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The theory of unconventional one-dimensional periodic mesophases forming in a liquid of achiral bent-core
molecules is presented. The order parameter is a polarization wave. Three distinct phases which can be
stabilized directly from the isotropic liquid phase are associated with linear, circular, and elliptic polarizations
of the wave. The elliptic polarization leads to the structure of the commonly studiedB2 9bent-core9 mesophase
whereas the recently discoveredCp phase may be assigned to the linear polarization. We present the molecular
configurations and macroscopic properties of the stable states. Their behavior under chiral doping and electric
field application are investigated and the corresponding phase diagrams are calculated.
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I. INTRODUCTION

The discovery in 1996 of ferroelectric switching in “bent-
core” mesophases by Nioriet al. [1], followed by the dem-
onstration of their antiferroelectric character[2], opened up a
new way in the liquid crystal science. Although at first view
these systems fit into the sequence of well-known ferroelec-
tric and antiferroelectric smectic(Sm) phases[3], a number
of striking peculiarities prevents the confusion between usual
calamitic and bent-core antiferroelectric phases. First of all,
in calamitics the local polarization results from the chiral
character of rodlike molecules while bent-core mesophases
are made with achiral molecules. Their symmetry groupC2v
[4] permits a strong electric dipolar moment and an intrinsic
optical biaxiality which lead to peculiar physical behaviors
(especially electro-optic) and potential technological applica-
tions.

At least eight phases, denotedB1 to B8, have yet been
disclosed in bent-core compounds. None of them has been
found in pure calamitic systems. The most commonly stud-
ied B2 phase, which appears below the isotropic liquid, has a
smectic antiferroelectric chiral structure[2,5]. Numerous
two- and three-dimensional structures have also been evi-
denced. TheB5 phase presents short-range translational order
[6], associated with a rectangular molecular arrangement.
Similar two-dimensional(2D) lattices are also claimed for
the B1 and B6 phases[7,8]. In phaseB7, x-ray experiments
and observations of unusual textures lead to assume a helical
structure[9] with 2D long-wavelength modulations[10]. Fi-
nally, theB3 [5,7,11] andB4 [7,11] phases present 3D trans-
lational order[12].

Within this rich polymorphism, the smectic-A and nem-
atic phases are quite rare. This absence of intermediate
phases between the isotropic liquid and the antiferroelectric
states is surely the most significant difference with respect to
calamitic systems. In calamitics the orientational and trans-
lational ordering of the molecules are independent degrees of
freedom which condense at different temperatures, leading to
the classical sequence on cooling: isotropic→nematic→Sm-
A→Sm-C. . .. Independent order parameters account for each
step in this sequence: The nematic tensor breaks the isotropic
symmetry of the liquid state, the smectic density wave

breaks the translational symmetry of the nematic phase and
the tilt axial-vector order parameter breaks the 2D isotropic
symmetry of the smectic layers in the Sm-C phase. In the
bent-core mesophases, all these orders appear simultaneously
and form directly antiferroelectric smectic phases from the
isotropic liquid. By assuming combination of classical
mechanisms, this complex process is only possible across a
strongly first-order transition when the liquid state becomes
simultaneously unstable with respect to all the previously
mentioned primary order parameters. Nevertheless it is very
unlikely that, on the one hand, several order parameters con-
dense simultaneously, while on the other hand, almost no
phase corresponding to a single order parameter(nematic or
smectic) is reported in the examined molecular series.

These properties are reminiscent of the situation known
for a few decades in superconductors[13]. In the unconven-
tional superconducting or superfluid systems, namely, the
heavy-fermions crystals[14], the organic and high-TC super-
conductors[15] or the superfluid phases of He3 [16], the
low-temperature phases exhibit simultaneously supercon-
ducting, magnetic, and structural modifications. Each one is
associated with the breakdown of a specific part of the parent
phase symmetry group: gauge, rotational, and time reversal
operations, respectively. Furthermore, no phase is observed
in which a single symmetry is broken and the transitions
toward the ordered phases are often second order. It was long
recognized that this complex process cannot be accounted
for by the simultaneous onset of classical order parameters.
Instead, a single order parameter, associated withp- or
d-anisotropic wave functions[17], gathers in a single repre-
sentation all the relevant degrees of freedom involved in the
transition. Thus it explains in a very simple way the complex
properties of the ordered phases along with the simple ther-
modynamic behavior observed at the corresponding transi-
tions.

Along the same lines, we have proposed[18] a model
based upon a single order parameter accounting for the trans-
lational, rotational, and chiral symmetry breakdowns evi-
denced in bent-core systems. This model is dual with the
d-wave theory of lamellar high-TC oxide superconductors
[19]. The purpose of this article is to present the main physi-
cal consequences of this model and to briefly compare them
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with the available experimental data. The order parameter is
a transverse polarization wave condensing in the isotropic
liquid. On the one hand, the wave aspect of the order param-
eter breaks the continuous translational symmetry of the liq-
uid along the direction of the wave vector[20]. On the other
hand, the polar vector aspect leads to the rotational symme-
try breakdown within the smectic layers. This model predicts
three stable phases in which the vector wave is circularly,
linearly, or elliptically polarized. In the nonsmectic “circu-
lar” phase a regular chiral helix is formed on the molecular
scale. In the “linear” phase the polarization is confined
within a single plane and the structure is smectic but remains
achiral. The “elliptic” structure is chiral, antiferroelectric,
and smectic.

The comparison of the model predictions with the x-ray,
dielectric, and electro-optic data shows that the elliptic phase
corresponds to the homochiral state observed in theB2 phase
whereas the linear phase may be assigned to the recently
discovered antiferroelectricCP phase[21] (denoted SmAPA
in Ref. [22]). We propose that the circular structure could
possibly describe the yet unknown structure of theB7 phase
in the vicinity of the isotropic liquid.

The paper is organized as follows. In Sec. II we present
the ordered phases and the theoretical phase diagrams. In
Sec. III the static macroscopic properties in each phase are
worked out. Section IV is devoted to the effects of chiral
doping and electric field application. In Sec. V, a brief com-
parison with previous theories and the available experimental
data is given.

II. ORDERED PHASES

Most of the dipolar ordered(ferroelectric, antiferroelec-
tric, or ferrielectric) phases in chiral calamitic liquid crystals
result from a phase transition from the paraelectric smectic-A
(Sm-A) parent structure[23]. On the contrary, in the media
of achiral bent-core molecules, one observes that the antifer-
roelectric phase is almost always formed directly from the
isotropic liquid [4]. This suggests a new transition mecha-
nism in which a single instability of the isotropic state is
involved, instead of the double instability describing the po-
lar ordering in chiral systems. Within this hypothesis of a
single transition mechanism, experimental data provide an
unambiguous choice of the order parameter as a transverse
vector wave. Indeed the most common low-symmetry state
in this system, denotedB2 is characterized by one-
dimensional periodicity, local polarization perpendicular to
the periodicity direction, and zero macroscopic polarization
[2,4].

A. The vector-wave mechanism

The polar-vector wave associated with a single wave vec-
tor k leads to a one-dimensional structure with wavelength
l=2p /k. Let z be the direction ofk. The general form of a
transverse vector wave can be written as

PW szd = eWxfpx cosskz+ wxdg + eWyfpy cosskz+ wydg, s1d

wherepx andpy are the components of the wave amplitude,
wx andwy are the initial phases, andex andey are unit vectors

in the plane normal tok. The polar vectorPszd represents the
local polarization. Equation(1) describes a helical structure
with elliptical shape which depends on four parameters(px,
py, wx, and wy) defining its shape, position in space, and
orientation. By varying these parameters one can obtain spe-
cific structures with various symmetry groups. For a more
convenient symmetry analysis of the model let us make the
following change of variables in Eq.(1):

h1 = pxe
iwx − ipye

iwy, h2 = pxe
−iwx − ipye

−iwy, s2d

h1=r1e
iw1, h2=r2e

iw2, h1
* andh2

* are the complex amplitudes
of Pszd. The anglesw1 and w2 are Goldstone variables re-
sponsible on the orientation and the position of the structure
in space. The modulir1 andr2 are energetic variables which
define the ellipse shape, 2sr1+r2d and 2ur1−r2u being the big
and the small axes of the ellipse, respectively.

The wave(2) spans an irreducible representation of the
symmetry groupGL=Os3d3T3 of the parent achiral liquid.
It is associated with a formally infinite-dimensional space
(corresponding to waves directed in any direction of space),
but the considered 1D periodic antiferroelectric structures
can be described by an effective order parameter which has
only four componentsh1, h2, h1

* , andh2
* . According to Lan-

dau theory[24], the free energyF is invariant with respect to
the subgroupGeff of GL which preserves the direction of the
single wave vectork [25,26]. It can be easily seen thatGeff
=D`h3T3 contains the inversionI, the continuous rotations
Cf aboutz, the twofold rotationsU2 normal tok, the mirror
planess parallel or normal tok and the 3D continuous trans-
lationsTt.

B. Ordered phases

The integrity basis[27] of the vector-wave representation
consists of two independent invariants

I1 = r1
2 + r2

2, I2 = r1
2r2

2. s3d

The general form of the homogeneous part of the free energy
then reads

FP = a10I1 + a01I2 + a11I1I2 + . . . +anpI1
nI2

p + . . . , s4d

whereanp is a phenomenological coefficient. Minimization
of FP with respect to the effective order-parameter compo-
nents provides four stable states.

(I) The isotropic liquid phase denotedL whenr1=r2=0.
(II ) For r1Þ0, r2=0 (or equivalentlyr1=0, r2Þ0) a chi-

ral helielectric phase, denoted “circular”(C phase), is stabi-
lized. It has the structure of a circularly polarized wave.
Since inC px=py andwx−wy=mp /2 (m integer), the vector
wave becomes

PW szd = px eWx cosskz+ wxd − py eWy sinskz+ wxd. s5d

(III ) For r1
2=r2

2 an achiral antiferroelectric phase, denoted
“rectilinear” (R-phase), is stabilized. It has the structure of a
linearly polarized wave. The wave parameters are related by
wx−wy=mp (m integer). In this phase, the polarization field
takes the form
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PW szd = fpx eWx + py eWygcosskz+ wxd. s6d

(IV ) The intermediate phase, denoted “elliptic”(EL
phase), characterized byr1Þr2, corresponds to the general
transverse wave with elliptic polarization[see Eq.(2)].

Let us now discuss the properties of these structures.
C phase. The symmetry groupGC=`122 (in Shubnikov’s-

type notation[28] for a nonsymmorphic space group) of the
circular phase belongs to theD` uniaxial symmetry class. It
is periodic alongz and remains homogeneous in thex−y
plane. Although the continuous translationsTz, as well as the
continuous rotationsCu are broken, all the helical combina-
tions T−u/kCu are preserved and forbid a smectic modulation
of the density. Note that the local point groupC2 permits a
nonzero local transverse polarizationPszd but the global he-
lical symmetry cancels the macroscopic polarization. The
most striking property of this structure is the spontaneous
breaking of spatial inversion in an achiral medium which
makes it chiral. Two types of energetically equivalent do-
mains with opposite signs of the chirality should result from
this symmetry breakdown. In two different domains the he-
lices are wound in opposite senses.

R phase. The symmetry groupGR=Pmmaof the rectilin-
ear phase belongs to theD2h achiral biaxial symmetry class.
At general position the local symmetry isCS whereas it be-
comesC2v at positions whereP is maximum andC2h where
P vanishes. The local transverse polarizationPszd remains
within a single plane containing thez axis but its amplitude
varies withz. The macroscopic polarization vanishes yield-
ing a planar antiferroelectric structure. The discrete periodic-
ity of the R phase is associated with the onset of a smectic
density wave. It might be compared(but not identified) with
the unwound chiral Sm-CA antiferroelectric phase though the
R phase remains achiral and with the anticlinic Sm-O phase
[29] found in achiral calamitic liquid crystals.

EL phase. The symmetry groupGEL=P2221 of the elliptic
phase belongs to theD2 biaxial symmetry class. Its has the
same translational symmetry and smectic feature as theR
phase. The transverse twofold axes are located at the maxi-
mums and minimums ofPszd and are parallel to the principal
axes of the projected ellipse. The macroscopic polarization
still vanishes but the corresponding antiferroelectric structure
is not planar and is chiral.

C. Molecular configurations

The simplest way to describe the molecular order consists
in assuming that, at a given positionz in the structure, all the
molecules are oriented along the same direction. The orien-
tation of one molecule at a given positionz is determined by
the local point group denotedGpszd. This procedure is simi-
lar to the determination of the so-called “motifs” in classical
crystallography. In theE, R, and EL phases there are only
five nonequivalent positions with local point groups:C2v,
C2h, C2, Cs, or C1. Gpszd=C2, everywhere in the circular
phase. In the EL phase the general and special positions have
C1 andC2 symmetry, respectively. In theR phaseGpszd can
be CS, C2v or C2h (whereP vanishes). The situationGPszd
=C2h is specific becauseC2h is not a subgroup of the mo-

lecular symmetry groupC2v. The fact that at this positionsP
vanishes indicates that some statistical disorder must be in-
troduced in the molecular orientation: the molecules which
have their center localized whereP=0 have equal probabili-
ties to have their polarizationp oriented along +Ox or along
−Ox. Slightly above and below this position, the correspond-
ing “up-down” disorder decreases and becomes minimal
whereP is maximum.

In the C phase, presented in Fig. 1, the orientation of the
molecular polarizationp precesses periodically around thez
axis. The molecular plane is tilted to a constant angle around
p with respect to the localp-Oz plane.

In theR phaseGPszd varies fromCS at general position to
C2h whereP=0 or C2v whereP is maximum. At the latter
position p is oriented along theC2 axis and the molecular
plane is parallel toOz. At general positionz, the molecular
plane is rotated to an anglefszd with respect to the previous
configuration.fszd is a periodic function ofz vanishing at
positions withC2v symmetry and maximum at positions with
C2h symmetry. At low temperature the amplitude of the in-
duced density modulation becomes so strong that almost all
the molecules are gathered about the planes of maximum
density(center of the smectic layers). The symmetry of theR
phase permits only two positions for the density maximums.

(i) Where P is maximum. The corresponding state is a
two-layer stacking of molecules with polarization perpen-
dicular toOz. The direction of the polarization is opposite in
two adjacent layers. Moreover, the molecular plane is not
tilted and the flip disorder is minimal. This yields the anti-
ferroelectric structure depicted in Fig. 2(a).

(ii ) At the zeroes ofP. The corresponding structure is a
two-layer stacking of nonpolar tilted subunits with alternat-
ing orientations. This yields an anticlinic structure repre-
sented in Fig. 2(b). Let us notice that, thoughP vanishes at
the maximum of the density, a residual antiferroelectricity
can never be completely neglected due to the polarization of
molecules slightly above or below the smectic planes and to

FIG. 1. Molecular configuration in theC phase.(a) Molecular
orientation at one position in theC phase.(b) Molecular configura-
tion in one unit cell of theC phase. Atz=0 the molecule is oriented
as in (a). At other positions the previous configuration precesses
about thez axis. All the molecules belonging to a single plane
normal toOz are oriented in the same way. The helix drawn in the
figure is a help for visualizing the precession of the molecular ori-
entation but it has no direct physical meaning.
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the delocalization of the polarization density within a single
molecule.

Which case is more stable depends on the sign of the
coupling between the density wave and the order parameter
[see Eq.(13)]. When theL→R transition is second order the
sign of the coupling coefficient is fixed and only one case
can be realized, either antiferroelectric or anticlinic. For a
strongly first-orderL→R transition the sign of the coupling
can change. As it becomes negative, the system can undergo
a smooth transformation from the antiferroelectric to the an-
ticlinic state without any phase transition.

The description of the elliptic phase at low temperature is
similar. Close to theR phase, two limit cases can also be
defined.(i) In the first one[Fig. 2(c)] the maximums of the
density coincide with those ofP. The molecular plane is
slightly tilted in opposite directions in two adjacent layers.
(ii ) In the second one[Fig. 2(d)] the maximums of the den-
sity coincide with the maximums of the tilt angle but with
nonzero value ofP. These two configurations can be clearly
distinguished only in the vicinity ofR. At lower temperature
they become qualitatively equivalent. Indeed when neither
the mean polarization nor the tilt are negligible, Fig. 2(d)
may be viewed as resulting from Fig. 2(c) after a rotation to
90° together with a translation of a quarter of the periodl.

D. Phase diagrams and modulated structures

Equations(4) and(5) permit us to calculate typical phase
diagrams predicted by the vector-wave model. The most
simple phase diagram presenting stability regions for all four

phases can be calculated by using the following truncated
free energy[30]:

FP = a1sr1
2 + r2

2d + b1 r1
2r2

2 +
a2

2
sr1

2 + r2
2d2 +

b2

2
r1

4r2
4 s7ad

with a1=a0sT-TCd, a2,b2.0. In the corresponding phase
diagram, presented in Fig. 3(a), the isotropic liquid is sepa-
rated from theC phase by a line of second-order phase trans-
formation. The transition between theL and R phases
changes its order from second to first at a tricritical point.
The stability region of the elliptic phase is limited by lines of
second-order phase transitions toward the phasesC and R.
All the phases merge at a Landau pointO [27]. Within a
model corresponding to a higher degree of nonlinearity, the
free energy can be written

FP = a1 I1 + b1 I2 +
a2

2
I1
2 +

b2

2
I2
2 +

a3

3
I1
3 s7bd

with a2,0, b2.0, a3.0. Accordingly, the previous phase
diagram is modified in the following respects[see Fig. 3(b)]:
Two three-phase points(T1 andT2) replace the Landau point.
The transitions from the liquid to the phasesC andR are now
strictly firstorder. In addition, a direct first-order transition
between the liquid and the elliptic state EL becomes pos-
sible. The transitions between antiferroelectric phases remain
second order.

In a third typical model, the free energy, given by

FP = a1 I1 + b1 I2 +
a2

2
I1
2 +

b2

2
I2
2 + cI1 I2. s7cd

(a2,b2.0, a2b2−c2,0), leads to the phase diagram shown
in Fig. 3(c). Its main feature, the absence of stability region
for the elliptic phase, makes possible a direct first-order tran-
sition between the phases with linear and circular wave po-
larizations.

These phase diagrams complete the study of the homoge-
neous part of the model free energy. At the following step we
refine the model to analyze its stability with respect to inho-
mogeneous fluctuations which are important in soft systems

FIG. 2. Limit structures of theR and EL phases arising when the
induced density wave is sufficient to single out the molecular con-
figurations located at density maximums. The density minimums
are indicated by straight horizontal lines.(a) R phase when the
maximums of density coincide with the polarization maximums.
The structure is mainly antiferroelectric.(b) R phase when the den-
sity maximums coincide with the zeroes of the polarization wave.
The structure is mainly anticlinic.(c) EL phase resulting from the
deformation of theR phase depicted in(a). (d) EL-phase resulting
from deformation of(b). In this picture of the EL phase the polar-
ization wave seems linearly polarized because the molecular orien-
tations between the density maximums are omitted.

FIG. 3. Theoretical phase diagrams of the homogeneous vector-
wave model.(a) For the free energy given by Eq.(7a). (b) For the
free energy(7b). (c) For the free energy(7c).
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with Goldstone degrees of freedom. The large-scale behavior
of the Goldstone anglesw1 andw2 are driven by the inhomo-
geneous terms in the free energy. Taking into account inho-
mogeneous terms, one finds eleven independent invariants
appearing in the free energy densityFtotsI1. . .I11d:

I1 = r1
2 + r2

2,I2 = r1
2r2

2,

I3 = Sdr1

dz
D2

+ r1
2Sdw1

dz
D2

+ Sdr2

dz
D2

+ r2
2Sdw2

dz
D2

,

I4 = r1
2Sdw1

dz
D − r2

2Sdw2

dz
D, I5 = Fr1

2Sdw1

dz
D + r2

2Sdw2

dz
DG2

,

I6 = HSdr1

dz
D2

+ r1
2Sdw1

dz
D2

− Sdr2

dz
D2

+ r2
2Sdw2

dz
D2J2

I7 = HSdr1

dz
D2

+ r1
2Sdw1

dz
D2

− Sdr2

dz
D2

+ r2
2Sdw2

dz
D2J

3Fr1
2Sdw1

dz
D + r2

2Sdw2

dz
DG ,

I8 = sr1
2 − r2

2dFr1
2Sdw1

dz
D + r2

2Sdw2

dz
DG ,

I9 = sr1
2 − r2

2dHSdr1

dz
D2

+ r1
2Sdw1

dz
D2

− Sdr2

dz
D2

+ r2
2Sdw2

dz
D2J ,

I10 = r1r2
dr1

dz

dr2

dz
, I11 = r1

2Sdr1

dz
D2

+ r2
2Sdr2

dz
D2

. s8d

The stable states are then obtained by a classical Euler-
Lagrange procedure. The Lifshitz-type invariantsI4 and I8
make unstable the states with homogeneous Goldstone
phasesw1 andw2. According to Dzyaloshinskii[31] the most
probable periodic and quasi-periodic modulated structures
satisfy the conditionsw1=q1z+w1

s0d, w2=q2z+w2
s0d, and

dr1/dz=dr2/dz=0. This yields four phases.(I) r1=r2=0:
isotropic liquid,(II ) r1=r2, q1=q2: modulatedC phase,(III )
r1=0, q2Þ0 or r2=0, q1Þ0: modulatedR phase, (IV )
r1,r2,q1,q2Þ0: modulated EL phase.

Replacingwi by wi =qiz+wi
s0d in the definition of the po-

larization wave given by Eqs.(1)–(3) gives

PW szd = hr1 cosfsk + q1dz+ w1
0g + r2 cosfsk − q2dz+ w2

0gjeWx

+ h− r1 cosfsk + q1dz+ w1
0g + r2 cosfsk − q2dz+ w2

0gjeWy.

s9d

No new phase is stabilized with respect to the homogeneous
analysis but all the low-symmetry states are characterized by
spatial modulations of the Goldstone anglessq1,q2Þ0d.
However, theC andR “modulated” phases remain commen-
surate because they are characterized by a single wave vector
k+q1. In contrast, in the EL phase the vector wave is char-
acterized by two distinct wave vectorsk+q1 andk−q2 [Eq.

(9)], and the structure becomes actually incommensurate.
Let us finally describe the incommensurate elliptic struc-

ture. The wave vectork of the primary vector field is re-
placed with the temperature dependent termK=k+sq1

−q2d /2, whereas the modulation vector isQ=sq1+q2d /2.
The modulated vector wave appears then as the superposi-
tion of two perpendicular locally linear waves which reads
(in the domain defined byw1

s0d=w2
s0d=0):

PW szd = 2sr1 + r2dcosfKzgeWXszd + 2sr2 − r1dsinfKzgeWYszd,

s10d

where exszd=cossQzdex−sinsQzdey and eyszd=sinsQzdex

−cossQzdey are two perpendicular unit vectors turning within
the x+y plane with a wavelengthlmod=1/Q. exszd andeyszd
are parallel to the principal axes of the local projected el-
lipse. The incommensurate elliptic phase can be seen as a
locally elliptic wave whose elliptic axes precess slowly along
z. Let us stress that the ellipse turns without any deformation
since the axes lengths 2sr1+r2dand 2ur1−r2u are independent
of z. The corresponding structure is presented in Fig. 4.

The EL symmetries are broken by the incommensurate
modulation except one twofold axis normal to the wave vec-
tor k. The symmetry breakdown from orthorhombic to
monoclinic is rather weak and the EL symmetry remains

FIG. 4. Structure of the incommensurate elliptic phase with a
period l. Locally the structure is elliptic while the axes of the
ellipse precess with a periodlmod. The precession is evident on the
projection of the structure onto thex−y plane. The projection has a
flower-shape with a finite number of elliptic petals, because we
have chosen for the picture a commensurate modulation wave vec-
tor. For general incommensurate structure the projection fills com-
pletely the disc surrounding the flower.
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locally close to the orthorhombic class. Thereby, the induced
effects due to the monoclinic character of the elliptic phase
are expected to be weak too.

III. SECONDARY PHYSICAL TENSORS

In this section we will consider the additional collective
degrees of freedom of the medium which couple to the pri-
mary vector-wave order parameterPszd: (i) An axial vector
waveAszd which represents the spatial variations of the mo-
lecular plane orientation.(ii ) A density wave which is in-
duced in the rectilinear and elliptic phases and makes them
smectic.(iii ) Homogeneous tensors characterizing the mac-
roscopic properties of these phases.

A. Polar and axial vector waves

The orientation of the molecule with respect to the layer
normal is usually described in smectic phases by an axial
vectorA normal to the tilt plane[32]. In bent-core systems
the local orientation is described by the primary polar wave
Pszd together with a transverse axial waveAszd with the
same wave vectork. Since Pszd and Aszd span the same
irreducible representation of the Euclidean symmetry group
of the isotropic achiral liquid phase(or similarly of the nem-
atic or smectic-A phases), Aszd is referred to as a
“pseudoproper”[33] order parameter and has the same ther-
modynamic behavior asPszd. More preciselyP and A are
both pseudo proper order parameters so that considerP as
primary orA as primary is theoretically arbitrary. Replacing
P with A everywhere in Sec. I provides exactly the same
theory with the same predictions. Which vector dominates
and induces the other one at the microscopic level affects the
values of the actual phenomenological coefficients but not
the structure of the theory. In particular the pseudoproper
feature means that if in a region of the theoretical phase
diagramA is strong andP is weak at the first order isotropic-
elliptic transition, then in a symmetric part of the phase dia-
gram their roles will be reversed.

The general expression ofAszd is the same as that forPszd
given in Eq.(3), where the componentsh1,2 have to be re-
placed with the complex amplitudes ofA: j1=a1e

ic1 andj2
=a2e

ic2. The equilibrium values ofj1,j2 are determined by
their bilinear coupling with the primary order parameter
h1j1

* −h2j2
* +h1

*j1−h2
*j2. Minimization of the coupled free

energy with respect toa1, a2, c1, andc2 yields the following
equilibrium values forAszd andPszd.

The axial and polar waves are parallel in the circular
phase

AW szd = a1Scosskz+ f1d
sinskz+ f1d

D, PW szd = r1Scosskz+ f1d
sinskz+ f1d

D
s11ad

while they are perpendicular in theR phase:

AW szd = 2a sinSkz+
f1 − f2

2
D1− sinSf1 + f2

2
D

− cosSf1 + f2

2
D 2 ,

PW szd = 2r cosSkz+
f1 − f2

2
D1 cosSf1 + f2

2
D

− sinSf1 + f2

2
D 2 .

s11bd

In R the maximums of one wave coincide with the zeroes of
the second wave.

In the elliptic phase one has

AW szd = sa1 − a2dcosSkz+
f1 − f2

2
D1 cosSf1 + f2

2
D

− sinSf1 + f2

2
D 2

− sa1 + a2dsinSkz+
f1 − f2

2
D1sinSf1 + f2

2
D

cosSf1 + f2

2
D 2 ,

PW szd = sr1 + r2dcosSkz+
f1 − f2

2
D1 cosSf1 + f2

2
D

− sinSf1 + f2

2
D 2

+ sr1 − r2dsinSkz+
f1 − f2

2
D1 sinSf1 + f2

2
D

cosSf1 + f2

2
D 2 .

s11cd

A andP are not parallel except at special positions where the
local symmetry increases up toC2. The projections ofA and
P onto thex−y plane give two ellipses with parallel axes.
The corresponding great and small axis magnitudes areur1
−r2u, sr1+r2d for P and ua1−a2u, a1+a2 for A. Comparing
Eq. (11a)–(11c) with Figs. 1 and 2 yields the interpretation of
Aszd as the tilt vector. Indeed, in C,P andA are parallel and
the molecular plane is rotated aroundP. In R, A cancels at
positions whereP is maximum so that in the antiferroelectric
configuration the molecules are not tilted while in the anti-
clinic configuration the molecules are tilted.

B. Scalar waves

In the vector-wave mechanism the density wave does not
preexist the orientational ordering process leading to the
phasesC, R, and EL. So, one of the main unconventional
features associated with this mechanism is the absence of
smectic order in theC phase and the induced secondary char-
acter of the smecticity in the phasesR and EL. Thus the
smecticity of these structures is much less pronounced in
these systems, at least close to the isotropic liquid phase,
than in conventional smectic phases.

The periodicity of the induced density wave inR and EL
is the half of the wavelengthl=2p /k because the symmetry
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groups of all the ordered phases contain a twofold helical
rotation axis. The corresponding density increment reads
Drszd=d coss2kz+ad. The corresponding coupled free en-
ergy reads

FD/P = FPsr1,r2d +
aD

2
d2 + gD dr1r2 cossw1 − w2 − ad.

s12d

Minimization of FD/P with respect tod and a yields the
following behavor ofd anda.

(i) w1−w2=a for gD,0 andw1−w2=a+p for gD.0. In
the first case the maximums of the density coincide with the
maximums ofP and with the minimums ofA. In the second
case the maximums of the density coincide with the mini-
mums of P and with the minimums ofA, leading to two
physically different situations. Namely, theR phase appears
in the first case as antiferroelectric and almost not tilted and
in the second case as anticlinic with almost zero polarization.

(ii ) d~r1r2. Thus, in the circular phased=0 and no
smectic modulation of the density occurs. In the phasesR
and EL,d varies assT−TRd in the R phase andsT−TELCd in
the EL phase, in the vicinity of isotropic-rectilinear transition
temperatureTR and of theC→EL transition temperature
TELC, respectively. As the system approachesTR or TELC the
density modulation vanishes much faster thanP. Thus close
to the transition temperatures the smectic character ofR and
EL is very weak.

Since the stability of thin films is closely related to their
smecticity, we expect considerable difficulties in film prepa-
ration in theC phase and, close to the liquid state, in phases
R and EL as well. Nevertheless the preparation can be made
possible, even in theC phase, by the presence of walls be-
tween domains of opposite handedness or by the smecticity
induced by the free surfaces of the films. Indeed a domain
wall has an internal smectic structure. This property can be
understood by considering the actual symmetry of the wall,
which contains only the elements belonging simultaneously
to the two domains, so that the continuous helical operations
of a single domain are broken. Consequently the purely dis-
crete translational symmetry remaining in the system gives a
smectic structure to the wall.

Similar qualitative conclusions can be dressed about the
x-ray diffraction behavior in theC phase. In the absence of
domain walls and of surface induced smecticity, no diffrac-
tion peaks could be observed in usual x-ray experiment
though resonant x-ray diffraction should display peaks atk
and −k corresponding to the single harmonic of the vector
field in theC phase. However, in a realistic system contain-
ing smectic domain walls, usual x-ray diffraction patterns
should show peaks at ±k, ±2k, . . .. In thephasesR and EL at
sufficiently low temperature usual x-ray peaks should also be
observed at ±k, ±2k, . . ..

C. Homogeneous tensors

The anisotropic part«i j −Trs«ddi j /3 of the optic tensor«
is a traceless symmetric second-rank tensor[34]. It is
uniaxial in C and biaxial inR and EL. In the biaxial phases

its eigenvectors are directed alongx, y, and z. When one
takes into account the incommensurability of the EL phase
the preceding axes are slightly rotated about the y direction
corresponding to the twofold symmetry axis of the structure.
One part of this tensor, namely,«xx+«yy is proportional to
r1

2+r2
2 and varies close toTC as sT−TCd. Another part, ex-

pressing the planar optical biaxiality can be written asj
=«xx−«yy−2i«xy= ujueib. Its coupling with the order param-
eter gives the following contribution to the free energy:
ujur1r2 cossw1+w2−bd resulting in the relationuju~r1r2.
Hence uju vanishes assT−TRd in the vicinity of the R→L
transition temperatureTR.

Let us finally consider the third rank homogeneous tensor
eilk (with symmetryeilk =eikl) which determines the electro-
optic response of the mesophases and can be directly mea-
sured by second-harmonic generation experiments. In theR
andC phases all the componentseilk are cancelled. Locally
in the elliptic phase withD2 point group(commensurate ap-
proximation) the components,exyz, eyzx, andezxy, of the ten-
sor are nonzero.

On applying the electric field in EL along one of the two-
fold rotation axes, the symmetry reduces to the rotation par-
allel to the field. Accordingly the principal axes of the optic
tensor, which are locked along the symmetric directions
x,y,z in the zero-field phase, can rotate around the direction
of the field. ApplyingE alongOy induces a rotation of two
principal axes to an angledy=2eyxzE/ u«zz−«xxu with respect
to thex andz directions, respectively. The rotation is clock-
wise for a given field polarity and counterclockwise for the
opposite polarity. Along the same way for a given polarity
the rotation sense in one domain is opposite to that in another
domain of different chirality. If one applies the field alongOx
the rotation angle isdx=2exyzE/ u«zz−«yyu. Sinceexyz andeyxz
are independent coefficients they can have different signs.
Thus, the rotation can be clockwise as the field is applied
alongx and counterclockwise as it is applied alongOy. Ap-
plying the field normally to the wave vectorsk / /Ozd in the
incommensurate EL phase induces a rotation which varies
alongz. At positions where the long axis of the ellipse(i.e.,
one of the twofold axis of the underlying commensurate
structure) is parallel to the field, the rotation angle is given
by dx whereas it is given bydy at positions where the short
axis (other twofold axis) is parallel toE.

IV. RESPONSE TO EXTERNAL FIELDS

External fields such as the electric field or chiral doping
deform the structures and break the symmetry groups of the
ordered phases. These symmetry breakdowns yield modifi-
cations in the phase sequences. Several phases can merge
into a single phase(elliptic and rectilinear for the chiral dop-
ing or circular and elliptic under electric field). Conversely
several distinct phases can be created by the electric field
from a single zero-field phase. This is the case for the elliptic
and rectilinear phases, which lead to two and three phases,
respectively.

A. Chiral doping

Concentration c of chiral molecules modifies the free en-
ergy of the system:
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Fc/P = a1sr1
2 + r2

2d + b1 r1
2r2

2 +
a2

2
sr1

2 + r2
2d2 +

b2

2
r1

4r2
4

dsr1
2 + r2

2dr1
2r2

2 + ysr1
2 − r2

2dc +
A

2
c2. s13d

The main effects resulting from the coupling ofP with c
are (i) the difference between the rectilinear and elliptic
phases disappears,(ii ) the transition temperature between the
isotropic and circular phases increases,(iii ) demixion be-
tween the domains of opposite chiralities in the circular
phase takes place.

Minimization of Fc/P provides the conditions of stability
for the circular and elliptic phases. Forb1.0 the elliptic
phase is not stable. The corresponding phase diagram in the
sc,Td plane is indicated in Fig. 5. The right and left-handed
circular domains are stabilized at low and high concentra-
tions, respectively. The transition temperature between the
isotropic liquid state and the circular phase increases linearly
with the concentration in each domain, in such a way that the
transition temperature is always higher than the transition
temperatureTc0 in the achiral compound. In the intermediate
concentration range and belowTc0 the phase diagram pre-
sents a zone of coexistence of the two domains. This zone of
demixion is symmetric with respect to the axisc=0. Similar
behavior can be foreseen in the elliptic phase.

B. Structures under applied electric field

Applying a weak electric fieldE within the smecticx−y
plane first yields the orientation of the structure by the field.
This effect does not take place in the circular phase which is
macroscopically isotropic in thex−y plane. In theR phase
and in the approximately commensurate EL phase two situ-
ations should be distinguished.

(a) After the orientationE is not parallel to one of the
twofold C2 rotation axes of the structure. The symmetry ofR

becomes monoclinic(space groupPm) and that of EL be-
comes triclinic (space groupP1). Accordingly the macro-
scopic polarizationP0 is not parallel to the applied field. We
will denoteRE and ELE these two low-symmetry phases in-
duced by the field.

(b) One of the twoC2 rotation axes orients in the di-
rection of the field. Since these axes are not equivalent, two
different types of behavior are associated with the two pos-
sible final orientations. In the region of low fields, the local
polarization at any position in the phase tends to orient along
the direction of the field and the structure is distorted. The
symmetry group of the resulting structure is given by the
intersection of the undistorted phase symmetry group with
that of the field. These two behaviors can be denoted as the
flip and the flop processes, respectively. Let us first describe
these processes in theR phase(Figs. 6 and 7).

Flip process. The plane of the polarization is initially nor-
mal to the direction of the field. For finite field values the
polarizations of two adjacent layers rotate in opposite senses
in order to get closer to the direction ofE. During this pro-
cess the twofold rotation axis normal to the smectic layers
sC2zd, the axis parallel to the initial polarizationsC2yd and the
mirror plane normal toEsszd are lost(Fig. 6(a). The result-
ing symmetry of the distortedR phase(denotedR1) corre-
sponds to the orthorhombic groupPma2. The axial vectorA
is not modified by the field at the interfaces between the
smectic layers. At the center of the layers a longitudinal com-
ponent ofA appears. The local symmetry prevents a rotation
of the molecular plane, which remains normal to the layers.
The corresponding molecular configuration is presented in
Fig. 6(a).

Flop process. The polarization remains everywhere paral-
lel to E. The polarization in one layer is in the direction ofE
while the polarization in the adjacent layer is opposite toE.
For finite field the latter polarization decreases while the
former increases. This breaks the twofold rotation axes(C2z
andC2x) and the mirror planessyd normal toE (Fig. 7(a)).
The resulting orthorhombic symmetry group of the distorted
structure(denoted R2) is Pmm2. The axial vectorA remains

FIG. 5. TemperaturesTd concentration of a chiral doping(c)
phase diagram. At zero concentration the circular phase is stable.
For nonzero concentrations the isotropic liquidsLd and the circular
right-handed(for c.0) and left-handed(for c,0) phases are sta-
bilized. Below the zero-concentration critical temperatureTc, the
right and left circular phases can coexist. The corresponding demix-
ion region is represented by the hatched area.

FIG. 6. Symmetries and molecular configurations corresponding
to the flip process in the(a) zero-fieldR phase,(b) R1 phase,(c)
zero-field EL phase,(d) EL// phase.
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zero at the center of the layers so that the single effect of the
field on the molecular configuration is to increase the disor-
der in the layer whereP is opposite toE and to increase the
order in the layers whereP andE are parallel.

Thus the two processes yield two rectilinear phasesR1
and R2 with different groups belonging to the same ortho-
rhombic class. The corresponding molecular configurations
are shown in Figs. 6(a) and 7(a).

In the (commensurate) elliptic phase the situation is more
complex. In the flip process the field is normal to the local
polarizationP at the center of the smectic layers, i.e., where
P is maximum. In the distorted phase this maximal polariza-
tion rotates toward the direction of the field, as in theR
phase. However at positions whereP is minimum (at the
interfaces between two adjacent layers), the polarization is
parallel to the field and it is not rotated but either increased
(where P is in the same direction thanE) or decreased
(whereP is in the opposite direction). Accordingly the pro-
cess is, in fact, mixed: flip at the maximums and flop at the
minimums ofP. At the center of the smectic layers this field
induced state(denoted EL//) differs from its rectilinear ana-
log R1 by the presence of a nonvanishing transverse(in the
x−y plane) axial vector indicating a tilt of the molecular
plane with respect to the smectic planes.P and A are not
parallel because the molecular polarization fluctuates asym-
metrically with respect to the smectic layers in such a way
that the mean polarization nevertheless remains parallel to
the layers.

In the flop process the field is parallel to the local polar-
ization at the center of the layers whereP is maximum. Thus,

the flop occurs at the maximums of the polarization while the
flip occurs at positions whereP is minimum. At the center of
the layers the axial vector remains parallel toP but with
different amplitudes in two adjacent layers. As in theR2
phase the only difference induced by the field is to increase
the flip-flop disorder in the layer whereP is opposite to the
field.

In both cases the symmetry of the distorted phase is de-
scribed by the monoclinic groupP2 containing a single two-
fold axis. Unlike the situation in theR phase, the distinction
between flip and flop in the elliptic phase is purely quantita-
tive and, accordingly, the field produces a single elliptic par-
allel phase. The field does not affect the translational sym-
metries of the structures. However the breakdown of the
screw twofold axissC2zd normal to the smectic layers and of
the corresponding gliding planessyd leads to a doubling of
the smectic lattice spacing in the phasesR2 and ELE (but not
in R1 wheresy is not broken). Indeed two adjacent layers
become nonequivalent in the distorted structures and an ad-
ditional Bragg peak atq=k should be evidenced in usual
(nonresonant) x-ray diffraction experiments. From the opti-
cal point of view the phasesR1 andR2 keep the same prop-
erty as without any field, i.e., the three eigenvectors of the
optical tensor are not rotated byE. In the EL// phase one
eigenvector is not modified(parallel to theC2 axis) whereas
the two other vectors rotate around the twofold axis.

The action of the field onC makes this phase elliptic. The
long axis can be either parallel or normal to the field direc-
tion [Fig. 6(b)], according to the sign of the coefficient cou-
pling the order parameter withE [g in Eq. (14)].

In the incommensurate elliptic phase, the single twofold
rotation axis turns towards a direction parallel to the field
and the symmetry of the zero-field structure is not modified.
In the vicinity of this axis the structure of the system is
similar to that of the EL// phase described above. The corre-
sponding free energy of interaction with the field is locally
minimal. Far from the axis the structure is in the configura-
tion (denoted ELE) which does not correspond to a minimum
of the interaction energy. The field tends to orient the local
structure in the EL// configuration while the elastic energy of
the incommensurate helix tends to maintain the initial struc-
ture. As a consequence the helix is globally distorted and
unwound by the field. The field favors a multisolitons regime
in which adjacent stripes, corresponding to the orientation of
the long and short elliptic axes of the underlying commen-
surate structure are oriented along the field, are separated by
thin walls. On increasing the field strength the size of the
stripes corresponding to the orientation with the smallest in-
teraction energy increases.

C. Phase diagrams

We have shown that under low applied fields the circular
phase becomes elliptic whereas the rectilinear and elliptic
phases are distorted in either parallel or nonparallel configu-
rations(in the “parallel” phases the field is parallel to one of
the twofold axes of the zero-field structure). At higher fields
E tends to increase the symmetry of the structure in order to
make closer the symmetry group of the structure and that of

FIG. 7. Symmetries and molecular configurations corresponding
to the flop process in(a) theR2 phase,(b) the EL// phase. In theR2
phase the polarization directions in two adjacent smectic layers are
opposite and their magnitudes are different. The molecular planes
are not tilted so that two adjacent layers have the same thickness. In
the EL// phase the molecules are tilted. The tilt angle is different in
two adjacent smectic layers, which consequently, have different
thickness.
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the field itself. Thus the nonparallel configurations become
parallel and the elliptic phase becomes rectilinear. At still
higher fields the order may be completely destroyed and the
system undergoes a transformation into the polarized liquid
statesLEd. However, we will demonstrate that the opposite
situation in which the field favors the ordered state can also
take place. Close to the critical temperature of the transition
at zero field the electric field can, in this case, transform the
polarized liquid into the rectilinear phase.

The free energy describing the field behavior of the vector
field model is given by

FE = a1sr1
2 + r2

2d + b1r1
2r2

2 +
a2

2
sr1

2 + r2
2d2 +

b2

2
r1

4r2
4

+ gP0
2r1r2 cosD − P0E cosa +

1

2k
P0

2, s14d

where a is the angle betweenP0 and E. D=w1+w2−2v
wherev is the angle betweenP0 andOx. Minimization of F
yields six stable phases

(1) The polarized liquid phase T3C`v: r1=r2=0, P0
=kE,

(2) the R1 phase(flip) Pma2: r1=r2, a=0, D=p,
(3) the R2 phase(flop) Pmm2:r1=r2, a=0, D=0,
(4) the RE phasePm: r1=r2,
(5) The EL// phaseP2: a=0, D=0 or p,
(6) The ELE phaseP1: general case.
A number of theoretical temperature-field phase diagrams

is associated with the free energyFE. We will first present
those corresponding to the “minimal” zero-field phase dia-
gram (Fig. 8) in which all the transitions are second order
and the direct elliptic→ isotropic transformation is impos-
sible (except at the isolated four-phase point). We will de-
scribe then the more realistic situation in which this transfor-
mation is possible across a first-order transition line. The
latter case is associated with the Landau expansion of the

free energy taking into account higher degree terms[than
those in Eq.(14)].

(i) The low-field deformation of the minimal phase dia-
gram is presented in Fig. 8(b). At low fields the circular
phase becomes elliptic parallel to the fieldsEL//d while the
EL phase remains elliptic but non parallelsELEd. Similarly
the R phase remains rectilinear but nonparallelsREd. A par-
allel R phase is stabilized between the liquid and the EL//
phase. Thus the direct transformation from the EL phase into
the isotropic liquid across a four-phase point becomes impos-
sible under the applied field. Figure 8(c) displays the phase
diagram in theb1-field plane. At high fields bothR and EL
become parallel to the field(R1 or R2 according to the sign
of the coefficientg). At still higher fields the elliptic phase
becomes rectilinear.R is the single stable phase at high
fields.

Figure 9 displays temperature-field phase diagrams for
fixed b1. For b1.0 [Fig. 9(a)] the circular phase is stable at
zero field belowTc. High fields stabilize theR phase below
as well asabove Tc. This remarkable behavior means that
aboveTc the achiral liquid state can become unstable under a
sufficiently strong applied field which makes it polar smec-
tic. The field-induced ordering can be second order and the

FIG. 8. (a) Zero-field minimal phase diagram.(b) Deformation
of the minimal phase diagram under a low applied electric fieldE.
(c) b1−E phase diagram with a1 constant and negative. The ther-
modynamic pathssABd and sXYd represented by thin dashed
straight lines in(a) and (b) are indicated.R// represents either
R1sg.0d or R2sg,0d. Thick dashed curves and thick plain curves
represent first-order and second-order transition lines, respectively.

FIG. 9. TemperaturesTd field sEd phase diagrams resulting from
the minimal zero-field diagram represented in Fig. 8(a), for b1 con-
stant and a1 varying linearly withT. (a) b1.0. The zero-field phase
stable belowTc is circular. It becomes elliptic parallel when the
field is switched on and rectilinear parallel above a second-order
transition line. The line becomes a first-order transition line at tem-
peratures below the tricritical pointTt. Above Tc the polarized liq-
uid state is stable at low fields. Above a critical field the liquid state
undergoes a field-induced transition toward the rectilinear parallel
(R//=R1 or R2) phase.(b) b1,0. The stable zero-field phases areE
andR. They transform into theR// phase above a critical field. The
three ordered structures merge at the triple pointTT. (c) Hysteresis
curve(polarizationP vs fieldE) along the thermodynamic pathAB
indicated by a dashed line in(a). (d)–(f) Modification of the phase
diagram(a) resulting from higher degree coupling terms. The direct
elliptic →liquid first-order transition becomes possible(d). An iso-
structural transition within the elliptic stability domain separates the
almost circular from the almost rectilinear elliptic states(e). The
corresponding first-order transition line ends at the critical point
sTRd.
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corresponding critical field varies assT−Tcd1/2. Below Tc the
circular phase is stable at zero field and it becomes elliptic
when the field is switched on. At higher fields it undergoes a
second-order phase transition into theR phase. The corre-
sponding transition line becomes first-order at a tricritical
point sTtd. The hysteresis curve associated with this transi-
tion is represented in Fig. 9(c). For b1,0 [Fig. 9(b)] the
phasesR and EL are stable belowTc at zero field. The liquid,
the phasesR and EL transform into the parallelR phases at
high fields. The stability domains of the phasesR//, EL//, and
RE merge at a triple pointsTTd.

Taking into account higher degree coupling terms in the
free energy modifies the previous phase diagram as repre-
sented in Figs. 9(d)–9(f). A first-order transition between the
liquid state and the elliptic phase becomes possible[Fig.
9(d)]. A first-order isostructural transition can also occur in-
side the elliptic stability domain[Fig. 9(e)]. Below the cor-
responding critical field the elliptic phase has an almost cir-
cular structure, while it is almost rectilinear above the
transition. The transition line has a terminal critical point
sTRd.

(ii ) Let us now consider the deformation by the field of
the nonminimal phase diagram in which a first-order isotro-
pic →elliptic transition line is present. The zero-field phase
diagram is presented in Fig. 10(a). Close to the elliptic do-
main the transitionsC→liquid and R→liquid become first
order.

Let us consider the thermodynamic path indicated in the
zero-field phase diagram[Fig. 10(a)]. Along this path the
system is rectilinear at low temperature, elliptic within an
intermediate range and isotropic at high temperature. Apply-
ing E and varyingT along this path yields the phase dia-
grams presented in Figs. 10(b)–10(d). The R// phase, which
was stable at high fields in Fig. 8, becomes metastable and is
no more present in the phase diagram. Thus, belowTc the
stable high-fields phase is liquid. TheR//→EL//, R//→LE and
EL//→LE transition temperatures decrease with the field.

Along the two zero-field thermodynamic paths crossing in
Fig. 10(a) the second-orderL→C andL→R transition lines,
respectively, the metastability of the high-fieldsR// phase can
also take place. In the case when theR-phase is stable at zero
field the transition to the liquid state may be either first or
second order[Fig. 11(a)]. In the case when the circular phase
is stable at zero field the parallel rectilinear phase is stabi-
lized within an intermediate field range[Fig. 11(b)]. The
temperature stability interval of thisR phase may be limited
by a triple pointTR [Fig. 11(c)].

V. DISCUSSION

The bent-core mesophases condense directly from the iso-
tropic liquid, usually without any intermediate smectic-A or
nematic phase. Only few exceptional cases of smecticA or
nematic can be found in the experimental literature[35–37].
These classical mesophases are stabilized in systems of par-
ticular molecules with a large opening anglec which behave
almost as calamitic mesogens. This rule is supported by nu-
merical simulations[22] which state that the Sm-A phase can
exist only forc.165°, the antiferroeletric(AFE) phases be-

ing unstable within this range. Forc.135° the nematic
phase can coexist with AFE structures. However, almost all
the bent-core mesogens exhibiting the unconventional AFE
phases correspond to an opening anglec,135°. A surface
stabilized smectic A phase has also recently been evidenced
in thin films [38] for molecules withc.140°. Along the
same line transitions from Sm-A or Sm-C to B2 have been
observed in binary systems formed with bent-core mixed
with calamitic mesogens[39]. A “demixion” is observed be-
tween the classical phases(Sm-A, Sm-C and nematic) which
are stabilized at low bent-core concentration and phaseB2
which is stable at high concentration.

Two different textures of the bent-core phase denotedB2
are observed in bulk samples: “racemic” and “homochiral.”
In a structural model proposed by Linket al. [2] these two
textures are associated with two distinct phases, denoted ra-
cemic and homochiral model phases. The structure of the
homochiral model phase coincides with the elliptic phase. It
is confirmed by a whole series of experiments. By contrast,

FIG. 10. Temperature-field phase diagrams resulting from the
deformation of the nonminimal zero-field diagram(a). According to
the degree of non-linearity and to the signs of the phenomenological
coefficients in the free energy, various topologies may be predicted
including various triplesTTd and tricritical sTtd points.

FIG. 11. Temperature-field phase diagrams where the coupling
coefficients favor the liquid state. In contrast to the case of the
diagrams shown in Fig. 9, the liquid state remains stable at high
fields. The field destabilizes the ordered states, which undergo
phase transformations toward the liquid phase above critical fields.
The corresponding transition lines may be first or second order.
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we think that the organization of the racemic texture remains
an open question. In our approach the only achiral structure
is theR phase which seems at first view a good candidate for
describing the racemic texture. However, the interpretation
of two systematically coexisting textures over the full stabil-
ity temperature range of phaseB2 as distinct phases(racemic
and homochiral model phases, on the one hand, or EL andR
on the other) is impossible from the point of view of ther-
modynamics. We propose for this reason to identify the ho-
mochiral texture with single domains of EL and the racemic
texture with several small domains of EL with opposite
chiralities.

Recently an untilted antiferroelectric smectic phase has
been disclosed in banana systems by Ereminet al. [21] (de-
notedCP in Ref. [11] or Sm-APA in Ref. [22]). This achiral
phase exhibits the molecular structure predicted for theR
phase. It is optically biaxial and shows an AFE switching
current behavior. The AFE chiralB7 phase appears just be-
low the liquid state. It differs from phaseB2 by its extraor-
dinary textures, its weak smectic character in the temperature
region close to the isotropic liquid and its 2D large-scale
modulations[10]. We propose its possible identification with
the circular phase.

A. Other theories

Structural models of polar smectic layers composed by
bent-core molecules have been considered by Brandet al.
[40]. The one-layer structures are obtained by intersecting
the symmetry group of the Sm-A layers with that of a bent-
core molecule. Different orientations of the molecule with
respect to the symmetry axes of the layer give rise to differ-
ent point groups and, consequently, to different structures.
The highest possible symmetryC2v yields a polar layer in
which the molecular plane is not tilted. When the polariza-
tion reverses in two successive layers the structuresCPAd is
antiferroelectric(this structure coincides with ourR phase).
For an orientation withC2 symmetry the structure becomes
chiral and gives rise to an antiferroelectric structure coincid-
ing with the elliptic phase. Similarly,CS andC1 groups lead
to achiral antiferroelectric phasessCB2

,CB1
d and several chi-

ral phases. However, this work is limited to the enumeration
of the structures only. Their stability is not investigated and
only low-field effects are described.

Katset al. [41] have considered a semimicroscopic model
in which three tensors break the rotational and achiral sym-
metry of the Sm-A phase: One axial and one polar vectors
along with a pseudoscalar. In order to keep locally an in-
plane two fold axis they impose to the two vectors to be
parallel. Four phases can then be stabilized in which two
tensors condense with the same periodicity as the smectic
lattice while the third tensor remains homogeneous. This
model yields four phases: Two achiral phases(one antiferro-
electric and synclinic and the other ferroelectric and anti-
clinic) and two chiral phases(one synclinic ferroelectric and
one anticlinic and antiferroelectric). The latter one coincides
with our elliptic phase. The symmetries, structures, and
physical properties of these phases are not worked out in this
model.

A thermodynamic model based on the same ideas has
been proposed by Royet al. [42]. Starting from the parent
Sm-A it predicts fiveferroelectricphases after condensation
of two independent order parameters: One axial and one po-
lar homogeneous vectors. In order to fit their theory with the
antiferroelectric character of bent-core systems, the authors
invoke a helical winding of the polarization due to a flexo-
electric term in the inhomogeneous free energy. In this con-
tinuous approach the modulation of the polarization is long
range and cannot give rise to an antiferroelectric phase but
rather to a Sm-C* -type structure characterized by an helical
pitch much larger than the layers thickness. Even by assum-
ing a giant flexoelectric coefficient, the temperature-
dependent pitch has no reason in this theory to lock to a
value corresponding to two smectic layers.

Selinger[43] has proposed an Ising-type model investi-
gating the “antichiral” phases occurring in racemic mixtures
of chiral bent-core molecules. Starting from a smectic phase
he considers a pseudoscalar wave with the smectic periodic-
ity. He can thus investigate the action of chiral doping on the
antichiral to homogeneously chiral phase transition. This ap-
proach uses a scalar order parameter which cannot(pur-
posely) explain the apparition in the Sm-A of the polar and
axial orders. They are assumed to preexist in each layer,
unlike our model, in which the condensation of the antifer-
roelectric states are fully 3D effects since the layers forma-
tion is a consequence of the process.

The previous approaches assume a parent Sm-A phase
which is usually not observed in pure bent-core systems.
Thus, the stabilization of the predicted phases can result only
from a coupled instability involving in the liquid state at
least three order parameters: The smectic density wave to-
gether with the polar and axial homogeneous vectors. Such
situation is thermodynamically extremely unlikely. Moreover
this mechanism would necessarily stabilize some phases cor-
responding to the condensation of only one or two order
parameters(Sm-A, Sm-C, polar liquid, . . .). Indeed, one can
assume that in a few compounds the thermodynamic coeffi-
cients take very specific values yielding the simultaneous
onset of three independent order parameters, however the
realization of these conditions in all the studied molecular
series is, for us, unbelievable.

To summarize, these approaches(i) do not explain the
stability of the two-layer antiferroelectric phases(except Ref.
[41]), (ii ) assume a Sm-A parent structure which is not ob-
served in most cases, and(iii ) imply several unlikely simul-
taneous instabilities. On the contrary vector-wave theory pre-
dicts antiferroelectric phases, one of them with the structure
of the homochiralB2 phase, which are stabilized directly
from the liquid state. Moreover, as in unconventional super-
conductors, this very simple mechanism involves a single
order parameter accounting for the complex properties of its
ordered phases. One can notice that our approach holds also
if one starts from a nematic phase(because all the low sym-
metry groups are subgroups of the nematic group) and needs
only a few adaptations(e.g., theC phase becomes elliptic) if
one starts from a Sm-A phase. Accordingly it can also de-
scribe the transitions occurring in binary mixtures from the
nematic and Sm-A calamitic phases[39].
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B. Structure of phaseB2.

The molecular arrangement in phaseB2 has been deter-
mined by electro-optic measurements in bulk samples and
thin films. Since the case of the homochiral texture is not
controversial we will only discuss in this section three hy-
pothesis(racemic model,R phase, and multidomain of EL)
concerning the racemic texture. With an opening anglec
about 100° –140° the bent-core molecules are optically bi-
axial. The two corresponding optic axes are normal to the
molecular polarization[2]. Since the molecules haveC2v
symmetry group, the two axes are tilted symmetrically with
respect to the molecular plane. This property permits to op-
tically distinguish theR phase, the EL phase, and the racemic
model phase. In theR phase the optic tensor is identical in
two adjacent layers. Moreover the two optic axes of the layer
are tilted symmetrically with respect to the layer normal. In
the racemic model two adjacent layers are also optically in-
distinguishable, but the two optic axes are now tilted to dif-
ferent angles with respect to the layer normal. The same
behavior occurs in the elliptic phase, however, in two adja-
cent layers the directions of the two optic axes are rotated to
p.

In thin freely suspended films, within the temperature re-
gion of stability of the bulkB2 phase, Linket al. observed a
biaxial antiferroelectric achiral structure. The main optical
characteristics of this structure are(i) the tilt of an optic axis
with respect to the layer normal,(ii ) the coexistence under an
electric field of two domains with their optic axes rotated to
p. Assuming the identification of the racemic texture with
the R phase, the observed tilt of an optic axis could be ex-
plained by the intrinsic biaxiality of the layers discussed
above. For further conclusions the determination of the di-
rections of the two optic axes is necessary. In thin films of
theR phase under low electric fields four domains can coex-
ist (two series of two optically indistinguishable domains).
This fact is in qualitative agreement with the observed do-
main structure in films. However, the two domains are not
necessarily rotated to an anglep in R (in fact, neither in the
racemic model since in films under electric field it presents
the same domain pattern asR).

In bulk samples the homochiral state is usually observed
inside circular domains with the smectic layers normal to the
substrate. In such a domain, the extinction cross observed
with polarized light rotates under electric field in opposite
directions after field reversal[2,44,45]. In a circular domain
formed within the EL phase, the wave vectork is radial and
the twofold rotation axes of the elliptic phase are normal and
parallel to the plane of the domain[Fig. 12(a)] respectively.
These twofold axes indicate the directions of the principal
axes of the optic tensor at each point in the domain. At zero
field this configuration leads to an extinction cross parallel to
the polarizer and analyzer directions[Fig. 12(b)]. When the
field is applied normally to the domain, the twofold axisC2y
is not modified while the two other symmetry axes are
dropped out, yielding a rotation of the principal axes of the
tensor together with that of the extinction cross[Fig. 12(c)].
We have shown in Sec. III C that the field-induced rotation
of the optic tensor« is given by the law«xz=eyxzEy where the
third-rank tensor componenteyxz has nonzero value in the

elliptic phase. As the field changes its polarity(Ey becomes
negative) «xz changes its sign and the optic tensor axis rotates
in the opposite direction. In contrast, in theR phaseeyxz=0
and no rotation should be observed. Indeed, under applied
electric field theR phase has the point symmetryC2v that
locks the principal axes of the optic tensor and forbids any
rotation. This absence of rotation is observed in the racemic
regions, which are thus compatible with theR phase proper-
ties.

However, it is more reasonable to look for another inter-
pretation of the racemic regions in terms of specific textures
occurring in the elliptic phase. At theL→EL transition many
small domains with opposite handedness must be created in
order to restore at the macroscopic level the broken achiral
symmetry of the liquid phase. The resulting texture appears
achiral at large scale. Under special conditions, e.g., under
the influence of the surface or close to structural defects, the
size of the monodomains can be increased. This happens, for
instance, in the circular domains discussed above. The mul-
tidomain texture behaves thus as the racemic regions while
the monodomains of the elliptic phase shows the behavior of
the homochiral regions. In the racemic regions the absence of
rotation of the extinction cross is thus explained by the fact
that the right-handed domains rotate clockwise whereas the
left-handed domains rotate counterclockwise. In this ap-
proach the chiral character of the individual domains is
dropped out while the tilt of the macroscopic optic axis per-
sists since the domain walls keep the biaxial symmetry.

In conclusion, we think that available experimental data
permit us to make a clear-cut conclusion about the elliptic
structure of the homochiral texture but that the question re-
mains open for the racemic texture. In any case, the system-
atic coexistence in the bulk of two distinct phases over a
large temperature interval cannot be taken as a basis for the
data interpretation.

FIG. 12. Field-induced rotation of the extinction cross in a cir-
cular domain of the elliptic phase.(a) The smectic layers are normal
to the plane of the figure and the wave vectork is radial. The local
twofold symmetry axes are either normal tok (C2x and C2y) or
parallel sC2zd. (b) Orientation of the principal axes of the optic
tensor at various positions inside the circular domain. The axes are
parallel to C2x, C2y, and k. The extinction cross observed under
polarized light with a polarizer parallel toX and an analyzer parallel
to Y is indicated by dashed lines.(c) The application of an electric
field E normal to the plane of the figure breaks the twofold axesC2x

andC2z. The optic axes within the planesx,kd of the figure are no
more locked and rotate in a sense which depends on the polarity of
the field. The extinction cross rotates to the same angle.
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C. Properties of phaseB2

Second harmonic generation experiments show that the
single nonzero component of the SHG tensor is very small in
phaseB2 [46,47]. The only symmetry classes which combine
chirality and zero SHG tensor are 422, 622,`2, and 432
[48]. Since`2 is the point group of theC phase, the small
SHG signal can be interpreted as a strong circular character
of the elliptic phase at zero field. On increasing the electric
field the signal varies smoothly up to a critical field where it
sharply increases and exhibits a strong hysteresis. In the
high-field region the SHG tensor showsC2 symmetry. In the
elliptic model, the high-fields phasesR1 or R2 have the sym-
metry C2v, which is ruled out by the previous experimental
results. However, the elliptic phase hasC2 symmetry under
low fields and can undergo a first-order isostructural transi-
tion [see Fig. 9(e)] from a low-field almost circular configu-
ration toward a high-field strongly elliptic(or possibly al-
most rectilinear) configuration. The corresponding hysteresis
is in agreement with the experimental data.

The chirality of the banana phases has been probed by
chiral doping experiments[49]. It is observed that the do-
mains with one chirality are favored by the doping concen-
tration. In a chemically heterogeneous system this leads to a
demixion of the regions with opposite chirality. The sample
becomes homogeneous with uniform chirality only for high
doping concentrations. These results coincide with the theo-
retical prediction of the vector-wave model indicating the
demixion of the left- and right-handed domains at low con-
centrations and single handedness at high concentrations(see
Fig. 5).

Another important feature of our model has been experi-
mentally verified[50]. Sufficiently high electric fields ap-
plied in the isotropic phase above the critical temperature
induces the formation of textures characteristic of the elliptic
phase. Thus, our prediction of a field-induced instability of
the isotropic phase is confirmed.

The broad stripes evidenced in the homochiral regions
under applied fields have been interpreted as chiral domains
with optic axes rotating in opposite directions depending on
the handedness of the domain[45,51,52]. This effect can also
be due to the incommensurate superstructure of the elliptic
phase. Indeed, we have claimed in Sec. III that under applied
fields the helical superstructure can transform into a periodic
pattern of domains. In two adjacent domains the handedness
is the same but with the short and long elliptic axes, respec-
tively, parallel to the field. Applying the field parallel to the
long and short axes(coinciding with the twofold axes paral-
lel to the smectic layers of the commensurate EL phase) can
result in opposite optical rotations if the coefficientseyxz and
exyz have different signs(see Sec. III C). Thus the apparent
chirality difference in adjacent domains can be in fact due to
different signs ofeyxz and exyz in a single chiral domain
striped by solitonic walls.

Thin stripes are also observed in the racemic texture un-
der an electric field, and they disappear above a threshold
voltage [52]. Within our model theR phase becomes non-
parallelRE at low fields and parallelR1 or R2 at higher fields.
In the nonparallel state two orientational domains, rotated to
an anglep about the field axis, are stabilized. Above the

critical field the system undergoes a second-order transition
toward the parallelR phase which possesses a single domain
under fields. Thus theR phase hypothesis is in agreement
with these observed properties of the racemic texture.

D. The CP phase

The existence of an untilted rectilinear phase in our model
is made possible by the fact that though the primary polar-
ization wave induces an axial(tilt ) wave, the molecules can
be polarized and untilted at the centers of the layers when the
phase shift between these two waves isp /2. The recent dis-
covery by Ereminet al. [21] of such an achiral antiferroelec-
tric structure in compounds of molecules with an opening
angle c=106° confirms the possibility of an achiral AFE
state in banana systems. This phase was denotedCP (or CPA),
following a nomenclature introduced by Brandet al. [40,53].
It exhibits the characteristic double-loop AFE hysteresis
curve with very high saturation polarization. In contrast to
the homochiralB2 phase(EL) no optical switching is ob-
served as the polarity of the applied electric field is reversed.
In the structural model proposed by Ereminet al., the sym-
metry of the layers isC2v. Since the polarization alternates in
adjacent layers, the space group belongs to the orthorhombic
D2h class. All these features are in a perfect agreement with
the structure of theR phase proposed by the vector-wave
model.

E. The B7 phase

The chiral B7 phase is usually observed just below the
liquid state[9]. It is characterized by its extraordinary tex-
tures such as spiral, double spirals, oval, and circular do-
mains and stripes which are usually interpreted as resulting
from a helical structure. Its dimensionality remains contro-
versial and both 1D and 2D structures have been proposed.
Recent measurements have shown a large-scale modulation
of the 1D structure along a direction perpendicular to the
layer normal[10]. Neglecting at the microscopic scale this
modulation and assuming the one-dimensional character for
phaseB7, we are going now to discuss the identification of
phaseB7 with the circular phase.

At the isotropic→B7 transition no jump in the physical
properties, such as the saturation polarization, has been evi-
denced in agreement with the possibility of a second order or
weakly first order isotropic→C transition. The main prob-
lem of the proposed identification comes from the nonsmec-
tic character of the bulkC phase while theB7 phase is cur-
rently assumed to exhibit a low symmetry smectic structure.
Observation of sharp x-ray peaks and formation of stable
fibers [54] seem to confirm the smectic character of phase
B7. However, since on the one hand fibers were also evi-
denced in bent-core nematics[54] they do not permit us to
firmly conclude that phaseB7 is intrinsically smectic. On the
other hand the x-ray diffraction patterns obtained on cooling
from the liquid state indicate a single very wide peak down
to 5 K below the isotropic→B7 transition [10]. Along the
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same way, thin films of phaseB7 are very difficult to stabi-
lize. We interpret these two preceding properties as the ef-
fects of a weak(induced) smecticity in theB7 phase at high
temperature. Indeed a slight distortion of the circular phase
makes it elliptic and consequently smectic. This distortion
can be produced by the film surfaces or, similarly, by the
interfaces between two domains of opposite chiralities. A
high density of such surfaces is optically observed in the
textures of theB7 and B2 phases. This assumption is sup-
ported by fracture microscopy image[10] showing randomly
dispersed small regions in phaseB7 which can explain the

apparent symmetry lowering in phaseB7 while this phase is
often observed between the high symmetry liquid and theB2
phases.

We can then propose the following tentative scenario: In
the high temperature region of theB7 phase the structure is
described by the circular wave with weak induced smectic
order. This phase can be stabilized within a temperature in-
terval close to the isotropic liquid. For lower temperatures
the system undergoes a transformation into a more ordered
(maybe elliptic) smectic structure with a 2D modulation in
the direction of the layers.
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