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This article investigates, by means of Lie point symmetries, traveling wave solutions to a dynamic equation
that frequently arises in the theory of ferroelectric smectic-C liquid crystals under the influence of an electric
field. The equation considered has three sinusoidal nonlinearities and possible time-dependent solutions are
discussed in the context of minima and maxima of the electric energy density for these liquid crystals: solutions
travel between such constant equilibrium states. Implicit solutions to an approximation of the governing
dynamic equation are determined. Nondimensional control parameters that characterize changes in the avail-
ability of equilibrium states as the magnitude of the field increases are also identified.
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I. INTRODUCTION

Traveling wave phenomena and “solitonlike” behavior
arise frequently in the liquid crystal literature. There has
been much interest recently in the construction of traveling
wave solutions to problems that arise in the switching pro-
cesses of smectic-C sSmCd and chiral ferroelectric smectic-C
sSmC* d liquid crystals, especially those problems related to
high speed flat panel display technology. A general introduc-
tion to these topics may be found in the books by Lam and
Prost[1], de Gennes and Prost[2], Lagerwall[3] and Stewart
[4]. The possibility of exploiting solitonlike effects in the
switching dynamics of SmC* liquid crystals was first raised
by Clark and Lagerwall[5] and has been extensively studied
by many other authors in relation to applications: some rel-
evant references will be mentioned below at appropriate
stages. It is the aim of this article to present some traveling
wave solutions to a dynamic equation[Eq. (2.11)] which has
been employed in the literature for describing the behavior of
switching in SmC* liquid crystals [6–8] and to give a gen-
eral discussion of the relevant electric energy density and its
maxima and minima. A description of this governing equa-
tion and a brief study of the electric energy are given in Secs.
II and III, respectively. Section IV investigates solutions via
Lie point symmetries and presents some traveling wave so-
lutions in implicit form. The key equation developed below
incorporates, as a special case, a well-known dynamic equa-
tion which possesses an exact traveling wave solution; this
special solution[given by Eq.(2.13), or, equivalently, by Eq.
(4.14) below] has previously been studied extensively(see,
for example,[9–14]) and will be derived in a novel way via
Lie point symmetries in Sec. IV B. It will form the starting
point for the derivation of traveling wave solutions to an
approximation of the more general equation to be discussed
in Secs. IV C and IV D. Implicit traveling wave solutions are
determined in Sec. IV C for such an approximation to the
general equation and two examples are calculated and pre-
sented in Sec. IV D. The article closes with a short discus-
sion in Sec. V.

II. DESCRIPTION OF THE PROBLEM

Liquid crystals are anisotropic fluids consisting of elon-
gated molecules for which the long molecular axes locally
adopt one common direction in space described by the unit
vectorn, called the director. It is assumed thatn and −n are
physically indistinguishable, which leads to certain invari-
ance properties in the energetic description of liquid crystals.
SmC liquid crystals are layered structures in which the di-
rector n is, in the isothermal situation, tilted at a constant
angleu to the normal of equally spaced layers as shown in
Fig. 1(a), the unit normal to the smectic layers being denoted
by the vectora. Following de Gennes and Prost[2], it is
common practice to introduce the unit orthogonal projection
c of n onto the smectic planes;c is always perpendicular to
the smectic layer normal. The orientation ofn can be de-
duced from the orientation ofa andc, as can be seen from
the description provided in Fig. 1(b) where it is evident that

FIG. 1. (a) SmC* liquid crystals form parallel layers with the
director tilted at a constant angleu to the unit layer normala. (b)
The mathematical description of the orientation of the directorn is
accomplished by introducing the unit orthogonal projectionc of n
onto the local smectic planes. The orientation anglef of c allows a
complete description of the director alignment via the relation(2.1).
The spontaneous polarization, which is characteristic of SmC*, is
denoted byP0b whereb=a3c. (c) An electric fieldE is applied at
a constant angleaù0 relative to the smectic layers as shown.
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n = a cosu + c sinu. s2.1d

When a is fixed, as it will be here, then knowledge of the
orientation anglef of the vectorc, as depicted in Fig. 1(b),
leads to a complete understanding of the orientation ofn
through the above relation. SmC* liquid crystals have, in
addition to the aforementioned properties, an inherent spon-
taneous polarizationP satisfying, according to the conven-
tion for positive polarization,P=P0b where P0.0 is its
magnitude and b is defined to be the unit vector
a3c. A description for positive spontaneous polarisation is
shown in Fig. 1(b). The sign ofP may actually be positive or
negative and depends on the particular material; this leads to
the convention of callingP positive if P=P0b and negative if
P=−P0b. We shall be able to discuss both cases. The equa-
tion discussed below can be derived from the nonlinear dy-
namic continuum theory for SmC liquid crystals introduced
by Leslie et al. [15,16]. This theory can be extended to in-
clude SmC* liquid crystals by incorporating a suitable elastic
energy density, as discussed by Carlssonet al. [17]. A sum-
mary of this continuum theory for SmC and SmC* liquid
crystals may be found in the book by Stewart[4] or the
review article by Leslie[18], while more detailed general
properties of smectic liquid crystals may be found in[2,3].

Consider a sample of SmC* liquid crystal in the planar
layer arrangement of Fig. 1(a) under the application of an
externally applied electric fieldE as shown in Fig. 1(c). The
electric field is tilted by a fixed constant anglea with respect
to the plane of the layers and is oriented in thexz plane.
From Figs. 1(b) and 1(c) it follows that we can set

a = s0,0,1d, s2.2d

c = „cosfsx,td,sinfsx,td,0…, s2.3d

b = „− sinfsx,td,cosfsx,td,0…, s2.4d

P = P0b, s2.5d

E = Escosa,0,sinad, s2.6d

where the dependence of the orientation anglef uponx and
t only is supposed andE is the magnitude of the electric
field. These vectors satisfy the four constraints of smectic-C
continuum theory[15], namely,

a ·a = 1, c ·c = 1, a ·c = 0, = 3 a = 0. s2.7d

The total electric energy density is given by[2–4]

welec= − P ·E −
1

2
e0easn ·Ed2, s2.8d

where e0=8.854310−12 F m−1 is the permittivity of free
space andea is the(unitless) dielectric anisotropy, which can
be positive or negative. Substituting the appropriate quanti-
ties from Eq.(2.1) to Eq.(2.6) into welec shows that we have

welec= P0E cosa sinf −
1

2
e0eaE

2ssina cosu

+ cosa sinu cosfd2. s2.9d

When the influence of flow is neglected and the smectic elas-
tic constantsB1 and B2 are set equal toB.0, the dynamic
equation for the orientation anglef is given by

2l5
]f

]t
= B

]2f

]x2 −
]welec

]f
, s2.10d

which leads to the governing equation

2l5
]f

]t
= B

]2f

]x2 − P0E cosa cosf

− e0eaE
2 cosa sina cosu sinu sinf

− e0eaE
2 cos2 a sin2 u sinf cosf. s2.11d

A rigorous derivation of this equation may be obtained by
calculations similar to those presented elsewhere[4,19]. The
coefficientl5.0 is a rotational viscosity related to the rota-
tion of the directorn around a fictitious cone as shown in
Fig. 1(b). We are concerned with finding possible traveling
wave solutions to this equation. The general form of this
equation with sinusoidal nonlinearities inf appears in vari-
ous models: only the constant coefficients change in accor-
dance with the corresponding model[6–8]. The general case
will be considered below in Sec. IV.

A. special case

Whena=0, Eq.(2.11) reduces to

2l5
]f

]t
= B

]2f

]x2 − P0E cosf − e0ea E2 sin2 u sinf cosf.

s2.12d

This special case arises when considering the switching of
SmC* liquid crystals wheref will change from one constant
state, sayf1, to another,f2, as time progresses. There is a
well-known traveling wave solution to Eq.(2.12) when
ea,0 which can be obtained from the solution presented in
Refs.[4,9–11,13,19] (for example, by redefining the constant
coefficients and making the substitutionf°p /2−f). It is
given explicitly by

fsx,td =
p

2
− 2 tan−1FexpHÎb

B
sx ± vtdJG , s2.13d

whereb and the wave speedv are defined by, respectively,

b = e0ueauE2 sin2 u, v =
uP0Eu
2l5

ÎB

b
, s2.14d

noting thatea=−ueau whenea,0. In the solution(2.13), the
plus sign is taken whenP0E.0 and the negative sign is
taken whenP0E,0. Changing the sign ofP0E is equivalent
to reversing the sign of the electric field. One observes that
reversing the sign of the electric field then reverses the di-
rection of the velocity of the traveling wave. Further, for this
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solution, it is seen that forP0E.0, f→ +p /2 ast→−` and
f→−p /2 as t→ +`. This represents a reorientation ofc
throughp radians. The availability of these particular con-
stant states between which the solution travels can be iden-
tified from a consideration of the electric energy density, as
has been discussed by Stewartet al. [19] in the case of SmC
liquid crystals under the influence of a tilted electric field. In
[19, Eq.(2,10)], the governing dynamic equation is identical
in form to Eq.(2.11) if P0 is set to zero andB is replaced by
the elastic constantB3. It is therefore worthwhile to investi-
gate the features of the electric energy density which yield
the electrical contributions to Eq.(2.11).

III. THE ELECTRIC ENERGY

To facilitate a qualitative discussion of this energy density
and a simplification of the dynamic equation(2.11) in such a
way that it can be related more easily to the general results
already available in the literature, it proves convenient to
introduce the dimensionless parameters

a = 2P0se0eaE cosa sin2 ud−1, s3.1d

b = tana cotu. s3.2d

We can then write the electric energy density(2.9) as

welec=
1

2
e0e0E

2 cos2 a sin2 uw̄elec, s3.3d

where the dimensionless quantityw̄elec is defined by

w̄elec= a sinf − sb + cosfd2. s3.4d

Reversing the sign of the electric field is equivalent to chang-
ing the sign ofa. Also, it is seen that changing the signs ofea
and E simultaneously is equivalent to changing the sign of
welec and therefore all possible situations can be classified
qualitatively by consideringw̄elec.

From physical considerations it is only necessary to con-
sider bù0 because it has been supposed that 0,u,p /2
and 0øa,p /2. The parameterb is a measure of the tilt of
the field, whilea can take positive or negative values and is
a measure of the ratio of the spontaneous polarizationP0 to
the magnitude of the electric fieldE; uau decreases asuEu
increases. For the typical estimates

ea = − 2, u = 22°, a = 5°, P0 = 80 mC m−2, E = 30 V mm−1,

s3.5d

we obtain the approximate values

a = − 2.154,b = 0.217, s3.6d

and so it is expected that in generalb, uau for applied fields
with a small tilta, especially so for smaller magnitude fields
wherea is large. Clearly,b decreases to zero asa decreases
to zero.

Figure 2 shows the main features ofw̄elec when b=0,
which corresponds to the special casea=0 discussed in Sec.
II. The left and right graphs show the situation fora.0 and
a,0, respectively; fora,0 we have plotted −w̄elec so that
welec has the same sign as the graphs shown in Fig. 2(b) [cf.
Eq. (3.3)]. These graphs are 2p periodic. In both graphs it is
evident that asuau decreases, the functionw̄elec changes from
having one maximum and one minimum to having two
maxima and two minima wheneveruau is below some critical
magnitude, that is, wheneveruEu is sufficiently large. When
b=0 this critical value can be identified by differentiating
w̄elec and seeking the equilibrium points: it is straightforward
to find that the critical value is given byuac

0u=2. Notice that
in Fig. 2(a) the local maximum atf=p /2 remains a maxi-
mum as aa.0 decreases but that the local minimum atf
= 3

2p becomes a local maximum as two other minima are
introduced; for a given small fixed value ofa, the energies of
the two maxima always differ while the two minima have
equal energy. There is an analogous situation fora,0 de-
picted in Fig. 2(b). These maxima and minima represent the
equilibrium states for the electric energy density and travel-
ing wave solutions are known to connect such states. For
example, the solution(2.13) for b=0 connects the equilibria
at f=−p /2 andf=p /2 and can be identified by considering
Fig. 2.

The graphs in Fig. 3 showw̄elec for b=0.217, motivated
by the data which yield the results in Eq.(3.6). For large
fixed values ofa.0, only one maximum and one minimum
in Fig. 3(a) appear, as before in Fig. 2(a). Further, asa.0
decreases in Fig. 3(a), the local minimum retains its charac-
ter but occurs at an increasing value off, as shown. At the
same time, another local minimum and a local maximum are
introduced for sufficiently smalla, but, unlike the case in
Fig. 2(a), all the local minima and maxima have different

FIG. 2. Plots of(a) w̄elec for a.0 and (b)
−w̄elec for a,0 (which then has the same sign as
welec), defined in Eq.(3.4), as a function off
when b=0 for various values of the dimension-
less parametera. Decreasing the magnitude ofa
corresponds to increasing the magnitude of the
electric fieldE. The number of equilibria changes
from two to four as the magnitude ofa decreases
through the critical valueuac

0u=2, as discussed in
the text.
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energies for a given fixed value ofa. The analogous situation
for a,0 is shown in Fig. 3(b) where, for the reason men-
tioned previously for Fig. 2(b), we have plotted −w̄elecso that
the graph has the same sign aswelec. For a given value ofb,
it is evident therefore that there exists a critical value ofac
(generally found by examining the derivative ofw̄elec and
obtaining the equilibrium points by numerical means for a
given set of parameter values) which influences the occur-
rence of maxima and minima. In general, foruau. uacu, w̄elec
defined by Eq.(3.4) only possesses two real equilibria,
whereas foruau, uacu four real equilibria occur(all modulo
2p of course). Figure 4(a) demonstrates this situation for the
typical parameterb=0.217, which arose earlier at Eq.(3.6).
The value ofac in this case can be identified as approxi-
mately 1.021. A comparison with Fig. 3(a) shows this to be
the case: one local maximum and one local minimum occur
for a.ac while two local minima and two local maxima are
introduced fora,ac. Figure 4(b) shows the dependence of
ac upon b; in particular, it demonstrates that there are only
ever two equilibria for anybù0 wheneveraù2 (recall that
we earlier identifiedac=2 whena.0 andb=0). There are
four equilibria for values ofa andb corresponding to points
below the given curve and two equilibria for points above it.

IV. SOLUTIONS VIA LIE POINT SYMMETRIES

We begin by transforming Eq.(2.11) into a nondimen-
sional form in order to relate the general equation to results

that are already available in the literature. An application of
Lie point symmetries will then be made for the special case
when the tilt of the electric fielda is zero, equivalent tob
=0. This method will, first, reproduce the nondimensional
version of the solution(2.13) to Eq. (2.12) and, secondly,
will enable us to generate solutions to Eq.(2.11) for small
bÞ0 by considering the general equation(4.4) below as a
perturbation of Eq.(4.5).

A. The nondimensional equation

For simplicity, it will be assumed thatea,0, which is
known to be the case for many SmC* liquid crystals. We can
then introduce the scaled variables

T =
1

4
ts2l5d−1e0ueauE2 cos2 a sin2 u,

s4.1d

X =
1

2
xB−1/2se0ueauE2 cos2 a sin2 ud1/2.

Noting, as above, thatea=−ueau for ea,0, Eq. (2.11) can
now be nondimensionalized to

fT = fXX + 2a cosf + 4b sinf + 2 sins2fd, s4.2d

where subscripts denote partial differentiation with respect to
the indicated variables. Making the further transformation

FIG. 3. (a) w̄elec for a.0 and (b) −w̄elec for
a,0 for various values ofa as a function off
when b=0.217. These values are motivated by
the example in Eqs.(3.5) and (3.6).

FIG. 4. (a) The equilibria ofw̄elecdefined by Eq.(3.4) asa decreases to zero for the particular value ofb=0.217. Similar graphs arise for
other values ofb between 0 and 1. The dotted line represents a critical value ofa, given approximately byac=1.021. Fora.ac only two
real equilibria occur, while fora,ac four real equilibria become available. A direct comparison with the results in Fig. 3(a) is possible.(b)
A general plot of howac depends uponb. w̄elec has four equilibria for values ofa andb corresponding to points below the given curve and
two equilibria for points above it.
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usX,Td = 2fsX,Td − p, s4.3d

finally delivers the nondimensional equation in a standard
form as(cf. [13])

uT = uXX − 4a sinSu

2
D − 4 sinu + 8b cosSu

2
D . s4.4d

B. Lie point symmetries

By considering Lie point symmetries of the partial differ-
ential equation

uT = uXX − 4a sinSu

2
D − 4 sinu, s4.5d

which is the special case discussed previously whenb=0, it
can be shown(see Appendix) that Eq.(4.5) admits traveling
wave solutions of the form

usX,Td = Fspd, p = X + vT. s4.6d

Substituting Eq.(4.6) into Eq. (4.5) we obtain the second-
order ordinary differential equation

4Fa sinSF

2
D + sinsFdG + v

dF

dp
−

d2F

dp2 = 0. s4.7d

Equation(4.7) admits a Lie point symmetry

Y = ]p. s4.8d

Therefore we can make the substitutions

F8spd = KsFd, F9spd = K
dK

dF
. s4.9d

The second-order ordinary differential equation(4.7) reduces
to the first-order ordinary differential equation

4Fa sinSF

2
D + sinsFdG + KSv −

dK

dF
D = 0. s4.10d

Equation(4.10) is an Abel equation of the second kind. From
results contained in Polyanin and Zaitsev[20], Eq. (4.10)
admits a particular solution of the form

KsFd = 74 sinSF

2
D, v = ±a. s4.11d

Therefore, we can determineFspd by solving the first-order
ordinary differential equation

dF

dp
± 4 sinSF

2
D = 0, v = ±a. s4.12d

This ordinary differential equation has a solution

Fspd = 4 arctanhexpf72sc + pdgj, v = ±a, s4.13d

wherec is a constant of integration. The solution(4.13) is
widely known and has been obtained by various other meth-
ods, as has been discussed by, among others, Schilleret al.
[9], Cladis and van Saarloos[10] and Maclennanet al. [11].
A Painlevé analysis by Stewart[13] also recovered this so-

lution as a special case in a quite general context. Equation
(4.13) can be rewritten in the original variables as

usX,Td = 4 arctanhexpf72sX + vT + cdgj, v = ±a.

s4.14d

1. Remark

Notice that ±usX,Td are solutions to Eq.(4.5) for which-
ever value ofv is adopted and that, by Eqs.(2.14) (first
equation), (3.1) and (4.1), whenea,0 we have

2sX − aTd =Îb

B
Sx +

P0E

2l5
ÎB

b
tD . s4.15d

The explicit solution(2.13) to Eq. (2.12) can then be recov-
ered from the result in Eq.(4.14) by settingc=0, v=−a and
considering the solution

u = − 4 arctanhexpf2sX − aTdgj, s4.16d

under the transformation(4.3). It is clear in this case thatu
→0 asX→−` and u→−2p as X→`; this corresponds to
the solutionf in Eq. (2.13) traveling between the equilib-
rium statesp /2 and −p /2, as mentioned towards the end of
Sec. II.

C. The perturbed equation

Given the form ofb defined by Eq.(3.2), and that it is
generally expected to be much smaller thana, it is natural to
search for possible traveling wave solutions to Eq.(4.4)
whenb!1. This can be accomplished by considering a per-
turbation of Eq.(4.5) of the form

uT = uXX − 4a sinSu

2
D − 4 sinu + e cosSu

2
D, e ! 1,

s4.17d

where we have set 8b;e for notational convenience. We
look for traveling wave solutions of the form(4.6) admitted
by Eq. (4.17). Substituting Eq.(4.6) into Eq. (4.17) we ob-
tain

− e cosSF

2
D + 4a sinSF

2
D + 4 sinsFd + v

dF

dp
−

d2F

dp2 = 0.

s4.18d

Equation (4.18) admits the Lie point symmetry generator
(4.8). Hence we can make the substitutions(4.9) to obtain

− e cosSF

2
D + 4Fa sinSF

2
D + sinsFdG + KSv −

dK

dF
D = 0.

s4.19d

Equation(4.19) is again an Abel equation of the second kind.
We look for solutions of the form

KsFd = K0sFd + eK1sFd. s4.20d

Substituting Eq.(4.20) into Eq. (4.19) and separating by co-
efficients ofe we obtain the system
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4Fa sinSF

2
D + sinsFdG + K0sFdSv −

dK0

dF
D = 0, s4.21d

− cosSF

2
D + K1Sv −

dK0

dF
D − K0

dK1

dF
= 0. s4.22d

From Eq.(4.11) we have that Eq.(4.21) admits the solution

K0sFd = 74 sinSF

2
D, v = ±a. s4.23d

Substituting Eq.(4.23) into Eq.(4.22) we obtain a first-order
ordinary differential equation forK1sFd, namely,

±4 sinSF

2
DdK1

dF
± Fa + 2 cosSF

2
DGK1 − cosSF

2
D = 0.

s4.24d

We can solve Eq.(4.24) in terms of an integrating factor and
obtain

K1sFd =
1

2
FcosSF

4
DG−1+a/2FsinSF

4
DG−1−a/2

3Fc0 ±
1

4
EF FtanS s

4
DGa/2

cosS s

2
DdsG ,

s4.25d

where c0 is an integration constant. From Eqs.(4.9) and
(4.20), to determineFspd we must finally solve

dF

dp
= K0sFd + eK1sFd. s4.26d

Equation(4.26) simplifies to

E dF

K0sFd + eK1sFd
=E dp. s4.27d

Sincee!1, we can approximate the result(4.27) to

E dF

K0sFd
− eE K1sFd

K0sFd2dF =E dp. s4.28d

For v=±a we then have the corresponding implicit solutions
for F given by

7
1

2
lnFtanSF

4
DG −

e

128
EF FcosS r

4
DG−3+a/2FsinS r

4
DG−3−a/2

3Fc0 ±
1

4
Er FtanS s

4
DGa/2

cosS s

2
DdsGdr = p + c1,

s4.29d

wherec1 is a constant of integration. In conjunction with Eq.
(4.6), Eq. (4.29) represents an implicit solution forusX,Td.
Notice that this solution reduces to that stated in Eq.(4.13)
when e=0. Further, the logarithmic term in the solution
(4.29) will diverge more slowly than the contribution that
involves e as F approaches 2p; the approximate solution
therefore becomes less accurate as a suitable model near the
F=2p regime; this behavior is apparent in the examples
shown in Fig. 5.

D. Examples

To demonstrate some qualitative solutions, we can spe-
cialize to the case ofv=+a with a.0 and consider the so-
lution (4.29) for some small values of 8b;e.0. Recall that
for a.2 [cf. Fig. 4(b)] there are only ever two real equilibria
for w̄elec. To ease calculations, we choose to look at the cases
a=6 anda=1, setc0=0 and put the lower and upper limits of
the integral with respect tos appearing in Eq.(4.29) to 0 and
r respectively; this integral is then always finite fora.0.
For simplicity, the arbitrary constantc1 can be chosen as
zero. The choices fore used in the plots of solutions in Fig.
5 have some physical relevance: for example, for a typical
smectic cone angle of 22°,b varying from 0 to 0.0625 cor-
responds, via Eq.(3.2), to the tilt of the electric field varying
from zero to around 14.3°. For values ofb.1 the perturbed
solution, despite being available, can be considered as no
longer ideal for gaining insight into the behavior of the prob-
lem because Eq.(4.29) has been constructed under the as-
sumption thate!1.

FIG. 5. Examples of approximate solutions to
Eq. (4.17) for the indicated values ofe;8b.
These special cases arise from the general solu-
tion (4.29) whenv=+a with c1=0. (a) The solu-
tion for a=6 in Eq. (4.30), which corresponds to
a “low field” regime (a is greater than the maxi-
mum possibleac for all bù0) and(b) the case for
a=1 in Eq.(4.31) for a “high field” regime where
a and the values ofb always lie below the curve
ac shown in Fig. 4(b).
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1. Example 1: a=6

The solution whena=6 is obtained from Eq.(4.29) as

−
1

2
lnFtanSF

4
DG

−
e

512
EF FsinS r

4
DG−6E

0

r FtanS s

4
DG3

cosS s

2
Ddsdr= p,

s4.30d

recalling that p;X+aT here. The resulting solutions are
shown in Fig. 5(a) for a selection of positive values fore,
with e=0 corresponding to the solution(4.14) with v=+a
when the minus sign chosen in Eq.(4.14) (first equation).
Increasinge appears to have a similar effect to that of intro-
ducing a phase shift to the solution. Fora=6 andbù0, it is
clear from Fig. 4(b) thata.ac and so only two real constant
equilibrium states are available.

2. Example 2: a=1

In this case the solution from Eq.(4.29) is

−
1

2
lnFtanSF

4
DG −

e

512
EF FcosS r

4
DG−5/2FsinS r

4
DG−7/2

3E
0

r FtanS s

4
DG1/2

cosS s

2
Ddsdr= p. s4.31d

Solutions for various values ofe are shown in Fig. 5(b).
Similar to Fig. 5(a), ase increases there also appears to be an
effect comparable to a phase shift of the solution ate=0. It is
also clear that these solutions are attempting to travel from a
state larger than 2p to zero asp increases. Recall that
fsX,Td is equivalent to(Fspd+p) /2, by the relations(4.3)
and(4.6) and therefore the solutionf is attempting to travel
between states that differ slightly from the statesp /2 and
3
2p: this behavior can be anticipated by considering the
qualitative features of a graph that will be similar in nature to
that displayed in Fig. 3(a). Notice thata,ac whena=1 and
0øbø0.0625, as can be seen from Fig. 4(b), which indi-
cates that four real constant equilibrium states are available.

These two examples above can further be interpreted in
terms of the available equilibrium solutions in terms off as
indicated in Fig. 6, which shows the dependence of the equi-
librium states uponb for a=1 anda=6. For a=6 the equi-
libria for f at p /2 and 3

2p, available whenb=0, both in-
crease asb increases; fora=1 the equilibrium f=p /2
increases whilef= 3

2p decreases asb increases above zero.
Figure 6 should be compared with Fig. 4 whereb, rather than
a, was held fixed. There is a critical valuebc=0.225 when
a=1 for which there are only ever two real equilibrium states
for b.bc: this should be compared with the result in Fig.
4(b). Consistent with the comments in the previous para-
graph and the indications in Fig. 5, the equilibrium states
between which the solutions travel are shifting slightly asb
increases from zero.

V. DISCUSSION

An insight has been gained into solutions of the dynamic
equation(2.11) for the orientation anglefsx,td of the vector
c in SmC* liquid crystals under the application of an applied
electric field. Knowledge off allows a complete description
of the orientation of the usual liquid crystal directorn, as
discussed in Sec. II. In Sec. III possible equilibrium solutions
for f, between which traveling waves may occur, were iden-
tified and discussed in relation to the nondimensional control
parametersa and b introduced via the relations(3.1) and
(3.2); these parameters reflect the influence of the electric
field contributions and tilt of the field, respectively. The iden-
tification of critical valuesac and bc where the number of
possible equilibria forf changes from four to two asa or b
increases were discussed in Secs. III and IV D, typical quali-
tative results being displayed in Figs. 4 and 6.

Lie point symmetries were investigated in Sec. IV, where
solutions to a novel nonlinear approximation to the nondi-
mensional form of the dynamic equation(2.11), given by Eq.
(4.4), were considered. This analysis revealed the implicit
solutions(4.29) for small values ofb, obtained by consider-
ing a perturbation of the special case whereb=0, when an
exact traveling wave solution, given explicitly by Eq.(4.14),
is available. The Lie point symmetries discussed in Sec. IV
enabled the analysis of the governing partial differential
equation to be reduced to that of an ordinary differential
equation which was much more tractable both analytically
and numerically. The point symmetries also revealed thatX
+vT is the required invariant to use in order to make this
reduction to an ordinary differential equation. Examples of
implicit solutions[special cases of Eq.(4.29)] for a=1 and
a=6 were discussed in Sec. IV D and plots of these solutions
were given in Fig. 5 for various small values ofb. Behavior
similar to small phase shifts seems to occur in the numerical
plots of these examples.

FIG. 6. Plots of the available constant equilibrium solutionsf
for a=6 anda=1 corresponding to the examples in Eqs.(4.30) and
(4.31), respectively: recall thatFspd=2f−p. There is a critical
valuebc=0.225 whena=1 such that only two real equilibria occur
for b.bc [cf. Fig. 4(a)].
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The stability properties for the traveling wave solutions
derived here remain to be tackled. The case forb=0 can be
handled by the methods employed in a similar problem for
time-independent solutions discussed by Anderson and Stew-
art [21], which revealed the stability of nonconstant solutions
fsxd to an equation of the form(2.12); the stability of con-
stant equilibrium states was also discussed by Anderson and
Stewart [22] when b=0 (see also[23,24]). Such methods
may yield information, via eigenvalue problems, on how the
stability is influenced by the control parametersa and b
through their contributions to the positivity of the first eigen-
value. Stability of the traveling wave solution(4.14) in the
case whenb=0 has been investigated by Stewart[14] (note
that f in [14] is equivalent tof+p /2 in the above and that
the notation for the constant coefficients differs). Different
types of behavior for small perturbations to the solution be-
came evident via a spectral analysis which demonstrated that
monotonic or oscillatory decay of perturbations may be com-
bined with a phase shift to the original traveling wave solu-
tion, the possible occurrence of these phenomena being de-
pendent upon, and selected by, a single nondimensional
control parameter. It is anticipated that a similar spectral
analysis may be feasible for the above implicit solutions
when bÞ0, and this is currently under investigation. The
situation will be more complex than that discussed in[14]
due to the presence of two control parameters rather than
one.
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APPENDIX

In this appendix we briefly summarize the main features
of Lie point symmetries. The approach developed by Lie(see
also Bluman and Kumei[25], Ibragimov[26,27], Olver [28],
and Ovsiannikov[29]) gives a systematic way of determin-
ing infinitesimal point transformations

T̄ < T + aj1sT,X,ud, X̄ < X + aj2sT,X,ud,
sA1d

ū < u + ahsT,X,ud,

which leave Eq.(4.5) form invariant. The transformations
(A1) form a group, wherea is the group parameter, if the
group properties hold. The Lie point symmetry generator of
the group(A1) is given by

Z = j1sT,X,ud]T + j2sT,X,ud]X + hsT,X,ud]u, sA2d

where]T=] /]T, . . ., and

j1sT,X,ud = U ]T̄

]a
U

a=0
, j2sT,X,ud = U ]X̄

]a
U

a=0
,

sA3d

hsT,X,ud = U ]ū

]a
U

a=0
.

The functionsj1, j2 and, h are calculated by solving the
determining equation found by acting the operatorZ on Eq.
(4.5) as indicated by

UZFuT − uXX + 4a sinSu

2
D + 4 sinuGU

s4.5d
= 0. sA4d

Equation(A4) is separated by coefficients of derivatives of
u. The resulting system of linear equations can easily be
solved. Equation(4.5) admits Lie point symmetries of the
form

X1 = ]T, X2 = ]X. sA5d

These Lie point symmetry generators can easily be found
using computer algebra packages(see, e.g., Head[30], Sher-
ring et al. [31], and Baumann[32]). The Lie point symmetry
generators(A5) are indicative of Eq.(4.5) being autono-
mous. The Lie point symmetries(A5) can be used to show
that Eq.(4.5) admits traveling wave solutions of the form

usX,Td = Fspd, p = X + vT. sA6d
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