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Non-Euclidean properties of spike train metric spaces
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Quantifying the dissimilarityor distancg between two sequences is essential to the study of action potential
(spike trains in neuroscience and genetic sequences in molecular biology. In neuroscience, traditional methods
for sequence comparisons rely on techniques appropriate for multivariate data, which typically assume that the
space of sequences is intrinsically Euclidean. More recently, metrics that do not make this assumption have
been introduced for comparison of neural activity patterns. These metrics have a formal resemblance to those
used in the comparison of genetic sequences. Yet the relationship between such metrics and the traditional
Euclidean distances has remained unclear. We show, both analytically and computationally, that the geometries
associated with metric spaces of event sequences are intrinsically non-Euclidean. Our results demonstrate that
metric spaces enrich the study of neural activity patterns, since accounting for perceptual spaces requires a
non-Euclidean geometry.
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[. INTRODUCTION lems [4,7]. The practical problem is that a very high-
_ ) dimensional space is required, and thus experimental data

Marked point processes are constructs widely used fofypjcally represent only a very sparse sample. This makes it
representing sequences that contain multiple types of discreffficult to estimate quantities such as information and en-
events[1]. These constructs have at least two important aptropy in a rigorous fashion. A more fundamental issue is that
plications in biology. In molecular biology, genetic se- the vector space representation forces the sequence space to
quences can be viewed as marked point processes on a digave an intrinsically Euclidean geometry. The geometry of
crete domain, in which each nucleotide or amino acid isperceptual spaces, however, is typically not Euclidga#.
viewed as an event of a particular typ2,3]. In neuro- Since, presumably, perceptual similarities are based on pat-
science, neuronal population activity can be viewed as #erns of neural activity8,10], it would be problematic if the
marked point process on a continuous domdime), with intrinsic geometry of spike train sequences were required to
each action potentigbpike) labeled according to the neuron be Euclidean.
that fired it[4,5]. In both settings, it is important to quantify ~ As a solution to these problems, Victor and co-workers
the similarity (or dissimilarity) of two sequences. In molecu- [4,5,11 proposed a metric space formalism for measuring
lar biology, dissimilarity can be considered the evolutionarydissimilarities of action potential sequencespike traing.
distance between two sequences. In neuroscience, dissimilafDis formalism is closely related to the quantification of evo-
ity helps characterize neural variability and coding. A mea-utionary distances defined by Sellef2] for genetic se-
sure of dissimilarity between two sequences can be thougtfuences. which takes into account the local features of a
of as the distance between them in some abstract topoIogicﬁ?gb'i?;Ctigzg]irott?:r?sﬂé? g)iggi%?g?i?ystgfgﬂi%]:olzgzzggﬁr:?lthe
space, in which each sequence corresponds to a particul ' , . : . S e
point. Provided that the notion of dissimilarity satisfies theg mber of spikes in a spike train, the timing of individual

) . . g X S spikes, and, for multineuronal respong&$ the neuron of
trl_angle mequallt)(whlqh I does, in the above appllgat!ons origin of each spike. Further, the model parametrizes the
this topological space is a metric space, whose intrinsic pro

; : SFe _ Prelative importance of these three aspects, allowing a con-
erties are determined by the pairwise distances between glf,,,;m of different neural coding schemes to be analyzed.

sequences. . . . .Distances provided by spike train metrics have been used for
The starting point for analysis of such sequences is typi-

A . . : measuring the variabilityf13,14 and stimulus-dependent
cally an embedding into a high-dimensional vector SH&¢e  |;stering[4,5,11,15-1Bof neural responses in a number of
For neural activity, this embedding consists of discretizing

(For genetic sequences, there is no need for discrgtiz)ationto investigate the mechanisms of joint coding by populations
These methods present both practical and theoretical pro it neurons{5].

Although spike train metrics solve the above-mentioned
practical issues, their mathematical relationship with dis-
*Corresponding author. Email address: da2006@columbia.edu tances based on a traditional vector space embedding of

1539-3755/2004/68)/06190%9)/$22.50 69 061905-1 ©2004 The American Physical Society



D. ARONOV AND J. D. VICTOR PHYSICAL REVIEW EG69, 061905(2004

tances between spike trains might be equivalent to Euclidean
distances in some vector space, even if not the “obvious” one
yielded by the natural embedding. For instance, a recently
proposed alternative that is in some ways similar to the Vic-

spike trains has remained uncleArpriori, metric-space dis- |'| |'| H |'| l
i
]
1
i
tor and Purpura metrifl9] is demonstrably Euclidean. If the |
\
1
1
1

metric-based distances were also equivalent to Euclidean dis-
tances, the metric space approaches would not provide for a
richer set of geometries that appear to be necessary for the
representation of perceptual spaces. Although empirical

analyses demonstrate that metric spaces are superior to A
vector-based methods in tasks such as stimulus-dependent
clustering[20], the lack of a mathematical relatlonshlp be- FIG. 1. A minimal transformation path between two spike trains
tween the two methods has made the choice between the{pat contain simultaneously recorded discharges of two neurons
problematic. y g '

. . Each spike is shaded according to its neuron of origin. Solid lines:
Here, we present analytical and computational analyse,

- . . ) . >CShifts linking identically labeled spikes. Dashed lines: shifts accom-
demonstrating that spike train metrics and Euclidean dis:

i - panied by label reassignments linking differently labeled spikes.
tances are not equivalent under any transformation that presoiteq fines with circles: insertions and deletions of spikes.
serves the metrics’ essential properties. The theoretical im-

portance of this result is that metric-space methods do more

than merely address practical problems in spike train analying space to be considered a metric spacmust satisfy(i)
sis. Rather, our result shows that the notion of dissimilaritynondegeneracyd(A,A)=0, (ii) non-negativity:d(A,B)=0,
underlying the metric-space analysis of spike trains and gedii) symmetry: d(A,B)=d(B,A), and (iv) the triangle in-
netic sequence analysis fandamentallyricher and more equality:d(A,C) <d(A,B)+d(B,C).

general than that of ordinary Euclidean distances and is bet- | the spike train metrics of Victor and Purpuirel], the

ter suited for the study of sensory perception. distance between two spike trains is defined as the minimal
“cost” of transforming one spike train into the other via a
Il. METHODS sequence of elementary steps. Two of the elementary steps
. . . consist of deleting or inserting a spike, and are assigned a
Numerlca_l calculations were performed wiiaTLAB and cost of 1. The third elementary step consists of shifting a
C programming languages. spike in time by an amounkt, for a cost ofg|At|. If spike
trains contain discharges of multiple neurons, there is a
fourth elementary step that consists of changing the label of
Our goal is to establish the mathematical relationship be@ SPike(i-€., the identity of the neuron that fired for a cost
tween spike train metrics and Euclidean distances. AIthougﬁf k. . . .
sequence metrics are not restricted to neuroscience applica- Th? two metric parameters, andk, have_a simple Inter-
tions, we adopt the neuroscience terminology and refer té)re_t?tlon for nep_ral coding. The parametprs measured n
events as “spikes” and sequences of events as “spike trains:e¢ and quantifies f[he temporal precision re!evqnt .to spike
If a spike train contains discharges of multiple neurons, eacH™Ng: If =0, there is no cost for shifting a spike in time. In
spike is marked according to its neuron of origin, and wes’u_Ch a case, the metric lgnores the timing of |nd|v_|dual
refer to the resulting sequence as a “labeled spike train.” Wép'kes and Qegenerates into ”.‘ere'y th? difference in the
first discuss the space of spike trains and some topologic umber of splkes. 16> 0, sp|k_es_|n two trains can pe poten-
issues associated with it. tially matched if they occur within 2 of each othefif they N
are separated by a greater amount, then the cost of shifting
one spike to coincide in time with the other is greater than
the cost of deleting the two of themThe parametek is
In general, a sequence of marked events can be considimensionless and quantifies the importance of distinguish-
ered a single point in an abstract topological space. If théng individual neurons. 1k=0, there is no cost for changing
geometric properties of this space represent certain meanintgjxe label of a spike, and spikes originating from different
ful aspects of the sequence, the space will provide a usefuleurons are not distinguished from each otherk# 2,
way to analyze experimental data. For instance, the dissimispikes from different neurons are never considered similar,
larity of any two sequences of events, quantified in somesince deleting two spikes for a cost of 2 is not more expen-
way, can be represented as the distance between corresposiise than matching their labels. Forxk< 2, differently la-
ing points in the abstract space. With this choice, clusters dpeled spikes can be potentially matched if they occur within
points correspond to sequences that are similar, and separdf-k)/q of each other. A sample transformation of one la-
clusters correspond to sequences that are readily discrinieled spike train into another is illustrated in Fig. 1.
inable. We wish to determine whether the distances defined
The distances are defined by a functibthat operates on above are in any way equivalent to a Euclidean distance.
pairs of sequences, which we dendtB,.... For theresult- Thus, we ask whether any set of spike trains in a metric

e me . ___

IIl. RESULTS

A. Spike train metrics
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A B F(b)>F(a) if b>a. (1)
A A Second, we require that the transformatiBnbe scale-
Y. | N F(x)=x" @ invariant. Specifically, two geometrically similar figures in
f A i —- the original metric must remain similar after the transforma-
/ ; \ tion. That is,
B | <=-- 2:k ---> I c B4 > C Fca) _F(a) f
' =—— forc>0. (2
kool ok F(cb) F(b)
NN Vk . . .
& This property is also necessary for a sensible transforma-
D D tion function. A function that is not scale-invariant may

transform one shape in the original metric into multiple dis-

FIG. 2. Sample set of spike trains that cannot be embedded intBNCt shapes that depend on the unit of length used to specify
a Euclidean space in a way that preserves all pairwise metric spadB€ pairwise distances between the points. However, since
distances(a) The four spike trains contain simultaneously recordedthe unit of length already has a meaning in spike train met-
discharges of two neurons, and each spike is shaded according to i€S (the cost to insert or delete a single spikee do not
neuron of origin. Spikes in each spike train are separated by at lea¥ant to introduce a second scale via the transformafion
2/q to prevent shifting of spikes in a minimal transformation path. Scale invariance guarantees that a figure in the original met-
The pairwise metric distancéarrows are inconsistent with Euclid-  ric is transformed into the same figure regardless of the unit
ean geometryb) The four spike trains can be mapped to vertices ofof length used forF.
a square in a Euclidean space after all pairwise distances are trans- One can show that a functidhsatisfying Eqs(1) and(2)
formed with F(x)=x"2. must be in the fornF(x) = axP, wherea>0 and 0<p<1 in

the following way. Equation2) implies that the quantity

space can be embedded into a set of points in a Euclidea%(ca)/.':(ab) (I;or C>V\(l)) |sh|ndepenqdent ?1&' Wel denote thcljs
space of some dimension in a way that preserves all pairwis%u""m'ty y G(c). We then consider the values=c, an

distances. It is not hard to see that embeddings preservirff- €20 With Eq. (2). By rearranging the equation and divid-
exactdistances are generally impossible. For instance, a sdétd both sides by F(a), we can then obtain
of four labeled spike trains that demonstrates this is illusG(C1C2) =G(c1)G(c,). With H(c)=In G(expc), this property
trated in Fig. 2a). A andD are at a distancek2from each is equivalent tdH(a+b)=H(a)+H(b). This implies thaH(c)
other, whileB and C are both at a distance from A and is a linear functionH(c)=pc+ 3. ConsequentlyG(c), and
from D.In Euclidean geometry, botB andC yvould have to henceF(x), is a power-law function, with exponemt In

be midpoints of the line segment connectingand D, and  order to satisfy Eq(1), the exponenp must be greater than
thus be the same. Therefore, the pairwise distances betwegnFyrther, in order to preserve the triangle inequality neces-
these spike trains are inconsistent with the uniqueness of gary for distances to form a metric space, the inequality
midpoint, which is one of the properties of Euclidean geom-g(a+b)<F(a)+F(b) or (a+b)P<aP+bP must hold for all

etry. _ . non-negative distancesandb. This implies thatp must be
This example shows that there is no embeddifign ot greater than 1.
which the metric-space distana#(A,B) is equal to the Had we allowed more general forms fBt there would

vector-space distande(A) - #(B)|. Thus, a more interesting |ikely be trivial solutions to the embedding problem. For
question is whether there is an embedding preserving thexample, transforming all nonzero distances to values very
distances up to some transformation that preserves certaiilose to 1 would turn every shape into a nearly regular sim-
crucial properties of the metri@n a sense to be made precise plex, and thus allow an embedding in a Euclidean sghaoe
below). That is, we ask whether there is a transformationone that destroys the original shap€onversely, a scale-
F(x) and a vector-space embedding, such that jnvariant transformation can provide a Euclidean embedding
Fld(A,B)]=|¢(A) - #(B)|. For instance, a transformation of in at least some cases of the spike metric, such as the one in
distances in Fig. @ with F(x)=x? maps the four points Fig. 2. Moreover, the power-law transformatiérix)=x"/2

into vertices of a square with a side of lengtk [Fig. 2(b)]. allows for a Euclidean embedding of points in simple Rie-
At least for this set of spike trains, the transformatfeix) mannian manifolds, such as the points on the circumference
=x'2 evidently provides a meaningful representation of theof a circle (with the distance between points defined as the
original metric. However, it is not clear whether this ap- arc length. Thus, our choice of the scale-invariance con-
proach will work more generally. Note that the embeddingstraint(a) precludes trivial solutions to the embedding prob-
problem we address is distinct from the question that is oftetlem, but also(b) is sufficiently rich so that at least some
asked about metrics, namely whetregproximateembed- non-Euclidean metrics can be transformed to a Euclidean
dings are possible in a finite dimensional sp§2§. one.

We now state our formal requirements for a transforma- Therefore, we now ask whether there exists a transforma-
tion F that preserves the geometrical properties of a spikdion satisfying Eqs(1) and(2) (i.e., a power-law transforma-
train metric. First,F must preserve the order of distances.tion) that will allow for a distance-preserving embedding of
That is, any set of spike trains. Our first main result is that no such
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function exists if there are at least three labels available fofunction F(x)=xP with p<1/2 is required to embed this set
spikes. The proof consists of two componeritsa rule for  of spike trains.

constructing sets of spikes trains whose pairwise distances Here, we develop a method to construct similar two-group
form particularly simple and symmetric configurations, andarrangements with more than two spike trains per group.
(i) a demonstration, taking advantage of these propertiegecause such arrangements are very symmetric, they can be
that no transformation function can embed each of these se@@sily studied using Cayley-Menger determinants. We use
into a Euclidean space. In view of the above considerationghis method to show that such arrangements are indeed in-
this shows that the spike metrics are intrinsically non-creasingly “harder” to embed into a Euclidean space as the
Euclidean, in a sense that is much stronger than the welPumber of spike trains per group increases. Specifically, we
known fact that generic Riemannian metrics need not be gyl construct a sequence of arrangements that require suc-
clidean. Our second result is strong computational evidenc essively smallefr transfor.mlng POWEDS ISlnce rt]he limit of ¢
demonstrating that such an embedding function does not e%ﬁ gtiiiqfliﬁlr::(t:i%rﬁwﬁiocvxis,qﬁrgéovieocg)ngaliii?y tEgts (nl(; ;rr?gs or-
ist for sets of spike trains with fewer than three labels as(z)] will suffice for an embedding of any given set of spike
well, trains.

Note that a limiting argument involving a sequence of
increasingly larger sets of points is necessary to demonstrate
nonembeddability rigorously. For arfjnite set of N spike

At most N dimensions are required to embed a set oftrains, there is a smallest and a largest pairwise distance.
N+1 points whose pairwise distances are consistent with @onsequently, for a transforming powersufficiently close
Euclidean geometry. If all pairwise distances are knownto 0, thepth power of all of the pairwise distances will all be
these points can be thought of as vertices of a simfilex  within a factor 14 of each otherfor arbitrarily smalle).
triangle, tetrahedron, eydn N dimensions with known edge For sufficiently smalle, the transformed pairwise distances
lengths. The content, or volume generalized to any numbegan therefore be recovered from é¥-1)-dimensional ap-
of dimensions, of this simplex can then be determined usingroximately regular simplex. Thus, any given set of metric-
the Cayley-Menger determinaff2], space distances can be embedded into a Euclidean space, but
B the number of dimensions necessary to embed them grows

B. General criteria for nonembeddability

0 1 12 ! 5 without a bound with the number of spike trains. This is

(- PN+ 1 0 dip® ... dines fundamentally different from binning techniques, which
Vﬁ,: o—det 1 dypy? 0 d2,N+12 force points into a Euclidean space of a fixed number of
27(N) . dimensions independently of how many spike trains are be-

) 5 ) ing analyzed. As we will show, no fixed number of dimen-
| 1 Oneg1” Oner2” oo 0 sions, however, suffices to embedty set of metric-space
(3)  distances.

. . . . , Thus, to demonstrate nonembeddability, we will construct
whered; is the distance between poiritandj. In two di- 5 sequence of sets of spike trains for which any fixed choice
mensionsN=2), this equality reduces to the famous Heron's o¢ = o will eventually fail. Each of these sets is a two-

formula for the area of a triangle. If the right side of K8) roup arrangement analogous to that in Fig. 2. The two-
is negativeVy is not a real number, and the distances cannogrOUIO arrangements have an increasing numberf spike

correspond to edges of a simplex. Thus, the sign of thgins in each group. In each arrangement, the distance be-
Cayley-l\_/lenggr determinant of the pa|rW|se_d|stances can bgyeen any two points from theamegroup is a constangy,
used to identify nonembeddable sets of points. and the distance between any two points fratifferent
groups is a second constadt,. As will be shown later, to
guarantee nonembeddability, the ratio of distangg<y in
these sets must be a constant greater than 1 fot. dlhe set

We seek to find configurations of spike trains that arejn Fig. 2 is an example of such an arrangement \th2
likely to be inconsistent with Euclidean geometry. One suchand p,/¢,=2k/k>1. To construct more constraining two-
configuration was shown in Fig(&®. There, the four spike group arrangements, we concatenate spike trains with known
trains can be thought of as two groups of points—one conpairwise distances to construct arrangements with more and
taining A and D and the other containin§ and C. In this longer spike trains.
two-group arrangementthe distance between points from  Suppose ®1 spike trains of equal length, numbered O
the same grou2k) is larger than the distance between anythrough M-1, form a two-group arrangement with one
two points from different groupgk). In general, a set of four  group containing spike trair®, 2,4, ...,M-2 and the other
points arranged symmetrically in two groups can be embedeontainingl,3,5,...,M-1. Suppose the distance between
ded into a Euclidean space as a square if the ratio of theseny two spike trains from the same groupviend the dis-
two distances is/2 [Fig. 2b)]. If this ratio is smaller than tance between any two spike trains from different groups is
V2, the four points can also be embedded, but the figure is n@. We use these spike trains as “tiles” and concatenate them
longer coplan_ar(and becomes a tetrahedyorFor a ratio in time to create larger trains. If individual tiles are separated
greater thany2, the points are not embeddable. Since thein time by an interval of at least 2/ no spike is shifted from
ratio of distances in Fig. (@) is 2k/k=2, a transformation one tile to another in a minimal transformation path used to

C. Two-group arrangements of spike trains
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A 1/M of their tiles match. Therefore, the distance between

N them is py=(M-1)MN"2%. The ratio of distancepy/y is

2 3 4 constant,

2| 82] £ TTTEE s
L5 B idrel | Growo ey (M= Dy (5)
2 ii:}éi 411411117 §N Mw
M 1 11113333 i G 1 ] )
Tasgs L B If v/w>M/(M-1), the ratio py/{y is greater than 1,

which, as we will show below, precludes embedding. For
J three label{M=3), this condition isv/w> 3/2.
As we now show, the six short spike trains in Figh)3

satisfy this requirement. In Fig(13), each tile consists of two

1 |
11 3 \
CoestaaessTaseass | spikes with a time separation at=k/2q (recall thatq is the
— e cost per unit time to translate a spike in time, dnd the
e cost to change the label of a spjk&Ve consider first spike
B trains from within the same grougo, 2, 4} or {1, 3, 5). If
0 ) 4 0<k=4/3, then the minimal transformation path consists of

shifting two spikes in time and then changing the label of

” } either changing the labels of two spikes, for a cost kaf &
/ Group 0
one of them, also for a cost ofgAt+k=2k. If 4/3<k<2,

1 3 5 N then the minimal path consists of matching the two identi-
E I - Group 1 cally labeled spikes by shifting one of them and deleting the
a_ . other two spikes, for a cost @fAt+2=k/2+2. Thus,v=2k
\7/‘;7 for 0<k=4/3 andv=k/2+2 for 4/3<k<2. Now consider

distances between a spike train in one gro{( 2, 4) and
a spike train in the other grougl, 3, 5}). The transforma-

FIG. 3. Construction of spike trains that are not embeddable intc{ion path between two tiles from different groups depends on
Euclidean spacesa) Examples of concatenating short spike trains the pair of tiles in question. The transformation paths be-

(tiles) to construct longer spike trains that form two-group arrange- . . .
ments.N is the number of spike trains per group aktis the tween tiles 0 and 1, 2 and 3, and 4 and 5 consist of swapping

number of tiles used to construct spike trains in each group. Digit§he po_sitions of both spikes, for a_cost cq‘z_Qt:k. The tr_ans-
indicate tile numbers(b) Six tiles that are used in the text with formation paths for all other pairs of tiles from different

M=3 to construct spike trains that are not embeddable into Eucliddroups consist of changing the label of one spike, also for a
ean spaces. Each spike is shaded according to its neuron of origii®St ofk. Thus,w=k, and the ratiaw/w is

4
2, O0<ks 3
. . . viw= (6)
calculate the distance between two spike trains. Let 1 N 2 4 k<2
T(ay,a,, ... ,a,) denote a spike train formed by concatenat- 2 k' 3

ing tilesay,a,, ...,a, Then the distance between two spike

trains is the sum of the distances between individual tiles, and for all 0<k<2, the ratiov/w is greater than 3/2. It

follows from Eq.(5) that concatenation of the tiles as shown
in Fig. 3a) leads to two-group arrangemerifsr any even
number A of spike traing for which the ratiopy/ ¢y for all

n
of these sets is a constant greater than 1,
d(T(ag,a,, ... @y, T(by,by, ... b)) =2 d(T(a), T(b)). g
i=1 4 4

pN/dn= (7)

Now, consider constructing sets of spike trains by concat- 4 4
enating tiles in a way shown in Fig(&. The first row of 3 3k’ 3
each array always contains the 0 tile or the 1 tile. The re-
maining rows of each array constitute a table whose columns -
list all (N-1)-digit numbers that are composed of even digits D. Proof of nonembeddability
in a base B system for one group and all numbers com- We next use Cayley-Menger determinants to prove that no
posed of odd digits for the other group. To construdt 2 transformatior permits a distance-preserving embedding of
spike trains,MN"! tiles are concatenated by reading acrossthese configurations in a Euclidean space. We consider the
each array. Thus, the distance between two spike trainsatrix My of pairwise distances between thid &pike trains.
drawn from different groups i&=M""Yw, since spike trains The matrix My contains pairwise distances betweeN 2
from two groups contain no matching tiles. Two spike trainspoints arranged in two groups—one containing spike trains
in the same group, however, are constructed such that exact{9,2,4,...,N-2} and the second containing spike trains
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{1,3,5,...,N-1}. The distance between any two points 1
from the same group igy, While the distance between any
two points from different groups igy. Further, the ratio of 2 08
these two distancepy/ {y, is independent o and is equal é
to a constanp/{>1. Thus,py=anp and{y=and, Wwhereay, 9
is a series of positive coefficients. It follows that the Cayley- & 06
Menger determinantEqg. (3)] for 2N points is given by S
T
(- g 04
Vo= S N-4det Ay, 8 £
2N-1 22N—1[(2N_ 1)!]2(a'N) N ( ) @
l‘_._“ 0.2
, whereAy is a (2N+1)-by-(2N+1) matrix,
-0111111- Oaéé;éé:{éé{()ﬁ
Number of bins N
1 0s r s r-s
1s0sr..sr FIG. 4. Computational evidence that metric spaces are non-
1 r s 0 s r s Euclidean. For each number of bihg a set of spike traing is
An= 1srso0 s r 9) constructed according to the scheme presented in the text. Exponent
p is the largest value between 0 and 1, such that the transformation
function F(x) =xP embedsS into a Euclidean space.
1rsrs .. O0s
1 srsr..soO

B > - ) possibility that embedding fails only for very special con-
Here,r=p ands=¢" [To relate Eq(3) to Eq.(9), ay has  figurations. Here we provide computational evidence sug-
been factored out of every entry in the determinant and the@esting that the failure of embedding is generic, in tiait
factored into the first row and the first colurhiThe coeffi- applies to spike trains with fewer than three labels, énd
cient of the determinant in EgS) is always a positive num- - give trains do not need to be “hand-crafted.” In particular,
ber. Thus, the arrangement oN2oints is not embeddable \ye fing configurations of spike trains with only one label for
into a Euclidean space if dé{ < 0. As shown in the Appen-  \yhich meaningful embeddings into a Euclidean space are not

dix, the determinant of evaluates to possible.
-2 Our approach is as follows. We consider the Sgof 2N
detAy=2Nr""INs- (N-1)r]. (100 distinct spike trains whose spikes occur only at integer times

from O to N-1 sec. We then calculate all pairwise metric
distances between these spike trains for values of the param-
eter q in the range of 0—2 set sampled at intervals of
0.1 sec’. (We do not consider values of>2 sec*! since in

- 2 _ this range, spikes that are 1 sec apart are never shifted to
rfs=(p/0)"< NN -1). (1) coincide with each other in a minimal transformation path.
If a power-law transformatiorr(x)=xP is applied to all We then determine the larggstbetween 0 and 1, such that

Combined with Eg. (10), the embedding condition
det Ay=0 becomegin the absence of a power-law transfor-
mation

distances, the embedding condition becomes the functionF(x)=xP applied to all pairwise distances em-
beds the se§, into a Euclidean space. The larggstppears
(pl )P <NI(N-1). (12 to become arbitrarily small abdl becomes largdgFig. 4).

Si . ¢ f. . . Thus, it seems that the behavior that we have rigorously

I'dl?‘ce ogr C(.)Insltru%,'\(l)n OdNty\/ﬁl-QZOUD con |%ura;|oars\‘s 'S demonstrated for two-group configurations of spike trains
valid for ar |f[rar|y argel, andi (N- ), approaches . with three labels also applies to generic spike trains with
increases without bound, this inequality cannot be satlsflegmy one label. While we have not proven that this is the
for sufficiently highN regardiess of the value @i Thus, any  c4qe this computational result suggests that the conclusion

transformation functiort- that satisfies Eqgl) and(2) fails 55t nonembeddability is true regardless of the number of
to allow Euclidean embeddings of two-group arrangements,po o

that contain sufficiently many points.

IV. DISCUSSION
E. Computational evidence that spike trains with fewer than

three labels cannot be embedded We have shown that spike train metric spaces are not

equivalent to Euclidean spaces under any transformation that
The proof provided above requires that at least three lapreserves their basic metrical properties. This is a rather sur-
bels be available for spikes, and thus it leaves open the queprising result, in view of the three limiting cases below. The
tion of whether a similar result holds for the metrics whenfirst limiting case is that ofj=0 and a single label. In this
there are only one or two spike labels. It also raises thease, the metric merely compares the number of spikes in
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each spike train, and the distance between two spike trains &te inputs arriving from different regions, such as different
the difference of their spike counts. This is trivially equiva- eyes, ears, or cortical layers. Coincidence detection is a way
lent to a Euclidean distance, since each train can be mappegr such association to occur on adequately short time
into a one-dimensional vector space _With the_ coordinate COlscgles—a task that is hard to accomplish with most encoding
responding to the number of spikes it contains. _schemes. Our results suggest that the presence of coinci-
The metric also becomes equivalent to a Euclidean dlsaence detectors produces non-Euclidean geometries of neu-

tance wherq is infinite, but in a less trivial way. Wheq is ; : "
infinite, the distance between two spike trains is proportionafal response spaces, which cannot be described by traditional

to the number of spikes that do not occur at exactly the sam%eCtor-space models. _ o

times in both traingsince each of these spikes must be de- Interestingly, a non-Euclidean representation in itself may
leted. For spike trains in discrete time, this distance is iden€ crucial for the coding of sensory stimuli in the nervous
tical to the Hamming distance for binary sequences, whiclsystem. As pointed out by Hopfie[@], there is an intrinsic
counts the number of positions at which two sequences difproblem with recognizing stimuli that are represented by
fer. These distances may be recovered from the Euclideamultidimensional Euclidean vectors. In order for such recog-
distance in a vector space as follows. Spike trains in whichition to be independent of stimulus intensity, sensory neu-
there areN possible positions for spikes are mapped into anyons must perform Euclidean rescaling, which is a highly
N-dimensional space with binary coordinates, indicatingynnatural task for neural networks. In addition, even with
whether or not a spike is present. The spike metric distance fescaling, Euclidean representation is undesirable in that it
equal to the number of locations at which two spike trainSqeg sensitivity to minor vector components, even when

differ. By the Pythagorean rule, the Euclidean distance igpaqe components are crucial for the recognition of a particu-

equal to the square root of the number of locations at which, . gimy1ys. Finally, Euclidean representation creates a prob-

two spike trains differ. Thus, the spike metric distance isio., for a system that attempts to split the recognition prob-

equwalsgt to the Euclidean one under the transformationy,  into subparts, because each part of an input vector must
F(X):X, ) N be scaled by the same factor to preserve stimulus identity.
It might appear from the above limiting cases that _theHopfield [8] demonstrated that these problems can be solved
metrics are Euclidean because their distances are not inflyyy ,sing action potential timing for encoding sensory stimuli
enced by the shifting of spikes. However, shifting alone does,,y sing coincidence detection for stimulus recognition.
not make metrics non-Euclidean. This can be seen from thepe present results demonstrate that a metric based on coin-
fact that spike train metrics adecally Euclidean, even for — cigence detection indeed guarantees a non-Euclidean geom-
0<q<e. Consider a ball of radius 1/2 around a spike traing(ry of the neural response space. Interestingly, the problems
A, consisting of spikes at times , a,, ... ,ay. (By definition,  5inted out in[8] are independent of the sensory stimulus
this is the set of all spike trains whose distance s less  ,,qajity. This supports the studies that use spike train met-
than 1/2) Since deleting or inserting a spike frofcorre- .5 for analyzing various senses, including vision

sponds to a distance o_f 1, the spikes yvithin the ball _must4,5'11’14'1K audition [16], olfaction [15], gustation[18],
each contain exactli spikes, each of which occur at a time 4,4 electroreceptiofl.3].

close to the time of one of the spikesAnThat is, each spike The usage of metric spaces, rather than vector spaces, is

train within the ball contains spikes at time®+d1,  computationally (and perhaps conceptualilyburdensome.
8+, ... .av+dy, where Eq|5i‘<,1/2' Th? transformatmq However, our results demonstrate that spike train metrics are
path between any two spike trains within the ball consistgyngamentally different from the traditional methods involv-
only of shifting spikes to match them in time. The dlstancesing various forms of vector space embedding. This greater

are again equivall?an to a Euclidean distance under the tran§gnerality is both practically and theoretically relevant to the
formation F(x)=x"“ if each spike train is mapped into an study of the neural basis of perception.

N-dimensional space with thigh coordinate corresponding
to 4.

Thus, deletions and insertions of spikesmbinedwith
shifting are responsible for the non-Euclidean properties of
spike train metrics. This is particularly interesting, since
these elementary transformations model a mechanism that .
detects, with a particular temporal precision, the coincidence We thank Tom Schne|d9r and_ Marcelo Magnasco fo_r
of spikes from different spike trains. In such a neural decodSomments on the manuscript. This work was supported in
ing mechanism, only spikes located within a certain period®@'t by NEI EY9314.
of time from each other are considered coincident. A spike
shifted continuously in time can change discretely from be-
ing considered coincident with one spike to being coincident
with another. Such nonlinearities in coincidence detection APPENDIX: THE DETERMINANT OF = Ay
systems are thought to be functionally relevant for neural
processes such as the coding of retinal disparity in the visual We calculate the determinant of the matfy [EQ. (9)]
system[23], interaural disparity in the auditory systdi2d],  from the product of its eigenvalues, including multiplicities.
and, in general, the processing of inputs by a cortical neurohet an eigenvalue bk and the corresponding eigenvector be
[25-28. In all these cases, the nervous system must assock=(Xg, X1, - .- ,Xon). Then
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Xp+Xp+ oo+ XN AXo
XoF (X +Xg+ o+ +Xopnop) FS(Xo + Xg+ - o0 + Xop) — X AXq
Xo+ (X +Xg+ =+ +Xon) +S(Xg +Xg+ =+ +Xon-1) = IXp A%,
AnX = . = . . (Al)
Xo+ T(Xg+Xg+ --+ +Xonog) +S(Xp+ X+ -+ +Xon) = MXon-g AXon-1
Xt F(Xg+ X+ o0 +Xop) +S(Xg +Xg+ =+ Xopn_g) = Xoy NXon

Identifying the corresponding entries of the two vectors in ~ Substituting these values into the first line of E&2)
Eq. (A1) yields equations for the eigenvalues and eigenvecleads to

tors, oge Ny N Ny
N N ddt ven
)\XO:EXir r+Aa r+\
| +£N Ns —N (A5)
r+\ Xodd T r+\ Xevenr

(F+0x=%+1 2 x+s 2 for oddj >0, Knowing that=x; =NXogq+ NXeyen and using the first line

odd i eveni>0 .
of Eq. (A2) again,
(r+N)Xx=Xg+r > x+s> x forevenj>0. AXo = 2N +)\N(r+s)XO. (AB)
eveni>0 odd i I’+)\ r+\

(A2) One solution to this equation ig=0. From Eq.(A4) we

From the last two lines of EqA2), know thatx; =Xz=""*=Xpy-1 andX;=x;=---=Xpy. Combin-
ing this information with the first line of EqA2), we find

(r+N)x,=(r+M)X3= -+ =(r + N)Xon-1, that the eigenvector corresponding t%=0 is (0,1,
-1,...,1,-2. Multiplication of this vector byA shows that

(F+ )X = (F+N)Xg= -+ = (I +N)Xoy. (A3) the corresponding eigenvalue (N-1)r—-Ns. If x,#0, Eq.

. ] . (A6) becomes a quadratic equation,
One solution to these equatio(fer N>1) is \=-r. Note

that Ay+rl has only three distinct rows, and thus the multi- AN =[(N=Dr+Ns]\ -2N=0. (A7)

plicity of this eigenvalue is at leag2N+1)-3=2N-2. Thus, Ay has four distinct eigenvalues:\,=-T,
If A+ -r, thenX=Xoqq for all odd i and x;=Xeyen for all  \,=(N-1)r-Ns and the roots\; and\, of the above qua-

eveni>0. Therefore, the last two lines of EGA2) can be  yratic equation. The coefficients in E@A7) imply that

written as Al =—2N
3hg .
1 Nr Ns Ay has a total of RI+1 eigenvalues. As noted above,
X = X + Xodd+ Xeven fOr odd j has a multiplicity of at least!2-2 times. Since\,,\3, and
SR S 2 N 5 W ’ isti isti
\,4 are distinct(and also distinct from\;), we conclude that
N\, has a multiplicity of exactly R—2. The determinant ofy
1 Nr Ns ) can now be found by multiplying all eigenvalues together,
Xj= Xo+ Xevent Xoqq fOr evenj. (A4) oN-2
r+Xa r+X\ r+Xx detAy=2Nr""9Ns—(N-1)r]. (A8)
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