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Role of curvature elasticity in sectorization and ripple formation during melt crystallization
of polymer single crystals
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The present article focuses on theoretical elucidation of possible effect of mechanical deformation on
spatio-temporal emergence of unusual polymer morphology subjected to quiescent isothermal crystallization
conditions. The present theory developed is based on a phase field model consisted of non-conserved time
dependent Ginzburg-Landau equation having an asymmetric double well potential in the crystal order param-
eter signifying metastability for crystallization, coupled with the chain tilt angle involving curvature elasticity
and strain recovery potentials. Under quiescent crystallization conditions, the curvature elasticity term is
needed to discern the emergence of sectorized single crystals. Upon coupling with the strain recovery potential,
the numerical calculation captures ripple formation running across the long lamellar growth front, which may
be attributed to lamellar buckling caused by the volume shrinkage. Of particular interest is that these simulated
topologies of the single crystals are in good accord with the growth character of syndiotactic polypropylene
single crystals observed experimentally by us during isothermal crystallization from the melt.
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[. INTRODUCTION kinks on the surface. Subsequently, Lauritzen and Hoffman
(LH) [13,14 presented a kinetic nucleation theory involving
selection of a lamellar thickness that is kinetically most fa-

half he f has b I §orable. The LH theory was able to predict the equilibrium
a half century[1-4]. The former has been generally grown |, nq|5r thickness as well as the rate of the crystal growth,

from polymer solutions, whereas the latter is commonly pro'especially when the growth rate in all the sectors is uniform.

duced from the melt by either cooling or thermal quenchingBased on Langevin dynamics, Muthukumar and Welch
below the crystallization temperature. Recently, it has bery5 14 gemonstrated that the initial lamellar thickness is

come ?ppar(;nt thaltSSome plclnli\mer S'nﬁle crystg!s can b ontrolled by entropic barriers rather than enthalpic factors
grown from the mel(5] as well. Among them, syndiotactic ., giqered in the LH theory. Moreover, the original LH

polypropylene(sPP shows intriguing single crystal texture theory was designed for the prediction of kinetically equili-

with periodic ripples(i._e., c_orrugated ridgesur!ning across  prated lamellar thickness, and thus it was neither capable of
the fastest growing direction of the lamella, i.e., the crystal

beaxis. A | . . hv the Hool I redicting the overall shape of the crystal nor simultaneously
f'ax's.' hna;gra c}uestmn danses ?js t?] W hy the _r(ljpp eshwou Cgﬂredicting the differential growth rates in different sectors of
orm in the first place and second why these ridges have ty,q crystals. As a result, the original LH theory was inca-
pe penodm. The initial explanation was that th_ese periodi able of describing the emergence of the curved single crys-
ripples mlghF be a consequence of thermal shrmkage of th Is or anisotropic crystals. Miller and Hoffmgh7,1g later
lamellae during cooling to ambient due to very thin nature ofyified the LH theory to account for the curved facets in
the sPP filmg6]. Another conjecture is due to the differential

: _ polyethylene single crystals growing through a serrated
contraction between the lathlike lamellae and the amorphou&rowth front. Although this modified theory could describe

substrate during anisotropic crystallizati¢it,g]. Interest- . growth rates of the flat and curved edges of a single

ingly, the periodic patterns, S|mllar to Fhose of sPP, were rystal, it did not give a full description of the curvature
observed over 40 years ago in solution-grown truncate nd/or surface textures of the single crystal

single crystals of polyethylengd], which was attributed 0 g41er119,2q provided a kinetic approach in the context

the collapse of the nonplanar pyramid shaped single crystqu the surface-roughening concept where new chains deposit

during solvent evaporation. on an existing surface in the form of small packets. Whereas

There have been numerous theoretical efforts to eIumdatgny empty site has the same probability to allow deposition

polymer crystallization employing diverse approaches. Ongy 3 ey packet, probability that desorption will take place at
of the earliest theories for crystallization of low molecular

n occupied site depends on the energy of the binding of the
substances from vapor, due to Burton, Cabrera, and Frarﬁ% up ! P a9y Inding

g cket. An isolated packet will have a high energy of bind-
[.10_1.2]’ is called the B.CF theory. The BCF theory essen'ing, whereas a packet at a kink or a bend has a lower energy.
tially involves the classical diffusion problem of moleculesngn

dsorbed h | surf diffusi d umerical simulations based on this theory showed appear-
adsorbed on the crystal surface diffusing towards steps ang, . of curved growth fronts, but the chief objection to this

theory arose from the fact that experiments did not provide
any clear evidence to indicate that the crystal surface is
*Corresponding author: tkyu@uakron.edu rough.
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Mansfield [21] proposed a dynamic model based on a
system of two coupled differential equations based on the 0.04

Frank's equation[22] to explain the formation of curved %‘
single crystals. Point and Villerg23], in order to explain s
curved crystal growth, provided a completely different inter- e 0.02
pretation, based on the fact that the crystal growth is homo-  §
thetic, i.e., it involves uniform expansion or contraction of &
the interface. Essentially, what is achieved in all models g 0.00
based on the Frank’s equation is that an infinitely narrow 3
(i.e., sharp moving interface is used to represent a solid- s
liquid boundary over which conditions of temperature and 002

composition must be satisfied. Because of the discrete sharp 05 0.0 0.5 1.0 15
boundary, mathematical singularity was encountered. The so-
lution therefore did not allow a true velocity selection, but
only aIIo_v_ved for obtaining a steady sta_te solution for a rang€ p|g. 1. Schematic plot of local free energy density and crystal
of velocities[24]. Surface topology of single crystal_s contin- o rqer parametey for various temperatures showing the metastable
ues to attract the interest of the polymer community. One ognergy barrier for phase transition from the neit0) to the crys-
the latest attempts was due to dtial. [Z_I‘ﬂ th_’ have dem- talline state(¢=1). At equilibrium melting point atT?n the free
onstrated, based on the Monte Carlo simulations, the growtBerqy level of both the melt and crystalline state is the same.

of shish-kebab structures growing during polymer crystalli-

zation. Although the simulated shish-kebab structure was

smiar ( the expermental on, he g of the emergeci*) SOEITEN 1 S, T e ot fo e precert
periodicity was not addressed. y P P

In 1937, Landay26] developed a theory of phase transi- fusion equations to demonstrate possible influence of me-

tion, where he represented the phase in the form of a Conc_hanical coupling on the corrugated ripple textures in sPP

tinuous field of an order paramete which has different ;ingle crystals subjected to quiescent isothermal crystalliza-
stable values in different phases. Landau expressed the fr&gn'

energy of phase transition in the form of an expansion in

powers of the order parametehf=Ay2+By+Cyf+---. Il. THEORETICAL SCHEME

The first-order term of the expansion is always zero so that ) .
the free energy is invariant in all coordinate transformation. ~1he total free energy of crystal ordering may be described
The coefficients of the second-, third-, and fourth-order term®Y

A, B, andC, are recognized as functions of such variables as

pressure and temperature. Landau specified the conditions F:f (fiocal *+ fgraa)d2, (1)

for first-and second-order transition: for a second-order tran-

sition the coefficient of third-ordeB is exactly zero; for the where the free energy density of crystal ordering consists of
first-order,B is nonzero. In the former case, the free energya local term and a nonlocal gradient term. Thg, is given

is symmetric double well and the chemical potential has twan the form of Landau expansion of a nonconserved crystal
roots that differ only in sign. In the latter case, the free enorder parameten) [30,317, viz.,

ergy is an asymmetric double well, which accounts for the ’

metastability. A time dependent form of this theory, also _ _ _

called a time dependent Ginzburg-Land@DGL) theory, f|oca|(lﬂ)—W¢,f0 P(p=1)(p=¢) dp

was applied explicitly to the first-order phase transition by 4

Chan[27]. He showed that the unique characteristics of the :Wlp{gﬁ -1 +§)¢3 ¥ _ 2)
first-order phase transitions, viz., the presence of a rather 2

—+
3 4

sharp interface and latent heat of phase transitions can be This local free eneray has an asvmmetric double well po-

recovered from the solution of such a model. gy y P

tential for crystal ordering with respect i in which ¢=1

In a previous pap€28], we proposed a phase field model . X
(29,30 [E)ased onpapri)nc]:onsefveg time dgpendent Ginzbur epresents the crystalline solid, where@as0 represents the
' morphous mel(Fig. 1). W is a dimensionless constant

Landau(TDGL model A) equation, which expressed the en- : o >
tire system as a time dependent spatial field of a scalar ordd presenting the strength of the pptenual field pertaining to
, and{ represents the peak position of the energy barrier.

parameter, undergoing phase transitions from amorphou The nonlocal free enerav ter is customarilv aiven
melt to crystalline solid. The uniqueness of the model is the 9y terraq v 9

diffuse interface that eliminates the numerical singularity in-

herent in the original Frank’s equation. This approach was (k- V )?

originally applied to describe the crystallization of metallic forad(¥h) = 5 3
crystals[29,30. Recently, it has been extended by us for the

elucidation of both diamond-shaped and curved polyethylenahere ¥ is the tensor representing the coefficient of the
single crystals[28]. However, the above TDGL modél interface gradients of the field, the dot product ofc” and
equation alone is incapable of generating the ripples obV is vector, and thus its square is scalar. Note that the

Crystal Order Parameter v
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A =cosd, (5)
Ar
where)\, is the maximum recoverable strain in the material,

and ¢ is the chain tilt angle. Using a neo-Hookean-type po-

tential, the free energy density of elastic deformation may be
written as

Interface

for= WY [(\,cOs 0)? + 1/(\,cos 6)% - 2], (6)

FIG. 2. Schematic sketch displaying a chain folded lamella with, .o \# s the elastic modulus. For small deformation
periodic undulations, in which chain tilting occurs, represented by a_, .
: : : Strains we have co8~1-6*/2 and 1/co9=~1+6%/2. If
tilt angle # made by the chain stem with the normal to the plane of

the lamella together with the solid-liquid interface having an inter-the chain tilt angle9 IS Small then th_e recoverable strain must
mediate degree of order. also be small, i.e., defing the variabfe=4(\,-1), ¢ must
also be small. Neglecting higher powers @fwe can write
N=(1+@l4)?=1+¢/2, and 1R%=(1-¢/4)’=1-¢/2.

interface gradient free energy is nonzero only at the interfac%ubstituting these apporximations in &), one obtains

(O<y<1).

Although the polymer chains are flexible in the melt, ; 4 )
these molecules become significantly stiffer upon incorporat- feo=W > AN -1)0°|. (7)
ing into the crystals. However, the crystal-melt interface be-
haves like liquid crystals or liquid membranes of colloidal Physically Eq(7) represents the strain recovery potential
systems having intermediate properties between the liquidssociated with the deformation or volume contraction dur-
and solid polymer single crystal. To appreciate such a picing crystallization. This free energy has two minima at
ture, a schematic sketch displaying a chain folded Iamellatgol’zziZV'()\r—l), representing the two stable orientations.
with periodic undulations is shown in Fig. 2, in which chain The ordering in the orientational field takes place in conjunc-
tilting occurs, which is represented by a tilt anglenade by  tion with the propagation of the interface in the crystal order
the chain stem with the normal to the average plane of th@arameter field. Since the two order parameter fields do not
lamella. Polymer crystal is a planar ensemble of chain stemsccur independently during crystallization, these two pro-
standing parallel to each other. Thus, any out of plane chaiosesses must be coupled through a term composed of a linear
tilting imposes a curvature elastic free energy penalty. Sincand/or quadratic dependence of order parameters as follow:
the solid-liquid interface has an intermediate degree of order,
it is necessary to take into consideration a higher order cur- feouple= — @by = ), (8)
vature elastic term to reflect the crystal-melt interface. We,, is the coupling strength, which is normally weak, i.e.,
define the chain-tilting angle as the angle made by the <\, This coupling term was chosen to be nonsymmetric in
polymer chain stems with the normal to the average plane of, sq that the system can discriminate the chain tilting in one
lamella(Fig. 2). Then the curvature elastic free energy cangecior from that in the other sector in the crystal.

be expressed as: The total free energy functionaf(y) is then given as
4 K(// .V 2
foo= 2[x(V 62 + £(V26)7], @ Fy= f vvw[ g% —(+ g)g + %] s %
4
where «? and ¢ are coefficients of the gradients éffield, + l{ KV 6)% + £(V260)% + W(,[H_ -4\, - 1),92”
representing the second-order and fourth-order curvature 2 2
elastic terms, respectively. Physically, the first term in @J. - af(y- yAdQ. (9)

denotes the nonlocal free energy arising from the gradient of

the interface associated with tension, whereas the seconikhe total free energy of Eq9) is further inserted in two
term refers to nonlocal free energy due to the curvature elagtonconserved TDGL equations, vizij/ st=-T"*5F/ 5y and
ticity due to bending. The detailed derivation of this free 96/ st=-T%5F/ 56, to give

energy may be found in Guenthner and KAZ2].

This chain tilting process was originally introduced to de-9¥ = — TV W — D)(h = &) — (k")2V2 + ab(1 - 24)]
scribe the development of banded textures in liquid crystal-dt '
line polymers after cessation of shef@2], in which the (10)
emergence of banded textures in the liquid crystalline poly-
mers has been explained satisfactorily. When the crystalliza-

tion is taking place, there is a stress built up at the interface. 90 _ —TYWQ[4(\, - 1) - 62

One mean of releasing the stress is through a relaxation pro- at

cess, which may occur in the form of local reorientation such — KV20+ V40 + ayp (1 - )} (12)

as the chain tilting. Assuming that the deformation is small, '

the strain in the melt at the interface may be given as wherel'” is the mobility representing the propagation of the
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interface that is inversely proportional to the viscosity or theboundary condition. The simulation was performed using
frictional coefficient, wherea§? is the rotational mobility various temporal step&\7) on several gridg64x 64, 128
associated with the orientation of the chain in the dissipativex 128, 256x 256, 512< 512, and 1024 1024 to assure the
medium. Physically, Eq(10) signifies the spatio-temporal stability of the simulation; however, only the results of
evolution of crystal order parametg28], whereas Eq(11) (512x 512 simulation are shown here. To avoid over crowd-
arises due to the strain recovery deformation. ing only a single nucleus was triggered via perturbation in
It may be noted here that the coupling ter@¥/(1—1) in the simulation.
Eqg. (11) is nonzero only at the interface and therefore in-
duced deformation must occur at the interface. On the other
hand, the coupling termgf(1-24) in Eq. (10) promotes
crystallization in regions that simultaneously deform to ac- The uniqueness of the phase field approach is the double
commodate the coupling effect. It is apparent that##l  well potential that is capable of describing the metastability
—2¢) term changes its sign during crystallization, i.e., it isinherent to crystallization. Here, the double well potential
positive in the mel{#/<1/2) and becomes negative when it has been mathematically described in the framework of a
is in the crystalline statéy>1/2). During crystallization at Landau type free energy expansion by use of a crystal order
the interface wherg/>1/2 the coupling terms in th¢e and  parameteny [31]. The free energy double well has been op-
6 have opposite signs. Therefore, the two propagating wavel§mized to the experimental conditions involving crystalliza-
mutually interfere during solidification, resulting in the trans- tion temperature, and material properties of the poly(ner,
formation from the solitary wave to the oscillatory wave, SPP such as the apparent melting point at that specific crys-
which in turn generates a rich variety of morphological pat-tallization temperature, the equiliborium melting point, and
terns. If the coupling terms in the two equations have thghe latent heat of crystallization of the sipsee the Appen-
same sign, the two waves propagate in the same directiotx). The higher of the two minima in the free energy repre-
without any interference. As a consequence, there will be néents the metastable state whereas the lower minimum rep-
pattern formation. Hence the opposite sign of the couplingesents a more stable solid state. It should be emphasized that
terms in the two corresponding fields is the essential criteriofthis free energy state at=1 is not necessarily equal to the
in order to discern any pattern formation. It should be emdfinal equilibrium state, but it merely corresponds to that of
phasized that a simple linear or quadratic coupling in the twdhe lamellar thickness, that a crystal achieves at a given
model A equations will not generate any patterns. crystallization temperature, because the crystal order param-
Using D as the diffusion constant amtl as the character- eter has been normalized gs:1/1,. It is plausible that poly-
istic length, we can convert EqEL0) and(11) into the non- ~ mer crystallization possesses many levels of metastability, as

[lI. RESULTS AND DISCUSSION

dimensionless form crystallizing chains may not necessarily achieve a true equi-
’ librium state. Although the polymer crystals may be trapped

J T ~ kinetically in a metastable state, it is nonetheless more stable

L = —T¥ WY -1 — A — 2y2y, 4 1-20)], Ine Y ate, .

ar (W= D(g= O = ROV + atl W] than the melt[33,34. Even if the present double well is

(12) replaced by multiple well, the intermediate metastable states,
if present, are short lived when compared to the time scale

50 under consideration, especially in the context of the coarse

2= —TYWG4A(N, - 1) - ¢ grain model being considered here. In addition, only two
aT states, metastable or otherwise, i.e., the melt and crystalline
~0u2p .~ _ states, have been predominantly observed during the course
KIVEG+EV O+ ayll - g}, (13 of crystallization; unless the short-lived intermediate meta-
where, stable states have been deliberately trapped by some experi-
5 o i mental means. Hence, the current double well approach of
= D t%2 = X fl//:rwd_ fﬂzrf?d_ Fig. 1 should be adequate for the description of the tradi-
d?” d?’ D'’ D’ tional isothermal crystallization. However, if one chooses to
(14) explain the entrapped metastable states, the current phase
- (x?)? ~p W _ e field approach may be modified with multiple-well poten-
(k")?= g2 “Tg T gn tials, which is evidently beyond the scope of this work.

In a recent optical microscopic investigation of a blend of

It should be pointed out that except for the coupling coeffi-syndiotactic polypropylenésPB and poly(ethylene octene
cienta there is no adjustable parameter in EtR); thatisto  copolymer(POE isothermally crystallized at 120°C from
say, all the remaining model parameters can be determinetie melt(160°0), a rectangular shaped crystal grows into a
experimentally(see the Appendix However, there is no ex- sizable single crystal that can be discerned under optical mi-
perimental means of determining the parameters in the gowroscopg35]. As depicted in Fig. 3, the tiny periodic stria-
erning equatiofEq. (13)]. tions appear running across the long axis of the single crys-

Equation(12) and (13) were solved numerically in two tal. Although the crystallization was carried out from the
dimensions on a square latti¢856x 256) using central fi-  melt, it is conceptually similar to the solution crystallization
nite forward difference scheme for spatial discretization andecause POE effectively acts like a polymer diluent to sPP.
explicit forward difference for time steps with an absorbing The atomic force microscopic investigation was undertaken
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FIG. 3. Optical microscope micrograph showing the spatio- N
temporal evolution of ripples in a single crystal of syndiotactic 4 10
polypropylene in 30/70 melt blend of sPP and pdabthylene S 8
octeng copolymer following isothermal crystallization at 120°C 4
quenched from 160°C. These pictures were obtained using an o 2
Olympus optical microscope, model BX 60.

FIG. 4. Atomic force microscope micrograph showing the emer-
to identify these periodic ripples, which turned out to be thegence of ripples in a single crystal of syndiotactic polypropylene in
corrugated ridgefFig. 4a)] similar to those reported by oth- 2/98 melt blend of sPP and polgthylene octenecopolymer fol-
ers[1,9], except that these ridges primarily formed in the lowing isothermal crystallization at 120°C quenched from 160°C.
middle section of the sPP single crystal. It should be emphafhese images were obtained using Quesant atomic force micro-
sized that the present optical micrograph was taken at thecope(AFM), model Q-SCOPE 350@) wave mode andb) the
crystallization temperaturg120°0); thus, these periodic corresponding contour plot. The scale wagi@ per division.
ridges emergé@ situ during the course of crystallization, and
thus discounting earlier explanation of thermal contraction ohonconserved crystal order paramegerThis modelA has
the single crystal upon cooling]. The contour map of the been successfully applied to predicting various crystal to-
atomic force micrograph shows clearly that these periodigologies such as faceted and curved single cry§2&s The
ridges are confined to thin sectors of the fastest growindirst term on the right hand side of E(¢L2) is due to the
front [Fig. 4(b)]. This observation gives a hint that some surface nucleation, whereas the second term represents the
types of mechanical deformation might have occurred in thénterface propagation signifying the growth. The general
aforementioned anisotropic crystallization, thereby influenctreatement given by the existing nucleation theories for poly-
ing the morphology of single crystals. Physically, the poly-mer crystallization gives the structure formed at the
mer melt is highly constrained along the fastest growingasymptotic equilibrium through minimization of the free en-
b-axis direction. When the crystallization takes place follow-ergy with respect to the lamellar thickness. The classical ki-
ing thermal quenching, there is a sudden increase in densityetic equation therefore represents only the velocity of crys-
of the emerging crystals, which in turn makes the volume oftal growth. Since the original LH theory lacks the spatial
the constrained melt to shrink at the solid-liquid interfacediffusive term, Mansfield21] employed the Frank’s theory,
(i.e., crystallizing front (Fig. 2). If the shrinkage takes place which involves the first-order moving boundary equation to
preferentially along the constrained direction, one possiblaccount for the spatio-temporal growth. The solution of the
scenario in releasing the internal stress is through formatiofrank’s equation encountered mathematical singularity be-
of periodic ripples as the propagating lamellar front solidi-cause of the sharp interface of zero thickness. This sharp
fies. If the lateral shrinkage occurs, a mechanical torquéoundary problem could have been avoided, had the time-
would develop causing the emerging lamella to twist al-dependent second-order diffusion equation of the BCF
though the crystallization is supposedly under quiescent cortheory been adopted instefitl]. The advantage of the BCF
ditions. theory is that the crystal interface is relatively smooth, simi-

In the absence of the stress, the system reduces tdBqg. lar to what we have been advocating in the present theoreti-
which is essentialy the TDGIimodel A) pertaining to the cal work. One advantage of the present phase field model is
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TABLE |. Model parameters calculated from experimentally de-
termined material parameters of sPP at a given experimental
temperature.

(a) Material parameters (b) Model Parameters 7= 4000
AH 2 1.714x10° J/n? re 4.875x 1072t
v 10® m/s (M2, 3.872x107m? e
Oar’ 0.0109 J/rf (kh2,  6.491x 10710 m?
o1 0.0096 J/mA w¥ 3409
o0 0.01243 J/rh ¢ 0.3431 8000
To¢ 434 K
T 413K P—
T 398 K
aReferencg_43]. 12000

baavzo.l\xabAHu as in Ref.[44], wherea and b are crystallo-
graphic dimensions.

CO']_]_:O.]bAHu.

d0'11=0.1aAHu.

*Referencg45].

o —
[ —

that the asymmetric potential was used in théeld to ac- (a) 16000 (b)

count for the metastability for nucleation. If one utilizes a , ) ,
FIG. 5. Spatio-temporal growth of syndiotactic polypropylene

single well potential f,c4 > ¢ In EQ. (2), the BCF equation ot - ;
cangbe recoF\)/ered Wr']cl’é%' pﬁdicts?hfe ;tructure at eqquilibriumsmgle crystals, exhibiting sectorization as simulated based on the
However, the singile well potential is incapable of explainingéoumed Egs(12) and (13) using the experimentally determined

; ; i TO—0 4 0= ==
the metastability, which is an essential part of polymer crys Material parameters listed in Tabi) andI'”=0.4,%"=0, £=0.3,

tallization and «#=0.1. (a) the crystal order parameter, (b) the tilt angleé.

It should be emphasized that a single equation alone igyrs are simply the trajectories of the growth that run diago-
inadequate for explaining the intricate morphological tex-pally between th¢010) and(100) directions from the com-
tures of lamellar crystals such as sectorized single crystalsnon nucleus. These trajectories are the demarcation of
corrugated ripples, among others. Sectorization is a ubiquipolymer chains having different chain orientatiofes tilt
tous feature observed in polymer single crystals, which isangles. It should be emphasized that these sectorized bound-
thought to be a result of the fact that orientation of the foldsaries could be recorded permanently only when the fourth-
varies from region to region within the same single crystal.order derivative curvature elastic term was included in the
In other words, a single crystal is thus divided into a fixedsimulation, thereby signifying the role of the curvature elas-
number of regions called sectors such that the orientation dicity in the formation of these sectors.
the folds on the surface within a given sector is unifg@8]. As pointed earlier, the shrinkage of the constrained melt
The existence of sectors in single crystals of syndiotactican cause the internal stress to develop at the solid-liquid
polypropylene[37] and polyethylend38] has been directly interface by virtue of a sudden increase in density in the
confirmed in the investigation by atomic force microscopy. Acrystalline phase. To release the stress, the emerging lamella
guestion arises as to the significance of these sector demanay buckle as the uniaxial shrinkage occurs in thaxis
cations that appeared in the final morphological images. direction or may twist in the case of lateral contraction.

In order to investigate the origin of the sector demarcationWhen the stress relaxes slowly due to high viscosity of the
in the single crystals using the model proposed above, nysolymer melt at the interface, the lamellar single crystal has
merical simulation was carried out based on the values ofo deform as a means of releasing the excess stress. The
various dimensionless coefficients of §42) [Table (b)],  question is why the lamellar single crystal has to deform in a
calculated from various experimentally derivable propertieperiodic manner. A possible account is due to the induced
of sPP listed in Table(d). In the absence of the deformation mechanical field during isothermal crystallization.
term, =0, the sectorization in the emerging single crystals We therefore attempted to couple the two nonlinear pro-
was captured theoretically for the first time in both the ordercesses of crystallization and mechanical deformation in order
parameter and the tilt-angle fiel@see Fig. 5, although these to explain the unique morphology observed in case of sPP
sectorized single crystals, having two sectors along the fastingle crystal. As expected, the solution of the coupled Eqgs.
growing front and the remaining two along the slow growing (12) and(13), gives the oscillatory wave propagation leading
front, have long been recognized experimentfll@]. As the  to emergence of periodic texture. The initial nucleus is iso-
single crystal comprises plate-like sectors, it is possible thatropic (picture not showjp but the emerging single crystal
these plates would have a small variation in their overalbecomes anisotropic with elapsed time by virtue of the dif-
orientation arising from their curvature elastic term, i.e.,ference in the growth habits of sPP in which the directional
eV46. It is apparent that boundaries demarcating these segrowth in theb-axis direction is faster than that along the
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T=4000 T=4000

8000 8000

12000

(a) 16000 (b) (a) 16000  (b)

1

FIG. 6. Spatio-temporal growth of syndiotactic polypropylene . F/G- 7. Spatio-temporal growth of syndiotactic polypropylene
single crystals, exhibiting ripple formation in the sectors bemngingsn.]t.glelcrylstals,fvgtSGthe (;]c.)s.ftflmen.t OI c?rvatutr.e elaitllﬂgelowa;] §
to the long axis in both fieldsa) the crystal order parameter and ;:/Iv:yaagirllj:cc;ystﬁ I g}rgstlza)l tll?eg (;:’52’[; 8:31:: :c?;r:rlmle(;w:n\(ljvg; e

b) the tilt angle. The simulation was carried using the e i -
® . 9 A arnea using e ?(pgr:}menthe tilt angled. The simulation was carried using the experimentally
tally determined materials parameters of Tabl®)lalong withT’ determined material ; T ol thT0=0 4
=0.4,%=0,3=0.3, anda=0.1. ~§ e(;nEneo 2rga er‘is galtrame ers of Taly®) Along wi =0.4,
K'=0, €=0.25, anda=0.1.

axis, reflecting the differential fold energies along the two
growth fro_nts[5]. Concurrently, the p_enodlcl ripples form in present study. Although our observation in sPP is in good
the emerging single crystal, predominantly in the sectors thaccord with those of the solution grown PE by Basset and
belong to the long single crystal axiig. 6). It is striking  kejier [9], the two seemingly different findings of Lovinger
that the simulated p(_arlodlc pattern is in close agreement wnlgt al.[6] and ours can be reconciled by merely decreasing the
B e b SN of he colping rolgh. T leads o 2 mor

P Y yp restricted faceted growth leading to stress concentration in
e\lgoth thin and thick sectors. As evidenced in Fig. 8, the simu-
Yated pattern with a lower coefficient of coupling term indeed

rameterz in Eq. (13), it may be instructive to demonstrate shows the formation of the periodic ripples in both thin and
the effect ofz on the length scale such as lameliar Crys'talthick sectors of the lamellar single crystals, which in turn

size and periodicity of the ripples, as well as their shapes. In_ " .. . . .
absence of the higher order curvature gradient téror confirms that both experimental observations by Lovingter

when its value falls below the critical value 3f the ripples al. and ours are not necessarily contradictory, but rather com-

disappearFig. 7). This behavior is consistent with the theo- plimentary to each other.

retical demonstration by Guenthner and Kj&g] that the

propagation of the domain walkolitary wave can trans- IV. CONCLUSIONS

form into the oscillatory wave when the coefficient of the

curvature gradient exceeds the critical value, and vice In summary, the present theory gives a more comprehen-

versa. sive description of polymer crystallization relative to the
It is noticed that there are some differences between thBCF or the Mansfield’s theory. This paper clearly demon-

experiments of Lovingeet al.[6] and the present study. That strates the profound influence of the self-generated mechani-

is to say, their periodic ripples are located in the thick trans<cal fields such as curvature elasticity and strain recovery de-

verse sectors of the sPP single crysfélsas opposed to our formation on the intricate morphological textures of polymer

finding in which the periodic ridges are confined to the thinsingle crystals. It becomes apparent that the higher order

sectors along the long lamellar axis. Another difference is theurvature elasticity is crucial to discern the sectorization and

crystallization condition, in which crystallization was carried ripple formation in the polymer single crystals. The sector-

out in the neat sPP from the melt in Lovinger's case as opized boundaries are simply the trajectories of the resultant

posed to the crystallization in the miscible blends of sPPgrowth direction that demarcate the regions of different chain

POE(i.e., POE acts like a polymeric solvent to gRRthe  orientations(or tilt angleg. The coupling between the crys-

feasible to experimentally determine the dimensionless p

061802-7



MEHTA et al. PHYSICAL REVIEW E 69, 061802(2004

For a crystal of average thicknekand having a cross-
sectional ared\, the Gibbs free energy is given as

Afioca= 2A0e — AIAH,(1 - T/T), (A2)
©=100 3000 whereT is the crystallization temperature afif} is the equi-
librium melting temperature of the polymer, is the surface
free energy per unit area of the folded surface Ahtj, is the
latent heat of crystallization. This free energy per unit vol-
ume occupied by a stem may be expressed as

6000 9000 A
—A"l”a' = z‘lf—e — AH (1 -TIT%)y, (A3)

where ¢=1/1,, andl, is the stable lamellar thickness of the
crystal. At the crystallization temperatuflethe free energy

12000 15000 Af\ocql iS zero when a critical lamellar thickneds reached:
2%* ~AH1-T/T%) =0. (A4)
18000 21000 By using the Hoffman and Weeks relationsf@®], the melt-
. o o .. ing temperatureT,,, of the crystal is related to its lamellar
FIG. 8. Anisotropic single crystal showing ripple formation in thicknessl.:
all four sectors as seen in the crystal order parameter fiekdth z
the experimentally determined materials parameters listed in Table o
I(b) in conjunction with['?=0.4,£=0.3,%=0, anda=0.025. 2|—e -AH(1-T/T) =0. (A5)
z

tallization and strain recovery deformation further capturedysing Eqs.(A4) and (A5) we can obtain the critical order
the corrugated ripple textures in both thin and thick sectorgarameter for which f,.4=0:

of the single crystal. More importantly, these predicted to-

pologies have been observed experimentally in the melt crys- I* T%— T
tallized single crystals of syndiotactic polypropyldiae least = 1. = -1
by us as well as in the solution grown polyethylene. Al- z m
though the possible involvement of the mechanical deformag, ., Eq.(2) one can relate the peak position of the energy
tion has long been suspected to exert some influence on t'?)%\rrierg to the stability order parametef':

quiescent polymer crystallization, the present theoretical cal-

(A6)

culation is the first to demonstrate the need for taking into 4y — 32
consideration the induced mechanical field in explaining in- l= 6—— (A7)
tricate single crystal morphology. A

The excess free energy at the interfgoe the surface
energy o may be evaluated in accordance with Cahn and
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03519, DMR 02-09272, and Ohio Board of Regent Research T YN
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At T=T,, the surface energy is given from the E4S8) and

APPENDIX: RELATIONSHIP BETWEEN MODEL using Eq.(2) as

PARAMETERS AND CLASSICAL MATERIAL
PARAMETERES o .

: : — =—(W2)*2, (A9)
Model parameters in Eq10) can be related to experi- nRT 6

mental conditions and/or classical material properties that are
characteristics to the polymer under consideration. AccordTherefore,
ing to Eg. (2) the change in the local free energy due to

crystallization is given as v = (22— A10
k"= 6(2I\W) RT (A10)

WY
AfIocal(‘/f) = ?[(‘ 1/2]- (A1)

Further, the interfacial thicknes$is estimated as

061802-8



ROLE OF CURVATURE ELASTICITY IN..

o= Kl//\/ U(2f 0cal max) - (A11)
Using EqQ.(2) we obtain
5= 4xV(2WH)1/2, (A12)

According to Harrowell and Oxtobj42], I can be related to

the velocityv of the interface as follows:

PHYSICAL REVIEW E 69, 061802(2004)

3

v=- EFﬁAfmcap (A13)

Using Egs.(2), (A10), and(A12) we obtain the relationship
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