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Persistence probabilities of the interface heightlir-1)- and (2 +1)-dimensional atomistic, solid-on-solid,
stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on
models that belong to the molecular beam epited®BE) universality class. Both the initial transient and the
long-time steady-state regimes are investigated. We show that for growth models in the MBE universality
class, the nonlinearity of the underlying dynamical equation is clearly reflected in the difference between the
measured values of the positive and negative persistence exponents in both transient and steady-state regimes.
For the MBE universality class, the positive and negative persistence exponents in the steady-state are found to
be #5=0.66+0.02 and6>=0.78+0.02, respectively, if1+1) dimensions, andé$=0.76+0.02 and¢®
=0.85+0.02, respectively, if2+1) dimensions. The noise reduction technique is applied on some d¢fl.the
+1)-dimensional models in order to obtain accurate values of the persistence exponents. We show analytically
that a relation between the steady-state persistence exponent and the dynamic growth exponent, found earlier
to be valid for linear models, should be satisfied by the smaller of the two steady-state persistence exponents
in the nonlinear models. Our numerical results for the persistence exponents are consistent with this prediction.
We also find that the steady-state persistence exponents can be obtained from simulations over times that are
much shorter than that required for the interface to reach the steady state. The dependence of the persistence
probability on the system size and the sampling time is shown to be described by a simple scaling form.
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I. INTRODUCTION models[3,5,8,14 that form the so-called “MBE universality
class.”

Nonequilibrium surface growth and interface dynamics Surface growth is an example of a general class of prob-
represent an area of research that has received much atté@ms involving the dynamics of non-Markovian, spatially ex-
tion in the last two decadgd]. A large number of discrete tended, stochastic systems. In recent years, the concept of
atomistic growth model§2—8] and stochastic growth equa- persistencg17] has proven to be very useful in analyzing
tions [9-14 have been found15] to exhibit generic scale the dynamical behavior of such systeifis8—24. Loosely
invariance characterized by power-law behavior of severalspeaking, a stochastic variable psrsistentif it has a ten-
quantities of interest, such as the interface width as a funcdency to maintain its initial characteristics over a long period
tion of time (measured in units of deposited layemnd of time. Thepersistence probability @) is typically defined
space- and time-dependent correlation functions of the interas the probability that a characteristic feat(eey., the sigh
face height. Much effort has been devoted to the classificaef a stochastic variable does not change at all over a certain
tion of growth models and equations into different universal-period of timet. Although the mathematical concept of per-
ity classes characterized by the values of the exponents thaistence was introduced a long time ago in the context of the
describe the dynamic scaling behavior implied by thesézero-crossing problem” in Gaussian stationary processes
power laws. A variety of experimental studigkb,16 have [25], it is only very recently that this concept has received
confirmed the occurrence of dynamic scaling in nonequilib-attention in describing the statistics of first passage events in
rium epitaxial growth. Among the various experimental a variety of spatially extended nonequilibrium systems. Ex-
methods of surface growth, molecular beam epittMBE)  amples of such applications of the concept of persistence
is especially important because it plays a crucial role in theange from the fundamental classical diffusion equafitsj
fabrication of smooth semiconductor films required in tech-to the zero temperature Glauber dynamics of the ferromag-
nological applications. Under usual MBE growth conditions,netic Ising andg-state Potts modelgl9-21,26 and phase
desorption from the film surface is negligible and the forma-ordering kinetic§22]. Recently, a generalization of the per-
tion of bulk vacancies and overhangs is strongly suppressedistence concepprobability of persistent large deviations
It is generally believed that nonequilibrium surface growthhas been introducg@6]. A closely related idea, that of sign-
under these conditions is well described bgomservedon-  time distribution, was developed in R¢R27]. An increasing
linear Langevin-type equatiofi2—14 and related atomistic number of experimental results are also available for persis-
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tence in systems such as coalescence of drof?€scoars- growth equations implies tha#'=6" and 6°=6° in these
ening of two-dimensional soap froff29], twisted nematic systems. In Ref[23], it was pointed out that the persistence
liquid crystal[30], and nuclear spin distribution in laser po- exponent in the steady state of these linear models is related
larized X&?° gas[31]. to the dynamic scaling exponemg, which describes the
Recent work of Krug and collaboratof&3,24 has ex-  growth of the interface widthV as a function of time in the
tended the persistence concept to the first-passage statisticansient regiméWo: t#), through the relatiors;= 6>=1-p.
of fluctuating interfaces. Persistence in the dynamics of flucThe validity of this relation was confirmed by numerical
tuating interfaces is of crucial importance in ultrasmall scalesimulations. Since the exponefitis the same for all models
solid-state devices. As the technology advances into the naa the same dynamical universality class, this result implies
nometric regime, questions such as how long a particulathat the persistence exponent in the steady-state regime of
perturbation that appears in an evolving interface persists itheselinear models is also universal. Numerical results for
time and what is the average time required for a structure tthe persistence exponent in the transient regime, for which
first fluctuate into an unstable configuration become imporno analytic predictions are available, also indicate a similar
tant. The persistence probability can provide quantitativeuniversality. Kallabis and Krug24] carried out a similar
predictions on such questions. Recent experimg3its-34 calculation for (1+1)-dimensional Kardar-Parisi-Zhang
have demonstrated the usefulness of the concept of persig<PZ) [11] interfaces. They found that the nonlinearity in the
tence in the characterization of the equilibrium fluctuationsKPZ equation that breaks the— —h symmetry is reflected
of steps on a vicinal surface. Analysis of experimental datan different values of the positive and negative persistence
on step fluctuations on Al/8i1ll) [32,34 and Adg11ll)  exponentsp! andé', in the transient regime. The values of
[33,34 surfaces has shown that the long-time behavior of thehe steady-state persistence exponétitand 6° were found
persistence probability and the probability of persistent largeo be equal to each other, and equal toglwithin the accu-
deviations in these systems agrees quantitatively with theacy of the numerical results. This is expected because the
corresponding theoretical predictions. These results sholWw— —h symmetry is dynamically restored in the steady state
that the persistence probability and related quantities are paof the (1+ 1)-dimensional KPZ equation. This is, however, a
ticularly relevant for describing and understanding the longspecific feature of thél + 1)-dimensional KPZ model, which
time dynamics of interface fluctuations. for nongeneric reasons, turns out to be up-down symmetric
In the context of surface growth and fluctuations, the perin the steady state. Nonlinear surface growth models.,
sistence probabilityP(ty, to+t) may be defined as the prob- the higher dimensional KPZ model, the nonlinear MBE
ability that starting from an initial time,, the interfacial growth mode) are generically expected to have different val-
heighth(r ,t’) at spatial positiom does not return to its origi- ues of#6, in both transient and steady-state regimes.
nal value at any point in the time interval betwegnand In this paper, we present the results of a detailed numeri-
to+t. This probability is clearly the sum of the probabilities cal study of the persistence behavior of several atomistic,
of the heighth(r,t’) always remaining abovéhe positive  solid-on-solid(SOS models of surface growth ifiL+1) and
persistence probabiliti?,) and always remaining belogthe  (2+1) dimensions. While we concentrate on models in the
negativepersistence probabilit?_) its specific initial value  MBE universality class, results for a few other models, some
h(r,to) for all ty<t’<ty+t. This concept quantifies the ten- of which have been studied in Ref23,24 are also pre-
dency of a stochastic fiel@in our case the interface height sented for completeness. The highly nontrivial nature of the
to persistently conserve a specific featgtiee sign of the persistence probability, in spite of a deceptive simplicity of
interfacial height fluctuations The persistence probability the defining concept, arises from the complex temporal non-
P(to,to+t) would, in general, depend on bahandt. In the  locality (“memory”) inherent in its definition. In fact, there
early stage of the growth process starting from a flat interfacare very few stochastic problems where an analytical solu-
(transient regimg the interface gradually develops dynami- tion for the persistence probability has been achieved. These
cal roughnesgl] due to the effect of fluctuations in the beam include the classical Brownian motid85], the random ac-
intensity. In this regime, the choice of the initial tingis  celeration problenj36], and the one-dimensional Ising and
clearly important: it determines the degree of roughness ofj-state Potts model§20]. In general, the highly nonlocal
the configuration from which the interface evolves. At long nature of the temporal correlations in a non-Markovian sto-
times, the growing interface enters into a new evolutionchastic process makes it extremely difficult to obtain exact
stage, called the steady-state regime, characterized by fulkesults for the persistence probability even for seemingly
developed roughness that does not increase further in timsimple stochastic processes. Even for the simple diffusion
In this regime, the choice df is expected to be unimportant. equation, the persistence exponent is known only numeri-
The work of Kruget al. [23] shows that for a class of cally, or within an independent interval approximatifi8]
linear Langevin-type equations for surface growth and ato-or series expansion approa¢B7]. However, it is fairly
mistic models belonging in the same dynamical universalitystraightforward in most cases to directly simulate the persis-
class as these equations, the persistence probability decaystasce probability to obtain its stationary power-law behavior
a power law in time for long times in both transient andat large times, and thus to numerically obtain the approxi-
steady-state regimes. These power laws define the positiveate value of the persistence exponent. For this reason, we
and negative persistence exponen@and Hf for positive  use stochasti¢Monte Carlg simulations of the atomistic
and negative persistence in the transient and steady-state growth models to study their temporal persistence behavior
gimes, respectively. Thdn——-h symmetry of the linear in the transient and steady-state regimes. These models are
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defined in terms of random deposition and specific cellularfor growth models in the MBE universality class are indeed
automaton-type local diffusion or relaxation rules. Some ofdifferent from each other, reflecting the asymmetry of the
these models are of the “limited-mobility” type in the senseinterface arising from the presence of nonlinearities in the
that the surface diffusion rules or local restrictions limit theunderlying growth equation. Our results for these exponent
characteristic length over which a deposited particle can difvalues are:¢;=0.66+0.02 and#>=0.78+0.02, respectively,
fuse to just one or a few lattice spacings. The models in thén (1+1) dimensions;¢5=0.76+0.02 and#>=0.85+0.02 in
MBE universality class considered in our stydy are: the Dag2+1) dimensions. The values of the positive and negative
Sarma-Tamborenea mod¢B], the Wolf-Villain model  nhersistence exponents for different models are clearly corre-
[4.38, the Kim-Das Sarma modgb] and its “controlled”  |ateq with the asymmetry of the “above” and “belovide-
version[14], and the restricted solid-on-So®SOS model  fineq relative to the mean interface heigportions of the

of Kim at al. [8]. We also present results for the Family j,.otace We show analytically that trenaller one of the
model[2] that is known to belong to the Edwards-Wilkinson v, steaqy.state persistence exponents should be equal to
[10] universality class and the restricted sohd—on—solld(l_ﬁ) Thus, the relatiors=1-23 derived in Ref.[23] for

RSOS model of Kim and Kosterlit{7] that is in the KPZ . e
fmiverzality class. A7) linear surface growth models is expected to be satisfiefby

The main objective of our study is to examine the effectsfor the nonlinegr mode_ls cor_lsidered he_re. Our n_umerical re-
of the nonlinearity in the MBE growth equatiqi2,13 on sultg_are con5|stent with this _expectatlon: we find that the
the persistence behavior. Unlike tfe+ 1)-dimensional KPZ ~ Positive persistence exponent is indeed closé tog), while
equation, the nonlinearity in the MBE growth equation per-the negative one is significantly higher. Similar asymmetry is
sists in the steady state in the sense that the height profileund for the persistence exponents in the transient regime
exhibits a clear asymmetry between the positive and negativeith 61 < 6! in MBE growth. Within the uncertainties in the
directions(above and below the average heigftherefore, numerically determined values of the exponents, they are
the positive and negative persistence exponénend® are  universal in the sense that different models in the same dy-
expected to have different values in these models. If this imamic universality class yield very similar values for these
the case, then the relation between the steady-state persexponents. For the models in the Edwards-Wilkinson and
tence exponent and the dynamic scaling expogeioind in ~ KPZ universality classes, we find results in agreement with
linear models cannot be valid for bo#l} and ¢°, indicating ~ those of earlier studiei?3,24.
that at least one of these exponents is a new, nontrivial one Our simulations also reveal that a measurement of the
not related to the usual dynamic scaling exponents. The vakteady-state persistence exponents is possible from simula-
ues of &> and 6> and their relation tg3, as well as the values tions in which the initial timety is much smaller than the
of the transient persistence exponeéitsand 6! are the pri-  time (~L? required for the interfacial roughness to saturate.
mary questions addressed in our study. We also investigai® similar result was reported in Rg23] where it was found
the universality of these exponents by measuring them fothat the steady-state persistence exponent may be obtained
several models that are known to belong in the same univefrom a calculation oP(ty,ty+t) with t<ty<LZ We find that
sality class as far as their dynamic scaling behavior is conthe restrictiont <t is not necessary for seeing a power-law
cerned. To obtain accurate values of the exponents, thieehavior ofP,(ty,ty+t)—a power law with the steady-state
“noise reduction” techniqugd9] is employed in some of the exponents is found even ffis close to or somewhat larger
simulations of(1+1)-dimensional models. We also addressthant, We exploit this finding in some of our persistence
some questions related to the methodology of calculatingimulations for(2 +1)-dimensional growth models which are
persistence exponents from simulations. Since the value afiore relevant to experiments. These results, however, also
the dynamical exponeutis relatively large for models in the imply that it would be extremely difficult to measure the
MBE universality class, the time required for reaching thetransient persistence exponents from real surface growth ex-
steady state grows quickly as the sample side increased periments. Finally, we show that the dependence of the
(tsa> L?). As a result, it is difficult to reach the steady state in steady-state persistence probability on the samplelsized
simulations for largel. It is, therefore, useful to find out the sampling timest is described by a simple scaling func-
whether the value of the steady-state persistence exponertisn of the variable$/L? and 8t/L% This scaling description
can be extracted from calculations &fty,ty+t) with tg is similar to that found recentlj40] for a different “persis-
<tg, L% Another issue in this context involves the effectstence probability,” the survival probability, which measures
of the finiteness of the sample sikeand the sampling time the probability of the height not returning to iesverage
St (the time interval between two successive measurementglue (rather than the initial valyeover a certain period of
of the height profilg on the calculated persistence probabil-time. Although the “persistence” and the “survival40]
ity. An understanding of these effects is needed for extractingrobability seem to be qualitatively similar in their defini-
reliable values of the persistence exponents from simulationisons, the two are mathematically quite unrelated, and in fact,
that alwaysinvolve finite values ol and ét. Understanding no exponent can be defined for the survival probability. In
the effects ol and &t on the persistence analysis is not only this paper we only discuss the persistence probability and the
important for our simulations, but is also important in the persistence exponent for surface growth processes.
experimental measurements of persistence which invariably The rest of the paper is organized as follows: in Sec. Il A,
involve finite system size and sampling time. we briefly discuss the main universality classes and their

The main results of our study are as follows. We find thatcorresponding dynamic equations and scaling exponents rel-
the positive and negative steady-state persistence exponerigant for surface growth phenomena. Section Il B contains a
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short overview of the persistence probability concept fromheight. Extensive studies of dynamic scaling in kinetic sur-
the interface fluctuations perspective. The discrete stochastface rougheningfor an extended review see R¢t5]) have
SOS growth models considered in our study are described irevealed the existence ¢t least four universality classes
Sec. lll. In addition, we briefly describe in this section thethat are described, in the long wavelength limit, by the fol-
noise reduction technique which is employed in some of outowing continuum equations and sets of scaling exponents
simulations. Section IV contains a detailed description of ouf«, 8,z), shown for the 1+(2+1)-dimensional cases, re-
main results: in Sec. IV A, oufl+1)-dimensional simula- spectively:

tion results for the transient and steady-state persistence ex- (1) The Edwards-Wilkinson(EW) second-order linear
ponents are presented, focusing mostly on models describee;dluation:l 1 2[0(log), 0(log), 2]

21 Za
by the nonlinear MBE dynamical equation. Section IV B
contains the analytic derivation of a relation between the ah(r,t) = L, Vh(r 1) + (1 ) 2
smaller steady-state persistence exponent and the dynamic It 2 ' e

growth exponent. In Sec. IV C, we introduce an alternative ' L1 s
approach for measuring the steady-state persistence expo- (2) The KPZ second-order nonlinear equatic: 3, 3
nents, using a relatively short “equilibration time” that is (=0.4,=0.24,=1.67)
much shorter than the time required for reaching the true
steady state. Section IVD contains the results of our Jh(r, 1) = 1,V2h(r, 1) + Ny VA(r, 02+ 7(r 1), (3)
(2+1)-dimensional persistence calculation for a selection of at
linear and nonlinear models. Simulation results that establish (3) The Mullins-Herring(MH) fourth-order linear equa-
a scaling form of the dependence of the persistence probabil- 3 '3 A1 L a)
ity on the sample size and the sampling time are presented en: 20 & 4
Sec. IV E. The final Sec. V contains a summary of our main

! ah(r,t)
results and a few concluding remarks. —_—

T vaV*h(r,0) + 7(r,1), 4)
and

(4) The MBE fourth-order nonlinear equatior:1, :%,
:3(:% :é :1—30)

Il. STOCHASTIC GROWTH EQUATIONS AND
PERSISTENCE PROBABILITIES

A. Growth equations and dynamic scaling
ah(r,t)

The dynamic scaling behavior of stochastic growth equa-
tions may be classified into several universality classes. Each
universality class is characterized by a set of scaling expo- . . .
nents[1] which depend on the dimensionality of the prob- where(i=2,4) andxj(J—g,ZZ are con_stant. The quantity
lem. These exponents afe, 3,2), wherea is the roughness 7(r,t) represent; the_ noise term \{v_hlch accounts for the
exponent describing the dependence of the amplitude di ndom qu_ctuanons In th? depos_mon rate. We assume
height fluctuations in the steady-state regittie L9 on the that the n0|se' has Gaussian distribution with zero mean
sample sizd., B is the growth exponent that describes theand correlator:
initial power-law growth of the interface width in the tran- —
sient rpegime(1<tg< L%, and z is the dynamical exponent (M1t 7r2te)) =DAr =) ot~ 1), ©)
related to the system size dependence of the time at which being a constant related to the strength of the bare noise.
the interface width reaches saturation. Note tva#/g for  Note that we do not include thérivial) constant external
all the models considered in this paper. To describe the indeposition flux term in the continuum growth equations
terface evolution we use the single-valued functhin,t)  since that is easily eliminated by assuming that the height
which represents the height of the growing sample at posifiuctuationh is always measured with respect to the average
tion r and deposition time. The interfacial height fluctua- interface which is growing at a constant rate.
tions are described by the root-mean-squared height devia- The concepts of universality classes and scaling expo-
tion (or interface width which is a function of the substrate nents have been widely used in the literature to analyze the

== 1, V4h(r,t) + \p,V2(Vh(r )|+ 7(r,1), (5

sizeL and deposition time: kinetics of surface growth and fluctuations. Our study based
— o112 on persistence probabilities is motivated by the possibility
W(L,1t) = ([h(r,t) = h(t) ]2, (1) that the concept of persistence may provide an additional

—. . _ ... (and complementapytool to analyze the surface growth ki-
where h(t) is the averagﬂe samplez thickness. Trle Widthyetics. It addresses fundamental questions such as: is persis-
W(L*Zt) scalezs asM(L,t)t” for t<L* and W(L,t)<L* for  tance an independetdnd nevy conceptual tool for studying
t>1* [41], L* being the equilibration time of the interface, gyrface fluctuations or essentially equivalgot perhaps
when its stationary roughness is fully developed. ~ complementaryto dynamic scaling? and does persistence
Since it is convenient to write the evolution equations injeaq to the definition of new universality classes on the basis
terms of the deviation of the height from its spatial averagé the values of the persistence exponent? To answer these
value,h(r ,t)—h(t), from now on we will denote bfa(r ,t) the  questions, we consider, for each of the four universality
interface height fluctuation measured from the averagelasses mentioned abo\ee., Egs.(2)«5), at least one
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growth model and investigate how the associated persistence G=6=1-5. (9)
exponents are related to the dynamic scaling exponents men- ) . ] .
tioned above. The exponenp is well known for linear Langevin equations

for surface growth dynamics, and is givendndimensions
_ _ by B=(1-d/z)/2 for nonconserved white noiséq. (6)],

Our goal is to calculate the positive and negative persisth® power of the gradient operator entering the linear con-
tence probabilitiegP,(ty,ty+t)] for a growing(fluctuating ~ tinuum dynamical growth equatiofi.e., z=2 in Eq.(2); z
interface in the transient and steady-state regimes. tjagse -4 I EQ.(4)]. The relation defined by Eq9) holds true for
the initial time, and we are interested in evaluating the prob{he Langevin equations of Eq&2) and(4), which are obvi-
ability of the height at a fixed position remaining persistentlyQusly linear, as well ‘as for the special case of the
above(P,) or below(P_) its initial value(i.e., its value at, (1 *1)-dimensional KPZ equation of E(B) [24], which, de-
by definition) during the time period betwedg andty+t. If ~ SPite its nonlinearity, behaves as the linear EW equation in
one considers the special cage0, when the interface is the steady state. Since the positive and negative exponents
completely flat, then the quantity of interest is the probability@® €xpected to be different for general nonlinear Langevin

that the interfacial heighimeasured from its spatial average €duations, the relation of E¢9) cannot be valid for bOth_
does not return to its initial zero value up to timé his case and 6° in systems described by such nonlinear equations.
is known as theransient(T) regime. For values dfthat are 1 herefore, at least on@r perhaps bothof these two persis-
small compared to the time scale for saturation of the interl€NC€ €xponents must be nontrivial in the sense that it is not
face width[t.,(L)=L7, the persistence probabilities in this related to the usual dynamic scaling exponents. For this rea-

regime are expected to exhibit a power-law decay in time: Son we pay pa_rtlcular attention to the MBE nonlinear equa-
tion and investigate whether its persistence exponents can be

1\ related to the dynamic scaling exponents.
PL(0,t) o (;) : )

I1l. ATOMISTIC GROWTH MODELS
where 01 are called the transient positive and negative per-
S|stenr(]:e exponents. rlmn the particular caskngfar ccl)ngnuum rowth models for simulating surface growth processes. In
growth equations, these exponents are equal because tfig.qo models, the substrate consists of a collection of lattice
symmetry under a change of sign fufr,t) remains valid at sites labeled by the indek(j=1,2, ... L% and the height

all stages of the growth Process. Hovyever, n the. case c\';ariablesh(xj) take integral values. The term “limited mobil-
dynamics governed by nonlinear continuum equations, thﬁy,, is meant to imply that in these models, each adatom is

Iacg F?f thisd“Liﬁ-do%Nn” ir::]erfacial syn%met%/ (}nplies |:jha'L characterized by a finite diffusion length which is taken to be
and P (an erefore, the exponent; and 6) would, in one lattice spacing in most of the models we consider here.

general, be different from each other. No universal relaﬂon-Thus, a deposited atom can explore only a few neighboring

ship between the transient positive and negative perSiSten‘f&tice sites according to a set of specific mobility rules be-

exp?r;ents and thef ?E]mim'c sc_almg ?i(polnents IS knE[)_wn Eibre being incorporated into the growing film. The solid-on-
exist for any one ot the four universality classes mentioneqq)iy constraint is imposed in all these models, so that de-

above. fects such as overhangs and bulk vacancies are not allowed.

On the other hanq, i one.considaf,slarge.r thantsa,(L)-, In most of the models considered in this work, the possibility
then the quantity of interest is the probability that the inter- ¢ desorption is neglected, thereby making the models “con-

facial height_at a fixed position does not return .to its_ SpeCiﬁcserved" in the sense that all deposited atoms are incorporated
value at initial timet, during the_subsequen; time interval i, he film: the noisdgiven by Eq.(6)] is of course noncon-
betweent, andty+t. Instead of being flat, the interface mor- ¢oed since the system is open to the deposition flux.

phology at timet, has completely developed roughness, — 1ne geposition process is described by a few simple rules
which produces persistence exponents that are different frorp these models. An atomic beam drops atoms on the sub-

the transient exponents defined earlier. This case is '“.‘OV.V“ @Frate in a random manner. Once a lattice site on the substrate
th_estea(.jy-statéS) regime. Ift <L, one expects to O_Pta'” n s randomly chosen, the diffusion rules of the model are ap-
this regime the steady-state persistence probability with Blied to the atom dropped at the chosen site to determine

power-law decay in tim¢23] where it should be incorporated. The allocated site is then
S instantaneously filled by the adatom. We consider Kdth
PS(t, o + 1) o (})9* e +1)- and (2+1)-dimensional modelgone or two spatial di-
£ ' mensions and one temporal dimengidefined on substrates
of lengthL in units of the lattice spacing. The deposition rate
where Hf are the steady-state positive and negative persigs taken to be constant and equaltbparticles per unit time
tence exponents. It has been pointed out by Ketigl. [23] in our simulations of the FamilyF), larger curvaturgLC),
that for systems described Hipear Langevin equation, the Das Sarma-Tamborené®T), Wolf-Villain (WV) and con-
steady-state persistence exponents are related to the dynartrialled Kim-Das Sarm@CKD) models(see below. In these
scaling exponeng in the following way: simulations, one complete layer is grown in each unit of

In this paper, we use different atomistic limited-mobility
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time. In the RSOS Kim-KosterlitzKK) and Kim-Park-Kim ~ same dynamical universality class as the EW equation. It
(KPK) models described below, the diffusion rules are re-allows the adatom to explore within a fixed diffusion length
placed by a set of local restrictions on nearest-neighborto find the lattice site with the smallest height where it gets
height differences, which have to be satisfied after the depancorporated. If the diffusion length is one lattice constant
sition. The randomly chosen deposition site is rejegteé  (this is the value used in our simulationghe application of
atom is not depositgdf these restrictions are not satisfied. this deposition rule to a randomly selected gitewvolves

As a consequence, the number of deposition attempts dodimding the local minimum height value among the set:
not coincide with the number of successful depositions in théa(x;_;), h(x;), andh(x;,4) [in (1+1) dimensions The height

KK model, although they are linearly related. of the site with the minimum height is then increased by one.
All conserved growth models satisfy the conservation law
ah(r.b) 2. Larger curvature model
T:— Vo0 + (1), (10) The Kim-Das Sarma moddb] is a more complex one

which allows the atomic surface currgnto be written as a
wherej is the surface current anglis the noise term. Using gradient of a scalar fiell, j =— VK, which can depend oh,
different expressions, dictated primarily by symmetry con-V2h, [Vh|? and so on. In the particular case whiér-V?h,
siderations, for the curreftone can obtain all the conserved one obtains the so-called larger curvat(r€) model. As the
Langevin equations discussed in Sec. Il A. The atomisticiame suggests, the diffusion rules applied to a randomly se-
growth models considered in our work provide discrete reallected sitej allow the adatom to get incorporated at the site
izations of these continuum growth equations. in the neighborhood of sitewhere the local curvaturgiven

It is known that some of the discrete growth models weby h(xj:1)+h(x-)—2h(x) in (1+1) dimension$ has the
study here have complicated transient behafd@,43. For  largest value. The LC model asymptotically rigorously be-
this reason, obtaining the dynamic scaling exponents thdbngs to MH universality class described by E4).
show the true universality classes of these models is often
quite difficult. To make this task easier, the noise reduction 3. Wolf-Villain model

technique [44,45 was introduced in_ simulat.ions of su_ch The diffusion rules of the Wolf-Villain(\WV) model [4]
models. It has been showB9] that this technique helps in  ajiow the adatom to diffuse to its neighboring sites in order
suppressing high steps in the models and reduces the corrgg- maximize its local coordination number which, for the
tions in the scaling behavior, so that the true asymptotic unit1 + 1)-dimensional case, varies between 1 and 3 when the

versality classes of the growth models can be seen in simysonq \ith the atom lying below the site under consideration
lations that cover a relatively short time. This makes itig taken into account. In contrast to the F model, in this case

interesting to examine whether the persistence probabilitieg,q grface develops deep valleys with high steps almost per-

in these discrete models also exhibit similar transient beha_"pendicular to the substrate. For the range of times and

ior, a'nd whether the nois_e reduction technique can help I3ample sizes used in the present study, the WV model may
bringing out the true persistence exponents of these model§e onsidered to belong to the MBE universality clag2]
To investigate this, we have applied the noise reduction tectyascribed by Eq(5). However, recent studief89,47 have

nique to some of the discrete models studied in this paper.spown that the asymptotic universality class of this model in
The noise reduction technique can be easily |ncorporategl+l) dimensions is the same as that of the EW equation. In

in the simulation of any discrete growth model by a Sma"contrast, in(2+1) dimensions, studies based on the noise

?odificgtionoiln tk:e ?&ﬁusionlprodqﬁs{sm. W?enfan tﬁtom i3Vthreduction techniqué48] have revealed that the WV model
ropped randomly, the regu’ar diffusion rules for the growtig, ;s ot very long times unstablmounded dynamic uni-

model are applied and the final allocated site is chosen. In- ; ; ; )
stead of adding the atom at that final site, a counter at thr%ﬁLsuarlr:tiEVL?‘,EZﬁggggt(gi%]bgig:ﬁcggf\?eby any of the con

site is increased by one but the height of that site remains
unchanged. When the counter of a lattice site increases to the
value of a predetermined noise reduction factor, denoted by )
m, the height at that lattice site is increased by one and the The Das Sarma-Tamboren@aT) model[3] is character-
counter of that site is reset back to zero. The value of thézed by diffusion rules that are slightly different from those
noise reduction factom should be chosen carefully. ithis ~ in the WV model. In this case, the diffusing atom tries to
too small, the suppression of the noise effect is not enougHicreaseits coordination number, not necessarily rwaxi-
and the true universality class is not seen. Howevemis  Mizeit. For example, if a randomly selected deposition site
too large, the kinetically rough growth becomes layer-by-has its local coordination number equal tgi®., no lateral
layer growth[46] and the universality class of the model neighbor in(1+1) dimension§ and the two neighbors of

4, Das Sarma-Tamborenea model

cannot be determined. this site have coordination numbers equal to 2 and 3, the
The atomistic models considered in our work are definedleposited atom does not necessarily move to the neighboring
below. site with the larger local coordination nhumber: it moves to
_ one of the two neighboring sites with equal probabilitiye
1. Family model atom would necessarily move to the site with coordination

The Family(F) model[2] is an extensively studied SOS number 3 in the WV modgl This minor change in the local
discrete stochastic model, rigorously known to belong to thediffusion rules actually changes the asymptotic universality
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class: thg1+1)-dimensional DT model belongs to the MBE where every deposition attempt leads to the incorporation of
universality class[39,48 corresponding to the nonlinear a new adatom in the growing film. In the KK model, the time
continuum dynamical equation of E¢). However, the(2 is equivalent to the average height, which is not the same as
+1)-dimensional DT model asymptotically belongs to thethe number of attempted depositions per giieese two
EW universality[48] at very long times. quantities are the same in the other models considereql. here
The KK model is known to belong to the KPZ universality
class, and in fact provides the most numerically efficient and
accurate method for calculating the KPZ growth exponents.

The Kim-Das Sarma model mentioned above provides a Kim et al. [8] discovered that a slight change in the algo-
discrete realization of the continuum equation of Es).if  rithm for choosing the incorporation site transforms the KK
the scalar fiel is chosen to b&=-V?h+X\,(Vh)%2 How-  model into a new one, the KPK model, which belongs to the
ever, the discrete treatment of the spatial gradients produc@4BE universality class. The change consists of extending
strong instabilities in the growth process due to uncontrolledhe search for appropriate incorporation siies, sites where
growth of isolated structures, such as pillars or groovesthe constraint on the absolute values of the nearest-neighbor
These instabilities can be easily controlled by introducingheight differences would be satisfied after the incorporation
higher order nonlinear termd4]. We call this new model of an adatom to the neighbors of the originally selected
the controlledKim-Das SarmgCKD) model. In this model, deposition sitg. If the original site does not satisfy the con-
the scalar fieldK is chosen to beK=-V2h+\,f(|Vh[?),  straint, then the neighboring sitfis-1 in (1+1) dimension$

5. Controlled Kim-Das Sarma model

where the nonlinear functiohis given by are checked, and an adatom is incorporated at one of these
_vhP site_s if the incorpora_ttion does not violate the constraint: Oth-

f(Vh?) = 1-¢ ’ (11)  erwise, the search is extended to the next-nearest-neighbors
c of j, and so on until a suitable incorporation site is found. We

mention that in our implementation of this process, if, for
example, both the sitgs-k andj+k are found to be suitable
for incorporation, then one of them is chosen randomly with-
out any bias. Application of this algorithm 2 +1) dimen-
sions involves extending the search for suitable incorporation
(Vzh)“ =h(X;+2) + h(xi_1) = 2h(X)), (12) sites to those lying inside circles of increasing radii around
the randomly selected deposition sjteThe diffusion and
2 1 incorporation rules of the KPK mod¢8] lead essentially to
|Vh|Ii = alh(+0) - h(xi-l)]z’ (13) a conserved version of the Kim-Kosterlitz RSOS mojdg)
in (1+1)-dimensions. By carefully choosing the values éor 2Nd as such the continuum growth equation corresponding to
and\,, [14], one can remove the nonlinear growth instabili- e KPK model is the conserved KPZ equationth non-

ties completely and ensure an overall behavior of the CKDFONserved noisewhich is precisely the MBE equation; Eq.
model similar to that of the DT model. (5) is the conserved version of E¢4) with nonconserved

noise in both.

with ¢>0 being the control parameter. The CKD diffusion
rules for a randomly chosen deposition gitenply the mini-
mization of the scalar fiel&, using the standard discretiza-
tion scheme for the lattice derivativ&h and Vh:

6. Kim-Kosterlitz and Kim-Park-Kim models

For completeness, we also present in this paper the results  IV. SIMULATION RESULTS AND DISCUSSION
for the RSOS Kim-KosterlitaKK) [7] and Kim-Park-Kim
(KPK) [8] models which are known to belong asymptotically
to the KPZ and MBE universality classes, respectively. The Simulations for(1+1)-dimensional discrete growth mod-
common feature of these two models is the replacement dfls were carried out fop=1/4, 3/8, and 1/3. Thealue 8
the usual diffusion rules of the SOS models described above1/4 corresponds to the F model that has a relatively small
by local restrictive conditions controlling nearest-neighborequilibration time(of the order ofL?). The remaining con-
height differences. servative models, characterized B¢ 3/8 (LC) and =1/3

In the KK model, deposition sites are randomly chosen(WV, DT, CKD, and KPK), have a much slower dynamics
but the incorporation of the adatoms into the substrate i$with z values 4 or 3 So their corresponding equilibration
subject to a specific restriction: the deposition event occurs ifime intervals, required for the interface roughness to reach
and only if the absolute value of the height difference be-saturation, are of the order bf andL?, respectively. For this
tween the randomly selected deposition $ismdeachof its ~ reason, the largest values bf for which the steady state
nearest-neighboring sites remains smaller than or equal to&ould be reached in reasonable simulation time are consider-
positive integern after deposition(our simulations were ably shorter in these models than in the F model. The fastest
done forn=1). If this strict constraint is not satisfied, the equilibration occurs in the KK mode{s=1/3) where z
attempted deposition of an adatom is rejected, and the rarF3/2.
dom selection of the deposition site is repeated until the In calculations of the transient persistence probabilities,
deposition is successfully done. Since every attempt to dethe initial configuration of the height variables is taken to be
posit an adatom is not successful, the definition of “time” inperfectly flat, i.e.h;(ty))=0 (j=1,L). The lattice size was in
this model is not quite the same as that in the other modelthe range 18<L <10, and the duration of the deposition

A. Persistence exponents iff1+ 1) dimensions
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FIG. 1. Transient persistence probability for the
(1+1)-dimensional linear F and LC growth models. As expected,

the positive and negative persistence probabilities are identical in FIG. 2. Positive and negative transighbttom two curvepand
N steady-statgtop two curves, mostly overlal ersistence prob-
these models. The system sizelis 1° for the F model and y &top y PpEg P

ilities for the (1+1)-di ional R KK I. The f
=10" for the LC model, and an average over Idependent runs abilties for the (1+1)-dimensional RSOS mode e faster

: decay of the positive persistence probability in the transient regime
was performed. The slopes of the double-log plots yield the valuef,S due to the negative sign af in the equivalent continuum equa-
of the transient persistence exponents shown in Table I.

tion of Eq. (3). In the transient case, systems of slze5x 10*
process, measured in units of number of grown monolayer&ere averaged over %10° independent runs. The steady-state
(ML), was ~10®. The results were averaged oved0® in- simulation was done forL=500 and a similar average was
dependent runs. For measurements in the steady-state sitdgformed.

tion, a saturation of the interface roughness was first ob-

tained by depositing a large numb@f the order ofL?) of  evaluate the error in dynamical simulations. To solve this
monolayers and subsequent time evolution from one of th@roblem we did the following simulations. We decreased the
steady-state configurations obtained this way was used fdiumber of independent runs used for the averaging proce-
measuring the persistence probabilities. A much smaller latdure by a factor of 2, keeping the size of the system constant.
tice length(L=1000 for the F modell.=500 for the KK  Under these circumstances, we have measured the exponents
model, L=200 for the KPK model, and.=40 for the LC, corresponding to the two different numbers of independent
WV, DT, and CKD modelswas used in these calculations in runs and the differences between the obtained values of the
order to reach the steady-state saturation within reasonabfxponents were used as error estimatessfand 6, respec-
simulation times. tively. Approximately the same size of the error bar was

The positive(negativ@ persistence probabilities in both obtained from the estimations of fluctuations in the value of
transient and steady-state regimes were obtained as the frdbe local slope of the double-log plots. We have also noticed
tion of sites that maintain the values of their heights persisthat a reduction of the lattice sizémposed for the steady-
tently above(below) their initial values, averaged over a
large number(~10% of independent runs. The persistence 10
exponents were obtained from power-law fits to the decay of
these probabilities, as shown in Figs. 1-4 and 6-8 for the 0"
transient and steady-state regimes, respectively.

For all the models studied here, we have also measured
the value of the growth exponeitt in both transient and
steady-state simulations. Since the latter simulations were
carried out for smaller values of the system sizethese 3
measurements provide useful information about the depen-
dence of the measured exponent values on the lattice size. T BT RN
Similar information is also provided by the values of the 10' 10° 10°
transient persistence exponents obtained from measurements ML)

n the initial stage of the st_eady-state SImuIatI(_)ns. T_he tran- g6, 3. positive and negative transient persistence probabilities
S'em_ expo_nent values obtained from the largsimulations ¢4 e (1+1)-dimensional nonlinear DT and WV growth models.
are listed in Table I, and both transient and steady-state €Xye note that despite the difference in their local diffusion rules,
ponent values obtained from simulations of relatively smallihese two models behave identically as far as the transient persis-
samples are shown in Table Il. The measured values of th@nce probability is concerned. The curves corresponding to the DT
growth exponen are also shown in these tables. model have been shifted upward in order to avoid a complete over-

Estimation of the probable error in the measured values ofap of the plots for the two models. The system sizé #s10* and
the growth and persistence exponents is a delicate(task  an average over $ondependent runs was performed. The slopes of
surely depends on precisely how the exponent error is dehe double-log plots yield the transient persistence exponents given
fined), since there is not a traditional accepted method ton Table I.
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FIG. 4. Positive and negative transient persistence probabilitiegyy

for the (1+1)-dimensional CKD(the upper two curvgsand RSOS
(the lower two, almost overlapped curyawnodels that belong to
MBE universality class. In both cases the system size wa$0*
and an average over 10ndependent runs was performed. The

slopes of the double-log plots yield the transient persistence expo-

nents given in Table I.
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FIG. 5. Morphologies of thé1+1)-dimensional DT(top) and
CKD (bottom) stochastic models fdr=10* (only a portion of 1000
sites is showpandt=10® ML. In the DT model, we notice a break-
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TABLE I. Positive and negative persistence exponeffsand
0_, for the transien{T) regime, measured for seven different dis-
crete growth modelsidentified in the first columnusing kinetic
Monte Carlo simulations with relatively large system siges The
measured growth exponeng, and the universality class of the
model are indicated in the last two columns, respectively.

Growth Universality
model L 6! 0" B class
F 1  1.57+0.10 1.49+0.10 0.25+0.01 EW
KK 5x10* 1.68+0.02 1.21+0.02 0.33+0.01 KPZ
LC 10  0.84+0.02 0.84+0.02 0.37+0.01 MH
10 0.94+0.02 0.98+0.02 0.37+0.01 MBE
DT 10 0.95+0.02 0.98+0.02 0.38+0.01 MBE
CKD 10 0.98+0.02 0.93+0.02 0.35+0.01 MBE
KPK 10 1.04+0.02 1.01+0.02 0.31+0.01 MBE

state persistence calculatiorroduces lower values of the
growth exponents, as shown in Table Il. This is because the
downward bendingapproach to saturatiprof double-log
width versus time plots occurs at shorter times in simulations
of smaller systems. However, the smallesimulations seem

to lower the measured values of the growth exponents by a
maximum of about 10%. So we conclude that this effect is
not dramatic and that the steady-state results reported below
are reliable.

The measured values gfagree reasonably well with the
expected onegsee Sec. Il A within their errors. As ex-
pected, the agreement is better in the case of larger values of
L. For the largel- simulations(L ~ 10%), we have found that
the growth exponents of the F, LC, and KK models are in
excellent agreement with their corresponding expected val-
ues of 1/4, 3/8, and 1/3, respectivgiee Table)l The DT
and WV models are found to behave similarly at egtitgn-
sieny stages of their interface growth, at least(in+1) di-
mensions, their growth exponents beingyy~0.37 and
Bpr=0.38. The closeness of these values to the value of
3/8, which corresponds to the MH universality class, sug-
gests that the nonlinear term that appears in the associated
dynamic equatiorji.e., Eq.(5)] has a very weak effect for
the range of lattice sizes used in our study. In addition, we
have found that the CKD model characterized by the nonlin-
ear coefficient\,,=2 and control parametez=0.02 has a
growth exponenBekp~ 0.35, in agreement with Ref14].
These particular parameter values ensured the elimination of
any interfacial instability, thus allowing a calculation of the
steady-state persistence properties. Regarding the conserved
KPK model, we have observed that the growth exponent has
a value that is slightly smaller than 1/3, a result that agrees
with Ref. [8].

The temporal behavior of the transient persistence prob-
ability in our models is shown in Figs. 1-4. From these mea-
surements, we obtained the transient persistence exponents
by fitting the linear middle region@xcluding the smalt-and
larget ends, typically using the data for 20 <800) of the

ing of up-down symmetry due to the formation of deep groovesdouble-log plots to straight lines. As expected, due to the
while in the CKD model, the representative asymmetric featurénvariance of the interfaces of the F and LC modg¥hich

corresponds to high pillars.

are characterized biinear continuum equationsunder a
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change of sign of the height variables, we obtained equal ]
positive and negative transient persistence exponents within N . X E ET

the error bars, as displayed in Fig. 1. However, we mention 10 iy, o LC: P+
that the F model has a rather slow convergence of the posi- v LGP
tive and negative exponents towards their long-time value of

~1.55 observed in much longer simulations. The results for
F and LC models, which correspond ®=1/4 and 3/8, 10
respectively, agree well with the values reported by Ketig

al. [23]. The same level of agreement is also found in the

case of the KK modef24], shown in Fig. 2, for which the A i
transient persistence exponents @fe-1.68 andd’ =~ 1.21 in 10 10° 10" 10° 10°
(1+1) dimensions. We note that the negative persistence t (ML)

probability has a slower decay than the positive one. This is - ) ) N
due to the constant coefficient, of the nonlinear term FIG. 6. Positive and negative steady-state persistence probabili-

[Vh(r ,t)|? of the KPZ equatioriwhich provides a continuum ties for thg(l+1)-dir_nensional F gnd LC models which are gov-
description of the KK modglhaving a negative sigf24]. erned by I|r_1ear contlnuum_ quamlcal equatlon. The temporgl decay
For the models described by the fourth-order nonlineaPf the persistence probability is slower in the LC model which has
MBE equation(i.e., WV, DT, CKD, and KPK models we @& larger growth exponen(iB c=3/8, fr=1/4). We usedL=1000
expect to find different positive and negative transient per&1dio=4>10° ML for the F model, and.=40, t,=10° ML for the
sistence exponents due to the fact that their morphologie%c model. The displayed results were averaged over 5000 |r_1depen-
violate the up-down interfacial symmetry with respect to thedent runs. The measured slopes of the do'uble-log plots yield the
average level. No information about how different these twoSteady-state persistence exponents shown in Table I1.
exponents should be is available in the literature. In most of
these growth models, we observe that the two exponents af@nequilibrium statistical probabilities for a large class of
not very different from each other, especially during the tran-nonequilibrium applications described by nonlinear dynami-
sient regime. Figure 3 shows the transient regime results fo¥al equations. Until now, the only nonlinear equation for
DT and WV models, which are indeed very similar—their Which persistence exponents have been calcuf@éds the
persistence probability curves have almost identical behaKPZ equation which is arguably the simplest nonlinear
ior. We note here that the negative persistence probability hdsangevin equation. Further, the nonlinearity in the KPZ
a faster decay than the positive persistence probability. Thigquation becomes irrelevant in the steady-state regime in
indicates a negative sign of,,, the coefficient that multi- (1+1)-dimensions. So, the effects of nonlinearity are not re-
plies the nonlinear tern¥?|Vh(r ,t)|?> of the MBE equation. flected in the steady-state persistence behavior of
However, the relative order of the values of these exponentsl +1)-dimensional KPZ systems. An immediate concern
is reversed when,,>0, which is the case in the CKD and would be that more complex nonlinear dynamic equations
KPK models, as shown in Fig. 4. To clarify this aspect, wemight be less approachable from the point of view of persis-
show in Fig. 5 the interfacial morphologies of DT and CKD tence probability calculation. Our results for four nonlinear
models. We used a lattice bf=10" sites(but only a portion ~models eliminate this possibility and illustrate the applicabil-
of 1000 sites is shown in each cased the displayed con- ity and usefulness of persistence probability calculations in
figurations correspond to a time of ABIL. The interface of  the study of surface fluctuations.
the DT model is characterized by deep grooves, while the Figures 68 display our results for the steady-state persis-
profile in the CKD model exhibits the distinct feature of high tence probabilities. The values of the growth and persistence
pillars. Both morphologies display strong up-down interfa-exponents obtained from the steady-state simulations are
cial asymmetry, but their representative featufies., deep summarized in Table Il. The values of the steady-state per-
grooves and high pillaysare opposite in “sign”, indicating a Sistence exponents in the F and LC models, corresponding,
reversal of the sign of the coefficiens, [note that a reversal respectively, to th&/? and V* linear equations(see Fig. §
of the sign of\,, in Eq.(5) is equivalent to changing the sign are consistent with the values of the corresponding growth
of the height variabld(r ,t)]. exponentdas predicted by Eq9)] obtained from the same
As summarized in Table I, the DT, WV, and CKD models smalli simulations. For the WV and DT models, as shown
show very similar values for the transient persistence expon Fig. 7, we obtain very similar positive and negative per-
nents when the above mentioned effect of the sigh,gfis  Sistence exponents. In the case of the KK model we find, as
taken into account. However, some deviation from the expoexpected, identical positive and negative expone(e
nent values for this group of models is observed in the RS0%=0.71), as shown in Fig. 2.
KPK model which shows the smallest difference between the Among the models belonging to the MBE universality
positive and negative persistence exponents. Finite size eflass, the KPK model exhibits steady-state persistence expo-
fects appear to be stronger in this case. These effects als@nts that are systematically higher than the ones obtained
cause an increase in the measured values of the persisterfog the remaining thregWV, DT, and CKD models. Our
exponents above the expected values. A similar behavior istudy of the dynamical scaling behavior of the KPK model
found in the steady-state results as well, as described belowdicates that bothx (~0.9) andz (~2.9) in this model are
Our calculations of WV, DT, CKD, and KPK persistence reasonably close to the expected values, in agreement with
exponents illustrate the feasibility of studying this type of Ref. [8]. Therefore, the reason for the differences between

P+(1)
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TABLE IlI. Positive and negative persistence exponefisand 6_, for the transient{T) and the steady
state(S) regimes of our seven different discrete growth models, obtained from simulations with relatively
small samples sizg4). To illustrate the effects of reduced system sizes on the measured exponents, we have
shown the values o8 obtained from these simulations in the last column.

Growth model L 6! 6" 6 ¢ B

F 10 1.67+£0.10 1.56+0.10 0.78+0.02 0.76+0.02 0.25+0.01
KK 5 X 107 1.70+£0.02 1.27+£0.02 0.71+0.02 0.71+0.02 0.30+0.01
LC 40 0.98+0.02 0.96+0.02 0.67+0.02 0.67+0.02 0.32+0.01
WV 40 0.94+0.02 0.99+0.02 0.65+0.02 0.70+£0.02 0.35+0.01
DT 40 0.98+0.02 1.01+0.02 0.64+0.02 0.72+0.02 0.36+0.01
CKD 40 1.11+0.02 0.99+0.02 0.78+0.02 0.66+0.02 0.33+0.01
KPK 2X 107 1.16+0.02 1.09+0.02 0.70+0.02 0.68+0.02 0.28+0.01

the values of the steady-state persistence exponents for tlegpected for nonlinear models belonging to the MBE univer-
KPK model and those in the other models in the MBE uni-sality class.
versality class is unclear. This discrepancy may very well be Next we investigate the influence of small sample sizes on
arising from subtle differences in finite sizand timg ef-  the measured values of the persistence exponents. We mainly
fects in the simulations for persistence exponents and dydsed the DT model to answer this question and we pursued
namic scaling. Further investigation of the applicability of the following two tests. First we decreased the size of the
this RSOS model in understanding MBE growth is beyondsystem from 16to 100 and then to 40 and found the values
the scope of the present study. of the growth and persistence exponents, as summarized in
As shown in Fig. 8, a nice illustration of the presence ofTable Ill. We note that as the lattice length decreases to 40,
nonlinearity in the underlying dynamical equation is pro-the persistence exponents increase B2%, while the
vided by the steady-state persistence exponents of the CKBrowth exponents increase by5%. As a second test, we
model, characterized by distinct value®~0.78 and ¢° have applied the noise reduction technique to both the DT
~0.66, of the positive and negative exponents. Although onend WV models. It has been shoy89] that a noise reduc-
must take into account the fact that these values might bgon factor of m=5 helps the DT model to recover quite
slightly overestimatedby approximatively 5% due to the accurately the universal exponents corresponding to the
smallness of the sample sizes used in the steady-state simMBE universality class. In addition, the noise reduced WV
lations, these exponents provide a good qualitative accoumhodel exhibits, at late evolution times, its true EW
of the nontrivial up-down asymmetric persistence behavioasymptotic universality, which is difficult to observe without
applying noise reduction. Therefore, the DT model with the

ok T T appropriate noise reduction factor is expected to provide the
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FIG. 7. Steady-state persistence probabilities for tde 1)- t (ML)

dimensional models in the MBE universality class—the DT and

WV models. As in the transient case, these two models exhibit FIG. 8. Double-log plots of the steady-state persistence prob-
almost identical persistence behavior in the steady state. The effecédbilities of (1+ 1)-dimensional MBE class CKD and KPhifted

of the nonlinearity in their continuum dynamical description are notup by a constant amouninodels. While the KPK model does not
very prominent for the small lattice sizes considered here. For thehow a clear effect of nonlinearity in the values of the persistence
data shown, systems of size=40 were equilibrated fort, exponents, the CKD model shows positive and negative persistence
=10 ML, and the results were averaged over 5000 independengxponents that are clearly different from each other. Systems of size
runs. The persistence plots for the DT model have been shifted up=40 (CKD) and L=200 (KPK) were equilibrated fort,

in order to make them distinguishable from the WV plots. The~10°> ML. The results were averaged over*liddependent runs.
measured slopes of the double-log plots yield the steady-state pefhe measured slopes of the double-log plots yield the steady-state
sistence exponents shown in Table II. persistence exponents shown in Table II.
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TABLE llIl. Transient positive and negative persistence expo-of this result with the morphology that develops in the
nentsé; obtained for the DT model with different system size$.  steady-state regime. As shown in Fig. 5, the characteristic
The effect of the system size on the measured growth expoBent, feature of the DT morphology is the presence of deep
is displayed in the last column. No result for steady-state perSisgrooves, while the CKD model exhibits high pillars. Loosely
tence exponents is available for system sizes larger thE00, due speaking, in the case of the DT model, we expect the relation
to the impossibility of reaching saturation of the interface width for ¢ Eq. (9) to be more likely to be satisfied by the positive
such values of in time scales accessible in simulations. The resunspersistence exponent than the negative one because the pre-
shown here were averaged over 500r L=10), 5x10* (for L ponderant grooves, responsible for the negative persistence
=100, and 10 (for L=40) independent runs. exponent, represent the effects of the nonlinearity of the un-
derlying MBE dynamics. More work is clearly needed for a

)T T
L 0 0- P better understanding of the possible relationship between
10 0.95+0.02 0.98+0.02 0.38+0.01 such “nonlinear” features of the interface morphology and
1 0.96+0.02 0.99+0.02 0.37+0.01 the value of the persistence exponent.
40 0.98+0.02 1.01+£0.02 0.36+0.01

B. An exact relation between steady-state persistence
exponents and the growth exponent

correct persistence exponents associated with the fourth- As mentioned earlier, for interface height ,t) evolving

order nonlinear dynamical equation for MBE growth. Thevia a Langevin equation that preservés——h) symmetry

results obtained from the simulations with noise reduction . . .
are summarized in Table IV. We notice that the noise reducOcor example, any linear Langevin equafjothe steady-state

tion scheme produces only a minor change in the persisten&eerSIStence gxponents safisfy the scaling Fe'a“i"?le
exponents and in addition, the results obtained rfor5 _'B’. whereg is th_e growth_exponer_{QS]. In this section, we
agree within the error bars with those for the CKD model.de”ve a generalized scaling relation,

We, therefore, conclude that the noise reduced DT model and B=maf1l-631-6, (14)
the discrete CKD model provide a good representation of the

MBE universality class, characterized by two differentWhich is valid even in the absence ¢i—-h) symmetry.
steady-state persistence exponers:=0.66 (positive per- When this symmetry is restored, E(l4) reduces to the
sistencg and 65~ 0.78 (negative persistengeThese non- known resultf23], 63=6°=1-3.

trivial persistence exponents for this class have not been re- To derive the relation in Eq14), we start with a generic
ported earlier, and it would be useful to check these resultéiterface described by a height fietdr ,t) and define the
from further theoretical or experimental studies. Regardingelative height, u(r,t)=h(r,t)=h(r,t) where h(r,t)
the noise reduced WV model we mention that the conver=fh(r t)dr/V is the spatially averaged height akdis the
gence of¢° towards the expected value of 3/4 is rather slowyolume of the sample. Let us also define the incremental

in the case of the positive exponent and probably a highegytocorrelation function in the stationary state,
value of the noise reduction factor would be necessary to

reveal the true EW universality. We did not explore this tech- C(t,t") = lim ([u(r,t+tg) —u(r,t' +t9)1%. (15
nical issue any further. foe
We note that among the positive and negative steady-staie turns out that for generic self-affine interfac@shich do
persistence exponents for these nonlinear growth models, thet have to be Gaussigrthis functionC(t,t’) depends only
smaller one(for example, the positive exponent in the DT on the time differencét—t’| (and not on the individual times
model or the negative exponent of the CKD modélirns  t andt’) in a power-law fashion for larg—t’| [24,49,
out to be close tg1-2). In the following section, we show ) o
analytically that this relation between the smaller steady- Ct,t') ~ [t-t'[*, (16)
state persistence exponent gnd the (_jynamic growth exponeghere B is the growth exponent.
is, in fact, exact. Our numerical studies suggest a connection Thjs particular behavior of the autocorrelation function in
Eq. (16) is typical of a fractional Brownian motio(fBm). A
TABLE IV. Positive and negative persistence exponeftsor  stochastic procest) with zero mean is called an fBm if its
the steady state of the DT and WV models for two different valuesncremental correlation functiorC(t,, t,) =([X(t,) —X(tz)]2>

of the noise reduction factan. Systems of sizé& =40 were equili- d : . :
epends only on the time differentg—t,| in a power-law
brated for 18 ML and the results were averaged over 5000 inde- p. y 41"1‘ 2| P
fashion for large argumen{$0],

pendent runs.

Clty,tp) = ([X(t) = x(t) 1) ~ [ty — t|*, (17)
Growth model m 6 6> _
where 0<H <1 is called the Hurst exponent of the fBm. For
DT 1 0.64+0.02 0.72+0.01 example, an ordinary Brownian motion which evolves as
DT 5 0.65+0.02 0.77+0.01 dx/dt=7(t) where 5(t) is a Gaussian white noise with zero
WV 1 0.65+0.02 0.70+0.01 mean and & function correlator, satisfies E¢l7) with H
WV 5 0.68+0.02 0.75+0.01 =1/2.Thus an ordinary Brownian motion is a fBm with

=1/2. Itfollows clearly by comparing Eq$16) and(17) that
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the relative heightu(r,t) of a generic interface at a fixed T

point r in space, in its stationary state, is also a fBm with N(T) :f p(ndr~T+7, (20)
Hurst exponentH=. Note that an fBm is not necessarily 0

Gaussian. . _ N for large T.

~ We are then interested in the “no return probability” to the  Next, we relate the persistence probabilities to the number
initial value of the fBm procesa(r,t). So, the relevant ran-  f zeros. LetP,(7) denote the probabilities that the process
dom process i¥(r,t) =u(r, t+tg) —u(r,to). Clearly,Y(r,t) is  gtays positiveor negative over the interval0, 7], given that

also a fBm with the same Hurst exponghsince the incre- . I S
mental correlation function of is the same as that ofr ,t). it started from a zero. By definition, we haig(r) ~ 7 for

We are then interested in the zero-crossing properties of thi@rge 7. Then,Q.(7)=-dP.(7)/d7~ 717 (as 7— ) denote

fBm Y(r,t). Now, consider the procesqr,t) as a function the probabilities that the process will cross zero next time

of time, at a fixed point in space, from time, to time t, (from the positive or the negative side respectiydgtween

+t wherety— . There are two types of intervals betweentime 7 and 7+dr. Thus, Q.(7) are also the distribution of

successive zero crossings in time, the “+” typehere the intervals of the two types of length

process lies above)Gand the “~” type(where the process Now, consider a total length of tim€. Let N(T) denote

lies below 0. the total number of intervals in this period, half of them are
In general, the statistics of the two types of intervals are+ types and the other half - typds,(T)=N(T)/2. Letn,(7)

different. Only, in special cases, where one has the additiongjenote the number of + intervals of lengttwithin the pe-

knowledge that the procesé(r,t) is symmetric around O riod T. Thus, the fraction of «or -) intervals of lengthr,

(i.e., processes which preserve tte——h) symmetry, the  n,(7)/N.(7), by definition, are the two distribution®.(7)

+ and - intervals will have the same statistics. For suctprovidedT is large. Thus, for largd, we have

cases, a simple scaling argument was given in &g} to

show that the length of an interval of either type has a power- n(r,T) = @Q+(T) ~N(T) 108 (21)

law distribution, Q(7) ~ 71" (for large 7) with ¢5=1-H o 2 = '

=1-4. Note that this relation bgtween the persistence EXPOfor 1< 7<T. On the other hand, we have the length conser-
nent and the Hurst exponent is very general and holds far

. ) 4 . Yation condition(the total length covered by the intervals
any symmetric fBm, i.e., any stochastic process with zer ust beT)
mean (not necessarily Gaussipsatisfying Eq.(17). Re- '
cently, other applications of this result have been found T
[51,52. For general nonsymmetric processes, however, one
S
would expect thaQ.(7) ~ 77% for large 7, whered; and 6° o . . _ _
are, in general, different. Here we generalize this scalingoubstituting the asymptotic behaviormf(7) in Eq.(21) into
argument of Ref[23] (derived for a symmetric procesto  the left-hand side of Eq22), we get
include the nonsymmetric cases and derive the result in Eq. 1-65 1-6°
T % T7%
as. . N(T){ + ] «T. (23
The derivation of Eq(14) follows more or less the same 1-62 1-6°

line of arguments as that used in REf3] for the symmetric i .
case. LetP(Y, 7) denote the probability that the process hasweege]fgr lljzir?l\cla(TT) T for large T from Eq. (20). This
valueY at time 7, given that it starts from its initial value 0 gIves, gel,
at 7=0. Then, it is natural to assume that the normalized l 6% T1—0§:|
~T

. drr[n,(n +n(n]=T. (22)

robability distributionP(Y, 7) has a scaling form, —_—t+t—= 24
p y (Y,7) g -5t 1 (24)
Y
P(Y, 7= —f — |, 18 ing T limi i i -
(Y,7) o) (0(7-)) (18)  Taking T— limit and matching the leading power afin

Eq.(24), we arrive at our main result in E¢L4). Note that in
where o(7) is the typical width of the processg?(7) the above derivation we have implicitly assumed a srall-
=(Y?(7)). It follows from Eq.(16) that o(7) ~ 7 for large 7. cutoff and focused only on the distribution of large intervals.
The scaling functiorf(z) is a constant azr=0, f(0)~O(1) Our nu_merical results obtained for a cllass of nonlinear inter-
(note that, in general(z) is nota symmetric function o) ~ faces in both(1+1) and (2+1) dimensions(see Sec. IV D
and should decrease to 0 as> +». So, given that a zero below) are consistent with the analytical result in Ef4).
occurs initially, the probabilityy(7)=P(0, 7) that the process

will return to 0 after timer (not necessarily for the first time C. Dependence of persistence probabilities on the initial
scales as configuration
1 5 We present in this section some surprising simulation re-
p(7) ~ —U(T) ~T5, (19 sults about the dependence of the persistence beh@yer

cifically, the values of the persistence expongria the

as r—o0, This functionp(7) indeed is the density of zero choice of the initial configuration. In particular, we show that
crossings betweer and 7+d7. Thus, the total number of the steady-state exponents may be obtained with a fair de-
zeros up to a timd is simply the integral, gree of accuracy from simulations in which the interfhes
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FIG. 9. Log-log plots of the positive and negative persistence probabifjiiesels(a)—(c)] for the F model, obtained using different
values of the initial time,. Systems with_=10" sites have been averaged over 500 independent runs. Persistence probabilities are computed
starting from the configuration corresponding ta} t,=10 ML. We do not find a clear power-law decay of the persistence cuies,
=100 ML. Asty increases, a clearer power-law behavior is obseri@dy=1000 ML. The power-law decays are recovered and character-
ized by exponents in agreement with those corresponding to the steady-state @ime'[s.(d) Log-log plot of the interface widthV as
a function of timet (in units of ML). The value of the slopéqual to the growth expone agrees with the expected valyg=0.25.

notyet reached the steady state. We also present some resutts measurable from experiments if the only way of measur-
that have bearing on the measurability of the transient pering these exponents is to start from a perfectly flat morphol-
sistence exponents from experimental data. ogy.

We recall that in Sec. IV A the transient persistence ex- As the value of is increased to 100 ML, the persistence
ponents were measured from simulations in which the initiaProbabilities tend to show the expected power-law behavior,
configuration was completely flat, correspondinge0. To ~ @s shown in Fig. @) for the F model and in Fig. 1B) for
examine the dependence of the persistence probabilities i€ DT model. Most surprisingly, as shown in Figec)%and
the choice oft,, we evolved samples governed by F and pT10(c), we find that fort,=1000 ML, one recovers precisely
atomistic diffusion rules fot,=10, 100, and 1000 ML, start- the power-law behaviol(to, ty+t) <t™", and the exponents
ing from perfectly flat initial states and used the resultingare essentially the same as the previously obtained steady-
configurations as starting points for measuring the persisstate ones shown in Table Il. This investigation, thus, reveals
tence probabilitythe probability of the height at a given site the fact that a measurement of the steady-state persistence
not returning to its initial value at timg) as a function ot. exponents does not require the preparation of an initial state
We show the results of these simulations in Figs. 9 and 1 the long-time steady-state regime where the interface
for the F and DT models, respectively. We find that even forwidth has reached saturation: an initial state in the preasymp-
the small value ot;=10 ML [see panela)], the observed totic growth regime where the interface width is still increas-
persistence probabilities do not exhibit power-law decay inng as a power law in timgas illustrated in Figs. @) and
time with the transient persistence exponents, despite the fatf(d)] is sufficient for measurements of the steady-state per-
that the expected conditiof23] for transient behaviort sistence exponents. A similar result was reported in Ref.
>1t,, is well satisfied in a large part of the rangetafsed in  [23], but it was argued there that the measurement time
these simulations. These results point out a practical diffimust be much smaller thaty for steady-state persistence
culty in obtaining experimental evidence for transient persisbehavior to be observed. Our results show that the steady-
tence behavior. Since perfectly flat initial configurations canstate persistence exponents are found eversibf the order
hardly be achieved experimentally and experimental meaef (or even slightly larger tharthe initial timety. This ob-
surements are always started from a relatively rough subservation has an important practical benefit: it implies that
strate, the transient persistence exponents may very well none can easily obtain accurate estimates of the steady-state
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FIG. 10. Positive and negative persistence probabil[tiasmels(a)—(c)] for the DT model, obtained using different values of the initial
timety. Persistence probabilities are computed starting from the configuration correspondade10 ML. As in the case of the F model,
we do not find a clear power law for the persistence curyi@st,=100 ML; (c) t,=1000 ML: Power-law decays are recovered and
characterized by exponents that are approximately equal to those corresponding to the steady-staté re@i8é,and6>~0.71. (d)
Log-log plot of the interface widthW as a function of time (in units of ML). The slope gives a growth exponent @f1=0.375.

persistence exponents using rather large systéms10%),  These observations confirm our earlier conclusions about the
and growing approximately up tg,~10° ML, instead of relatively easy measurability of the steady-state persistence
having to use the very large valugsf the order ofL?) of t,  exponents and the difficulty in measuring the transient expo-
necessary for obtaining saturation of the interface width. Aments in experimental situations.
the same time, this observation also illustrates the above
mentioned difficulty in obtaining the transient exponents
from experimental measurements. , , i i
To investigate the effects of random imperfections in the Our calculations in(2+1) dimensions make use of our
initial substrate(which are always present in experimental 0PServation(discussed aboyeconcerning the possibility of
studie$ on the persistence behavior, we carried out simulathalnlng the_ correct steady-sta_te exponents from §|mula-
tions in which particles were deposited randomly on a perions that avoid the time consuming process of reaching the
fectly flat substrate for 10 ML and the resulting configurationtrué steady state wherel the interface width has sapurated. The
was used for further depositions using the diffusion rules of€Sult that the persistence exponents obtained from
the F and DT models. Persistence probabilities were calcu-l +1)-dimensional simulations using fairly small values of
lated starting from the configurations obtained after the ranto andt~ty are quite close to the steady-state values allows
dom deposition of 10 ML. Figures 11 and 12 show the re-us to extract numerically the steady-state persistence expo-
sults for the F and DT models, respectively. We find thatnents in(2+1) dimensions using systems with reasonably
even when the persistence calculation starts from a configdarge sizes. If one had to run systems of dize 100X 100
ration characterized by random deposition, there is an indiall the way to saturation in order to measure the steady-state
cation that one can still obtain the steady-state exponenfersistence exponents, it would have been impossible to do
during the last decade of where the growth exponent the calculations within reasonable simulation time. In addi-
reaches the values characteristic of the diffusion rules of th&ion, decreasing the system size is not an acceptable solution
specific (F or DT) model being considered. Indeed, in the because the results then become dominated by finite size
time region where the growth exponents @e0.25 for the effects.
F model[see Fig. 1(b)] and3=0.375 for the DT mode|lsee Simulations for(2 + 1)-dimensional discrete growth mod-
Fig. 12b)], we have calculated the persistence exponentgls were carried out for the F modéB=0) and the DT
and recovered values very close to the steady-state onemodel (8=1/5). Simulations using systems of size

D. Persistence exponents in (1) dimensions
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FIG. 11. (a) Positive and negative persistence probabilities for the F model. During the deposition of the first 10 ML, the growth process
is random deposition. The diffusion rules of the F model are then used to evolve the interface. Persistence probabilities are computed starting
from the configuration obtained after the random deposition of 10 ML. The positive and negative persistence exponents in the last growth
decade are in the range 0.6 to 0.7, depending on the fitting re@ipbog-log plot of the interface widthV as a function of (in ML). The
slope in the first decade bfs precisely the random-deposition valys 0.5. The second decade shows a crossover region where the systems
undergoes a transformation towards a morphology governed by the F model diffusion rules, and the last decade is characterized by the
expected growth exponent of the F modet 0.25.

=200X 200 revealed that the growth exponents, obtainegrobabilities prevents us from obtaining accurate values of
from averages over 200 independent runs, afe the associated persistence exponents. This fast decay of the
=0.04+0.01 and 0.20+0.01 for the F and DT models, retransient persistence probability is a consequence of the re-
spectively, in agreement with Ré#2]. In the DT model, we duced roughness of these higher dimensional models. This
noticed a crossover from the initial value of 0.26 to theéffect is particularly pronounced for the F model for which
asymptotic expected value of 0.20, indicating that no addithe persistence exponent is found to be larger than 6 and the
tional noise reduction technique is necessary for obtainingpersistence probability decreases rapidly to zero for any
results that reflect the correct universality class of this modeldeposition time larger than-60 ML, as shown in Fig. 13.
For both F and DT models we calculate the transient andVe also observe that the transient values of the positive and
steady-state persistence probabilities by recording the fradegative persistence exponents in the DT model are roughly
tion of sites which do not return to their initial height up to three times larger than the values obtained in the
timet, as in the(1+1)-dimensional case. We uség=0 (per-  (1+1)-dimensional case. The relative difference between the
fectly flat initial state in the calculation of the transient per- positive and negative persistence exponents remains approxi-
sistence probabilities, and three different values, sucty as mately the same as that in ti{&+1)-dimensional model.
=20 ML, 200 ML, and 2000 ML for the F model, in the Our results for thesé2+1)-dimensional persistence expo-
calculation of the steady-state exponents. nents are summarized in Table V.

We report the results for the transient probabilities just for We now focus on the steady-state persistence exponents
the sake of completeness: the rapid decay of the persisteneéhich, as discussed above, are found using relatively small

L T T IIIIII T T T IIIIII T T IIIII|_ T T I\III| T T T IIIII| T T T T TTTT
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FIG. 12. (a) Positive and negative persistence probability curves for the DT model. During the deposition of the first 10 ML, the growth
process is random deposition. The diffusion rules of the DT model are used to evolve the interface subsequently. Persistence probabilities are
computed starting from the configuration obtained after the deposition of the first 10 ML. The positive and negative persistence exponents
in the last growth decade are approximatively equal to 0.66 and 0.79 respectiy¢lgg-log plot of the interface widthV as a function of
timet (in ML). Beyond the crossover regime, the last decadeisncharacterized by the expected growth exponent of the DT mgdel,
=0.375.
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actually saturated interface, as discussed above.

2 <R We have also performed some preliminary persistence
102F 7. R o F:P+ |- calculations for thé2+1)-dimensional CKD model in order
"o ML to check the validity of our reported2+1)-dimensional

P+(t)

MBE persistence exponents. Usirlg=100xX 100 and t,
=1000 ML, we find that the values of the positive and nega-
tive persistence exponents depend to some extent on the cho-
sen values for the coefficient,, of the nonlinear term and
the control parametet. For example, we obtai®~ 0.82
e B g and 6°=0.77 using\,,=5.0 andc=0.085, and¥>~0.88 and
10 (ML) 10 10 6°~0.83 using\,,=5.0 andc=0.13. Both cases are charac-
terized by a growth exponent of 0.18+0.01, in agreement
FIG. 13. Transient persistence probabilities for the with Ref. [53], which is consistent with the eXpeCted value of
(2+1)-dimensional F and DT growth models. In the case of the F1/5. The results obtained in the latter case are displayed in
model, systems of size=1000x 1000 have been averaged over panel(c) of Fig. 15 for the purpose of illustrating the simi-
200 independent runs, while for the DT model, systems of kize larity between the DT and CKD models. From these obser-
=500x 500 have been averaged over 800 independent runs. Theations, we conclude that th@+1)-dimensional DT and
transient persistence probability for the F model exhibits a very fasCKD persistence results are consistent with each other and
decay, characterized by a persistence expormt6.9 for the last  they clearly reflect the nonlinearity of the MBE dynamical
decade of. More accurate resultsee Table Yare obtained for the  equation in the difference between the values of the positive
exponents in the DT model, although the statistics is not excellentgng negative persistence exponents as expected for the up-
down asymmetric generic nonlinear situation.

AL
«
| i

—_
==
I

values ofty; andt=t,. In Fig. 14a), we show that foty<<t
(e.g., forty=20 ML), the persistence probability of the F E. Scaling behavior of the persistence probability
model does not exhibit a clear power-law decay. However Since all the results described above have been obtained
panels(b) and(c) of Fig. 14 reveal that oncg becomes of from simulations of finite systems, it is important to address
the order of the measurement timehe expected power law the question of how the persistence probabilities are affected
is recovered and in addition the steady-state exponent for thgy the finite system size. We have already encountered such
linear F model,#°=1.01+0.02, which should be equal to effects in our study of persistence probabilities for
(1-pB) with =0, is recovered. The results for the DT model (1 + 1)-dimensional modelgsee Table I, where it was
are presented in Fig. 15. The steady-state persistence expiound that the measured values of the persistence exponents
nents have been measured from the power-law decays shovm the steady state increase slightly as the system Lsiize
in Fig. 15Db). In this temporal regime, as shown in pat@),  decreased, while the value of the growth expongntle-
the growth exponent is equal to the asymptotic value of 1/5creases with decreasirig We did not investigate finite size
The persistence behavior of the DT model in this regime isffects in our study of the transient persistence probabilities
characterized by~ 0.76 and6>~0.85, indicating that the because these studies were carried out for large valuks of
relation of Eq.(14) holds reasonably well for th€2+1)-  and relatively small values of the tinte
dimensional nonlinear MBE dynamics, as in the The qualitative dependence of the measured values of the
(1+1)-dimensional case. It is important to mention that thesteady-state persistence exponefitsand the growth expo-
same values of the persistence exponents have been obtainezhts on the sample size is not difficult to understand. The
using a DT system withL=40x 40, equilibrated fort,  steady-state persistence probabilitie3(t,,ty+t) exhibit a
=10° ML, as required in the traditional methgdsed in most  power-law decay with exponert® as long as the time is
of the (1+1)-dimensional simulatiofjsof measuring the small compared to the characteristic time sc#le) of the
steady-state persistence probabilities. Thus the “quick angystem which is proportional ic?. The decay on becomes
easy” method of obtaining the steady-state persistence expgaster ast approaches and exceeds this characteristic time
nent again agrees well with the exponent extracted from thecale. Since this departure from power-law behavior occurs
at earlier times for smaller systems, the value of the persis-
TABLE V. Transient and steady-state persistence exponénts, tence exponent extracted from a power-law fit to the decay of
for two (2+1)-dimensional discrete growth models. The measuredpe persistence probability over a fixed time window is ex-
value of the growth exponerg is shown in the last column. The phacted to increase as the system size is reduced. In a similar
transient persistence exponents are measured with relatively '0‘0(/ay, the measured value @ is expected to be smaller for
accuracy due fo the rapid temporal decay of the persistencgy|atively small values of because the precursor to the satu-

probabilities. ration of the width at long times occurs at shorter values of
Growth in smaller systems. Thus, the general trends in the system

size dependence of the persistence and growth exponents are
model L oL 6" 6 6 B P P g b

reasonable. However, it would be useful to obtain a more

FM 200X 200 >6 >6 1.02+0.02 1.00+0.02 0.04+0.01 quantitative description of these trends.

DT 200x200 2.84 2.44 0.76+0.02 0.85+0.02 0.20+001 Since the characteristic time scaid.) (“equilibration” or
“saturation” time of a system of linear size is proportional
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FIG. 14. Persistence probabilities for tl2+1)-dimensional F model of size=200x 200, averaged over 200 runs, obtained from
simulations with different values of the initial tintg. (a) =20 ML. (b) t;=200 ML. (c) t,=2000 ML. The persistence probability curves
in case(c) show the expected power-law decay characterized by the exponent k92 +0.02 and’>=1.00+0.02(d) Log-log plot of
the interface widthW vs deposition time in units of ML. The slope in the intermediate growth decadg4s0.04 and thereafter it decreases
to zero, as expected.

to L% one expects, in analogy with the theory of finite size[40]) that measures the probability of the interface height at a
scaling in equilibrium critical phenomena, that the steady-ixed position not returning to its time-averaged value within
state persistence probability3(t) (in this discussion, we timet. In that work, it was found that the survival probability
omit the initial timet, in the argument oin because the measured for a system of sizewith sampling intervaldt is
steady-state persistence probability is independent of tha function of the scaling variablesL? and 5t/L* We expect
choice ofty) would be a function of the scaling variatild.?2.  a similar behavior for the steady-state persistence probabili-
Another time scale has to be taken into consideration in &ies measured in our simulations. Thus, the expected scaling
discussion of the scaling behavior of the persistence probeehavior ofP3(t,L, dt) is
ability. This is the sampling timét which is the time interval S
between two successive measurements of the height at a PI(t,L, ot) = f.(t/L% ot/L7), (25
fixed spatial point. In our simulations of the atomistic growth s
models, the smallest value éf is 1 ML because the heights Where the functiorf.(x;,x,) should decay ag;" for small
are measured after each deposition of one compldaa) X andx,<1.
monolayer. However, larger integral valuesdfcan also be To test the validity of this scaling ansatz, we have carried
used in the calculation of the persistence probabilities. Sinceut calculations of the steady-state persistence probability in
experimental measurements are also carried out at discretee linear F modekthe positive and negative persistence
time intervals, the presence of a finite valuedfhas to be ~ probabilities are the same in this mopeking different val-
accounted for in the analysis of experimental data also. Notges ofL andét. Due to the linearity of the F model, we have
that the persistence probability itself is mathematically decomputed a persistence probabil®y(t) given by the aver-
fined, P(ty,ty+t), for continuous values of timé whereas age value of the positive and negative persistence probabili-
measurements and simulations are necessarily done on diges. If the scaling description of E(5) is valid, then plots
crete time. of PS(t,L, &) versust/L? for different values ofL and &t

It has been pointed out in Ref54] that discrete-time should coincide if the value oft for the different sample
sampling of a continuous-time stochastic process does affesizes are chosen such that the rafiéL* remains constant.
the measured persistence probability. Such effects have beés shown in Fig. 16 where we present the data obtained
investigated in detai[40] in the context of a different sto- from simulations of thé1+ 1)-dimensional F model for three
chastic probability(called the survival probability in Ref. different values(200, 400, and 800of L and three corre-
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FIG. 15. Persistence probabilities for th2+1)-dimensional DT model of siz&=200x 200, averaged over 200 runs, obtained from
simulations with different values of the initial timig (a) ;=200 ML: The persistence probabilities do not exhibit clear power-law d€opy.
t,=4000 ML: The persistence probability curves show the expected power-law decay characterized by the exponent’values
=0.77+0.02 and?>=0.85+0.02(c) Results for the2 +1)-dimensional CKD model, obtained usilhgr 100X 100,t,=1000 ML, =5, and
¢=0.13.(d) Log-log plot of the interface widthWV vs deposition time in ML for the DT model. The slope manifests a crossover from an
initial value of ~0.26 to the asymptotic value of 0.20.

spondingly different values aft (4, 16, and 64, so thalt/L*  t/ét. Our results also show signatures of a crossover to a
with z=2 is held fixed at 1%, plots of PS(t) versust/t power-law decay with exponent 1 asapproaches and ex-
(which is proportional tot/L? becausest is chosen to be ceeds the characteristic time scalk) (this crossover occurs
proportional toL?) for the three different sample sizes exhibit neart/L?=0.1 in the F modgl We discuss below a possible
an excellent scaling collapse. These results confirm the vaexplanation for this behavior.
lidity of the scaling form of Eq(25). Height fluctuations at timetg andty+t are expected to be
As shown in Fig. 16, the scaling functidnexhibits the = completely uncorrelated it is large compared tor(L).
expected power-law behavior for relatively small values ofTherefore, the persistence probabil@(t) for values oft

100§_I IIIIIII L‘IIII-[!T!‘ T T IIIIIII T IIIIIII| T IIIIIII‘ L |||% 100 |=__;I T |||||1~\\\I T II|I|| T T IIIIII T TT ||||||_E
g § E T, :
-1] —_ -1 i l
10'E E 10 =
& 10°F . 7 & W'F E
F | — 1.=200,81=4 . E |+ L=200,5t=4 ]
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(a) t (ML) (b) L/t

FIG. 16. Persistence probability(t) for the F model shown for different system sizes with different sampling times. Rapel
Double-log plot showing three different persistence curves vs time correspondibg 180 anddt=4, L=400 andét=16, L=800 and
8t=81, respectively. Panéb), Finite size scaling oP(t,L, &t). Results for persistence probabilities for three different siassn panela)]
with the same value oft/LZ (i.e., 1/10) are plotted v/ ét (z=2). The dotted(dashedl line is a fit of the data to a power law with an
exponent of~0.75(~1.0).
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much larger than(L) may be obtained by considering a the analysis of numerical and experimental data in the future.
collection of fluctuating variables which have the same probin fact, we believe that a direct experimental verification of
ability distribution (since the system is in the steady sfate the scaling ansatz defined by Eg5) will be valuable.
and which are completely uncorrelated with one another. Let
X0, X1,Xo,... represent such a collection of variablghese V. CONCLUDING REMARKS
variables may be thought of as the height at a particular site
measured at regularly spaced times with spacing larger than In this paper we have investigated the temporal first pas-
m(L)]. For simplicity, we assume that eaghis uniformly  sage statistics, expressed in terms of temporal persistence
distributed betweenaanda. Then, given a particular value Probabilities, for a variety of atomistic models that provide
of Xo, the probabilityP,(xy,n) that all the variables;, 1<i discrete realizations of several linear and nonlinear Langevin
<n are |arger tharxo may be eas”y obtained as equations for the stochastic dynamiCS of grOWing and fluctu-
L (o . iati_ng interfaﬁes. Usting_ e>(<jtensivc=T kinetic(:j Montg Carlo simu—_
_ _ n ations, we have obtained transient and steady-state persis-
P.(xo,n) = [ZJX dx] =l@-x(2)". (26 gnce exponents for thegd +1)- and (2+1)-dimensional
° SOS and RSOS growth models. We have followed the meth-
The positive persistence probabili®(n) is obtained by av-  odology of Kruget al. [23,24 and extended their numerical
eraging this probability over the probability distribution of work to the nonlinear MBE dynamical equation by studying

Xo- Thus, we have the persistence behavior of the atomistic DT, WV, CKD, and
1 (2 1 KPK models. From these studies, we have identified two
P.(n)=— P, (X, N)dXg= ——, (27)  persistence exponents for each of the two temporal regimes
2a)_, n+1 (transient and steady-statef the persistence probability.

. . The difference between the values of the two exponents re-
which decays as a power law with exponent 1 for large fects the nonlinearityand the resulting lack of up-down
This power-law behavior does not depend on the form of th%ymmetry of the MBE dynamical equation.
assumed probability distribution for the fluctuating variables Among the models studied here, we find that(in+ 1)

{x}. Assuming a general probability distributigex) with dimensions and in the range of system sizes used in our

JZ. p()dx=1, Eq.(27) can be written as simulations, WV and DT models are hardly distinguishable
o % n from the point of view of transient and steady-state persis-
P.(n) :f p(xo){f p(x)dx} dxo tence behavior: the persistence exponents obtained for these
- Xo two models are very close to each other. We, therefore, con-

% %o n clude that in the range of simulation parameters used in this
f p(xo){l —J p(x)dx} dxg. (28) study, the(1+1)-dimensional DT and WV models belong to

* - the same universality clagmamely, the MBE universality
clasy as far as their persistence behavior is concerned. A
separate investigation is required in order to understand the
universality class of the WV model 2+ 1)-dimensions.
eI'he KPK model appears not to reflect well the nonlinear
feature of the underlying dynamical equation in the values of
the positive and negative persistence exponents. This is prob-
ably due to strong finite size effects arising from the small
lattice sizes used in our traditional steady-state simulations

Yo (i.e., usingty~L%. These finite size effects appear to lead to
f p(x)dx=C/n, (29 overestimated persistence exponef@md underestimated

‘°° growth exponent, consistent with E@)].

whereC is a constant of order unity. Since the quantity that e have also investigated the CKD model, which is an-

multiplies p(xo) in Eq. (28) is of order unity for such values other discrete model belonging to the MBE universality
of X, it follows that class, our main goal being a closer examination of how the

nonlinearity of the underlying continuum equation is re-
Yo 1 flected in values of the transient and steady-state persistence
P.(n) ~ f_ P(xo)dxo n (30 exponents. In this case we have obtained clearly different
- values for the positive and negative persistence exponents.
This simple analysis shows that the simulation results for thd'he predictions of the CKD model concerning the persis-
behavior of the scaling function of Fig. 16 for large values oftence exponents have been checked by applying the noise
t/ &t are quite reasonable. reduction technique to the DT model. We found that for the
While we have not carried out similar scaling analysesMBE universality class, the steady-state persistence expo-
[Eq. (25)] for other models, we expect the scaling form of nents in (1+1)-dimensions are:#?=0.66+0.02 and 6>
Eq. (25) to be valid in general. We expect that such scaling=0.78+0.02. These two values represent the average of the
analysis of the persistence probability as a function of theesults obtained for the CKD and the noise reduced DT mod-
system sizel and the sampling timét would be useful in  els. These results suggest that measurements of persistence

For largen, the quantity that multipliep(Xp) in Eq. (28) is of
order unity only for values ok, for which [*¢ p(x)dx is of
order 1 h. Physically, this means that the positive persistenc
probability is nonzero for large only if the initial valuex, is
very close to the lower limit of the allowed range of values.
This effectively restricts the upper limit of the integral over
Xp t0 yg Wherey, satisfies the requirement that
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exponents can be profitably used to detect the presence tife persistence probabilities exhibit their steady-state behav-
nonlinearity in the continuum equations underlying surfaceior for measurement times comparable to the initial tige
growth and fluctuation phenomena. even if the value ofy is much smaller thah? This behavior

The observed difference between the positive and negawas found in both(1+1) and (2+1) dimensions, in all the
tive steady-state persistence exponents for the models in thigear and nonlinear models we studied. This finding is very
MBE universality class implies that the relation of H8),  yseful because it opens up the possibility of numerically cal-
known to be valid for linear Langevin equatiof@ur results ¢ jating the steady-state persistence exponents for large sys-
for the linear F and LC models are in agreement with thiSg g and for higher dimensions as well. In fact, this obser-
L . Yation enabled us to calculate the steady-state persistence
it is clear that at least one of these steady-state per&steng;mnems for(2 +1)-dimensional models belonging to the

exponents is not related to the usual dynamic scaling expaz= . , X .
nents in a simple way. We have found that the relation of EqO!EW and MBE universality classes. For the MBE universality

(9) is approximately satisfiedwithin the error bars of our qlass, we havg considgred the DT model_and found the posi-
numerical resultsby the smaller one of the two steady—statet've and negative persmtencg equnents m_the stgady state to
persistence  exponents in all the(1+1)- and be =0.76 and=0.85, respectively, iri2+1) dimensions.

(2+1)-dimensional discrete stochastic growth models stud- We hag/e alsodexamined in (_jetail the degert;(.jl_encg of tﬂe
ied in this paper. We have also shown analytically that thigneasure steady-state persistence probability ~in the

relation between the smaller persistence exponent and th(&+1)-d|men5|onal F model on the sample sizeand the

growth exponent is, in fact, exact. The smaller exponent apgampllng intervalst which is always finite in simulations and

pears to correspond to the positiveegative persistence ©XPerimental measurements. We found that this dependence
probability if the top(bottom) part of the steady-state inter- is described by a_s!mple scaling form. The scaling function
face profile is smoother. This observation suggests a degf§@s found to eth|b|t power-law decay with exponent 1 for
(and potentially importantconnection between the surface mes .Iarger th"’.m" . We havg proposed a S|mple_explanat|on
morphology and the associated persistence exponent, whidfil this behavior. We believe that such scaling analysis
has no simple analog in the dynamic scaling approach Wher\e{ould prove to be _useful in future_numencal and experimen-
the critical exponents$a, B, z=«a/B) by themselves do not tal studies of persistence properties.

provide any information about the up-down symmetry break- We q_)r_]clude fr.om the results of this study th"?‘t pers_iste_nce
ing in the surface morphology. Further investigation of thisprobabmtles provide a valuable set of tools for investigating

aspect would be very interesting and highly desirable, parghe dynamics of nonequilibrium systems in general, and sur-

ticularly if experimental information on persistence proper-fac€ growth and fluctuations, in particular. Recent experi-

ties of nonequilibrium surface growth kinetics becomesmental studies have shown that the concept of persistence

available. can be applied to analyze the dynamics of fluctuating steps
Our investigation of the effects of the initial configuration " Al/Si(11D, Ag(11]) and Pllll) surfaces[32,33 re-

on the persistence probabilities indicates that the transiefforded using scanning tunnel microscope methods. We be-
persistence exponents can be obtained only if the interface [€Ve that in view of the importance of thermal and shot-
completely flat at the initial time. This restriction puts severe0iSe fluctuations in the dynamics of growing and fluctuating
limits on the possibility of measuring the transient persis_lnterfaces, theoretical and experimental studies of persistence

tence exponents in real experiments where it would be very?ould play an important role in the analysis of the dynamics
difficult, if not impossible, to meet the requirement of zero ©f nonequilibrium surface growth.
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