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This article investigates, by means of Lie point symmetries, traveling wave solutions to a dynamic equation
that frequently arises in the theory of ferroelectric sme€tiliquid crystals under the influence of an electric
field. The equation considered has three sinusoidal nonlinearities and possible time-dependent solutions are
discussed in the context of minima and maxima of the electric energy density for these liquid crystals: solutions
travel between such constant equilibrium states. Implicit solutions to an approximation of the governing
dynamic equation are determined. Nondimensional control parameters that characterize changes in the avail-
ability of equilibrium states as the magnitude of the field increases are also identified.
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I. INTRODUCTION II. DESCRIPTION OF THE PROBLEM

Traveling wave phenomena and “solitonlike” behavior
arise frequently in the liquid crystal literature. There has Liquid crystals are anisotropic fluids consisting of elon-
been much interest recently in the construction of travelingyated molecules for which the long molecular axes locally
wave solutions to problems that arise in the switching prozgopt one common direction in space described by the unit
cesses of smectic-(SmC) and chiral ferroelectric smectic-  yactorn, called the director. It is assumed thmand - are
(SmC*) liquid crystals, especially those problems related toypyicajly indistinguishable, which leads to certain invari-
high speed flat panel display technology. A general introducz e properties in the energetic description of liquid crystals.
tion to these topics may be found in the books by Lam andsy |iquid crystals are layered structures in which the di-
Prost[1], de Gennes and Prog], Lagerwall[3] and Stewart  octorn s, in the isothermal situation, tilted at a constant
[4]. The possibility of exploiting solitonlike effects in the angle @ to the normal of equally spaced layers as shown in
switching dynamics of S@" liquid crystals was first raised riq 1(a), the unit normal to the smectic layers being denoted
by Clark and LagerwalﬂS_] and has been e>.<ter!sively studied by the vectora. Following de Gennes and Progd], it is
by many other authors in relation to applications: some rel.ommon practice to introduce the unit orthogonal projection
evant references will be mentioned below at appropriatg of 4 onto the smectic planes;is always perpendicular to
stages. It is the aim of this article to present some travelinghe smectic layer normal. The orientation mfcan be de-
wave solutions to a dynamic equatififq. (2.1)] which has  q,ceq from the orientation af andc, as can be seen from
been employed in the literature for describing the behavior ofy,q description provided in Fig.(t) where it is evident that
switching in SnC* liquid crystals[6—8] and to give a gen-
eral discussion of the relevant electric energy density and its
maxima and minima. A description of this governing equa-
tion and a brief study of the electric energy are given in Secs!
[l and 1ll, respectively. Section 1V investigates solutions via
Lie point symmetries and presents some traveling wave so
lutions in implicit form. The key equation developed below LL L L LS
incorporates, as a special case, a well-known dynamic eque
tion which possesses an exact traveling wave solution; this
special solutiorjgiven by Eq.(2.13), or, equivalently, by Eq.
(4.14) below] has previously been studied extensivédge,
for example [9-14)) and will be derived in a novel way via £ 1 () smc* liquid crystals form parallel layers with the
Lie point symmetries in Sec. IV B. It will form the starting irector tilted at a constant angteto the unit layer normaé. (b)
point for the derivation of traveling wave solutions t0 an the mathematical description of the orientation of the direntés
approximation of the more general equation to be discussegtcomplished by introducing the unit orthogonal projecionf n
in Secs. IV C and IV D. Implicit traveling wave solutions are onto the local smectic planes. The orientation angjief c allows a
determined in Sec. IV C for such an approximation to thecomplete description of the director alignment via the relatia).
general equation and two examples are calculated and pr&he spontaneous polarization, which is characteristic 0€Sris
sented in Sec. IV D. The article closes with a short discusdenoted byP,b whereb=aX c. (c) An electric fieldE is applied at
sion in Sec. V. a constant angler=0 relative to the smectic layers as shown.

Lﬂ*

NN

NINNININ
NINNNT
NINNNN
ANAENAENANAN
NN\

1539-3755/2004/68)/0617149)/$22.50 69 061714-1 ©2004 The American Physical Society



I. W. STEWART AND E. MOMONIAT PHYSICAL REVIEW EG69, 061714(2004

n=acosf+csiné. (2.1 . 1 o

Wejec= PoE COSa sin ¢ — EGOEaE (sina cosé
When a is fixed, as it will be here, then knowledge of the

orientation anglep of the vectorc, as depicted in Fig. (b), + cosa sin  cos¢)”. (2.9
leads to a complete understanding of the orientatiom of
through the above relation. $h liquid crystals have, in
addition to the aforementioned properties, an inherent spo
taneous polarizatio® satisfying, according to the conven-
tion for positive polarizationP=Pob where Py>0 is its b _Pb  Meec

magnitude andb is defined to be the unit vector 2"55 = we W (2.10
aXc. A description for positive spontaneous polarisation is

shown in Fig. 1b). The sign of® may actually be positive or which leads to the governing equation

negative and depends on the particular material; this leads to

When the influence of flow is neglected and the smectic elas-
tic constantsB; and B, are set equal t®>0, the dynamic
rla'quation for the orientation anglg is given by

the convention of calling positive if P=Pgb and negative if 2)\5‘?—(ZS = B&Z—‘f - PoE cosa cos¢

P=-Pgb. We shall be able to discuss both cases. The equa- ot X

tion discussed below can be derived from the nonlinear dy- — €pe,E2 cosa sin & cosé sin Asin ¢
namic continuum theory for S@liquid crystals introduced 5 ] .

by Leslieet al. [15,16. This theory can be extended to in- - €€E? coS asir? fsing cosg.  (2.11)

clude SnC* liquid crystals by incorporating a suitable elastic p rigorous derivation of this equation may be obtained by

energy density, as discussed by Carlssoal. [17].*A'sum- calculations similar to those presented elsewliiérgd. The
mary of this continuum theory for Sthand SnC* liquid  qefficientas>0 is a rotational viscosity related to the rota-
crystals may be found in the book by Stew@] or the o of the directom around a fictitious cone as shown in

review article by Leslie[18], while more detailed general pig 1) we are concerned with finding possible traveling

properties of smectic liquid crystals may be found23].  \yaye solutions to this equation. The general form of this
Consider a sample of SBf liquid crystal in the planar  oqation with sinusoidal nonlinearities ih appears in vari-

layer arrangement of Fig.(@ under the application of an 4,5 models: only the constant coefficients change in accor-

externally applied electric fiel& as shown in Fig. ®). The  454ce with the corresponding modé-8). The general case
electric field is tilted by a fixed constant angtewith respect |yl be considered below in Sec. IV.

to the plane of the layers and is oriented in tkeplane.

From Figs. 1b) and Xc) it follows that we can set
A. special case

a=(0,0,1, (2.2 Whena=0, Eq.(2.11) reduces to
_ - 9% _pP¢ 262 i
¢ = (cos¢(x,t),sin p(x,1),0), (2.3 2\s - B pv PoE cos¢ — eye, E2 sir? 6sin ¢p cos .
b= (- sin $(x,0),c0s$(x,D),0), (2.4 (212
This special case arises when considering the switching of
P=P.b 2.5 SmC* liquid crystals wherep will change from one constant
— oV, .

state, sayp,, to another,¢,, as time progresses. There is a
well-known traveling wave solution to Eq2.12 when
E = E(cosa,0,sina), (2.6) €,<<0 which can be obtained from the solution presented in
Refs.[4,9-11,13,19(for example, by redefining the constant
where the dependence of the orientation arfjigponx and  coefficients and making the substitutigh— 7/2-¢). It is
t only is supposed ané& is the magnitude of the electric given explicitly by

field. These vectors satisfy the four constraints of smectic-
continuum theonf15], namely, B(x,t) = K tan—l[exp{ \/E(xi Vt)H (2.13
il 2 B 1

.= .C= .C= X =0. . . .
a-a=1,c-c=1,a.¢c=0,Vxa=0 @7 where 8 and the wave speedare defined by, respectively,
The total electric energy density is given [B-4] IPE| [B

B= &€ |E? sir? 6, vz /=
2\ VB

noting thate,=—|e,| whene,<0. In the solution(2.13, the
plus sign is taken wheiPoE>0 and the negative sign is
where €=8.854x1012F m™® is the permittivity of free taken whenP,E<0. Changing the sign d?.E is equivalent
space and;, is the(unitless dielectric anisotropy, which can to reversing the sign of the electric field. One observes that
be positive or negative. Substituting the appropriate quantireversing the sign of the electric field then reverses the di-
ties from Eq.(2.1) to Eq.(2.6) into wec Shows that we have rection of the velocity of the traveling wave. Further, for this

: (2.19
1
Welec=—P-E - Efofa(n : E)Z: (2.8
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15 ) - ] ~Wgiec fOr a<<0 (which then has the same sign as
Lof Weied, defined in Eq.(3.4), as a function ofeé

g% g051 when b=0 for various values of the dimension-

Iz 00 1'% oo} less parametea. Decreasing the magnitude af

05 / st - corresponds to increasing the magnitude of the

12 ] 12 [ vy /] electric fieldE. The number of equilibria changes

20 I o W] from two to four as the m%gnitude afdecreases

25 asf eI AN trr:rough the critical valudag|=2, as discussed in

20 0] i . . . . - the text.

¢ (radians) ¢ (radians)

solution, it is seen that fdP(E>0, ¢— +7/2 ast——-o and ¢, =-2, §=22°, a=5°, Py=80uC m2 E=30V um™?,
¢——ml2 ast— +oo. This represents a reorientation of (3.5
through 7 radians. The availability of these particular con- '
stant states between which the solution travels can be idefye ohtain the approximate values
tified from a consideration of the electric energy density, as

has been discussed by Steweiral. [19] in the case of SB a=-2.154,b=0.217, (3.6)
liquid crystals under the influence of a tilted electric field. In

[19, Eq.(2,10], the governing dynamic equation is identical and so it is expected that in genebek |a| for applied fields
in form to Eq.(2.1)) if Py is set to zero an@ is replaced by  with a small tilt «, especially so for smaller magnitude fields
the elastic constarB;. It is therefore worthwhile to investi- wherea is large. Clearlyp decreases to zero asdecreases
gate the features of the electric energy density which yieldo zero.

the electrical contributions to E@2.11). Figure 2 shows the main features wf,. when b=0,
which corresponds to the special case0 discussed in Sec.
IIl. THE ELECTRIC ENERGY Il. The left and right graphs show the situation #or 0 and

a<0, respectively; fom<0 we have plotted W SO that
To facilitate a qualitative discussion of this energy densityw,,.. has the same sign as the graphs shown in Kig. [2f.
and a simplification of the dynamic equati¢hl1l) in such a Eq.(3.3)]. These graphs arem2periodic. In both graphs it is
way that it can be related more easily to the general resultsvident that asa| decreases, the functiom,. changes from
already available in the literature, it proves convenient tchaving one maximum and one minimum to having two

introduce the dimensionless parameters maxima and two minima whenevi is below some critical
) 1 magnitude, that is, whenevéE| is sufficiently large. When
a= 2P(€o&,E cosasin’ ), (3.-D  p=0 this critical value can be identified by differentiating
Weiec and seeking the equilibrium points: it is straightforward
b=tana coté. (3.2 to find that the critical value is given g% =2. Notice that
. . in Fig. 2A@) the local maximum atp=7/2 remains a maxi-
We can then write the electric energy dens@yd) as mum as aa>0 decreases but that the local minimumdat
1 =27 becomes a local maximum as two other minima are
2 2 g ; . : . ;
Welec= EEOEOE cog a Sinf Migjee (3.3 introduced; for a given small fixed value af the energies of

the two maxima always differ while the two minima have
equal energy. There is an analogous situationaferQ de-
picted in Fig. 2b). These maxima and minima represent the
Weiee= aSin ¢ — (b + cose)?. (3.4  equilibrium states for the electric energy density and travel-
ing wave solutions are known to connect such states. For
Reversing the sign of the electric field is equivalent to changexample, the solutio2.13) for b=0 connects the equilibria
ing the sign ofa. Also, it is seen that changing the signsepf  at ¢=-m/2 and¢=7/2 and can be identified by considering
and E simultaneously is equivalent to changing the sign ofFig. 2.
Weiec and therefore all possible situations can be classified The graphs in Fig. 3 showy for b=0.217, motivated
qualitatively by consideringvgiec by the data which yield the results in E(.6). For large
From physical considerations it is only necessary to confixed values ofa>0, only one maximum and one minimum
siderb=0 because it has been supposed thaet@<7/2 in Fig. 3a) appear, as before in Fig(&. Further, aa>0
and O< a<w/2. The parametep is a measure of the tilt of decreases in Fig.(8), the local minimum retains its charac-
the field, whilea can take positive or negative values and ister but occurs at an increasing value@fas shown. At the
a measure of the ratio of the spontaneous polarizd®pto ~ same time, another local minimum and a local maximum are
the magnitude of the electric fiel#; |a| decreases alE| introduced for sufficiently small, but, unlike the case in
increases. For the typical estimates Fig. 2a), all the local minima and maxima have different

where the dimensionless quantiti,.. is defined by
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FIG. 3. (8) Wgiec for a>0 and(b) —Wg. for
a<0 for various values o& as a function of¢
when b=0.217. These values are motivated by
the example in Eq93.5) and(3.6).

¢ (radians)

¢ (radians)

energies for a given fixed value af The analogous situation
for a<0 is shown in Fig. &) where, for the reason men-
tioned previously for Fig. @), we have plotted W, SO0 that
the graph has the same signvag.. For a given value ob,

it is evident therefore that there exists a critical valueaof
(generally found by examining the derivative wf.. and

that are already available in the literature. An application of
Lie point symmetries will then be made for the special case
when the tilt of the electric fieldr is zero, equivalent td

=0. This method will, first, reproduce the nondimensional
version of the solution2.13 to Eg. (2.12 and, secondly,
will enable us to generate solutions to Eg8.11) for small

obtaining the equilibrium points by numerical means for ay+ o by considering the general equatioh4) below as a

given set of parameter valueghich influences the occur-
rence of maxima and minima. In general, fal> |ay|, Wgjec

defined by EQ.(3.4 only possesses two real equilibria,

whereas forla] <|a.| four real equilibria occuxall modulo

27 of course. Figure 4a) demonstrates this situation for the

typical parameteb=0.217, which arose earlier at EG.6).

perturbation of Eq(4.5).

A. The nondimensional equation

For simplicity, it will be assumed tha¢, <0, which is
known to be the case for many &nliquid crystals. We can

The value ofa; in this case can be identified as approxi- then introduce the scaled variables

mately 1.021. A comparison with Fig(& shows this to be

the case: one local maximum and one local minimum occur
for a>a, while two local minima and two local maxima are
introduced fora<<a.. Figure 4b) shows the dependence of
a; uponb; in particular, it demonstrates that there are only

ever two equilibria for anyo=0 whenevem=2 (recall that
we earlier identifieda,=2 whena>0 andb=0). There are
four equilibria for values of andb corresponding to points

1
T= Zt(2)\5)‘1eo|ea| E2 cog a sir? 6,
(4.1)

1 .
X= EXB‘l’Z(eO|ea|E2 cog asir? §)2,

Noting, as above, that¢,=-|e,| for €,<0, Eq. (2.11) can

below the given curve and two equilibria for points above it.now be nondimensionalized to

IV. SOLUTIONS VIA LIE POINT SYMMETRIES
We begin by transforming Eq2.11) into a nondimen-

d1= dyx+ 2acosp+4bsing +2sin2¢), (4.2

where subscripts denote partial differentiation with respect to

sional form in order to relate the general equation to resultshe indicated variables. Making the further transformation

25

25

@ ®)
20F 204+ B
15F 15} -

a a

Lo kerereneeeenns ol J
0S| os| 4

a, = 1021
00 L L 00 i

0 2 4 00 02 0.4 0.6 0.8 1.0
¢ (radians) b

FIG. 4. (a) The equilibria ofwge.defined by Eq(3.4) asa decreases to zero for the particular valuds0.217. Similar graphs arise for
other values ob between 0 and 1. The dotted line represents a critical valee given approximately by.=1.021. Fora>a, only two
real equilibria occur, while foa<<a. four real equilibria become available. A direct comparison with the results in Fyis3possible(b)

A general plot of howa, depends upob. wg.. has four equilibria for values af andb corresponding to points below the given curve and

two equilibria for points above it.
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u(xX,T) = 2¢(X,T) — r, 4.3

4
finally delivers the nondimensional equation in a standard(

form as(cf. [13])

u u
Ur = Uyx — 4a sin(a) -4 sinu+8b co<§> . (4.9

B. Lie point symmetries

By considering Lie point symmetries of the partial differ-
ential equation

. [u .
U = Uyx — 4asin 5 -4 sinu, (4.5

which is the special case discussed previously wiref, it
can be showrisee Appendixthat Eq.(4.5) admits traveling
wave solutions of the form

u(X,T) =F(p), p=X+uT. (4.6)

Substituting Eq.(4.6) into Eq. (4.5 we obtain the second-
order ordinary differential equation

F dF d°F
4[asin(§>+sin(F)] +vd_p_$_0' 4.7
Equation(4.7) admits a Lie point symmetry
Y =4, (4.9
Therefore we can make the substitutions
dK
F'(p) =K(F), F"(p) =K—= (4.9

dF’

The second-order ordinary differential equatidr’) reduces
to the first-order ordinary differential equation

4[asin(§) + sin(F)] + K(v - 3—I;>

Equation(4.10) is an Abel equation of the second kind. From
results contained in Polyanin and Zaitsg0], Eq. (4.10
admits a particular solution of the form

0.

(4.10

K(F)=%4 sin(g), v=ta. (4.11

Therefore, we can determirfgp) by solving the first-order
ordinary differential equation

Ol—F+4sir»(E)—0 =z*a (4.12
dp + 5 =0,v=+%*a. .
This ordinary differential equation has a solution

F(p) =4 arctafexd 7 2(c+p)l}, v=%a, (4.13

wherec is a constant of integration. The soluti¢g#.13) is

widely known and has been obtained by various other meth-

ods, as has been discussed by, among others, Sadtilkdr
[9], Cladis and van Saarlo40] and Maclennaret al. [11].
A Painlevé analysis by Stewalt3] also recovered this so-

PHYSICAL REVIEW E 69, 061714(2004)

lution as a special case in a quite general context. Equation
.13 can be rewritten in the original variables as

u(X,T) =4 arctaexd ¥ 2(X+ovT +¢)]}, v = ta.
(4.149

1. Remark

Notice that 4(X,T) are solutions to Eq4.5) for which-
ever value ofv is adopted and that, by Eq&.14 (first
equation, (3.1) and(4.1), whene,<0 we have

2(X—-aT) = \/§<X+ZL)\E\/%'[).
5

The explicit solution(2.13) to Eq.(2.12 can then be recov-
ered from the result in Eq4.14) by settingc=0, v=-a and
considering the solution

4 arctanfexg 2(X - aT)]}, (4.16)

under the transformatio(.3). It is clear in this case that
—0 asX— - andu— —27 as X—; this corresponds to
the solutiong in Eq. (2.13 traveling between the equilib-
rium statesr/2 and -r/2, as mentioned towards the end of
Sec. Il

(4.15

u

C. The perturbed equation

Given the form ofb defined by Eq(3.2), and that it is
generally expected to be much smaller thauit is natural to
search for possible traveling wave solutions to E4.4)
whenb<1. This can be accomplished by considering a per-
turbation of Eq.(4.5 of the form

. (U . u
uT=uXX—4aS|n<5> —4smu+ecos(5>, e<1,

(4.17)

where we have setlB= e for notational convenience. We
look for traveling wave solutions of the fori.6) admitted
by Eq. (4.17). Substituting Eq(4.6) into Eqg. (4.17) we ob-
tain

deZO.

(4.18

Equation (4.18 admits the Lie point symmetry generator
(4.8). Hence we can make the substitutiqds9) to obtain

45) a5+ omer oo~ )
- €CO > +4| asin > +sin(F) | +K v_dF

Equation(4.19 is again an Abel equation of the second kind.
We look for solutions of the form

K(F) =Ky(F) + eK4(F). (4.20

Substituting Eq(4.20) into Eq.(4.19 and separating by co-
efficients ofe we obtain the system

v— —

- cos(E) + 4asin(E) +4 sinF) +
"™ 2 2 dp

0.

(4.19

061714-5
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FIG. 5. Examples of approximate solutions to
Eqg. (4.17 for the indicated values of=8b.
These special cases arise from the general solu-

tion (4.29 whenv=+a with ¢,=0. (a) The solu-
tion for a=6 in Eq.(4.30, which corresponds to
a “low field” regime(a is greater than the maxi-
mum possible for all b= 0) and(b) the case for
a=1in Eq.(4.3) for a “high field” regime where
a and the values db always lie below the curve
a. shown in Fig. 4b).

6F £§=00,5=0.0 6F 6=00,6=00
—--g=01,b=00125[  |(b) =¥, |- 6=0.1,5=00125
---------- &£=02,b=0.0250 e 6= 02, b=0.0250
5k ———5=03,b=0.0375 5t ——5=03,b=00375
———g=04,b=00500] |} o\ |— 6=0.4,b=00500
_ 4k ——-s=05,b=00625 | __ ,| ——— §=0.5,b=00625
2 8
S .‘_é’
g
3k 3F
g &
R, Al -\ 1 & AL
L w J 1} J
20 15 -10 05 00 05 10 15 20 20 -5 -10 -05 00 05 10 15
p p
F dKy
4[asm(§ +sin(F) | + Ky(F) U—F =0, (4.21)

—c05<E>+K< —d—K> KdK =0 (4.22
2) T N\Y T gE ) T Mg T '

From Eg.(4.11) we have that Eq(4.21) admits the solution

Ko(F)=%4 sir(%), v =*a.

Substituting Eq(4.23) into Eq.(4.22) we obtain a first-order
ordinary differential equation foK,(F), namely,

+4sin -|——+|a+2cos - ||K;—cog =
2) dF 2 2

We can solve Eqg4.24) in terms of an integrating factor and
obtain

o] ot
ot o))" ot

(4.29

where ¢y is an integration constant. From Egg.9) and
(4.20), to determindg=(p) we must finally solve

(4.23

0.

(4.24)

dF
— =Kq(F) + eK4(F). (4.26)
dp
Equation(4.26) simplifies to
dF
——— = | dp. 4.2
J Ko(F) + eKy(F) f P (4.2
Sincee<1, we can approximate the res@it27) to
dF f K1(F) f
-€ dF=| dp. (4.28
f KoF) ) Ko(FP? P

20

Forv=%a we then have the corresponding implicit solutions
for F given by

5] okt ol
e [l )] ool o= c.

(4.29

wherec; is a constant of integration. In conjunction with Eq.
(4.6), Eq. (4.29 represents an implicit solution far(X,T).
Notice that this solution reduces to that stated in @qgl3

when €=0. Further, the logarithmic term in the solution
(4.29 will diverge more slowly than the contribution that
involves e as F approaches &; the approximate solution
therefore becomes less accurate as a suitable model near the
F=2= regime; this behavior is apparent in the examples
shown in Fig. 5.

D. Examples

To demonstrate some qualitative solutions, we can spe-
cialize to the case aof=+a with a>0 and consider the so-
lution (4.29 for some small values oft8= e>0. Recall that
for a>2 [cf. Fig. 4b)] there are only ever two real equilibria
for wyee TO ease calculations, we choose to look at the cases
a=6 anda=1, setcy=0 and put the lower and upper limits of
the integral with respect teappearing in Eq4.29 to 0 and
r respectively; this integral is then always finite far-0.

For simplicity, the arbitrary constard; can be chosen as
zero. The choices fo¢ used in the plots of solutions in Fig.

5 have some physical relevance: for example, for a typical
smectic cone angle of 22b, varying from 0 to 0.0625 cor-
responds, via Eq3.2), to the tilt of the electric field varying
from zero to around 14.3°. For valueslof- 1 the perturbed
solution, despite being available, can be considered as no
longer ideal for gaining insight into the behavior of the prob-
lem because Eq4.29 has been constructed under the as-
sumption thate<<1.

061714-6



TRAVELING WAVES IN FERROELECTRIC SMECTIGC=... PHYSICAL REVIEW E 69, 061714(2004)

1. Example 1: &6 0.30 ——

The solution whera=6 is obtained from Eq(4.29) as 0.25 [

o)

[

. . , 015F | -
€ T S S L !
-— sm(—)} f {tar(—)] cos(—)dsdr= p, )
512 4 0 4 2 o.10} | 4
(4.30 oos|. | 1
recalling thatp=X+aT here. The resulting solutions are 0.00. N NI NETTENETES SRR I
shown in Fig. %a) for a selection of positive values fa, 15 20 25 30 35 40 45 50 55 6.
with e=0 corresponding to the solutio@.14) with v=+a ¢ (radians)

when the minus sign chosen in E@.14) (first equatioi.

Increasinge appears to have a similar effect to that of intro-  FIG. 6. Plots of the available constant equilibrium solutighs

ducing a phase shift to the solution. For6 andb=0, itis  for a=6 anda=1 corresponding to the examples in Egs30 and

clear from Fig. 4b) thata>a; and so only two real constant (4.31), respectively: recall thaF(p)=2¢—-a. There is a critical

equilibrium states are available. valueb,=0.225 whena=1 such that only two real equilibria occur
for b> b, [cf. Fig. 4a)].

2. Example 2: &1
In this case the solution from E®.29) is V. DISCUSSION

An insight has been gained into solutions of the dynamic

1 = € F =5/2 ) =712
-5l ta”(Z) - 5_12f COS(Z) S'”(Z) equation(2.11) for the orientation anglé(x,t) of the vector
¢ in SmC* liquid crystals under the application of an applied

1/2
Xf {tar<§>] C05(§>dsdr= p. (4.31) electric figld. K.nowledge obh alloyvs a complete _description
0 4 2 of the orientation of the usual liquid crystal director as
discussed in Sec. Il. In Sec. lll possible equilibrium solutions

Solutions for various values of are shown in Fig. &). for ¢, between which traveling waves may occur, were iden-
Similar to Fig. §a), ase increases there also appears to be arfified and discussed in relation to the nondimensional control
effect comparable to a phase shift of the solutiom=a. Itis  parametersa and b introduced via the relation€3.1) and
also clear that these solutions are attempting to travel from 3.2); these parameters reflect the influence of the electric
state larger than 2 to zero asp increases. Recall that field contributions and tilt of the field, respectively. The iden-
#(X,T) is equivalent to(F(p)+)/2, by the relationg4.3) tification of critical valuesa, and b, where the number of
and(4.6) and therefore the solutiog is attempting to travel possible equilibria fory changes from four to two asor b
between states that differ slightly from the state& and increases were discussed in Secs. Ill and IV D, typical quali-
%w: this behavior can be anticipated by considering theative results being displayed in Figs. 4 and 6.
qualitative features of a graph that will be similar in nature to  Lie point symmetries were investigated in Sec. IV, where
that displayed in Fig. @). Notice thata<a, whena=1 and  solutions to a novel nonlinear approximation to the nondi-
0=<=b=0.0625, as can be seen from Figby} which indi-  mensional form of the dynamic equati¢?11), given by Eq.
cates that four real constant equilibrium states are available4.4), were considered. This analysis revealed the implicit
These two examples above can further be interpreted igolutions(4.29 for small values ob, obtained by consider-
terms of the available equilibrium solutions in termsdobs  ing a perturbation of the special case where0, when an
indicated in Fig. 6, which shows the dependence of the equiexact traveling wave solution, given explicitly by Hd.14),
librium states uporb for a=1 anda=6. Fora=6 the equi- s available. The Lie point symmetries discussed in Sec. IV
libria for ¢ at w/2 and 3w, available wherb=0, both in-  enabled the analysis of the govering partial differential
crease ash increases; fora=1 the equilibrium ¢=m/2  equation to be reduced to that of an ordinary differential
increases Whileﬁzgw decreases ds increases above zero. equation which was much more tractable both analytically
Figure 6 should be compared with Fig. 4 whereather than and numerically. The point symmetries also revealed ¥hat
a, was held fixed. There is a critical vallg=0.225 when +vT is the required invariant to use in order to make this
a=1 for which there are only ever two real equilibrium statesreduction to an ordinary differential equation. Examples of
for b>Db,: this should be compared with the result in Fig. implicit solutions[special cases of E¢4.29)] for a=1 and
4(b). Consistent with the comments in the previous para-a=6 were discussed in Sec. IV D and plots of these solutions
graph and the indications in Fig. 5, the equilibrium stateswere given in Fig. 5 for various small values lnf Behavior
between which the solutions travel are shifting slightlybas similar to small phase shifts seems to occur in the numerical
increases from zero. plots of these examples.
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The stability properties for the traveling wave solutions T~ T+agi(T,X,u) X~ X+ aé(T,X,u)

derived here remain to be tackled. The casebfef can be
handled by the methods employed in a similar problem for
time-independent solutions discussed by Anderson and Stew-
art[21], which revealed the stability of nonconstant solutionswhich leave Eq.4.5) form invariant. The transformations
#(x) to an equation of the form2.12); the stability of con- (A1) form a group, where is the group parameter, if the

stant equilibrium states was also discussed by Anderson angtoup properties hold. The Lie point symmetry generator of
Stewart[22] when b=0 (see als0[23,24). Such methods the group(Al) is given by

may Yyield information, via eigenvalue problems, on how the . 5
stability is influenced by the control parametersand b Z=E(T,X,u)dr + E(T, X, u)dx + (T, X,u)d,, (A2)
through their contributions to the positivity of the first eigen- —aldT

value. Stability of the traveling wave solutigd.14) in the wheredr=9/dT, ..., and

(A1)
u=u+an(T,Xu)),

case wherb=0 has been investigated by Stewglr4] (note aT X

that ¢ in [14] is equivalent tog+ /2 in the above and that T Xu= — . BT Xu= — ,

the notation for the constant coefficients differBifferent da | a=0 da | a=o

types of behavior for small perturbations to the solution be- . (A3)
came evident via a spectral analysis which demonstrated that AT.XU) = au

monotonic or oscillatory decay of perturbations may be com- T da| =0

bined with a phase shift to the original traveling wave solu- . 1o )

tion, the possible occurrence of these phenomena being d&l€ functions&’, ¢ and, » are calculated by solving the
pendent upon, and selected by, a single nondimension&€termining equation found by acting the operatosn Eq.
control parameter. It is anticipated that a similar spectraf4-5 as indicated by
analysis may be feasible for the above implicit solutions u
when b# 0, and this is currently under investigation. The Z[UT—UXX+ 4asin<—> +4siru} =0. (A4
situation will be more complex than that discussedid] 2 (4.9

due to the presence of two control parameters rather thaEquation(A4) is separated by coefficients of derivatives of

one. u. The resulting system of linear equations can easily be
solved. Equation(4.5) admits Lie point symmetries of the
ACKNOWLEDGMENT form
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Foundation, South Africa, Grant No. 2053745.
These Lie point symmetry generators can easily be found
APPENDIX using computer algebra packagese, e.g., HeafB0], Sher-
) _ ) ) ) ring et al. [31], and Baumanii32]). The Lie point symmetry
In this appendix we briefly summarize the main featheSgenerators(AS) are indicative of Eq.(4.5) being autono-
of Lie point symmetries. The approach developed by(s&  mous. The Lie point symmetrigé\5) can be used to show

also Bluman and KumgR5], Ibragimov[26,27, Olver[28],  that Eq.(4.5) admits traveling wave solutions of the form
and Ovsianniko29]) gives a systematic way of determin-

ing infinitesimal point transformations uX,T)=F(p), p=X+oT. (AB)

[1] Solitons in Liquid Crystalsedited by L. Lam and J. Prost [8] J. E. Maclennan, Qi Jiang, and N. A. Clark, Phys. Re\6 E

(Springer-Verlag, New York, 1992 3904 (1995.
[2] P. G. de Gennes and J. ProBhe Physics of Liquid Crystals  [9] P. Schiller, G. Pelzl, and D. Demus, Lig. Cry&, 21 (1987).
2nd ed.(Clarendon, Oxford, 1993 [10] P. E. Cladis and W. van Saarloos,Solitons in Liquid Crystals
[3] S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid (Ref. [1]), pp. 110-150.
Crystals(Wiley-VCH, Weinheim, Germany, 1999 [11] J. E. Maclennan, N. A. Clark, and M. A. Handschy Saolitons

[4] I. W. Stewart,The Static and Dynamic Continuum Theory of in Liquid Crystals(Ref. [1]), pp. 151-190.
Liquid Crystals(Taylor and Francis, London and New York, [12] W. van Saarloos, M. van Hecke, and R. Holyst, Phys. Rev. E

2004). 52, 1773(1995.

[5] N. A. Clark and S. T. Lagerwall, Appl. Phys. Let86, 899 [13] I. W. Stewart, IMA J. Appl. Math.61, 47 (1998.
(1980. [14] I. W. Stewart, Phys. Rev. 57, 5626(19989.

[6] I. Abdulhalim, G. Moddel, and N. A. Clark, Appl. Phys. Lett. [15] F. M. Leslie, I. W. Stewart, and M. Nakagawa, Mol. Cryst. Liq.
60, 551(1992. Cryst. 198 443(1991).

[7] I. Abdulhalim, G. Moddel, and N. A. Clark, J. Appl. Phyg6, [16] F. M. Leslie, I. W. Stewart, T. Carlsson, and M. Nakagawa,
820(1994. Continuum Mech. Thermodyn3, 237 (1991).

061714-8



TRAVELING WAVES IN FERROELECTRIC SMECTIGC=...

[17] T. Carlsson, I. W. Stewart, and F. M. Leslie, J. Phys25,
2371(1992.

[18] F. M. Leslie, inAdvances in the Flow and Rheology of Non-
Newtonian Fluids, Part Aedited by D. A. Siginer, D. De Kee,
and R. P. ChhabréElsevier, Amsterdam, 1999pp. 591-611.

[19] I. W. Stewart, T. Carlsson, and F. M. Leslie, Phys. ReV%
2130(1994).

[20] A. D. Polyanin and V. F. Zaitse\Exact Solutions for Ordinary
Differential Equationg CRC Press, Boca Raton, 1995

[21] D. A. Anderson and |. W. Stewart, Int. J. Eng. S89, 1191

(2001).

[22] D. A. Anderson and |. W. Stewart, Phys. Rev. @, 5043
(2000.

[23] T. Carlsson, I. W. Stewart, and F. M. Leslie, Lig. Cry8t.661
(1991).

[24] M. Nakagawa, J. Phys. Soc. Jpb9, 81 (1990.
[25] G. W. Bluman and S. KumeiSymmetries and Differential

PHYSICAL REVIEW E 69, 061714(2004

Equations(Springer-Verlag, New York, 1989

[26] N. H. lbragimov, CRC Handbook of Lie Group Analysis of
Differential Equations Vol. ICRC Press Inc., Boca Raton, FL,
1994).

[27] N. H. Ibragimov, Elementary Lie Group Analysis and Ordi-
nary Differential EquationgJ. Wiley and Sons, Chichester,
1999.

[28] P. J. Olver,Applications of Lie Groups to Differential Equa-
tions (Springer-Verlag, New York, 1986

[29] L. V. Ovsiannikov, Group Analysis of Differential Equations
(Academic, New York, 1982

[30] A. K. Head, Comput. Phys. Commuf.7, 241(1993.

[31] J. Sherring, A. K. Head, and G. E. Prince, Math. Comput.
Modell. 25, 153(1997).

[32] G. Baumann,Symmetry Analysis of Differential Equations
With Mathematicg Springer-Verlag, Berlin, 2000

061714-9



