/M of their tiles match. Therefore, the distance between
them is rN=sM −1dMN−2v. The ratio of distancesrN/zN is
constant,

rN

zN
=

sM − 1dv
Mw

. s5d

If v /w.M / sM −1d, the ratio rN/zN is greater than 1,
which, as we will show below, precludes embedding. For
three labelssM =3d, this condition isv /w.3/2.

As we now show, the six short spike trains in Fig. 3(b)
satisfy this requirement. In Fig. 3(b), each tile consists of two
spikes with a time separation ofDt=k/2q (recall thatq is the
cost per unit time to translate a spike in time, andk is the
cost to change the label of a spike). We consider first spike
trains from within the same group({0, 2, 4,} or {1, 3, 5}). If
0,kø4/3, then the minimal transformation path consists of
either changing the labels of two spikes, for a cost of 2k, or
shifting two spikes in time and then changing the label of
one of them, also for a cost of 2qD t+k=2k. If 4/3,k,2,
then the minimal path consists of matching the two identi-
cally labeled spikes by shifting one of them and deleting the
other two spikes, for a cost ofqD t+2=k/2+2. Thus,v=2k
for 0,kø4/3 andv=k/2+2 for 4/3,k,2. Now consider
distances between a spike train in one group({0, 2, 4}) and
a spike train in the other group({1, 3, 5}). The transforma-
tion path between two tiles from different groups depends on
the pair of tiles in question. The transformation paths be-
tween tiles 0 and 1, 2 and 3, and 4 and 5 consist of swapping
the positions of both spikes, for a cost of 2qD t=k. The trans-
formation paths for all other pairs of tiles from different
groups consist of changing the label of one spike, also for a
cost ofk. Thus,w=k, and the ratiov /w is

v/w =52, 0 , k ø
4

3

1

2
+

2

k
,

4

3
, k , 2

s6d

and for all 0,k,2, the ratiov /w is greater than 3/2. It
follows from Eq.(5) that concatenation of the tiles as shown
in Fig. 3(a) leads to two-group arrangements(for any even
number 2N of spike trains) for which the ratiorN/zN for all
of these sets is a constant greater than 1,

rN/zN =5
4

3
, 0 , k ø

4

3

1

3
+

4

3k
,

4

3
, k , 2.

s7d

D. Proof of nonembeddability

We next use Cayley-Menger determinants to prove that no
transformationF permits a distance-preserving embedding of
these configurations in a Euclidean space. We consider the
matrix MN of pairwise distances between the 2N spike trains.
The matrix MN contains pairwise distances between 2N
points arranged in two groups—one containing spike trains
h0,2,4, . . . ,2N−2j and the second containing spike trains

FIG. 3. Construction of spike trains that are not embeddable into
Euclidean spaces.(a) Examples of concatenating short spike trains
(tiles) to construct longer spike trains that form two-group arrange-
ments.N is the number of spike trains per group andM is the
number of tiles used to construct spike trains in each group. Digits
indicate tile numbers.(b) Six tiles that are used in the text with
M =3 to construct spike trains that are not embeddable into Euclid-
ean spaces. Each spike is shaded according to its neuron of origin.
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h1,3,5, . . . ,2N−1j. The distance between any two points
from the same group isrN, while the distance between any
two points from different groups iszN. Further, the ratio of
these two distances,rN/zN, is independent ofN and is equal
to a constantr /z.1. Thus,rN=aNr andzN=aNz, whereaN
is a series of positive coefficients. It follows that the Cayley-
Menger determinant[Eq. (3)] for 2N points is given by

V2N−1
2 =

s− 1d2N

22N−1fs2N − 1d!g2saNd4N−4det AN, s8d

, whereAN is a s2N+1d-by-s2N+1d matrix,

AN = 3
0 1 1 1 1 . . . 1 1

1 0 s r s . . . r s

1 s 0 s r . . . s r

1 r s 0 s . . . r s

1 s r s 0 . . . s r

A A A A A � A A
1 r s r s . . . 0 s

1 s r s r . . . s 0

4 . s9d

Here,r =r2 ands=z2. [To relate Eq.(3) to Eq.(9), aN
2 has

been factored out of every entry in the determinant and then
factored into the first row and the first column.] The coeffi-
cient of the determinant in Eq.(8) is always a positive num-
ber. Thus, the arrangement of 2N points is not embeddable
into a Euclidean space if detAN,0. As shown in the Appen-
dix, the determinant ofAN evaluates to

det AN = 2Nr2N−2fNs− sN − 1drg. s10d

Combined with Eq. (10), the embedding condition
det ANù0 becomes(in the absence of a power-law transfor-
mation)

r/s= sr/zd2 ø N/sN − 1d. s11d

If a power-law transformationFsxd=xp is applied to all
distances, the embedding condition becomes

sr/zd2p ø N/sN − 1d. s12d

Since our construction of two-group configurations is
valid for arbitrarily largeN, andN/ sN−1d approaches 1 asN
increases without bound, this inequality cannot be satisfied
for sufficiently highN regardless of the value ofp. Thus, any
transformation functionF that satisfies Eqs.(1) and(2) fails
to allow Euclidean embeddings of two-group arrangements
that contain sufficiently many points.

E. Computational evidence that spike trains with fewer than
three labels cannot be embedded

The proof provided above requires that at least three la-
bels be available for spikes, and thus it leaves open the ques-
tion of whether a similar result holds for the metrics when
there are only one or two spike labels. It also raises the

possibility that embedding fails only for very special con-
figurations. Here we provide computational evidence sug-
gesting that the failure of embedding is generic, in that(a) it
applies to spike trains with fewer than three labels, and(b)
spike trains do not need to be “hand-crafted.” In particular,
we find configurations of spike trains with only one label for
which meaningful embeddings into a Euclidean space are not
possible.

Our approach is as follows. We consider the setSN of 2N

distinct spike trains whose spikes occur only at integer times
from 0 to N−1 sec. We then calculate all pairwise metric
distances between these spike trains for values of the param-
eter q in the range of 0–2 sec−1, sampled at intervals of
0.1 sec−1. (We do not consider values ofq.2 sec−1 since in
this range, spikes that are 1 sec apart are never shifted to
coincide with each other in a minimal transformation path.)
We then determine the largestp between 0 and 1, such that
the functionFsxd=xp applied to all pairwise distances em-
beds the setSN into a Euclidean space. The largestp appears
to become arbitrarily small asN becomes large(Fig. 4).
Thus, it seems that the behavior that we have rigorously
demonstrated for two-group configurations of spike trains
with three labels also applies to generic spike trains with
only one label. While we have not proven that this is the
case, this computational result suggests that the conclusion
about nonembeddability is true regardless of the number of
labels.

IV. DISCUSSION

We have shown that spike train metric spaces are not
equivalent to Euclidean spaces under any transformation that
preserves their basic metrical properties. This is a rather sur-
prising result, in view of the three limiting cases below. The
first limiting case is that ofq=0 and a single label. In this
case, the metric merely compares the number of spikes in

FIG. 4. Computational evidence that metric spaces are non-
Euclidean. For each number of binsN, a set of spike trainsSN is
constructed according to the scheme presented in the text. Exponent
p is the largest value between 0 and 1, such that the transformation
function Fsxd=xp embedsSN into a Euclidean space.
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each spike train, and the distance between two spike trains is
the difference of their spike counts. This is trivially equiva-
lent to a Euclidean distance, since each train can be mapped
into a one-dimensional vector space with the coordinate cor-
responding to the number of spikes it contains.

The metric also becomes equivalent to a Euclidean dis-
tance whenq is infinite, but in a less trivial way. Whenq is
infinite, the distance between two spike trains is proportional
to the number of spikes that do not occur at exactly the same
times in both trains(since each of these spikes must be de-
leted). For spike trains in discrete time, this distance is iden-
tical to the Hamming distance for binary sequences, which
counts the number of positions at which two sequences dif-
fer. These distances may be recovered from the Euclidean
distance in a vector space as follows. Spike trains in which
there areN possible positions for spikes are mapped into an
N-dimensional space with binary coordinates, indicating
whether or not a spike is present. The spike metric distance is
equal to the number of locations at which two spike trains
differ. By the Pythagorean rule, the Euclidean distance is
equal to the square root of the number of locations at which
two spike trains differ. Thus, the spike metric distance is
equivalent to the Euclidean one under the transformation
Fsxd=x1/2.

It might appear from the above limiting cases that the
metrics are Euclidean because their distances are not influ-
enced by the shifting of spikes. However, shifting alone does
not make metrics non-Euclidean. This can be seen from the
fact that spike train metrics arelocally Euclidean, even for
0,q,`. Consider a ball of radius 1/2 around a spike train
A, consisting of spikes at timesa1,a2, . . . ,aN. (By definition,
this is the set of all spike trains whose distance fromA is less
than 1/2.) Since deleting or inserting a spike fromA corre-
sponds to a distance of 1, the spikes within the ball must
each contain exactlyN spikes, each of which occur at a time
close to the time of one of the spikes inA. That is, each spike
train within the ball contains spikes at timesa1+d1,
a2+d2, . . . ,aN+dN, where oqudiu,1/2. The transformation
path between any two spike trains within the ball consists
only of shifting spikes to match them in time. The distances
are again equivalent to a Euclidean distance under the trans-
formation Fsxd=x1/2 if each spike train is mapped into an
N-dimensional space with theith coordinate corresponding
to di.

Thus, deletions and insertions of spikescombinedwith
shifting are responsible for the non-Euclidean properties of
spike train metrics. This is particularly interesting, since
these elementary transformations model a mechanism that
detects, with a particular temporal precision, the coincidence
of spikes from different spike trains. In such a neural decod-
ing mechanism, only spikes located within a certain period
of time from each other are considered coincident. A spike
shifted continuously in time can change discretely from be-
ing considered coincident with one spike to being coincident
with another. Such nonlinearities in coincidence detection
systems are thought to be functionally relevant for neural
processes such as the coding of retinal disparity in the visual
system[23], interaural disparity in the auditory system[24],
and, in general, the processing of inputs by a cortical neuron
[25–28]. In all these cases, the nervous system must associ-

ate inputs arriving from different regions, such as different
eyes, ears, or cortical layers. Coincidence detection is a way
for such association to occur on adequately short time
scales—a task that is hard to accomplish with most encoding
schemes. Our results suggest that the presence of coinci-
dence detectors produces non-Euclidean geometries of neu-
ral response spaces, which cannot be described by traditional
vector-space models.

Interestingly, a non-Euclidean representation in itself may
be crucial for the coding of sensory stimuli in the nervous
system. As pointed out by Hopfield[8], there is an intrinsic
problem with recognizing stimuli that are represented by
multidimensional Euclidean vectors. In order for such recog-
nition to be independent of stimulus intensity, sensory neu-
rons must perform Euclidean rescaling, which is a highly
unnatural task for neural networks. In addition, even with
rescaling, Euclidean representation is undesirable in that it
loses sensitivity to minor vector components, even when
these components are crucial for the recognition of a particu-
lar stimulus. Finally, Euclidean representation creates a prob-
lem for a system that attempts to split the recognition prob-
lem into subparts, because each part of an input vector must
be scaled by the same factor to preserve stimulus identity.
Hopfield [8] demonstrated that these problems can be solved
by using action potential timing for encoding sensory stimuli
and using coincidence detection for stimulus recognition.
The present results demonstrate that a metric based on coin-
cidence detection indeed guarantees a non-Euclidean geom-
etry of the neural response space. Interestingly, the problems
pointed out in[8] are independent of the sensory stimulus
modality. This supports the studies that use spike train met-
rics for analyzing various senses, including vision
[4,5,11,14,17], audition [16], olfaction [15], gustation[18],
and electroreception[13].

The usage of metric spaces, rather than vector spaces, is
computationally (and perhaps conceptually) burdensome.
However, our results demonstrate that spike train metrics are
fundamentally different from the traditional methods involv-
ing various forms of vector space embedding. This greater
generality is both practically and theoretically relevant to the
study of the neural basis of perception.

ACKNOWLEDGMENTS

We thank Tom Schneider and Marcelo Magnasco for
comments on the manuscript. This work was supported in
part by NEI EY9314.

APPENDIX: THE DETERMINANT OF AN

We calculate the determinant of the matrixAN [Eq. (9)]
from the product of its eigenvalues, including multiplicities.
Let an eigenvalue bel and the corresponding eigenvector be
x=sx0,x1, . . . ,x2Nd. Then
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ANx = 3
x1 + x2 + ¯ + x2N

x0 + rsx1 + x3 + ¯ + x2N−1d + ssx2 + x4 + ¯ + x2Nd − rx1

x0 + rsx2 + x4 + ¯ + x2Nd + ssx1 + x3 + ¯ + x2N−1d − rx2

A
x0 + rsx1 + x3 + ¯ + x2N−1d + ssx2 + x4 + ¯ + x2Nd − rx2N−1

x0 + rsx2 + x4 + ¯ + x2Nd + ssx1 + x3 + ¯ + x2N−1d − rx2N

4 = 3
lx0

lx1

lx2

A
lx2N−1

lx2N

4 . sA1d

Identifying the corresponding entries of the two vectors in
Eq. (A1) yields equations for the eigenvalues and eigenvec-
tors,

lx0 = o
i

xi ,

sr + ldxj = x0 + r o
odd i

xi + s o
even i.0

xi for odd j . 0,

sr + ldxj = x0 + r o
even i.0

xi + s o
odd i

xi for even j . 0.

sA2d

From the last two lines of Eq.(A2),

sr + ldx1 = sr + ldx3 = ¯ = sr + ldx2N−1,

sr + ldx2 = sr + ldx4 = ¯ = sr + ldx2N. sA3d

One solution to these equations(for N.1) is l=−r. Note
that AN+rI has only three distinct rows, and thus the multi-
plicity of this eigenvalue is at leasts2N+1d−3=2N−2.

If lÞ−r, then xi =xodd for all odd i and xi =xeven for all
even i .0. Therefore, the last two lines of Eq.(A2) can be
written as

xj =
1

r + l
x0 +

Nr

r + l
xodd+

Ns

r + l
xeven for odd j ,

xj =
1

r + l
x0 +

Nr

r + l
xeven+

Ns

r + l
xodd for even j . sA4d

Substituting these values into the first line of Eq.(A2)
leads to

lx0 =
2N

r + l
x0 +

Nr

r + l
Nxodd+

Nr

r + l
Nxeven

+
Ns

r + l
Nxodd+

Ns

r + l
Nxeven. sA5d

Knowing thatoxi =Nxodd+Nxeven and using the first line
of Eq. (A2) again,

lx0 =
2N

r + l
x0 +

lNsr + sd
r + l

x0. sA6d

One solution to this equation isx0=0. From Eq.(A4) we
know thatx1=x3=¯ =x2N−1 and x2=x4=¯ =x2N. Combin-
ing this information with the first line of Eq.(A2), we find
that the eigenvector corresponding tox0=0 is s0,1,
−1, . . . ,1 ,−1d. Multiplication of this vector byAN shows that
the corresponding eigenvalue issN−1dr −Ns. If x0Þ0, Eq.
(A6) becomes a quadratic equation,

l2 − fsN − 1dr + Nsgl − 2N = 0. sA7d

Thus, AN has four distinct eigenvalues:l1=−r,
l2=sN−1dr −Ns, and the rootsl3 andl4 of the above qua-
dratic equation. The coefficients in Eq.(A7) imply that
l3l4=−2N.

AN has a total of 2N+1 eigenvalues. As noted above,l1
has a multiplicity of at least 2N−2 times. Sincel2,l3, and
l4 are distinct(and also distinct froml1), we conclude that
l1 has a multiplicity of exactly 2N−2. The determinant ofAN
can now be found by multiplying all eigenvalues together,

det AN = 2Nr2N−2fNs− sN − 1drg. sA8d
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