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Static properties of a simulated supercooled polymer melt: Structure factors, monomer
distributions relative to the center of mass, and triple correlation functions
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We analyze structural and conformational properties in a simulated bead-spring model of a nonentangled,
supercooled polymer melt. We explore the statics of the model via various structure factors, involving not only
the monomers, but also the center of m@shl). We find that the conformation of the chains and the CM-CM
structure factor, which is well described by a recently proposed approxim@tiakoviacket al, Europhys.

Lett. 58, 53 (20027, remain essentially unchanged on cooling toward the critical glass transition temperature
T, of mode-coupling theory. Spatial correlations between monomers on different chains, however, depend on
temperature, albeit smoothly. This implies that the glassy behavior of our model cannot result from static
intrachain or CM-CM correlations. It must be related to interchain correlations at the monomer level. Addi-
tionally, we study the dependence of interchain correlation functions on the position of the monomer along the
chain backbone. We find that this site dependence can be well accounted for by a theory based on the polymer
reference interaction site model. We also analyze triple correlations by means of the three-monomer structure
factors for the melt and for the chains. These structure factors are compared with the convolution approxima-
tion that factorizes them into a product of two-monomer structure factors. For the chains this factorization
works very well, indicating that chain connectivity does not introduce special triple correlations in our model.
For the melt deviations are more pronounced, particularly at wave vectors close to the maximum of the static
structure factor.
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I. INTRODUCTION former towardT, the structural relaxation time continuously
. , . ... Increases, instead of diverging Bt Thus, alternative relax-
The microscopic understanding of the glass transition is &tjon mechanisms must exist besides the cage effect and
challenging problem in contemporary condensed mattegyentually become dominant fr< T,. Within MCT the mi-
physics[1-3]. During the past decade the research in thiscroscopic origin of these processes is, however, not well un-
field was strongly influenced by the mode-coupling theoryderstood.
(MCT) [4,5]. This theory suggests that a nonlinear coupling Despite this limitation of its range of validity the ideal
between density fluctuations drives the slowing down of theMCT has been tested in numerous experim¢ftsand com-
structural relaxation when a liquid approaches its glass trarputer simulationg3,4,7]. Broadly speaking, the theoretical
sition. MCT predicts that there is a critical temperatlige ~ predictions were found to provide an adequate description of
experimentally found to be above the calorimetric glass tranthe relaxation dynamics abovg. This success has stimu-
sition temperatureT,, where the dynamics qualitatively lated extensions of the theory, originally developed for
changes. Foll > T, the relaxation of the glass former is de- simple liquids, to molecules with orientational degrees of
termined by the cooperative motion of the particles comfreedom[8-1( and recently also to polymefd1].
prised in the nearest-neighbor sheltage-effect In “ideal ~ A distinguishing feature of the theory consists in estab-
MCT,” the simplest version of the theory, the mutual block- lishing a qu'antltatlve_lmk between the structure of a glass
ing of the particles in the cages leads to a complete structur:%?rmer and its dynamics. This link may be exploited to pre-
arrest atT,. This complete freezing is not observed experi- ict the relaxation behavior provided the relevant static prop-

mentally, possibly with the exception of polydisperse hard_erties are available. These properties involve the static struc-

. . ; : ture factor and related quantities which must be determined
sphere-like colloidal suspensiof. When cooling the glass with high precision over a large range of wave vectors. Pre-

sumably due to this prerequisite a quantitative comparison of
the predicted and measured dynamics has been attempted
*Corresponding author. Email address: baschnag@ics.u-strasbgdnly for a few systems in the past, such as hard-sphere-like

1539-3755/2004/68)/06180114)/$22.50 69 061801-1 ©2004 The American Physical Society



AICHELE et al. PHYSICAL REVIEW E 69, 061801(2004

colloidal particleg12], soft-spherd13], hard-spher¢l4] or  monomer distance, which is incompatible withr ;.
Lennard-Jones mixturgd 5], diatomic moleculeg16], and When cooling the melt from high the incompatibility of
models forortho-terphenyl[17,18 and SiQ [19,20. These r, andr,, impedes crystallization, but does not preclude it
studies suggest that fr= T, MCT is a promising approach [30-33. For the melt to remain amorphous the chains should
to a quantitative description of the structural relaxation for aalso be flexible. This was pointed out in simulations of a
large class of liquids comprising fragile and strong glasssemiflexible bead-spring model in which large bond angles
formers. are energetically favored by a bending poteni&l,32. The
These findings motivate our present work. An extensioninterplay of chain stiffness and excluded volume interactions
of MCT to nonentangled polymer melfd1,21 opens the suffices to induce crystallization from the melt. Contrary to
possibility to attempt a quantitative comparison also for athat, the chains of our model are flexible. In the temperature
polymeric glass former. Here, we present the first step torange studied, the end-to-end distari@=12.3 and the
ward such a comparison for a simulated bead-spring modehdius of gyration(R522.09) are almost constant, and the
of a supercooled polymer mele2—-2§. We discuss various collective static structure factor of the melt is typical of an
static structure factors, paying particular attention to the deamorphous materigP3,25.
pendence of the structure on the position of a monomer We analyze time series of isobaric simulations at the pres-
along the polymer backbone and to correlation functions insure p=1 [22,30. The polymer melt containe monodis-
volving the center of the mass of the chains. This informaperse chains of lengtN=10 in the volumeV. Depending on
tion may be used to develop a tractable theory. We will retemperaturg Nosé-Hoover thermostanh ranges between
port on that and on the comparison with the simulations in a&100 andn=120. This corresponds to the following chain
forthcoming article[21]. A key aspect of this theory is that (p) and monomer densitig®,,)
the short-range order of the monomers, as measured by the
main peak of the collective static structure factor, strengthens n
with decreasing temperature. The strengthening of the local 0.091<p= Vv =0.104,
packing provides the dominant mechanism causing structural
arrest and glassy dynamics. This mechanism, termed “cage nN
effect” in simple liquids[4,5], is also at the core of our 0.91< p,= — < 1.04.
theory for polymer melts. In this article, we will thus pay v
special attention to structural correlations around the average
spacing between monomers, and to the question of how
chain connectivity affects them.

()

I1l. THEORETICAL BACKGROUND
A. Basic notations

[l. MODEL AND SIMULATION TECHNIQUE Let r{ denote the position of thath monomer in chain

We study a bead-spring model of linear polymer chainsand Ri the position of the center of mag&M) of chaini,

[3,22. All monomers interact via a truncated and shifted N
Lennard-Jones$LJ) potential R, = NE rd (i=1,...n). (4)
=1
U (| 4@ @I+ r< 2y, :
L(r) = 0 =26y @) The knowledge ofr® and R; allows us to define various

) . density fluctuations for the wave vectay in reciprocal
In the sequel, we will use LJ unitg=1, =1, furthermore, space: the density fluctuations of monoraer
Boltzmann’s constankg=1 and the monomer mass=1).
The constantC=127/4096 is chosen so thalk ; vanishes n
continuously at =2r i, min=2"¢ being the minimum of the pa(@) = > exdiq-rd] (a=1,...N), (5
nontruncated potential. i=1

In addition toU, ;, successive monomers along the poly- ) ) . .
mer backbone interact via a FENE potenfia] thg density fluctuations of a tagged .chambtalned by sum-
ming over all monomers of the chain,

Upgndr) = X 2|n[1—<Lﬂ @)
FEN - ZRO RO '
with Ry=1.5 andk=30. The superposition of the LJ potential
and FENE potential leads to a steep effective bond potential1 . .
with a sharp minimum at,=0.9606. the density fluctuations created by all monomers of the melt,
This choice of parameters has two important conse- noN

quences. First, it prevents bonds from crossing each other. - exdiq -r@ 7
This imposes topological constraintg8] which ultimately Pid) zgl X -ril, ™
lead to reptationlike dynamics in the limit of long chains
[27,29. Second, the bond potential locally distorts the regu-and the polymer-density fluctuations related to the CM’s of
lar arrangement of the monomers because it favors the inteall chains

N
pP(q) = > exdiq - r7, (6)
a=1
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When averaging over all monomer paigs b) we obtain
the collective static structure factor of the melt,

N
1 . 1
S0 = (Pro@ prol@) = X Sar(0) = w(e) + ph(@),

a,b=1
(13
wherep,,=Np and
N

W)= @ @) =1 D W) (14)
a,b=1

denotes the static structure factor of a chain and

FIG. 1. Schematic illustration of the correlation functions de- N
fined in Sec. II.I.B.ria is the pqsi’tion of theath monomer of chaim h(q) = iz > hap(Q)) (15)
andR; the position of the chain’s center of masgy andw, ¢ [EQs. N
(11) and(18)] denote intrachain structure factorgy and h, ¢ de-
note[Egs.(12) and(19)] interchain structure factor§ [Eq. (16)] is the Fourier transform of the site-averaged intermolecular
is the structure factor of the centers of mass. pair-correlation functiorj33].

Usually, the averaged quantiti€&y) andw(q) are used to
n characterize the structure of a polymer melt. Contrary to that,
pclq) = > exdiq - R]. (8) Wwe focus here on the monomer-resolved generalizations
i=1 Siu(a) andwg,(g). The aim of our study is to understand to
. . . . . what extent specific monomer-monomer correlations deviate
Densny—densny. correlation functions are wgll estaphshedfrom the average behavior. Since the structure facigy)
means to describe the structyend the dynamigsof a lig- and w,,(q) are important input quantities for the mode-

uid [33]. For a polymer melt we can derive various SUChCOU ling approach to glassy polymer dynamidd], the
two-point correlation functions from Eq$5)—(8). They are ping app giassy polym yn ’
introduced in the following section. comparison of S;,(q) and wap(q) with their monomer-
averaged counterparts can suggest suitable approximations
and thus help developing a tractable thef2{].
B. Static structure factors In addition to density fluctuations of the monomers the
The density-density correlations at the monomer levefPatial arrangement of the CM's and the coupling between
may be characterized by the monomer-mono(oesite-site the CM and the monomers can be analyzed. We define the

a,b=1

static structure factors CM-CM structure factolsee Fig. 1
1 , 1 , 1/ & ,
Sanl(@) = H(Pa(Q) po(Q))- 9 S@= E(PC(Q) pc(@)) = ; > expl-ig-[Ri-Rj]} ) =1
ij=1
Here, (-) denotes the canonical average over all configura- + phe(0), (16)

tions of the melt. Since the melt is spatially homogeneous | . - .
and isotropic, the structure factors depend only on the modd’-".h'gh we split, in analogy to Eq(l?:), nto _self— (1) and
lus of the wave vectolg|=. distinct (hc) parts. Formally, Eq(16) is identical to that of
We can split Eq(9) into an intrachain and an interchain SIMPe liquids[33]. ,
part: Similarly, the coupling between a monomer and the CM’s
leads to monomer-polymer structure factors:

San(@) = Wap(Q) + phay(Q) . (10) . VA
The intrachain contribution is given by Sic@ = H(pa(q)*pc(q» :F] > exp—iq-[rd- R;l}
ij=1
1/ & _
(@) = - Sexpl-ia-[rf-rfl ) (1D (7
=1 S,.c(q) is the Fourier transform of th@veragegl probability
and the interchain contribution by of finding a sitea at a distance from the center of a chain.
. Following Egs.(10«12) we separate again the intrachain
1 ) contribution,
phao(@) =~ Sexpi-iq-[rF-rf} ). (12)
i#] n
— 1 H a
These contributions reveal static correlations between mono- Wac(0) =~ ;1 exp(-iq [ri-Ril} /. (18)
mers belonging to the same chain or to different chéafs -
Fig. D). from the contribution involving different chains
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> expl-iq - [r}-R;]}

i#]

(19

1
pha,c(q) = H

The correlations measured by E&8) and (19) are illus-
trated in Fig. 1. While the intrachain structure factegy-(q)

can also be determined for a single polymer at infinite dilu-

tion [34], the interchairh, c(q) describes hova sites arrange

around the CM of another polymer. When summing over all

monomers and defining
N

N
1
Wi @) = 2 Wac(@),  hip (@) = NE hac(@. (20
a=1 a=1

we obtain from Eqs(17)—19)

N
Sn.c(@ = 2 Sic(@ = Wi (@) + puhinc(@.  (21)
a=1

These functions describe the averaged packing of sites

around the center of mass of the sag, o) and of a dif-
ferent(h,, ¢) polymer, respectively.

C. Three-particle structure factors
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FIG. 2. Collective static structure fact&q) of the melt vs the
modulus of the wave vectar [Eqg. (13)]. The temperatures shown
are: T=1 (dashed ling 0.7, 0.65, 0.6, 0.55, 0.52, 0.5, 0.48, 0.47,
and 0.46(solid line). Inset: First maximum o8(q), S(Qmad, VS T
(qmax=7.195. The dashed horizontal line indicates the Hansen-
Verlet criterion for the glass transition of hard spheres within the
ideal MCT [S(qmay = 3.54] [38].

correlation function vanishesg(q,k)=0. Here, we want to
test this approximation foiS;(q,k) and for the polymer
three-monomer structure factar(q,k). ws(q,k) is defined
analogously td; with p replaced byP in Eq. (22), that i,

S(q) measures the spatial distribution of two monomers. ltonjy the termi=j=I of the sum in Eq.(22) is taken into

depends on one wave vectgr Its generalization to a triple

correlation function, the three-monomer structure factor

S;(q,k), describes thg¢averagey packing of a third mono-
mer which results from fixing the position of two monomers.
S;(q,k) depends on two wave vectors and is defined by

$5(a,k)
1

1
= n_N<Ptot(_ D) prot(K) prol(d — K)) = nN

n N

S S eiit-a-rekerte@k 15 )
i,j,l=1ab,c=1

(22)

where the vectoq-k=p is the third side of a triangle form-
ing an anglep betweeng andk. The angleyp is given by

QP + K2 - p?

cosg=
¢ 29k

(23)

S5(q,k) is the Fourier transform of the three-particle dis-
tribution function, which gives the average densityather

segments at a space point if the positions of two segmen

are fixed. It is related to a direct correlation functigyiq, k)
by the triplet Ornstein-Zernike equati¢85]

Si(0,k) = S(@SKS(q - k[ +pics(a,k)].  (24)

Often, when considerin&; for wave vectors corresponding

account.

For a homogeneous and isotropic syst8gndepends on
the moduli of the three wave vectors onlgs(qg,k)
=S5(q,k,p=|g—k|). To determineS;(q,k,p) we utilized a
method closely related to the one proposed in R&d]. The
triple of moduli (q,k, p) satisfying Eq.(23) is discretized in
bins of width Ag=Ak=Ap=0.2. In each bin 100 vector
tuples{(q,k)||q|=q,|k|=k,|p|=p)} are chosen at random for
each configuration anf(q,k, p) is calculated as the average
over this set of vectors and all configurations. Data were
accumulated over 1155 configurationsTat0.47 [37].

IV. RESULTS ON TWO-POINT CORRELATION
FUNCTIONS

A. Static properties at the monomer level: Site-averaged
quantities

We discuss the static structure factor of the melt and the
corresponding self-parts and distinct pdiEgs. (10)<15)].
For T<1 andg=<20, results forS(q) andw(q) have been
presented previously[3,23,25,26. Here, we extend the

l@nalyses up tg=50 and considerably improve the statistics

(averages over more than 1000 configuratjofigis effort
was necessary to use the static quantities in MCT calcula-
tions which require a largg-range and good statistics.

1. Static structure factor of the melt

to the average particle distance, it is assumed that there are Figure 2 shows(q) for temperatures above the critical
no three-body correlations which are not contained in thdemperature of MCXT,=0.49. In this T interval the struc-
product of two-particle correlation functions. This so-calledture of the melt is typical of a disordered, dense system. Due

convolution approximatiofi35,3§—note that it differs from

to the weak compressibility of the meXq) is small in the

the Kirkwood superposition approximation which becomedimit q— 0. As g increasesS(q) increases toward a maxi-

valid for large distancef33]—implies that the triplet direct

mum which occurs aroungy,,=7.15 in our model. Thig
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justified for our model, as a glance at Fig. 6 showg,,1(q)
can be evaluated by exploiting thaf-ra"|=r, due the
stiff bond potential of our model. Thus,

; a_ at+l -
waa+1(q):<sm(Q|r ' |)>zs'r§?rb). (26)

G alr? =1+ :
= 1 To lowest order, we therefore expect
: 2 sin(gr
: »)/Nar, w(g) ~1+ N(N - 1)M (q large). (27)
00 ‘ 1r1|5 qrb

For smallg-values polymer physics suggests that the De-

. bye functionwp(q) [28,4] provides a reasonable description
FIG. 3. Polymer static structure facter(q) [Eqg. (14)] at the

lowest and the highest temperatures0.46 (solid line) and T of w(@),

=1.0(dashed ling respectively. The simulation data are compared 2

to the Debye formuldEq. (28), dotted ling and to the larget Wp(0) = Nfp(qPR)), fpo(0) =[e*+x~-1]. (28
approximation, Eq(27) (r,=0.9609, dash-dotted lineThe inset X

magnifies of the smali behavior ofw(q). The Debye theory assumes a Gaussian distribution for all

value corresponds to the length scale of the monomer diamd_lstances along the backbone of the chain. This assumption

eter(=1). Thus, the dominant contribution &) comes correctly reflgcts the'random-walk-like structure (dxbng)
from the amorphous packing in the nearest-neighbor she olymers on intermediate and large length scales in the melt.

around a monomer. On cooling, Fig. 2 indicates that no long 1OWEVer. at largej where the precise form of the interaction

range structural correlations develop in the melt. Only isPotential matters, it cannot apply.

density increases and the packing becomes tighter. Two fea- 1€ approximationg27) and (28) are compared to the

tures reflect these changes: the amplitude of the Sémk,,) S|mulat|on data in Fig. 3. For smai| the scattering is d_eter-

grows and its positiom,., shifts to larger values. Close to Mined by the size of the polymer only. In this limit, the

Omaw the dependence &(q) on T is most pronounced. Debye theory reproduces the exact resulp(q)=N(1
The increase 08(q,,,,) With decreasing” may be related ~d?R;/3). So, it has to coincide with the measured) if

to the(empirica) Hansen-Verlet freezing criterigi39]. This ~ d<1/R;=0.69(see inset of Fig. 3. Furthermore, the theory

criterion states that a liquid will condense to a solid phaséand the simulation should also agree forRi&<q<1/ry,

when S(g,.) exceeds a threshold value. For crystallizationThis g range probes the random-walk-like internal structure

this threshold isS(qyg) = 2.85[40]. For the glass transition of a polymer, where bothv(qg) and wp(q) scale as~q=

of hard spheres within the ideal MCT one fin@60,a,) However, since our chains are short, the length saglesd

~3.54[38]. The latter value agrees very well with our simu- Rg are not sufficiently separated for this behavior to be ob-

lation result forS(q,sy) at T=0.46(see inset of Fig. 2 indi- ser_ved. Insteadw(q) crosses over to regular oscillations
cating that the melt is close to tHE, of the ideal MCT.  Wwhich are compatible with Eq27) for q=8.
Indeed, our previous studi¢8,23-26 suggesfl,=0.45. Figure 3 shows that the superposition of E¢&7) and

This interpretation of the structure factor only involves (28) approximately describes the simulation data. Thus, in
packing arguments which could also be put forward forour model the main features uf(q) are determined by two
atomic liquids. To obtain a better insight into the role of length scales;, andRy. SinceR, depends only weakly of
chain connectivity we spliS(g) into intrachain(selfy and  andry is independent of, the almost perfect agreement of
interchain(distinct contributions[Egs. (10)~(15)]. We dis- the structure factors foF=0.46 andT=1 can be understood.

cuss these contributions in the next two sections. .
3. Interchain structure

2. Intrachain structure If the intrachain contribution t&(q) is independent oT,

Figure 3 shows the intrachain contribution $q), the  the temperature dependenceSg€) must result from inter-
structure factow(q) of a polymer, aff=0.46 andT=1. Both  ¢hain correlations. Figure 4 supports this expectation. The
temperatures yield almost identical results forcalSo, data  distinct partp,,h(q) [Eg. (13)] exhibits liquidlike oscillations
at intermediateT are not included in the figure. whose extrema become more pronounced on cooling. This

The independence o may be rationalized in the follow- trend is especia”y visible arounqma)(:7_15)' Suggesting
ing way. If q— =, local rapid variations will determine the {nat the glassy behavior of our model is driventifyg) only.
behavior ofw(q). In this limit, we can approximate Eql4)  Thgt s, by nearest neighbors which are not bonded to one
by another. This finding is not unreasonable. As the distance

2 between successive monomers along the backbone is almost
w(g) ~1 +N(N —DWaaa(q)  (glarge, (25 fixed, only nonbonded neighbors can pack more tightly and
reinforce the cage with decreasiig
where we also assumed that the nearest-neighbor contribu- We support this interpretation by the following argument:
tion w,1(q) is independent of. This assumption is well If our system was a simple liquid, we would hawég)=1,

061801-5



AICHELE et al. PHYSICAL REVIEW E 69, 061801(2004

P h(Q)

FIG. 4. Distinct contribution to the static structure factgh(q)
[Eg. (13)] at T=0.46, 0.65, and 1.0. Inset: Comparisonggfh(q)
with S(g)-1 and -wp(q) at T=0.46 (see text for further details

and p,h(q)=S(q)—1 would be exact. The inset of Fig. 4
shows that this simple-liquid-like approximation represents a C ]
good description forq=6. For smallerq, deviations are o 5 10 15
found. Here,S(q) becomes vanishingly smal5(q) ~ 1072, q

see Fig. 2 and pqumer-spgc_lflc effects, i.e., the correlation FIG. 5. Examination of the equivalent-site approximation, Eq.
hole [42_]’ determlne_the distinct parhmh_(q)%—_w(q). The (31), at T=0.47. The solid lines in both panels denate) deter-
correlation hole implies that the probability of finding mono- ined from the simulation results f&q) andw(g) via Eq. (33).
mers of other polymers inside the volurifg occupied by a  The dashed lines represen(q) (upper pangland ci5(q) (lower
chain is decreased. This effect arises because the probabilifgne), the dotted lines,»(q), cz5(a), C44(a), Cs5(@) (Upper pangl

of finding the monomers of a chain in its own volunigis and c,5(q), Ca5(q), Cu5(a), csx(q) (lower pane). The site-site direct
enhanced, and intramolecular and intermolecular correlationsorrelation functions,,(q) are calculated from the simulation re-
have to compensate each other to render the melt inconsults for S,,(q) and w.,(q) via Eq. (30). The insets magnify the

pressible[42,43. region close ta@may
B. Static properties at the monomer level: Site-resolved (This simplification becomes exact for ring homopolymprs.
quantities This equivalent-site approximatioims usually invoked for
1. Direct correlation function Can(Q), i.€.,
For simple liquids the direct correlation function is usu- Cap(Q) =c(g) (equivalent-site approximation (31)

ally introduced through the Ornstein-Zernike equatj88]. Equation (31 ts th incioal id f th |
For molecular liquids Chandler and Anderqddd] extended R(IJSUI?/IIOEI(QIS) rep;rr]esen Sd elprlnénpba Iseﬁ of the podymer
the Ornstein-Zernike approach to reflect the contribution ( M) theory developed by Schweizer and co-

) . . workers[43].
from the intramolecular correlations,,(q). The resulting g : : :
generalized site-site Ornstein-Zernike equation—also re; Inserting the assumptioB1) into Eq. (29) we obtain

ferred to as “reference interaction site modéRISM)—is from Eq(.j(lS) the s?—(_:allefd PRISM equation for the site-
given by[33] averaged pair-correlation function

N h(a) = w(g)c(@)[w(q) + prh(a)]. (32

hao(@) = 2 Wad Q)G (D[ Wys(@) + phyp(@)].  (29) Equations(13) and (32) provide an expression faz(q) in
xy=t terms ofw(q) and S(q):
Here, c,,(q) is the direct correlation function between the
sitesa andb. Inserting Eq.(29) into Eq.(10) we obtain pmc(Q) = 11 (33)

w(@ Sa)
Can(Q) = [Wap(@) = Spp(@)], (30)
Peavtd (@)~ S0l Figure 5 examines the validity of the equivalent-site ap-

whereX;1(q) denotes théa,b) element of the inverse of the proximation by comparing Eqg30) and (33). Apparently,
matrix X(q). the approximation is well satisfied, except for functions in-
The difficulty in dealing with site-site correlation func- volving the chain endga=1 or a=N). Here, we find slight
tions arises from the dependence on the indiegb). This  deviations close tay,,, and more pronounced ones fqr
leads toO(N?) coupled equations which cannot be handled<5. From the point of view of MCT, the important wave-
for large N. However, one can argue that, for long chains,vector regime is arounda. Thus, Fig. 5 suggests that, for
end effects oninterpolymer correlations should be small, our model, MCT equations for the dynamics of the melt can
suggesting to treat all sites of a homopolymer equivalentlybe derived by assuming E¢31) without introducing a large
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1R, X pha)
o T A L R A
o8l o sin(ary)ar, | 0.2k — 15
L 1,2and 5,6 - I
0.6F wyy - 1,3and 5,7 i
g —-- 1,4and 4,7 o.1F
0.4r -~~~ 1,5and 4,8 ] i

- 1,6and 3,8 |
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0.2k -0.1F
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FIG. 6. Static structure factar,,(q) of the monomer paita,b)

at T=0.47.a and b are monomers of the same chain. Note that
W,,(g) depends ora—b| only. The simulation data foa—b|=1 ( FIG. 7. Interchain static structure factph,,(q) at T=0.47 for
a=1,b=2 anda=5,b=6) are compared with Eq26) (circles. For different pairs(a,b) [Eqg. (13)]. phap(q) depends oria,b) at qmax
separationga—b|=1, ...,5 the Gaussian approximation, E2g), is =7.15 and forq=<5.5. The correlation of two chain enda=b
also shown(dotted lines. =1) behaves differently in comparison to all other curves. The av-

erage over all monomeygh(q) is also included.

error [21]. In the following, we want to use E@31) to in-
terpret the intermolecular site-site correlations of our modela shoulder. If an end monomer is involved, the amplitude of
the shoulder decreases and is smallest for the correlation of
2. Intrachain structure two chain endghq).

If w(g) does not depend on temperature, we may expect Qualitatively, the site dependence arougg,, may be
the same feature for all componemtg,(q). Indeed, we find explained by the following argument. As the analysis in Sec.

that w,,(q) is (almos) independent ofl. Thus, we concen- IV.C 2 will ghow, a middle segment is bgned d_eeply n the
trate on one temperature in the following. polymer coil and is closer to the CM of its chain than is an

Figure 6 depictsw,,(q) at T=0.47 for various monomer end segment. Thus, it is not surprising that end monomers

. ) o have stronger local intermolecular correlations, viz. that
pairs (a,l:_)). \.Ne-flnd .that th? .epr|C|t dependence wj;(q) phi,(g) deviates more from zero aroung,,, than does
on the site indices is negligible for all wave vectors. To a

> .~ “pha.(q) for middle segments.
very good approximatiorw,y(Q) only depends on the dis- """, o iative explanation of the site dependence of

tance |a—b|, a feature also found for a model of freely h :
. | . 7 h,,(g) may be obtained by PRISM theory. From E@$0)
jointed hard-sphere chaiifi$5] and for the Gaussian approxi- and(29) it follows that

mation
— _ -1

ng(q) = exf- q2|a_ b|0‘2/6] (34) San(@) = [{I - pw(a)c(a)}*w(Q) Jap,
To compare Eq(34) with the simulation g]ata Wezidentify the hap(@) = [w(g)c(@){l = pw(g)c(a)} W(a) Tap,
statistical segment lengtlr with o?=RZ/ N:6Rg/ N [28]. . ) .
This assumption is valid falong) chains in the melt. Figure Wherel denotes the unit matrix. Thus, even with the assump-
6 shows that Eq(34) only provides a good approximation 10N Can(@)=c(q), a site dependence &;(q) andhyy(q) re-
for smallg. [The same result was also found when Compar_sults from chain connectivity due to the matrix structure of
ing w(q) andwp(q).] With increasingg, w,(q) decays faster Wan(d). For example, foth,,(q) one finds[from Egs.(13),
thanwS(q), if [a—b|>1, and becomes negative before ap-(29, and(32)]

(35

proaching O from below. This undershoot shifts to larger h(q) N N
and increases in amplitude, $s—-b| decreases toward 1. hap(Q) = q2 > wa,(Q) EWby(Q) . (36)
Adjacent monomers along the backbone of the chn w(Q)?| = y=1

-b|=1) exhibit long-range oscillations which are well de-

scribed by Eq(26). Figure 8 compares theory and simulation for some represen-

tative pair-correlation functionis,,(q). We find thath,,(q) is
well described by Eq.36). This explains why the correlation
hole inh,(q) for end segments is slightly more narrow than
Figure 7 shows the site-resolved pair correlatibagd)  for middle segments. Furthermore, according to E2f)
[Egs. (10) and (12)] at T=0.47. Forq=15, hay(q) is inde-  h,(q) should exhibit the symmetryh,p(q)=han-p+1(Q)-
pendent of the monomer index and coincides with the siteThis symmetry is tested in Fig. 8 fa=2, b=1 and found to
averagedh(qg). Contrary to that, we find a dependence onpe well borne out.
(a,b) aroundq, and particularly forg=5.5. While pairs A corresponding analysis f@&,,(q) (not shown finds the
resulting from inner sitegl<a,b<N), excepth,,(q), are  same agreement between the PRISM theory and the simula-
still very close to each other, differences occur for correlation data. These results indicate that a complete description
tions comprising an end monomer. R4, h,(q) exhibits  of the static structure of our polymer melt can be achieved

3. Interchain structure
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FIG. 9. Static structure factor of the CBk(q) at all simulated
temperatures, i.e.T=0.46,...,1(solid lineg. The dashed line
shows EQq.(37) calculated from the simulation data fev, o(q),
w(q), andh(q) at T=1. The dotted horizontal line indicates the limit
of S:(q) for q— 0 [Eq. (38)]. kg Tpmxt Was read off from the small-
g behavior of S(q) (see Fig. 2 The dotted vertical line shows

L hp10(@) -3 o simulaon 1/Ry=0.69 (Ry=1.45.
I — PRISM 1
A0, T these interactions are given by the potential of mean force
0 5 10 15 [33], i.e., by the CM-CM pair distribution function.
q This function was also discussed in the context of devis-

ing efficient coarse-grained simulation models for semidilute
polymer solutions and polymer-colloid mixtur§49,50. In
these studies, the attempt is made to represent the polymer
coils as soft, penetrating spheres. The spheres interact via an
effective pair potential derived from the CM-CM distribution
function. For this distribution function Ref51] suggests a
] o ) o _ PRISM approximation which relateS:(q) to the structure
using only the site-independent interchain direct correlation,ctors of the monomers. In the Appendix we sketch the
function c(q) and the matrix of the single-chain structure 4in jgeas of this approach and discuss the validity of the
factorswap(q). underlying assumptions for our polymer melt. Here, we only
compare the result of the calculation,

FIG. 8. Comparison of the site-site intermolecular pair-
correlation functions,,(q) determined from the simulation data at
T=0.47(circles and from the PRISM theorggray solid line$ [46].
Some curves are shifted vertically for clarity. Note thgt(q)
=h,14q) in the PRISM theorysee text for details

C. Static structure involving the center of mass

1 Wm C(Q)Z
1. Structure factor of the center of mass S(g) = 1+=—"2""p h(q), (37)

2
At low temperature, the motion of the CM slows down N w(g)

similarly to that of the monomerf24]. For the monomers, with our simulation datdwy, «(q) is defined in Eq(20)].

we interpreted this behavior as a consequence of the tighter Figure 9 showsSu(q) for all investigated temperatures
packing in the nearest-neighbor shells. If a tighter packing Otoget%er with Eq%?)q Starting from ga small vF;qu '
the polymer coils and concomitant coil-caging was respon- S T

sible for the sluggish dynamics of the chains, one could ex_—lsothermal compressibilily
pect to find the signature of a stronger packing in the ) )
CM-CM structure factorS.. Alternatively, polymer MCT lim &(Q):M=lksTmeT, (38)
[11,2] suggests that the slowing down of the CM originates q—0 (n) N
from the segment dynamics which “enslaves” the CM mo-
tion. For this view to apply, little or no variation witlh of  the structure factor increases toward a small peak before it
the CM correlations is required, as the intermolecular segapproaches the ideal gas value 1 without any further oscilla-
ment correlationsp,,h(q) (Fig. 4), drive the(segmentcag-  tions. Although this peak is indicative of some preferred dis-
ing. tance between the chains, the effect is very weak. Further-
Recently, the spatial correlations between the CM’s havénore, S(q) is independent ofT. This implies that the
been addressed in several studipt7-51. References sluggish dynamics of the CM is not related to a tighter pack-
[47,48 point out that deviations of the CM motion from free ing of the chains at lowl. Rather it should be interpreted as
diffusion, observed for displacements smaller than the chaia consequence of the slowing down of the monomer motion,
size already at high, could be caused by intermolecular which, due to chain connectivity, entails the glassy behavior
interactions between the centers of mass. Approximatelyof the CM.
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FIG. 10. wy, c(@)?/w(g)? vs g at T=0.46 (solid line) and T=1
(dashed ling As w(q) does not depend on temperatgsee Fig. 3,
the figure indicates that the monomer-CM correlatign ¢ is also
independent ofl. The dotted line shows the Gaussian approxima-
tion, Eq. (39). The dotted vertical line indicateg=1/R;=0.69

(Rg=1.49. FIG. 11. Site-resolved structure factors resulting from
monomer-CM correlationdEqgs. (17)—(19)]: w,c(q) (intrachain
As observed in Ref[51], we also find that the PRISM par), ph,c(q) (interchain pan and S,c(q) (all chaing. These
approximation(37) provides a good description of the simu- structure factors aréalmos) independent ofl. The data shown
lation data, except fog close to the peak position, where Were obtained af=0.47. Circles indicate the Gaussian approxima-
to interpret the finding thaB.(q) does not change on cool- monomey. The thickness of the lines and the symbols increases
ing. Equation(37) contains the prefactow,, «(q)%/w(q)?, from a=1 toa=>5.
which depends on intrachain correlations only, and is thugnonomer is on average closer to the CM than the chain end
independent of T for our model. Figure 10 compares [53].
Wi c(@)?/w(q)? with the Gaussian approximatidsee Ref. Figure 11 also shows the pair-correlation functmgr:(q)
[52] and EQq.(28)] and the sum of intrachain and interchain contributions
. — b2 S.c(@). S,c(q) is related to the probability of finding a
Winc(@) _ Vm(qRy)%e TR %erf(gRy/2) monomer at a certain distance from the CM of some chain,
wp(Q) 2(e‘q2RS + qus -1

(39) while h, c(q) measures this probability if the CM belongs to

a different chain than that of the mononeerQualitatively,
Quantitatively, Eq(39) is not very accurate, presumably be- ph, c(q) appears to be the mirror image wf, c(q) with re-
cause our chains are too shdfthe results for semidilute spect to theg axis so thatS, c(q) is small. This agrees with
solutions of long chains obtained in Rg51] appear to agree the naive expectation that there is little correlation between
better with Eq.(39).] Qualitatively however, the Gaussian the positions of the monomers and the CM’s. However,
approximation reproduces the simulation results. It starts a8, c(q) is not completely structureless. It exhibits a maxi-
1, has a maximum aroungl=1.5, and vanishes foq=5. mum for the middle monomeda=>5), but a minimum for the
Thus, the factomw,, o(q)2/w(q)? eliminates the contributions €end monome(a=1). Quite surprisingly, we find a positive
coming from the local liquidlike structure of the mdlte.,, ~ correlation of the middle segments and the CM's. On aver-
from h(q), see Fig. 4and, along with that, a possible depen- age, the probability of finding a middien end monomer
dence ofSx(g) on T in our model. around the CM of a chain is increasgtecreaseprelative to
random packing. Intramolecular correlations are thus can-
celed by intermolecular ones only at large distancesall
g)- At intermediate distances the intrachain density distribu-
Figure 11 shows the site-resolved monomer-CM structurdion is either too little or too strongly compensated by the
factors. We see that the intrachain contribution.(q) de-  Surrounding polymers. By averaging over all monomers
cays more slowly for the middle monomémzs)ythan for along the backbone of the chain this site dependence of
the end monomefa=1). This observation may be rational- Si.c(9) is suppressed to a large extent. This means that a

) . S PRISM-like theory using the monomer averadig(q) (see
ized by the Gaussian approximatif4,53 Fig. 16 only, could underestimate the monomer-CM cou-

2. Correlation between the monomers and the CM

2 a a\? pling.
wee(Q) = exp{— %{1 -30F 3<N) ” (40) However, this does not imply that the PRISM theory can-

not be applied to explain the site dependencehgf(q).

Equation(40) is symmetric undea«— N-a. That is, chain  Equation(37) results from the assumption that the CM may

ends are indistinguishable. The argument of the exponentidde treated as an additional, noninteracting site in the PRISM

is a parabola with a minimum ai/2. Thus, in qualitative approach. That is, the monomer-CM and the CM-CM direct

agreement with the simulation dawgc(q) decreases more correlation functions are supposed to vanish; o) is

slowly with increasingq for the middle monomer than for kept. Using this assumption arfg}, o/ S=wy, /W (see Ap-

the end monomers. In real space, this implies that the middlpendi® we find from Eq.(29)
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0 1 2 3 4 5 6 7 8 FIG. 13. Comparison of the three-monomer structure factor
(thin lineg for the meltS;(q,q,q) and for the polymersvs(q,q,q),
q with the respective convolution approximatiofikick lines S(q)3

. _ _andw(q)® at T=0.47. The simulation results for the triple correla-
FIG. 12. Comparison of the monomer-CM intermolecular pair-jong are not smoothed. The lower statistical accuracsst, q, q)
correlation functiorh, c(q) determined from the simulation data at compared ta5(q)? is clearly visible, especially at large
T=0.47 fora=1 anda=5 (circley and from the PRISM theorjEq. '

(41), solid lineg. The data forh; «(q) are shifted vertically for | . . )
clarity. ’ tion for the triple correlation of the polymers, the amplitude

of the oscillations being slightly underestimated, however.
@ N Forg= 20, S5(q,q,q) is equally well represented by the con-
_ Wm,clq volution approximation, expect for a sharp dip g¢=6.3,
Pac(@) = w(q)? [EWaX(Q)} h(@. (41) revealing some anticorrelation at thijsvalue. Forqg= 20 the
interpretation of the data is difficult due to the high noise
Figure 12 illustrates that E@41) is in good agreement with |evel. In this region, we find tha®;(q,q,q) is systematically
the Simulatipn data. ThlS allows two conclusions: First, Fig.|arger thanS(q)3 and even Stays above unity, the theoretical
12 emphasizes again that the structural properties of oygrge q limit of both quantities. This difference must be at-
model may be understood in terms of the site-independentipyted to insufficient statistic§37]. Despite this proviso,
mterch_aln direct correlation function and _sﬁe_-dependent INthe convolution approximation represents a fairly good de-
trachain structure factors. Second, the finding that(d)  scription of the three-monomer correlations for the choice of
does not depend on temperature for our meéed. 1) may  wave vectorgq,q,q).
be explained by the same argument put forwardSg). It In order to investigate the angular dependence of the
is related to the intrachain contributiam, c/w(q) which is  triple correlations we follow a suggestion made in R&6).
independent of and suppresses the tempgrature dependencgle determineS; andw; for the triple of moduli[q,k=q,p
of h(g) for wave vectors aroundy,a, (see Fig. 10 =gy2(1-cosg)], i.e., for isosceles triangles with two sides
of lengthq enclosing an angle [Eq. (23)].

Figure 14 shows the simulation results and the convolu-
tion approximation as a function of cagsfor variousq cor-
responding to maxima and minima positions of the three

Recently, triple correlations in simple and network glass-point structure factorgcf. Fig. 13. As found before, the
forming liquids have been investigatg@0]. This study agreement betweem; and the convolution approximation is
shows that, while the convolution approximatiflaq. (24)  very good, except aj=24.9 where the approximation yields
with c;=0] is very good for simple liquids, it fails to provide oscillations that are absentiw. Similarly for mostq values,
an accurate description of the cage structure in silica. AS; and its convolution approximation are fairly close to one
silica is a network-forming liquid, nearest-neighbor bondsanother. Barringy=24.9, for which the quality of the com-
make an important contribution to the local structure in theparison is hard to judge due to the noiseSy noticeable
liquid. This is similar to the chain connectivity in a polymer deviations are obtained for wave vectors close|tg,. This
melt. So, we investigate the importance of triple correlationgnight suggest that the cage structure in the cold melt im-
for our model by comparing the three-monomer structureposes triple correlations which are different than those pre-
factor with its convolution approximation for selected sub-dicted by the convolution approximation. To test this conjec-
sets of(q,k,p). ture the statistics of the data should be improved

Figure 13 presents the three-monomer structure factor gfonsiderably, which is currently hard to achig3].
the melt $3(q,q9,9) and of the chainsw;(q,q,q) for the
choice that the three vectogs k, andp form an equilateral
triangle characterized by the length of its sgléVe find that We explored static properties of a supercooled, nonen-
the convolution approximation provides a very good descriptangled polymer melt consisting of flexible chains. The tem-

V. RESULTS ON THREE-PARTICLE CORRELATION
FUNCTIONS

VI. SUMMARY AND CONCLUSIONS
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bution h(q) (Fig. 4). Thus, the sluggish dynamics of our
model is driven by the nearest neighbors that are not directly
bonded to each other. In this respect, our polymer melt cor-
responds to a simple glass-forming liquid.

Another result supports this correspondence. The convo-
lution approximation which factorizes the three-particle
structure factorsS;(q,k,p) in the productS(q)S(k)S(p) is
generally invoked in the mode-coupling theory for the glass
transition. Several studies show that this approximation is
well justified for simple glass formerg0,54, but not for
structurally more complicated ones, suchaatho-terphenyl
[17] or silica [20]. In our model we find, analogously to
simple liquids, that the convolution approximation works
quite well, except forS;(q,k,p) at intermediateg (close to
o 0 Omax and for certain angles between the wave vectbig.
o7 ol 14). To what extent these deviations could be important in a
-1-05 0 05 1-1-05 0 05 1 mode-coupling calculation is hard to estimate quantitatively

cose cose (due the lack of sufficient statisti¢87]).
R The analysis of the monomer-resolved structure factors

FIG. 14. ws[q,q,p=qy2(1-cosg)] (top and Sa.4.P  shows that the intrachain contributiony,(q) depends, to a
=(0y2(1-cosg)] (bottom) vs cose for some selected values at very good approximation, only on the distantee-b| be-
T=0.47. The simulation data far; and S; are represented by thin tween the monomer@, b) :ellong the backbone. Thus. chain
lines, the convolution approximaticiieq. (24) with cs=0] by thick end effects are not \;er important for the i.ntram(’)IecuIar
lines. Note that the data f&;(q) atq=7.1 are rescaled by a factor y P . .
of 0.1, structure of our model. On the othgr hand, the interchain
structure factorh,,(q) depends explicitly on the monomer
pair (a,b). The site dependence bf(q) and ofh, c(q) may

peratures studied range from the highnormal liquid state : X :
of the melt to the supercooled state close to, but above th%e explained by PRISM theory which assumes that the direct

- o correlation function is independent of the monomer index
>T,). . : L :
critical temperature of MCTT.>T,). Our analysis utilizes (Figs. 8 and 12 By calculating the site-site and site-

vari r re f rs char rizin ial correlation - . : . .
arious structure factors characte g spatial correlatio Szalveraged direct correlation functions we test this assumption

T ronemas s e oo e Gt o veriy tht i represents 2 good approxmaes &
' ' his shows that the structural properties of our model, even

main findings of o.u_r.work may be_ summarized as follows: subtle monomer-monomer and monomer-CM correlations
bor?dugrfoléhc?rftlgi(slitglrgl Ol;igﬁtd’:ﬁg;‘rségn?‘g;ngct)%?é?.’rrc])o- may be calculated from the site-averaged interchain direct
" gie. i ”p h)a d lina. Th P p” .correlation function and the site-dependent intrachain struc-
ter lehs _remtaln tessefn '? y tm)c an(ge) ondcoo |(n§] lufj' Al Miure factors, both of which are determined in the simulation.
racdaln struc ukrle ar:_ og g S"Vag D gnl Wa,cld) ONY A€~ A similar agreement between PRISM theory and computer
pend very weakly off ( gs. 3, b, an i . . simulations of coarse-grained polymer models was also
How_ever, not_only _the m_tracham, but also the InterCha'nfound in other studiept5,51,55,56 In a forthcoming article,
correlation functions involving the CMa:(a) and h, c(q), we will exploit the results of the present work to propose and

are (@lmos) independent off (Figs. 9 and 11 We explain  taqt 5 mode-coupling theory for the dynamics of our super-
this finding by PRISM theory which relat&s(q) andh, () cooled polymer r%eltg.] y y P

to the intrachain structure by a term containing c/w(Q).
This ratio is (almos) independent ofT (Fig. 10 and sup-
presses the temperature dependence of the interchain corre- ACKNOWLEDGMENTS
lations on the local scale of the nearest-neighbor shells.
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FIG. 15. Direct correlation functions W at T=0.47. The cor-
relation functionscy, (@), ¢m cm(a), andcep cm(@) are calculated FIG. 16. Average monomer-CM static structure facsyc(q)
from Eq. (A8). The results of this calculation are numerically reli- [Eq. (21)] vs g. The solid line represents the simulation results at
able for q=1 [57]. Additionally, the figure shows the monomer- T=0.47. The dashed line is the PRISM predicti&f ¢ "(q)
monomer direct correlatioo(q) given by Eq.(33) and the CM-CM  =w,, <(q)S(q)/w(q), where the right-hand side was calculated from
direct correlation functiort(q) defined fromS:(q) by pcc(g)=1 the simulation. Although the simulates, o(q) is fairly noisy, the
-1/S(q). The monomer-monomer direct correlation functions comparison still suggests that there are systematic deviations be-
Cm.m(@) andc(q) are indistinguishable from one anothéor q=1 tween S, c(q) and ﬁ'?(';s“"(q) for q=6.5. These deviations come
[57]). Forg— 0, pmc(g) andpcc(q) tend to the limitsee Eqs(32) from the assumption of EqA9): the direct correlation functions
and (38)]: Npnc(q—0)=1-N/kgTpmxt=pcc(q—0) (=-840 for involving the CM become truly 0 only foq=6.5. The deviations

T=0.47). might be responsible for the differences found between the simu-
latedS-(q) and Eq.(A10) atg= 3 [see Fig. 9; we could not test this
APPENDIX: PRISM APPROXIMATION EOR THE hypothesis due to insufficient statistics & o(q)]. However, they
STRUCTURE FACTOR OF THE CHAIN'S CENTER do not appear to hamper the good agreement between the simula-
OF MASS tion results and the PRISM predictions in Figs. 9 and 12.

The recent work by Krakoviackt al. [51] uses PRISM 1

theory to calculate the CM structure fac®(q) from mono- Shm \TNSN,CM

mer correlation functions. This approach was found to com- S= ) (A4)

pare well with simulation data afong) chains in semidilute iSn S

solution. For polymer melts Krakoviaak al. did not test the \s“N oM M.CM

theory and even mention the caveat that the correlation be- . ) L N . .,
tween the CM and the monomers could be different. Heret€re, the indices “m,m”, “m,CM”, and “CM,CM” denote
we suggest that their theory also yields a reasonable approX?€ monomer-monomer, monomer-CM, and CM-CM corre-
mation of Sx(q) for polymer melts. In the following, we lations, respectively. By definition, all matrices are symmet-
sketch the main ideas of the approach of RBt] and test "C: V_\ll_th the notation of Sec. Il B we have the following
the basic assumptions against our simulation results. identities

The starting point of Ref{51] consists in introducing the hy = h,
center of mass as an additional, noninteracting site. This step ’
generalizes the functiorts ¢, w, andS [Egs.(13)—(15) and
(33) to 2X 2 matrices

hm,CM = hm,c, hCM,CM =hg,

Wi m=W, Wpncem=Wne Wemem=1, (A5)

Sam=S Shem=Sho Smeom =

—
:( Ehm'm \th'C'V') (A1)  The matrices of correlation functions are related to each
VNhnow  Newmem /° other by Eqs(30) and(35), i.e.,
pe(q) =w(q) - S7Ha), (AB)
Cz( Nenm \'\"‘mcm), 2 h(g) = w(g)c(q)[w(a) + ph(c)]. (A7)
WNGnem  Comem Using Eq.(A5) we find from Eq.(A6)
N S 1
v Lo T W-whdN S-S NS
m,m [ im,
: N
w=f o : (A3) o o TWme Shn.c A8)
mwm,CM Wem,cm PrmCm.cm w-w2 N SS- IN’
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1 1 (much larger than the other components @f at least for
PCcm,em = - . =1 [57]. Thus, Eq.(A9) appears to be a reasonable ap-
1 _Wﬁ"CI(NW) Se- Sz“'cl(NS) groxir’gaZi]on for ourqm(odél ir??hq range, wherex-(q) sub- P
stantially deviates from its smadjdimit, Eq. (38) (for a more
precise test see Fig. 16
Note thatp,=Np [Eq. (3)]. In Ref.[51] it is assumed that Inserting Eq.(A9)'into the Ornstein-Zernike equation for
h [Eg. (A7)] and using Eqs(A5) and (13) we recover Eq.
(33) for ¢y (@) [=c(q)]. Furthermore, if we insert EGA9)
into Eq. (A8), we obtain the relatiorg, c=w,, S/w (for a

c =0, ¢ =c =0, A9 test see Fig. 16from the second and the third line of Eqg.
cM.CM CM.m ™ m M (A9) (A8). Using this relation and Eq33) in the first line of Eq.
(A8) we find
. . L 1 Wy (@)
and onlyc,, ,# 0 is retained. This implies that the centers of Se(@) =1 +—=—"===—[S(q) -w(q)]
mass interact neither with each other nor with the monomers. (@
To test the validity of this assumption we calculated the 1w, «(0)?
right-hand side of Eq(A8) from the simulation data and = +NWth(Q). (A10)

checked whether the direct correlation functions involving
the CM are small compared g, . Figure 15 shows that the i.e., Eq.(37). Equation(A10) is the central result obtained in
monomer-monomer direct correlation function is indeedRef.[51] [see Eq(16) of Ref. [51]].
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