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The phase diagram of prolate and oblate particles in the restricted orientations approxi(Aetsorzig
mode) is calculated. Transitions to different inhomogeneous phésesctic, columnar, oriented, or plastic
solid) are studied through minimization of the fundamental measure functibiif) of hard parallelepipeds.
The study of parallel hard cub€BHC's) as a particular case is also included motivated by recent simulations
of this system. As a result a rich phase behavior is obtained which include, apart from the usual liquid crystal
phases, a very peculiar phagsalled here discotic smecjiavhich was already found in the only existing
simulation of the model, and which turns out to be stable because of the restrictions imposed on the orienta-
tions. The phase diagram is compared at a qualitative level with simulation results of other anisotropic particle
systems.
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I. INTRODUCTION The restricted orientations model for hard cylinders was
Onsager first showed that the isotropic-nematic quuidalso used to describe the structural properties of molecular

crystal phase transition occurs in systems of anisotropic pa dluids_ n$ar hard lwalls or confine((jj fin a Sh”t'bT“iS dftime the
ticles interacting via hard core repulsiofl§. He studied a 9€nsity functional was constructed irom the bulk direct cor-

system of hard spherocylinders in the limit of infinite ani- rélation function approximated by a linear combination of
sometryx=(L+D)/D— = (x is the spherocylinder length to 9&0metrical function§7]. _
breath ratig using the second virial form of the free energy, ~Computer simulations of a variety of models of non-
which in this limit is exact for the isotropic phase. The effect SPherical hard core particles showed that the excluded vol-
that higher virial coefficients have in the isotropic-nematicume effects could not only account for the stability of nem-
transition was later studied by Zwanzig, who introduced aatics, but also for the existence of liquid crystal
model of hard prolate uniaxial parallelepipeds with axes oridinhomogeneous phases such as the smggjtiand columnar
ented along the three perpendicular directi®s This pe- [9] phases. Particularly the complete phase diagram of freely
culiar model, which obviously treats the orientational de-rotating hard spherocylindef40], including not only smec-
grees of freedom in an unrealistic way, has the advantage aic, but also a plastic solid phase and different oriented solid
being accessible to the calculation of higher virial coeffi-phases was calculated. Several density functional theories,
cients up to seventh order in the infinite aspect ratio limit. Heall of them based on weighted or modified weighted density
showed that including all these virials the isotropic-nematicapproximations, are able to reproduce reasonably well the
FranSition a.lso OCC.UI', although the exact value of the COEXisqsotropic-SmectiC or nematic-smectic transitiqns__la in
ing nematic density strongly depends on the order of thghe whole range of aspect ratios where the smectic is stable,
approximation. The Padé approximant generated by the trunyq in some cases, transitions from the isotropic fluid to the
cated cluster expansion provides a much more stable Sjastic or oriented solid phas¢®4]. In all these approxima-
quence of the parameters which characterize the transitiofpns the excess free energy is evaluated by integration of the
[3]. This stability leaves little room for doubts regarding the frge energy per particle of a reference flgigpically spheres
existence of the transition in the model. The virial expansiory, pard parallel ellipsoidsevaluated at some weighted or
resumed and expressed in the variajtep/(1-pv), With p effective density. In some cases, the employed weight is di-
the number density of parallelepipeds andheir volume,  rectly the normalized Mayer function between spherocylin-
converges more rapidly than the traditional expansiop,in  ders[12,13; in others, it is calculated from the knowledge of
as was shown by Barboy and Gelbart for different hard parthe bulk correlation function of the reference fliti3]. For
ticle geometrieg4]. Thus, the so-callegl; expansion of the  the Jatter case, the term proportional to the Mayer function
Zwanzig model was applied to the study of the isotropic-enters into the integrand as a multiplicative factor of the free
nematic transition as well as to the study of properties of itsenergy per particle. The hard sphere free energy functional is
interface[S]. For the latter the authors applled the SmOOtheC*ecovered in both approaches as the ||m|t|ng cask=d.
density approximation of the free energy functional in the The fundamental measure theayMT) first developed
spirit of Tarazona’s weighted density approximation for thefor hard spheres by Rosenfdli5] was another starting point
fluid of hard sphere$6]. for constructing a density functional for anisotropic particles.
In its general formalism the excess free energy density of the
fluid is a function of some weighted densities obtained by
*Electronic address: yuri@math.uc3m.es convoluting the density profiles with weights which are char-
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acteristic functions of the geometry of a single particlephases due to the presence of polydispef&g].
whose integrals are the so-called fundamental measures: vol- The FMF for Zwanzig’s model in the homogeneous limit
ume, surface area, and mean radius of the particles. Unfoeoincide with the scaled particle theory and thus with the
tunately, the Mayer function of two convex anisotropic bod-so-calledy; expansion which, as pointed out before, first
ir—.js cannot.be dec_omposed asafinite sum of convolutions ¢fegan to be used in Ref5] as a model to study the
single particle weight$16], which is the keystone for con- isetropic-nematic phase transitions in fluids of hard parallel-
structing such a functional. Thus, the low density limit of the epipeds. But this functional, through its minimization, also
direct correlation function is no more the Mayer function. gjiows us to calculate inhomogeneous density profiles. This
In spite of this, Chamoux and Perera have taken advarynciional has been applied recently to study the isotropic-
tage of Rosenfeld’s extension of FMT to hard convex bOd'e%ematic interface of a binary mixture of hard platelg2s].

bgtéﬁ'r?g (;Ltt(t)hg?gqvezteenéﬂe I?Ji??/\tliéo':rzzlggrcltfl\ljlrz‘iCté?r;uﬁz?Its structural and thermodynamic properties resulting from
P g y Y the FMF minimization show complete wetting by a second

tion [17]. In this way they have obtained the equation of state . : . )
for various convex hard bodiegsuch as hard ellipsoids, hematic. The same ph_enomenon was found in a binary mix-
spherocylinders, and cut spherebave predicted ordered (Ure of hard spherocylindefS0].

phases and, recently, have study demixing in binary mixtures 1h€ Phase diagram for Zwanzig’s model including the
of rigidly ordered particle$17,18. smectic, columnar, and solid phases has never been carried

Following a similar procedure a density functional for an-OUt, only spinodal instability boundaries have been traced
isotropic particles has been proposed which interpolates bé28]- The main purpose of this work is to obtain the complete
tween the Rosenfeld’s hard sphere functional and OnsagerRhase diagram for this model and to compare the results with
functional for elongated rods. The resulting model was testeé€ only existing simulation of the lattice version of the
by calculating the isotropic-nematic transition in systems offodel, which has been carried out for two different aspect
hard spherocylinders and hard ellipso[d$)]. rat_|os[31]_. T_hls will test the predictive power of j[he FMF for

Although the authors of this work suggest that the result2nisotropic inhomogeneous phases. As a particular case, the
ing theory can be applied to the study of inhomogeneous§ystem of parallel hard cubes will be studied. In R82] a
systems, the huge computational efforts that their numericd?ifurcation analysis and a Gaussian parametrization of the
implementations involve is the reason for the absence of angensity profiles were used to calculate the free energy and
result in this direction. One way to circumvent this difficulty Pressure of the solid phase. Here a free minimization will be
is to reduce the continuous orientational degree of freedorR€rformed to calculate not only the solid but also the smectic
to three discrete orientation@@wanzig model. Implement- and colqmnar _phases and compare the obtained results with
ing this idea some authors have recently applied the Zwanzifgcent simulations of parallel hard cub&3,34.
model to the study of interfacial properties of the hard rod
fluid interacting with a hard wall or confined in a slit, for a
one-componenf20] and a polydisperse mixturg21], and
also to the study of bulk and interfacial properties of hard The EMF for hard parallelepipeds was already described
platelet binary mixture$22]. All these models are based on in detail in Ref.[24]. A brief summary of the theory will be
Onsager’s density functional approximation. The increase opresented here putting emphasis on its numerical implemen-
the number of allowed orientations in this functional particu-tation to calculate the equilibrium inhomogeneous phases.
larized for hard spherocylinders results in the presence of an A ternary mixture of hard parallelepipeds of cross section
artificial nematic-nematic transition in the one componenty 2 and lengthL with their uniaxial axes pointing to the v,
fluid as the authors of Ref23] have shown. This result or z directions is described in terms of their density profiles
indicates that certain cares must be taken in the direct emﬂ(r) (w=x,y,2). Following the FMT for hard parallelepi-
trapolation of the results obtained from this theory. peds in three dimensions the excess free energy density in

FMF was also constructed for a mixture of parallel hardreduced units can be written §&4]
cubes combining Rosenfeld’s original ideas with a dimen-
siongl Cross over cons_trair[]24]. The latter appears to be D dr) = PV(r) + (1) + D(r), (1)
very important to describe correctly the structure of inhomo-
geneous fluids in situations of high confinement and to dewhere the®®’s are
scribe well the structural properties of the solid phgad.

The dimensional cross over has been used as an important ®W=—-n,In(1-ny), (2)
ingredient to develop a density functional for a binary mix-

ture of hard spheres and needles, assuming that the needles

are too thin to interact with each other direcfB6]. P = ng-Ny 3)

Taking a ternary mixture of parallel hard cubes and scal- 1-ng’
ing each species along one of the three Cartesian axes with
the same scaling factor a FMF for the Zwanzig model is

II. FMF FOR ZWANZIG MODEL

obtained. This functional has already been applied to the PO = Mooy, 4)
study of the effect that polydispersity has on the stability of (1-ny)?’

the biaxial phase in a binary mixture of rods and pld&#§
and on the relative stability of the smectic and columnamwith weighted densities

061712-2



BULK INHOMOGENEOUS PHASES OF ANISOTROPIC PHYSICAL REVIEW E 69, 061712(2004)

_ * () cieg is reduced by these symmetriesNg=(n, +1)(n,+1)
n,(r)= w,”|(r), 5 1 I
") %DJM w10 ®) X(3n, +4)/2-2, (n;=n,=n,, ny=n)) independent vari-
, , , __ables. These variables together with, g, andg, span the
l.e., they are sums of co.nvolutlons of the density profiles 41izple space in which the FMF must be minimized.
with the following weights: The density profiles of columnar and smectic phases are
ok obtained from EQq.(10) substitutingn=(n,,n,,0) and n
<_2E - |Xk|),

3
wﬁ?)(r) = EH 5 (6)  =(0,0,n)). From the definitior(5), Egs.(6)~«9) and the den-

8k=1 sity profiles(10), the weighted densities can be easily calcu-
lated resulting in
3 k
G(r) = 6(2‘5— X ) 7 3
o =110{ =% -xd ). @ 0.1 =pS el X Lcosakp), (1D
A j=1
0'j 3
o %)
| 2 xgi = 1T (&8, (12)
wﬁ}')(r) = Uj—wf)(r), (8) Ok i1 0\S ik
) —’i—|xj|>
2 3
| X =oll eae ), (13)
| i=
o(% ) )
W2 (1) = — S o2(), 9 w _ abER) ) 14
20(&—|x|> ik = O] ¢(§(M))X0,k- (14
2 ] O\S jk
where the notationx, (k=1,2,3 for thex, y, andz coordi- w1 d’o(f(fﬁ)) w
nates has been employed. The functiébs and6(x) are the X3k = pp ba(& _(;ﬁ))Xslfk' (19
usual delta Dirac and Hevisaide functions am¢|=o+(L _ ! .
~0)8! with 81 the Kronecker delta. with v=Lo? the particle volume, ¢o(X)=CcoSX, ¢5(X)

The following constraints on the density profiles were im-=Sinx/Xx, andé}fﬁ)ij'kjﬂf/z
posed.(i) The solid phase has the simple parallelepipedic The substitution of Eqg10) and(11) into the free energy
unit cell with uniaxial symmetry, i.e., the periods in the threeper unit cell
spatial directions arel, for x,y andd, for z. The orienta-

tional director is selected parallel ro(ii) The density profile b= p7 = Vgéuf dr[@g(r) + P, dr)],  (16)
of each species has the form Veell Veell
n 3
plu(r) = p’yﬂz af('“)n COS(qJ- kJXJ)v (10) (Did(r) = E p,u,(r)[ln(p,u,(r)Ai) - 1]1 (17)
k=0 j=1 Iz

whereq;=2w/d, is the wave number along thedirection, ~ With ®4(r) the ideal part of the free energy density, and its
k=(kq,kz,k3) is the vector defined by the reciprocal lattice minimization with respect to th8l,+3 variables allows the
numbers, andh=(n;,n,,ny) is the vector at which the har- calculation of the equilibrium free energy and the density
monic expansion is truncated. Thus, E#0) is the Fourier ~ Profiles of inhomogeneous phases. ' .

expansion of the density profilgs,(r) truncated at som. To characterize the structure and_ orientational order of
This cutoff is selected in such a way that it guarantees smalf€seé phases the following total density and order parameter
enough values of*. The firs;c )Fourier amplitudes of all Profiles will be used:

species are fixed to onda/’=1) and consequently _

VAfy . Orp,(1)=py,, With Vo= d, the unit cel volume, pr) = % Pull); (18)

p the mean total density over the unit cell, apgdthe occu-

pancy probability of speciea in the unit cell, which obvi- 3[py(r) + py(r)]
ously fulfills the conditionS,, y,=1. Qr)=1-——">"—2=, (19)
In the plastic solid phase these occupancy probabilities 2 p(r)

are 1/3 for each SpeCies while they deviate from this value |rrhe selection OQ(r) as an order parameter is motivated by
the oriented solid phase. The uniaxial symmetry also impliegs uniaxial symmetry propert@(x,y,2)=Q(y,x,2) and its
that »=w=7v1, %.=%=1-2y. and p(X,y,2=py,X,2, " yniform limit value Q=1-3y, (-1/2<Q<1), which coin-
p%£;<,y,z)=;z§§y,x,z). Th(‘;)s’ the I(ch))uner amplitudes verify ciges with the usual definition of the nematic order parameter
Q) koka) ~ Hkgpky ka) anda(kl,kz,k3):a(kz,kl,k3)' The total number  for the Zwanzig model:Q=0(y, =1/3) for the isotropic

of Fourier amplitudegexcept the(0,0,0 term of all spe- phase andQ=1(y, =0) for the perfectly aligned nematic
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phase. Although the solid and columnar phases might havigon of state, which overestimates the pressure calculated
local biaxiality [ p4(x,y,2) # p,(X,y,2)], the integral over the from the exact virial expansion up to seventh order. This
unit cell of any previously defined biaxial order parameter isexpansion has a maximum at=0.6 and then goes down
always equal to zero as a consequence of the symmetries wéry quickly to reach negative valu¢35]. The poorly con-
the density profiles. vergent character of the virial series makes it impossible to
construct an equation of state for hard cubes, such as the
Carnahan-Starling equation for the hard-sphere fluid, which
lll. PHASE DIAGRAMS estimates reasonably well all the known virial coefficients
The phase diagrams presented in this work were calciand diverges at close packing. On the other hand, it is well
lated for a set of aspect ratios ranging fram0.1 tox=10, !(noyvn that the FMF desz_:rlbes acquratel_y the fluid structure
corresponding to the aspect ratios of the most anisotropit? Situations of high confinement, including the solid phase
oblate and prolate parallelepipeds studied here. The volum@ear close packing. For example, at high densities the func-
of all particles(cubes or prolate or oblate parallelepipeaie  tional recovers the cell theory, which is asymptotically exact
fixed to 1 and thus the mean packing fractigris equal to ~ When the packing fraction goes to 1, and also compares rea-
the mean density. From the equatiom=Lo?=1 the paral- sonably well with computer simulation34]. These nice

lelepiped edge lengthis and o can be calculated as a func- Properties are a consequence of a fundamental restriction,
tion of the aspect ratia=L/c asL=«*3 ando=x"1/3 For  namely, the dimensional cross-oJ@d], imposed in the con-

eachK, f|X|ng the mean density and using appropriate ini- SFI‘UCtiO!’] of the FMF. The latter ImplleS that the fun.Ctional in
tial guesses for thél,+3 variables with symmetries corre- dimensionD reduces to the functional in dimensidh-1
sponding to the smectic, columnar or solid phases, the efvhen the original density profile is constrainedle-1 di-
ergy per unit cell(16) was minimized and thus the free mensions, i.ep®(r)=p®=Y(r)8 (xp), wherexp is the coor-
energy for each phase was obtained. Varyirand repeating  dinate that is eliminated on going frof to D-1 dimen-
the former steps the free-energy branches of the differerfflons.

inhomogeneous phases have been calculated. The commonOne possible procedure to improve the description of the
tangent construction allowed the calculation of the coexisting/niform fluid of hard cubes at the level of the FMF is to
densities between those phases in the case of first order trai®llow the same method used in Reff86] and[37], in which
sitions. To evaluate numerically the three dimensional intethe hard-sphere Carnahan-Starling equation of state is im-
gral of the free energy densityl6) a Gauss-Chebyshev Pposed through the modification of the third ted® [see

quadratures has been employed. Eqg. (1)] of the excess free-energy density while keeping the
exact density expansion of the direct correlation function up

to first order. Unfortunately the absence of a good equation
A. Parallel hard cubes of state for the PHC fluid with the already mentioned prop-
This subsection is devoted to the study of the parallel hargrties makes this procedure less systematic compared to that
cube systenix=1). The PHC equation of states of the fluid of hard sphere$36,37.
and solid phases as obtained from the FMT and the Monte Following this purpose, the original excess free-energy
Carlo simulation results are compared. While the solid phaséénsity for hard cubegl) is now replaced by
is very well described with this formalism the exact location
of the fluid-solid transition is very poorly estimated. The 3
fundamental reasons of this difference are discussed here Dexdr) = 2 filng(r)@X(r), (20)
through a critical analysis of the fluid equation of state re- k=1
sulting from the FMF. It will be shown that possible modifi- )
cations of the FMF slightly improve the location of the tran- With thef,(ng)'s selected in such a way as to keep the correct
sition point at the expense of the correct description of thdirst order density expansion of the direct correlation func-
solid branch. tion and to obtain the right virial expansion up to the seventh
In Ref. [27] the PHC fluid was already studied with the order of the RHC equatic_)n of state. As t_he original FMF for
same FMF but using a Gaussian parametrization for the defard .qubes_glves the third virial coeff|20|ent correctly, these
sity profile. Through a minimization procedure and also fromconditions imply that f; 5(ng) ~1+0(n3) and f3(ng) ~1
a bifurcation analysis a second-order fluid-solid transitiontO(ng) for small nz. Two further important conditions im-
was found ap=0.3143 with a lattice period=1.3015 and a posed on thef,(ny)’s are their limiting behavior when the
fraction of vacancies’=0.3071[27]. Recent simulations on local packing fraction tends to unity: lip.,f,(ng)=1,
the same system also showed a second-order transition to tiich asymptotically guarantees the correct cell-theory limit,
solid but with very different transition parameters  and the positive signs of their values, which guarantee the
=0.48x0.02 in Ref[33] and p=0.533+0.010 in Ref[34]. convexity of the fluid free energy. Unfortunately this proce-
No evidence for the vacancies predicted by FMT was founddure breaks the dimensional cross-over property, but in prin-
although the authors recognized that the vacancies might ba@ple should describe the fluid-solid transition in hard cubes
suppressed by the boundary conditions in the small systentsetter.
accessible to simulatiorj84]. Among all the functionsf,’s that have been tried, even
The main problem of the FMF for hard cubes is that itthose which give better resultfthe particular case of
recovers in the homogeneous limit the scaled-particle equef, 5(ng)=1] are far from getting the transition point near the
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FIG. 1. (a) Equations of state of the PHC liquid following the ool
FMT (Lgy7), the modified versionLyewt), and the symmetric p

Padé approximant. The circle and square represent the location of

bifurcation points of the fluid-solid transitiob) The equations of FIG. 2. Free energy per unit cell as a function of the mean
state of the solid phase from the original FNiSeyr) and from the d%nsityp. A linear function ofp was subtracted from the free energy
modified versionSygut). The arrows represent the fluid-solid tran- ¢ =®-mp—n to make clear the energy differences between the
sitions predicted in Ref[33] (the lower valug and Ref.[34] (the  isotropic(l), columnar(C), and solid(S) phases.

higher valug. Open and black diamonds are the simulation results

from Ref. [33] corresponding to the liquid and solid phases,
respectively.

The number of Fourier amplitudes necessary to describe
adequately the density profile increases with the density, and
thus the numerical calculations becomes more and more time
simulation one. In Fig. (A) the scaled-particle equation of consuming. Nevertheless, the scenario shown in Fig. 2, with
state, the improved equation of state the solid being the only stable phase, occurs at high densities
as the simulations and cell-theory have confirnigd]. The
minimization of the FMF using a Gaussian parametrization
of the density profiles of columnar and solid phases shows
. . . - ' very similar quantitative resulfs4]. In fact the equation of
with d)exc'belng t,he umfo.rm limit of Eq(20), and finally, .the sta%/e of the ?)arallel hard-cube solid from FMchaIcuIations
symmetric Padé approximant of the seventh-order virial se-

ries are plotted. In the first two curves the bifurcation pointsW'th this parametrization compares very well at high densi-

; : . ties with simulations[28]. The results presented here are
are shown. The new bifurcation point calculated from Eq'much more accurate than those obtained through the Gauss-
(20) is located atp=0.3378, and the period and fraction of 9

vacancies of the solid a=1.3249 andv=0.2143. As can ' parametrization.
be seen from Fig. (), the new equation of state still over-
estimates the fluid pressure, but to a lesser extent. Although
the new functional gets a higher transition density and the
fraction of vacancies decreases, there is still disagreement This subsection is devoted to studying the phase diagram
between theory and simulations. The equation of state of thef prolate particleSx>1). The results obtained from nu-
PHC solid calculated from the minimization of the original merical minimization of the FMF of parallelepipeds with
FMF with respect to the Gaussian density profiles comparéxed x=4.5 are shown in Fig. 3. The free energies per unit
very well with simulations for densities= 0.5, whereas the Vvolume of those phases which are stable in some range of
modified version underestimates the solid pressure. densities are plotted. As can be seen the isotropic phase un-

At this point the main conclusion that can be drawn is thatdergoes a first-order phase transition to the so-called discotic
the modification of the FMF in order to improve the descrip-smectic(DSm) phase. This peculiar phase is a layered phase
tion of the uniform fluid spoils the good description of the (similar to the smectic phagéut with the long axes of the
solid phase. As the modification of the FMF was done at theoarallelepipeds lying within the layers. There is no orienta-
expense of loosing the dimensional cross-over progerty  tional order in the layers, what means that the order param-
this spoils the good description of highly inhomogeneouseterQ(z) reaches negative values at the positions of the den-
phasey and the modified versions do not show too many

ad
BP=p+ p(y_pexc = Dgye, (21)

B. Prolate parallelepipeds

differences in the prediction of the fluid-solid transition, it is o——
worthless to use them to study nonuniform phases. 8 '\,:’ ; 1
Setting q,=q, =q=2m/d, y,=1/3, and afj‘)z,Bk in the a0, ! Dsm -
density profiles(10) and minimizing the FMF, Eq(16), of o L * ! \ 1
parallel hard cubeé«=1) with respect to the Fourier ampli- o’ l\\\ \,,1
tudes and the wave numbagr the free energy per unit cell | \ A
for solid[n=n(1,1,1)], columnafn=n(1,1,0] and smectic 1
[n=n(0,0,1] phases were obtained. The results are shown 610 3 R 034

in Fig. 2. From the isotropic liquid at the same dengity

=0.3134 three inhomogeneous solutions: solid, columnar, F|G. 3. Free energy per unit volume as a function of the mean

and smectic, bifurcate, with the solid phase being the stablgensityp. The involved phases are labeled as in Fig. 2. DSm: dis-

one. While the free energy difference between solid and coeotic smectic phase. The common-tangent constructions, which de-
lumnar phases is relatively small, the smectic phase is clearlgrmine the coexisting densities labeled with different symbols, are
thermodynamically unfavorable. also shown.
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FIG. 4. Density profile(solid line) and order parameter profile I PRI
(dashed lingof the DSm phase gi=0.3Z' =z/d). N

sity peaks. The density and or_der_parameter p_rofil_es of the g 5 ¢ vs p for k=4.5(a) and k=4 (b). OS: oriented solid
DSm phase gt=0.3 are plotted in Fig. 4. The period in units ase.

of the small particle length id/ 0=1.2796 which means that

the particles with long axes perpendicular to the laypref- , ,
erentially localized at the center of the interlayer spane ~ Particles of the Zwanzig model have the same shape, the
tersect approximately three adjacent layers. restriction of their orientations changes strongly its relative

Simulations of the Zwanzig model witk=5 on a lattice packing and thus for somes enhance the columnar phase

showed an 1-DSm transition at a density between 0.47 angt@Pility with respect to other phases. o _
0.55 [31]. Although the results were obtained for a lattice At higher density the columnar phase exhibits a continu-
spacing of 1/3(in units of the shortest particle dimensjon OUS phase transition to an oriented solid phase of prolate
the simulations were repeated for values 1/9 and 1/27 withParallelepipeds, as shown in Figah The density and order
out changes in the stability of the DSm phase. Thus, thé)a_rameter profiles of the col'umn.ar phase at the bifurcation
authors concluded that this layered phase may persist in tHPint (p=0.3748 are shown in Fig. 6. The periods of the
continuum limit[31]. The difference in the transition density SOlid phase along the perpendicular and parallel directions
found from FMT(0.2868 and from simulationg~0.5) can =~ aréd, /0=1.2690 andd,/L.=1.5170, respectively. From the
be explained using two argument§) As was already €duationp=(1-1)V . (Vee=d7d, being the unit cell vol-
pointed out in Sec. II, the FMF in the uniform density limit UM®, the fraction of vacancies of the solidcan be calcu-
considerably overestimates the isotropic fluid pressure antteéd as 0.0845. The continuous nature of the columnar-
thus the theory underestimate the transition densities bedriented solid transition changes to first order at sokne
tween homogeneous and inhomogeneous phaggsThe  between 4 and 4.5, as Fig(th shows fork=4. The order
transition densities should decrease upon decreasing the |&arameterQ(r) is very high in the unit cell except in its
tice spacing in simulations, as the results for the freezing oporders, where it exhibits small oscillatiofisee Fig. 60)].
parallel hard cubes on a latti¢eccurring atp=0.568 for an These oscillations are a consequence of the microsegregation
edge length equal to two lattice spacingspaD.402, for six ~ Of species X and “y” in the newly formed solid phase,
lattice spacings, and @at=0.314 for the continuuinillustrate ~ Which is preferentially formed by particles of species *
[38]. localized around the positiofx” ,y )=(0,0). This feature is
Increasing the mean density further, the DSm phase urshown in Fig. 7, where the sum of the density profiles of
dergoes a first-order transition to the columnar phase as Figpecies X" and “y” [p, (r)=p,(r)+p,(r)] is plotted. While
3 shows. The restriction of parallelepiped orientations enthe columnar packing is responsible for the presence of the
hances the columnar phase stability even for prolate particldocal maxima at the center of the unit cell, the species “
as a phase diagram, to be described below, will show. Thignd ‘y” begin to segregate to the borders of the ¢£0.5,0
phenomenon can be understood if the Zwanzig model is inand (0, +0.5, respectively(see the four local maxima at
terpreted as a ternary mixture of particles. Simulations on ghese positionsas the new solid phase is formed. The long
binary mixture of parallel spherocylinders with different as- axes of the perpendicular species lie on the lateral sides of
pect ratios(specifically 2 and 2.9show that, instead of a the parallelepipedic unit cell, while their centers of mass are
continuous nematic-smectic transition typical of the purepreferentially localized at the centers of these sides.
component system, the mixture exhibits a first-order
nematic-columnar phase transitig89]. This result was ex- 25
plained by the poorer packing of rods of different lengths inp ,2
the smectic phase as compared to that of rods of the sam !

AIREN
%

important effects that the aspect ratio polydispersity has or *°# —— 02 bs
the phase behavior of hard spherocylindgt8] and binary X - ; '
mixtures of oblate and prolate particlg®8,41], is the en-
hancement of the columnar phase stability. All these results FIG. 6. Density(a) and order parametéb) profiles of the co-
show that the columnar phase can be stable even for mixtulemnar phase at a density corresponding to the bifurcation point of
of particles with different shapes. Although the constituentFig. 5(a) (xX'=x/d,; y'=y/d,).
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columnar phase undergoes a phase transifiost order for
k=4 and continuous for other values shgvta the oriented
solid phase. The nematic phase begins to be stable o5
with its stability region bounded below by the first order
isotropic-nematic transition and above by a continuous
nematic-smectic transition. Finally, the smectic region is
y bounded above by a continuous transition to the oriented
X solid phasdsee Fig. 8.

FIG. 7. Sum of density profilesp, (r)=p.(r)+py(r) vs r, Again the nematic-smectic transition points are joined

=(x',y") corresponding to the columnar phase shown in Fig. 6. \jth spinodal lines and for eack a minimization was car-
ried out to check numerically the continuous character of the

The calculation of the free-energy branches for severalransition(the smectic solution begins to be stable right at
stable inhomogeneous phases and the phase transitions iée spinodal In Ref. [42] a bifurcation analysis with the
tween themas it was described fot=4.5) has been carried Same functional was carried out to study the nature of the
out for 15 values ok (ten of them in the ranged k<5 and  nematic-smectic transition. A thermodynamic and mechani-
five of them in the range & k=<10). The resulting phase cal stability analysis showed that the nematic-smectic transi-
diagram is plotted in Fig. 8. The isotropic phase of prolatetion is first order, which is in contradiction with the numeri-
parallelepipeds with %&x<3.5 undergoes a continuous cal minimization results presented here. A possible reason
phase transition to the plastic solid phase. The transitiothat justifies this contradiction could be that tNeSm tran-
points are joined with the spinodal line that has been calcusition is very weakly first order, so weak that the numerical
lated through the divergence of the structure factor. Notwith@ccuracy used in the functional minimization can not decide
standing that a functional minimization was carried out forabout its nature. Another possibility is that the numerical
eachk to check the continuous nature of the transitions. Theaccuracy failure is somewhere in the bifurcation analysis. A
plastic solid is stable fok=<2.5 up to densities around 0.5. careful revision of this analysis is certainly called for in order
At these values the numerical minimization turns out to befo settle this point.
cumbersome because of the large number of Fourier ampli- The available simulation results for freely rotating hard
tudes necessary to correctly describe the inhomogeneogherocylinders show that the isotropic phase exhibits a tran-
profiles. Thus, the high density part of the phase diagransition to the solid phase for€«x<4.1 (the solid is plastic
(p=0.5 has not been calculated with the numerical procefor «<1.35 and oriented for 1.35«x<4.1) while the
dure described above. At higher densities a Gaussian-typgotropic-smectic and nematic-smectic transitions begin at
parametrization of the density profiles is required, which ob«=4.1 and 4.7, respective[\L0] [notice that for hard sphero-
Vious|y has a lower degree of accuracy. CyIinders the Iength-to-breadth ratio F(L"'D)/D] We

For k=2.95 the plastic solid exhibits a very weak first- can see that, despite the different particle geometry and the
order phase transition to the discotic smectic ph#steeled  restricted orientations of the Zwanzig model, the agreement
as 1in Fig. 8, and the latter a phase transition to the colum-for the thresholdk at which spatial instabilities to the solid
nar phase at higher densities. But the most representati&d smectic phase destabilize the homogeneous phases is
region of the phase diagram where the discotic smectic i§ather good. Also the qualitative picture is similar: elongated
stable is forx around 4.5 where this layered phase exhibits &0ds form smectics, and more symmetric particles form sol-
first-order phase transition to columnar phatiee shaded ids. The main difference between them is that the Zwanzig
area of Fig. 8 limits the instability region against phase sepaPhase diagram presents regions where the columnar and dis-
ration between both phagesFor « between 4 and 5 the cotic smectic phases are stable, a difference due to the re-
striction of orientations.

Mty / A

S
e
s

05 T T

045 C. Oblate parallelepipeds

025 |

04\ © os 7] The phase diagram of oblate parallelepipgas<1) is
Poss va\ . shown in Fig. 9. The main differences after comparing the
03l - = phase diagrams of prolai&ig. 8) and oblate particles are

[ Dsm N h that in the latter(i) The smectic is no more a stable phase.

(i) The region of columnar phase stability is considerably
“r 2 3 4 5 6 7 8 9 10 larger.(iii ) The stability region of the plastic solid is reduced
K (in fact this phase is stable only up 0%~ 2.5) at the ex-

FIG. 8. Phase diagram of prolate parallelepipeds. Several phas@§nse of that of the discotic smectic phage) The transi-
are labeled like in Figs. 2, 3, and (8: nematic and PS: plastic tions to the latter are strongly first order in natuecept for
solid) and the transition densities are labeled with different symbols'<_1:4-5)- (v) The oriented solid phase is replaced by a per-
(Star: isotropic; diamond: plastic solid; circle: columnar; down tri- fectly oriented solid in whichX” and “y” species are absent.
angle: discotic smectic; up triangle: smectic; and square: oriented his phase, after scaling in tizedirection, is the same as the
solid). The shaded areas limit the regions of two phase coexistenc&olid of parallel hard cubes. A solution from the FMF mini-
The transitions labeled by by 1, 2, and 3 are first order in nature. mization with three dimensional spatial modulations and
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FIG. 9. Phase diagram of oblate parallelepip@tie same sym-
bols and labels of Fig. 8 are uged®OS: Perfectly oriented solid.

with v, #0 has not been found in the parallelepipedic unit

cell (the cases of face-centered and body-centered cubic urd

cells have not been tried here

Finally, similar by to what happens with prolate parallel-
epipeds, the nematic phase begins to be stable’at 5. It
undergoes a continuous phase transition to the column
phase(the transition points of Fig. 9 are joined with the
spinodal curvg

The parallelepipeds witlk™*=1.5 exhibit an interesting

phase behavior. At low densities the isotropic phase destab}

lizes with respect to the columnar phase and not with respe
to the PS phase. This example shows that the prediction f

phase transitions using only the spinodal instability calcula-
tions can generate uncertainties about the possible symmS

tries of the inhomogeneous phases. In fact these calculatio
do not allow to decide in this example if the new phase is

plastic solid or a columnar phase. Only by a complete mini-
mization of the FMF could it be concluded that the columnar,

phase is the stable one.

In Fig. 10(a) the density profiles of perpendiculgs, (2)]
and paralle[p,(2)] species are shown for the discotic smectic
phase of oblate particles witk *=2.5, while the order pa-
rameter profile is shown in Fig. U§). This discotic smectic
phase coexists at=0.4244 with the plastic solid phase. The
period in units of the large parallelepiped edge length i

PHYSICAL REVIEW E 69, 061712(2004)

two local maxima at each side of the layer. This effect can be
explained by the depletion force that the perpendicular spe-
cies exerts on the parallel one.

TheN-Sm(N-C) and the Sm-O$C-POS transition lines
of Figs. 8 and 9 converge asymptotically 4e-0.3143, the
value of the fluid-solid bifurcation density, as— oo(k™t
— o). The reason for this is that upon increasikig™?) the
number of rodgplates with orientation perpendicular to the
director becomes vanishing small, and then the system is,
after rescaling the direction, almost equivalent to a system
of parallel cubes.

Simulations of the Zwanzig model on a X35X 15 lat-
tice with spacing 1/3 show that oblate parallelepipeds with
dimensions X 5X 1 undergo a transition to a phase exhib-
'Hng a columnar structurg31] at a density somewhere be-
tween 0.55<p<<0.65. On increasing the system size to 30
X 30X 30 the global columnar order disappears, but local
correlations persist in the fluid with particle alignment dis-

épibuted evenly among the three available orientations. In the

same work the effect that orientational constraints have on
the stability of the inhomogeneous phases was studied.
While a system of biaxial 53X 1 “tiles” without orienta-
ional constraints(except those inherent to the Zwanzig
ode) stabilizes in a smectic phase with the shortest edge
pngths perpendicular to the layers, the system composed by
‘tiles” with all their long edge lengths parallel to each other
xhibits a phase transition to the smectic phase with these
ge lengths perpendicular to the layers, similar to what is
ound here for uniaxial oblate parallelepipedbe discotic
smectic phase
Simulations of hard cut spheres show that£er0.3 there
is an isotropic-solid transition, fork=0.2 an isotropic-
columnar transitior(the isotropic phase might instead be a
peculiar “cubatic” phaseand fork=0.1 a nematic-columnar
one[9]. From these results it can be concluded that the effect
that the degree of particle anisotropy has on the symmetry of
the stable phases for both cut spheres and hard parallelepi-

éaeds with restricted orientations, is qualitatively similar.

d/o0=1.2142. The random orientation of the uniaxial axes

within the layers is confirmed by the high negative values of

the order parameter at the position of the density peak of th
perpendicular species. The main difference between the DS
of Fig. 10 and that of Fig. 7 is that the™ species is now
localized preferentially not at the center of the interlayer
space, but near the smectic laygsse Fig. 10a)], exhibiting
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FIG. 10. Density(a) and order parametdgib) profiles of the
DSm phase coexisting gi=0.4244 with the PS(a) Shows the

density profiles of perpendiculdp ) and parallel(p;) species.

IV. CONCLUSIONS

e . . .
The goal of this article has been the calculation of the

r;:T)hase diagram of the Zwanzig model for prolate and oblate
parallelepipeds centering the attention on the phase transi-
tions to inhomogeneous phases. For this purpose the funda-
mental measure functional for hard parallelepipeds with re-
stricted orientations has been used. This functional is exactly
the same for any particle sha@@olate and oblate depending
on «), which allows for a unified study of the phase behavior
of both kinds of particles. A free minimization of the func-
tional was carried out with the only constraints of choosing a
parallelepipedic unit cell and of imposing uniaxial symmetry
in the inhomogeneous phases. The latter is justified by
uniaxial symmetry of the particles. The degree of approxi-
mation to the exact density profiles was controlled by the
cutoff imposed on the reciprocal lattice numbers in the Fou-
rier expansion of the density profiles.

A system of parallel hard cubes was separately studied,
which was motivated by recent simulations on this system
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[33,34. Applying a modified versions of the FMF to im- smectic, the existence of which was confirmed by simula-
prove the description of the PHC liquid, along the same linesions[31]. The close relation between the particle anisotropy
as Refs[36] and[37], the continuous transition point to the and symmetry of the stable phagetongated particles form
solid phase and the equation of state of the solid were calcmectics, flattened one form columnars and more isotropic
lated from the divergence of the structure factor and from thﬁparticles form solids which has been observed in simula-
functional minimization with respect to Gaussian densitytions [8—10 and experimentg43] is confirmed by this
profiles. Although the transition density and fraction of va-gjmple model.

cancies change in the right direction, these results are still far There are two important effects that the restriction of ori-

fror_‘n the simulations. In _fact, the solid phase is poorly de-gniations has on the phase diagram topolgbyfhe already
scribed by the new functional. The poor convergence of theyyinieq out stability of the discotic smecti@.) The stability

PHC virial series does not make this procedure as effectiv f the columnar phase of prolate parallelepipeds for some

as for hz_ard sp_heres. Further_reflnemgnt of _the method and.”}slespect ratios. The structural properties of inhomogeneous
proper inclusion of vacancies in simulations of the solid

phase will probably improve the agreement between theor hases that were fo_und thrpugh functional minimiza.tion al-
and simulations ow us to elucidate interesting effects such as the microseg-

The original FMF for PHC was minimized to study the regation behavior of different species in the solids and the

relative stability of the smectic, columnar, and solid phasesdelole“on effect between particles in the smectics. Those

starting at low densities from the bifurcation point. The solidﬁndings. end?rﬁ.ehtlhe_ ﬂredictive powerhof the FMF in the
phase is the only stable phase, followed by the columnar an(aescrlptlon ot highly INhomogeneous phases.
the smectic(in order of energy stability At high densities
the same behavior is shown from calculations using cell
theory, functional minimization with Gaussian density pro-
files and computer simulatiorj84]. The author thanks J. A. Cuesta and E. Velasco for useful
The system of prolate and oblate parallelepipeds exhibitsliscussions and a critical reading of the manuscript and E.
a very rich phase behavior. Apart from the plastic or orientedlagla for kindly providing his simulation data. This work is
solid, smectic, and columnar phases, which are present algmart of the research Project No. BFM2004-01B@l) of the
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