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Interfacial structure at a two-dimensional wedge filling transition: Exact results
and a renormalization group study
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Interfacial structure and correlation functions near a two-dimensional wedge filling transition are studied
using effective interfacial Hamiltonian models. An exact solution for short range binding potentials and results
for Kratzer binding potentials show that sufficiently close to the filling transition a new length scale emerges
and controls the decay of the interfacial profile relative to the substrate and the correlations between interfacial
positions above different positions. This new length scale is much larger than the intrinsic interfacial correla-
tion length, and it is related geometrically to the average value of the interfacial position above the wedge
midpoint. The interfacial behavior is consistent with a breather mode fluctuation picture, which is shown to
emerge from an exact decimation functional renormalization group scheme that keeps the geometry invariant.
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[. INTRODUCTION bility, which is related to the 2-point correlation function,
also showed a modified covariance relationgtip Conse-
Juently, it is interesting to see if the covariance extends to
igher-order probability distribution functions.

In this paper we study the structure of the interfacial pro-

Fluid adsorption in wedge and cone-shaped nonplanar g
ometries has attracted much attention in the last few year,
[1-5]. Geometry plays an important role in the surface phase

diagram' and new phase trz_ansitic_)ns as the fi_IIing transitioq”e and correlations for 2D wedge filling phenomena. Exact
arise. Thermodynamic consideratiofés-8 predict that the results for the capillary wave effective Hamiltonian theory in

gas-hqwd interface unbinds frqm the wedge before the Welie filling fluctuation regime are obtained as an extension of
ting temperaturd,, corresponding to the substrates. So, the,

wedge is completely filled by liquid for temperatures higherthe analysis presented in R¢l2]. The exact results show

o O the appearance of a new length scgleacross the wedge
g:)?%;?g;'"mg temperaturé; <T,, whereT; is given by the close to the critical filling transition. This scale controls the

decay of the interfacial profile, local roughness, and correla-
aT) =a (1) tions, and is related geometrically to the wedge midpoint

average interface position. For the local properties, we found
and 4(T) is the temperature-dependent contact angle of @& very interesting relationship between the wedge 1-point
liquid drop on the planar substrate aads the tilt angle(see  probability distribution function and the corresponding func-
Fig. 1). Capillary wave models show that the filling transi- tions in the planar geometry, which can enlighten the origin
tion can be critical even though the wetting transition corre-of the wedge covariance.
sponding to the substrate is first order, and that interfacial
fluctuations are enhanced with respect to the wetting cast
[3,4]. For the two-dimensionglD) wedge filling transition
in shallow wedges characterized by a small anglevith
respect to the axis (see below, there exists a remarkable
covariance relationship between the wedge midpoint prob-
ability distribution functionP\}v(Io) in the filling fluctuation
regime and the planar 1-point probability distribution func-
tion P}T(IO) characteristic of a strong-fluctuation regime criti-
cal wetting transition:

Pi(lo; 6,@) = PL(lo; 0 ). (2)

This expression establishes a connection between two appa
ently unrelated phenomena, the deep origin of which is still =
elusive. The covariance relationship has been observed also
in acute wedgef9], Ising model exact calculatiorj40], and FIG. 1. Schematic illustration of a typical interfacial configura-
computer simulationgl1]. Although the covariance relation- tion in the wedge geometry. The relevant correlation length scales
ship is restricted to the interfacial behavior above the wedge, and ¢, (x) are also highlighted. Other notation is defined in the
midpoint, some other quantities, such as the local susceptiext.

Y
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confirmation in the scaling limit of thbreather modeicture ~ BHIIT= X+

[3,4], which states that the interface is effectively infinitely

stiff in the filled region and is driven by fluctuations of the

wedge midpoint interfacial position, i.e., critical effects at 2D +W(|(X))}’ (4)

wedge filling arise simply from local translations in the

height of the flat, filled interfacial region. where O(x) is the Heaviside step function. Integrating by
Finally, we explain the critical behavior of the filling tran- parts to eliminate the term proportional (l/dx), the effec-

sition in the functional renormalization group approach. Astive Hamiltonian can be expressed as

the geometry is fundamental in the understanding of the criti-

cal filling transition, we choose a scheme that leaves the Sa?

wedge geometry invariant. We show that the breather mode pHII]= XT +2%al(X/2) - 22al(0)

Regarding the two-point correlation functions, we found a 2 XI2 dl\? dl
garcing i 2a f d g(_) +2a<— [26(x) - 1]
X2 2\ dx dx

picture emerges as a straightforward consequence. The pre- 2 5
dictions for the critical behavior are in complete agreement 2 ﬂ

. . + dx +W((x)) (. (5)
with exact solutions. ~x/2 2 \dx

Our paper is organized as follows. In Sec. Il we describe
the continuous transfer-matrix formalism and the definitionThe first two terms in the equation are irrelevant constants
of the wedgen-point interfacial probability distribution func- for the interfacial properties in the wedge, the third one is the
tions. We apply this formalism to the case of contact bindingorigin of the boost factor that decreases the pinning effect of
potentials in Sec. Ill and, in particular, calculate analyticallythe binding potential2], and the fourth one corresponds to
the 1-point probability distribution function and the 2-point the effective Hamiltonian of an equivalent planar interface
correlation functions. Some results for Kratzer binding po-problem. As the probability distribution of an interfacial con-
tentials will be presented in Sec. IV. In Sec. V we analyze thdiguration is proportional to eXpSH) we can relate the
breather mode picture and derive a relation between two imwedge and planar probability distributions in a straightfor-
portant scaling functions. Section VI is devoted to the develward way. In particular, the-point wedge correlation func-
opment of a renormalization group theory of 2D critical fill- tions can be related ttn+1)-point correlation functions in
ing transition, which requires a generalization of previousthe planar case by adding the wedge midpoint position.
approaches for critical wetting. A brief conclusion is pre- However, the presence of the boost factor will alter signifi-
sented in Sec. VII. cantly the behavior of the wedge correlation functions with
respect to their planar counterparts.

Our approach is based on a standard application of
transfer-matrix methods[13]. The partition function

Consider a two-dimensional wedge formed by the interZx(1,12,X1,%;) of the interface with fixed end pointsy, I,)
section of two equal planar substrates at anglesnith re-  and(Xz,l5) with x>, in the presence of planar substrate
spect to the horizontalsee Fig. 1 We suppose that the is defined as the following path integral:
wedge is in contact with a bulk vapor phase at saturation
conditions, i.e., in equilibrium with the liquid phase, and the Z=(112:X1,X2) = Za(l3,12: = X))

Il. THE FORMALISM

substrates preferentially adsorb the liquid phase. Our starting ) S{dl\?
point is the effective interfacial Hamiltonian for shallow =fD| exp ‘f dx 2\ ax +WI() | |
wedges: X
(6)
X/2 2 d 2 . . . i
BH[l]:f d _(_y) +Wyx) —alx) {, (3 The partlt'!o.n function, I'Eq(.6), is the solution of the fol-
X2 2\ dx lowing Schrodinger equation:
wherey(x) is thg interfa_cial Ioc_:al heig_ht megsured with re- [i +W(,) - ia—zz}zw(h.b:x) -0, (7)
spect to the horizontak is the interfacial horizontal length, axX 23915

ksT2 is the interfacial stiffneskgTW() is the local binding ) o -
potential, ang3=1/ksT. We impose periodic boundary con- With the initial condition
ditions at the ends, i.ey(—X/2)=y(X/2). While the model Z (111,:0)= &1, — 1) ®)
assumes that the wedge angle is shaligan a~ «), this b2 O T
does not influence the universal properties occurring in thguheres(x) is the Dirac delta function. Formally, the partition
asymptotic critical limitd— « at fixeda. Studies of filling in  f,nction can be expressed as
acute wedges based on more refined interfdg@pbnd mi-
croscopic, Ising modelgl0] yield identical results for uni- Z (0l =S (1) i(1)exp- Ex) (9)
versal quantities. b2 ~ MU e

Defining the local relative height between the vapor-liquid
interface and the substratéx)=y(x)-a|X|, Eq. (3) can be wherey(l) andE; are the eigenfunctions and eigenvalues of
rewritten ag[2] the time-independent Schrédinger equation:
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= VHD WO = Enti), 10 gy =~ 15)
al 1=0
with appropriate boundary conditions. In the thermodynamiavhere 7 is proportional to the deviation from the critical
limit Z,.~exp(—-BfX) as X— o, where gf=3(cosf-1) is  wetting temperature. For>0 the contact angle is related to
the excess free energy per interfacial length. Consequently, via 7=26 [13]. These potentials can be understood as the
Eqg. (9) implies thatEy=f, so that in the low contact angle limiting case of a square-well binding potential when the

limit, Ey~-36%/2. well width tends to zero. Its importance is threefold. First,
The n-point distribution functions can be obtained in this case corresponds to the filling fluctuation regime, which
terms ofZ_(I4,1,;x) as previous studies show to be the relevant one for potentials

which decay faster than L/Second, there is an analytical

! expression foZ (14,15;%) [13] given by

H Z (I, s Xier — X0)

i=0
P.(1;...;n)=lim ') — /i ~S(p = 1)%2x 4 mS(1q + 1922
X—s0 Zﬂ.(l_x/z,lx/z;X) Zw('l!'va) = 27TX(e 21 +e 1702 )
n-1
= Yol W) [T Z, (511 Xiq = x)€F0050279), + TeTzwzz_T('lJ"Z)erfC( \/ 2(|1 +15) = 74/ i) .
i=1 2X 22
(11) (16)

wherei=(l;;X), Xpe1=—X=X/2, andly=l,,1=lx. Forn Finally, this case can be compared to more microscopic re-
=1, P.(i)=|(1)|?> From Eqgs(11) and(9) it is clear that if ~ sults, such as the exact solutions of the interfacial properties
the distance between two subsets,...x, and of the corner filling of an Ising model.
{Xme1, --- Xnb IS much greater than thplanar correlation Another interesting case is the Kratzer binding potential
length &= 1/(E;—Ey) (with E; the first excited state eigen- [14]
value), the distribution function factorizes and the two sub- b0 w
sets become uncorrelated. W(l)=-—+3, a7

The n-point wedge distribution functionsP,(1;...;n) bl

can be expressed, in general, in terms (af+1)-point  \where =(1+\1+85w)/2 and we assume Dirichlet bound-

planar  distribution  functions. ~ So, for a set gry conditions at the origin. Previous studies indicate that
{Xem<---<x1<O<x<---X}, they can be expressed as  this class of binding potentials corresponds to the marginal

o 2alg case between the mean-field and fluctuation-dominated re-
Pu(—=m; ... ;n) :f dlowpﬁ(— m;...; gimes for the critical filling transition. The Laplace transform
0 <0| |0> Of Z'?T(I]JIZ:X)v ZﬂT('l!'Z!E) IS g|Ven by[14]
-1;0;1;...n) 5 0 LE
_Pu(-1L;DP(-m;...;n) a2 l 2’00)
P.(=1;1) ’ =f dx €Z.(11,15;%)
0

where (n|f()|my= [g dlg,(DF) (). If 0sx<--- <X,

the expression oP,(1;...;n) is slightly simpler: /EF{¢(1 B /@)}
E E

© e22a|o =
Pu(1; ... ,l’])—J0 dIOWPW(O,l, ) oI'[2¢]

XMy EJE o172 V- 83El), (19
where Eg=-362/2, I.=maxly,l,), l-=min(ly,l,), T(x) is
the Gamma function, and finalli, ..(z2) and W, ,(2) are

Whittaker functions, related to confluent hypergeometric
functions.

W, EJE ¢-112(\~ 8ZEL)

_ Pu(D)PL(1;...5n)
= P (1) ) (13

A similar expression is found ik; <---<x,=<0. Finally, if
x=0 is included in thex set, the wedga-point distribution
function reduces to

eZEaIO
Pu(— MM )= P (—m; ...n). (14) Ill. EXACT RESULTS FOR CONTACT BINDING
(0|e**'0|0) POTENTIALS

Although this approach is general for arbitrary binding In this section we will obtain and analyze some relevant
potentials, we will restrict ourselves to some special casesvedge distribution functions for contact binding potentials.
The first case will be contact potentials, in whiglil)=0 for In particular, we will revisit the 1-point distribution function
>0, W(l)=+2 for | <0 and at the wall the eigenfunctions (considered previously by our groyp2]) and the 2-point
fulfill the boundary conditior{13] height-height correlation function between the midpoint and
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any other interfacial positions. Related quantities as the av- ) 1 1
erage interfacial profilgl(x)),, the local roughness, (x), T = 25227\ ~ SO-a) Sa 3¢ *
and the correlation length across the wedgédsee Fig. 1
will be also obtained. % [ X ~(SPI2)x 4 & _ f
Some results are already known for the 1-point distribu- zwze (6-a)?® o
tion functions. The probability distribution function for the S a(a-8)
midpointx=0 interfacial height is given bj2] Xez T erfc( /% (9 2a)>
Pallo; 6,a) = Py(lo,00 = 25(9- a)e ="l (19) 1 ( )
— i + 2
42202 (60— a)2 N

which verifies the remarkable covariance relationship, Eq.

). X[ a  6-a) X . [S.6
For arbitraryx=0 the 1-point distribution function has “os\gma )T B 5 X

the expressioiil2] (23)

_ X p
Pu(l,x) = 6 zmerfc(_ Vo0t &') For generah, the following expression can be obtained by
induction:
+ 2(0_ a)eZE(a—G)IeZEQX(a—G)

X 3 n n
X erf% \/ ?(0— 2a) - \/;|) <|n(x)>W: <|n>w|:1 + %( 0 _ 9_n>eZEaX(a—0)
( —

(6-a)" «
— Eae—22a|e22ax a—6) E
X erfc( 1\ I_X(g_ 2a)>] +Pp(X) Le—(202/2)x
X erf/-{ \/2((9— 2a) + \/EI) (20) 2 N 273,
2 2X 57
+ Qp(x)erfc ( 1/ 7x> , (24)

where(I™_=n!/(226)" and P,(x) andQ,(x) are polynomi-
als inx of ordern—1 andn, respectively.
These expressions are only validbif « (for smaller val-

Forx<0, we have the symmet®,(I,x)=P,(l,—x), so here-
after we will consider only the case=0.

The momentgI"(x)),, can be obtained after some algebra.
The average interfacial position profile reads

X x| 00 ues of # the interface is unbound from the wedgé&or x
10w = 229 oms 1o-a a —0, Eq.(20) reduces to Eq(19). On the other hand, for
|X| — o0, P,(I,x) decay toP_(I) =236 exp(—22. 6l). However,

" ezz‘”‘(“‘(’)erfC ( /§(6— 2a)> the scale over which this decay occurs depends on the value
of a. If =2¢, this scale is the planar correlation length
=2/3 6% However, if a<6<2a, the decay length is¢

+ {i(i + 9 _ 2) _ Q(]erfc< A ’2—02x> =1/2>a(6-a) (our notation differs slightly from the one

30\ 0-a « 2 2 ) used in Ref[12]). Note thatér is always larger thag,, and

(21) diverges on approaching the filling transition. On the other
hand, & is related geometrically with the wedge midpoint
average interfacial height vig==(1(0)),,/ a=(1(0)),/tan «
for small a.

It is amusing to note that Eq20) verifies the following
differential relation:

The wedge excess adsorptibl), measured with respect to
the planar case can be obtained as

=20 =) | (00000 555
_P=pg -+ 2 wils F
T2 {0(0—602 03]’ 22 e X

where py and p; are the coexistence densities of the vapor B 19 _
and liquid phases, respectively. Close to the filling transition =P.()+ TQEJ dlgloP(1,0;1,x), (25)
(6— @), Ty~2(p1=pg)1(0))3/ a. ’
The roughness profil€, (x) (see Fig. 1 is defined as
VA2(X))y— {1 (X) fv where(12(x)),, is given by whereL .(I,x) is for contact binding potentials,
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12
L.(1,x) =3 e > erfc (— \ /2(94. A /§|)
2 2X
2 ~(VEX2)6 + (ZI120)1)? 8
+2 —e " v X)) . (26)
27X

I(x)

* h/J=0.595
s h/J=0.597
+ hiJ=0.599

Note that the right hand sid®HS) of Eq. (25) depends only

on the planar properties and, consequently, is independent o
a. It can be shown that E¢25) is obtained forany binding
potential if the left hand sidd_HS) is expanded in powers of

« and truncated at the lowest-order term, which is indepen- . | . | . |
dent of @. Consequently, this differential field equation im- 0 4 8 12 16
plies an infinite hierarchy of integro-differential relationships Ix|

for the 2-point planar correlation function. Alternatively, Eq. . . .
(29 provides an elegant e 0 the calolaton of any moy 7. % SoTLRTE pniesty svenen neb Y
ment of the interfacial height. Multiplying Eq25) by arbi- 77 o coc” ir s " h/3=0.597 (squares and h/J=0.599 (dia-
trary power ofl and integrating over all the possible values

. . - . . . mondg; and the approximation given by Eg30) (continuous
of |, the following differential equations are obtained: lines). The Ising model parameters are the followirg: /4, the

e - temperatureT=T./2, and the bulk magnetic fielth,,,=0. The
(")) + & ("X))w =f dl 1L (1,x) boundary magnetic field at the critical filling 1%/J=0.606. The
dx 0 lengths|x| and{l(x)},, are measured in lattice spacing units. See text
for explanation.

41

1d
= (M, + (01", (27)
0 dx ~ dl(x)
dx

[(x) = I,T(e ) (29
where(: - -),, and(- - -),. mean the average with the wedge and
the planar distribution function, respectively. The RHS of
Eq. (27) depends only on the planar distribution functions
and consequently decays{8) ., for distances larger thaf.
Close to the filling transitiong&=> ¢, and we can approxi-

mate Eq.(27) for x= & by

wherel(x) represents théaverageglinterfacial position ax,
'and | () is the planaraveraged interfacial position for a
given contact angled. Making the substitutionl(x)
—(I(X))w, it is clear from Eq(21) that this extended covari-
ance is not verified fox# 0 (even asymptotically whex
A1) —0 or x| —«). However, it is remarkable that there exists
— =", (28)  an analogous to Eq29), given by Eq.(27) for n=1.

dx To finish our discussion about the 1-point distribution
) ) N . N functions, we compare our results with computer simulations
which —has as a solution (I"))w={I"-+[I"0)w  of the 2D Ising model[11]. Close to the filling transition
—(I") zJexp (=x/ ). Taking into account tha"(0))w>(I")»  point, we expect that the approximate solution to @&8) for
close to the filling transition, the approximate solution can ben=1 will be generalized for arbitrary to
simplified even further to{I"(x)),= {I"(0)),exp (=x/&F)

[which is equivalent to sef,=0 in Eq.(28)]. These find- 100y = Dy < 1@ - = )e_x,gF, (30
ings are obviously in agreement with E¢R4) and the Ccosa CoS«
asymptotic behavior oP,(l,x) for largex and <2« [12)]. ] . )

It is interesting to note that the moments obtained fromWhere nowég is defined agl(0)),/tan a. We have tested this
the actual 1-point distribution function are the only solutions@Pproximation with the simulation results reported in Ref.
of Eq. (27) that(a) decay exponentially within a length scale [11] (see Fig. 2 The symbols correspond to the simulation
& for 0<alf<1 andx—o; (b) are analytical as a function data obtained for a square 844 Ising lattice with zero bulk
of a for 0<a< 6, in particular, at the disorder point. The magnetic field and boundary magnetic fielda for the
existence of the relationship, E¢R5), from which covari- boundary rows ending at the lower left corner, aticfer the
ance for the moments of the interfacial position profilexat remaining boundary rows. In this geometiy=m/4. The
=0 can be inferred provided tha) and(b) regularity condi- temperature is set td=T./2, whereT, is the bulk critical
tions are fulfilled, leads us to speculate on the existence of mperature. For this temperature amche critical filling
hidden symmetry of the Hamiltonian that explains wedgetransition occurs ah./J=0.606. Figure 2 shows the com-
covariance. However, the nature of such a Symrr(e't@ny) puter simulation results fd1/J=0.595,0.597, and 0.599. We
is completely unknown. have no direct estimation df) .. However, we have obtained

In the mean-field approximation, the average interfaciakl), by fitting the simulation data withx| <16 lattice spac-
position profile for binding potentials characterized by aings (in order to minimize the effect of the upper left and
critical exponenta =0 fulfills the following generalized co- lower right heterogeneous wedgés Eq.(30). The best fit-
variance relationshipl5]: ting values are, in lattice spacing unit$),=0.314,0.335,

(")) + é¢
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and 0.436 foh/J=0.595,0.597, and 0.599, respectively. As ~ 14(23,6)2¢ g2
it can be seen, the fitting to the simulation data is quite good, Pw(l;E) = mKFMﬂ = K)]
despite the crude approximations involved in E2)).

>< {

= ~ 236l
f | §e>(2 tg)low;«;s,(;s—l/z(T)

0

Now we want to characterize the 2-point correlations, in
particular, the correlations between the interfacial position
above the wedge midpoint and the corresponding to an arbi-

trary X, which are given by the following function: S 1/2<ﬁ> ) J’I P
K, p— 0
() = 1 )wL1(0) = 10w ) °
= (1= (X)) x {de),(,,_l,z(%) Mg 22
1 <&<I(X)>w>
=\ | (31) 236l 2361
= el E i 2]
Substituting Eq(21) into Eq.(31), we obtain 35

(1C910))w = 1))k 1(0))yy

X (Qa- 0)e‘<2"2’2>x 1 & 6 wherex=1/\1-2E/>¢. The poles oP,(l;E) in the E real
“Noms 23 a(0-a) + 85262\ (0-)? o2 positive semiaxis are the characteristic inverse length scales
across the wedge d?,(l,x). Since the second integral is

Yerfc /2_02)( N i B L0 over a finite interval and the integrand does not diverges in
2 8320 | (6-a)? o that range, no new length scale emerges from it. For the first
integral, we take into account thgt6]
L 22(0- 2070 f( - )> 32)
a(f0- a) 2 YV w
loyp —
This function decays exponentially to zero for lasgeHow- JO X77exp(= pYW,.,(ax)dx
ever, the characteristic correlation length(see Fig. 1 de- 12
pends on: it is & for 6>2a and & if a< 6<2a. Conse- _ T+ v+ 1200y — p + 1/2]2"
quently, the disorder point not only introduces a new length Iv- k+1)(p+a/2)»+i2
scale for the average interfacial profile, but also for the in-
terfacial fluctuations. - a
1 2
XoF| wtv+—,u—k+-v—k+1l,— |,
IV. RESULTS FOR THE KRATZER BINDING 2 2 P+
POTENTIALS 2
The Kratzer binding potentidsee Eq(17)] is the border- (36)

line between the filling mean-field and filling fluctuation re-
gimes. While not of direct physical significance, it is instruc- where,F,(a,b,c;x) is a hypergeometric function. #> 2,

tive to consider this case in order to understand the influencge integral does not introduce any new characteristic length.
of a marginal operator on the critical properties. For SUC'"However, fora< §<2a a new singularity emerges f&(6
potentials the wedge midpoint probability distribution func- —2a)+30/ k=0, i.e., E=25a(f-a)=1/¢. Remarkably,é

tion also obeys wedge covariance, 2 has the same expression as for contact binding potentials,

. [25(6- a) 24424 and is proportiona{but not equal to (1(0)),,/ . o
Pulo; 6,@) = 26+ 1 exd—-22(0- a)ly] From this it follows that the nonthermodynamic singular-
¢+1] ity occurring atd=2a mentioned in the preceding section is
= p}r(|o; - a). (33 not specific to contact potentials. A simple geometrical argu-

) ) ) ) ment given in Ref[12] explains why. The most relevant
Itis possible to extend the transfer analysis and obtain exagterfacial fluctuations are those where the interface leaves
results for other quantities of interest. Consider, for exampleghe substrate with a contact angle(relative to the tilted
the 1-point probability distribution functioP,(l,x). The  wall) at an arbitrary substrate point. #> 2a, the other side

Laplace transfornP,(I;E) can be expressed as of the wedge does not play any role and we can anticipate
that the only length scale that controls the 1-point distribu-
B (1E) = fw dl eg<2a_9)|o(229)2¢’+1(|o|)¢ tion decay is,. However, if 9<2a, the interface will even-
WA 0 0 I2¢+1] tually reach the other substrate, and consequently we can
~ expect the geometry to play an important role leading to the
X exp(-20)Z.(Io,|,E -3 6%2), (34) emergence of a new length scale. Formally, this nonthermo-
~ dynamic singularity occurs when the following integrals that
whereZ_(lo,1,E) is given by Eq.(18). This reduces to arise from the spectral expansion of(l4,15;x),
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& . V. THE BREATHER MODE PICTURE
f do(Dexp2Zal) (1), (37)
0

In order to understand the origin of the new correlation
length & we identified in previous sections, we recall the
become ill defined. Therey,(1) are the scattering eigenstates definition of the 2-point distribution function fot,>x, =0,
with eigenvaluesE=p?/23. and yy(l) is the ground eigen- Eq. (13). This expression can be written in the following
state. A straightforward WKB asymptotic analysis for theway:
eigenfunctions shows that, far# 0, the integrals given by . . .

Eq. (37) become ill defined ford<2a for quite arbitrary Pall2,Xoll1,%9) = PE(15, %ol 1, %) = PL(15,% = X413, 0),
choices of binding potential. (42)

As 6/« decreasesgr exceeds the intrinsic interfacial . . )
length scales 1E;-E,), and becomes the true correlation Where Py(l2,%o[11,x) and P(15,%,[11,%;) are, respectively,
length across the wedgg at an another disorder point when the wedge and the planar conditional probability of the inter-
&=¢ (recall thaté,=¢ for 6/a larger than the value at the face being at a relative heighs from the substrate at,,
disorder point For the case of contact binding potentials Provided that the interface is pinned at a relative helglat
both nonthermodynamic singularities occur at the same valu¥w, defined as
0=2a. However, in general, the nonthermodynamic singu-

- o ) Pi(11,%1:15,
larities are distinct provided there are at least two bounded Pi(12,%ol1, %) = M (43
eigenstates of Eq.10). For the pure Coulomb cageb=1) Pi(l1,%)
the second disorder point occurséstda/3. where the subscripit indicates if this probability is consid-
Close to the new singularity” we found that ered in the wedgé =w) or in the planari=) geometry.
In view of the identity between the wedge and planar
P, (l:E) ~ E 1" 38 conditional probability distribution functions we first con-
WhiB) (&1 - E)1+20ela0) b (38 sider the case of a planar substrate. The conditional probabil-
ity can be obtained as
so P,(l,x) behaves asymptotically for large valuesobs I
2¢al(2a-6) _ ; r
x2oelCDexp(-x/ &), provided thaté < &. P (1, x/11,0) = l//g( 2) EEAZ (] ). (a4
A field equation analogous to ER5) can be found for Py
Kratzer potentials. Transfer-matrix calculations for arbitrary . ) )
binding potentials lead to the relation For contact binding potentials, E¢d4) can be written ex-
plicitly as
N 0- dPu(1,X)
<0|622 '0) T|:PW(I'X) + fF(#)] PE (15,X|11,0) = 4 /%( X (- 1p + 00%2x
_foc dlo lﬂ(’)_ﬂo) PW(|0,0;|,X) +e—220|2{ \ lzie—ﬁ(llﬂz—ex)Z/zx
o Zogollo) ™
- )y
* ol + Herfc( —I+I—0x). 45
=L [ a2 5010, (@9 Bterte \ gl 0] |- (49
0 2 0ollo)

If 1, is very large compared witl) ,=1/2%6, we can iden-

where %('o) = yo(l)expS6l,) and %00) is its derivative tify two d_ifferent behaviors oP‘jT(IZ,_x_| [,,0) as a fu_qctipn of
with respect td, [recall thatt/fo(loﬂs the ground state eigen- I, (see Fig. 3 If x<I;/6, the conditional probability is ba-

: . ® sically the free interface conditional probability that fluctu-
functior]. For Kratzer potentialsyq(lg) =I§, so Eq.(39) can ates around an average valligx))=I, - 6x, with a standard
be expressed as

deviation of the order of /<. Forx>1,/6, the conditional
probability becomes the 1-point planar distribution function
(iyw + i[ F< 0 >¢w] =0 P.(l,)=2%6 exp(-2%6l,), completely uncorrelated to the
0-a da da value ofl;. The transition between the two regimes occur in
(400  anx interval aroundk;=I,/6 which has a width of the order
of 21,/3 6= \x&. These results are confirmed by the exact
As for the contact binding potential case, some interestingvaluation of the first moments of the conditional probabil-
quantities can be evaluated from this expression. For exty:
ample, the wedge adsorption is found to be

L= (24 +1)(p+ DI, (42) 121 = J o A12Pr(120120). (40

00—« X

where I'P is the adsorption corresponding to the contactThe average conditional interfacial profile, which corre-
binding potential, Eq(22). sponds ton=1, is given by
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600 - — T - ~ =13+ 6x
/1 SO ] P11, x/14]1,0) — 5(—2 s CICRECY
500 € C A oA 11 .
\ C 3| I,
400 i 1| + 5<E)6(0X— I, (49
1 L 1>T; - ]
2300 B i when 26l; —o. We expect this result to be valid for any
3000 potential and also for random bond disorder, since in all
200 | cases the wandering exponent for the free interfacel.
This can be checked for the marginall lgotential. The
100 | Laplace transform of the conditional probability distribution
is
0 . \ ) N 1 .
0 1000 2|OO|0 )T( 3000 4000 L:[PST(IZ,X“]_,O)] = J dX éEXPST(Iz,X“l,O)
X t 0
FIG. 3. lllustration of a typical interfacial configuration pinned ¢0( o)~

at I;> (1), for x=0 (thin continuous ling We have se =1 (it il )Z Al E - 2‘92/2) (50
defines the length scgle¥=0.2, andl;=500. The thick continuous Yolla

line corresponds to the conditional average profi°(l,,x), and  For X —« at fixed E 0,1;, andl,, and taking into account
the dotted lines correspond to nf@x(1,)°(1;,x)+3&5 (I1,x)), where  Eq. (18) and that the ground state eigenfunctiai(l)
& (11,x) is the conditional roughness. Any interfacial configuration :x|¢>exq S6l), we obtain the following behavior for the

has a probability of at least 95% of being between the dotted lineg. ap|ace transform of the conditional probability distribution

Inset: an enlargement of the area arowwdl /6. Other character-  fynction:
istic length scales are represented. See text for explanation.
1 Al
. LIPS 1215, 00] — SO0y ~ et - 22,
1Y(1,) = (I = 6X) + | —— e~ 201~ #o%2x
12U,x) = (11 = 6x) \/2 (51)
L - X0 The Laplace transform can be inverted, leading to (§).
+ erfc (Il 0X) . .
420 2 To proceed, we return to our discussion about the wedge
2y geometry. Due to the presence of the boost factof2xpl)
- erfc(w [ =1+ gx)) (47)  in the midpoint probability distribution function, the mid-
43,0 point interfacial height is almost always further from the sub-

strate than the mean wetting layer thicknébs, for any
and the conditional roughness® (1;,x) is defined as binding potential. If we assume that the conditional probabil-
\/—<I§>C_(<I2>C)21 where(l%}c(ll,x) can be written as ity distribution func_tion is giyen_ by E_q(49), vyhich corre-

sponds to neglecting the intrinsic interfacial fluctuations

around the conditional interfacial profile, we can capture the

2 B 5 main features of both the average interfacial profile and the
(15,x) = | (1= 67+ s|\se 11+ 6X correlations along the wedge for contact binding potentials.
Actually, this picture is completely equivalent to the 2D
y | 2 sq,- %2 {i 1 wedge breather mode mod@,4].
27X 25 43242 The average interfacial profile can be written as

I, = x6)? = =
+%}erf0<\/§(ll—w)) <|(x)>wzfO d|1PW(|1,0)U d|2|2P$T(|2,x||1,0)1

0

o250 "
+ [x61+|1 220} 226erfc(\/ — (I + HX) xf dliPy(11,0)(11 = 6%)
o

(48)

We obtain two main conclusions from these results when - JO SPu(s+ 6x,0)ds. (52
[,>(I),. First, the interfacial positions are highly correlated
to the central one folx| <1,/ 6. Second, the intrinsic interfa- The behavior ofl(x)),, for largex is dominated by the large
cial fluctuations are small in this range compared to the | asymptotics ofP,(I,0). The latter can be obtained by tak-
conditional average value. Actually, if we detas the length ing into account Eq(14) for m=n=0 and making use of the
scale, the rescaled conditional probability distribution func-\wkpg approximation for the 1-point planar distribution func-
tion PC(I 11,x/11]1,0=1,P(l,,x|l;,0) behaves as tion:
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e l\/w) 16010 = 1001 (@)~ ( 2( 1)‘%
PL(0) mexp( zzej dtn/1+ T AN0) )y = 1 )01 (0 ~ (1(0))s, 1+§; e
S ¢

(57
[
- e‘zmexp(— ZJ dtm), | oo (53) and again is in_agreement With_ th_e behavio_r of the exact
0 correlation function for contact binding potentials, £g§2),

whenx— % and §— « (assuming again thag = &). Finally,
for the marginal cas@=1 the behavior of the correlation
function is predicted to be forx—« as <I(O)>3Vg(x/
&)exp(—x/ &), whereg(x) is a function that diverges at most
algebraically.

Another quantity of interest is the midpoint local suscep-
tibility x,(1) defined as

The first thing we can see is that, for largethe decay of
{(I(x)) In this approximation is controlled by an exponential
term exp—23.6(6- a)x]. So, a new length scalg is defined
as 1/2.6(6-a). Close to the filling transition,&=¢&r
-1/2Za6~ &+0().

Depending on the largebehavior of thgattractivg bind-
ing potentials, different situations can arigg. The filling

mean-field regime is characterized by binding potentials that (1) o _

decay to zero as 19 wherep<1/{-1, implying {<1 for xo(D = p_h =2(p, _pv)f dsR,(s,0)A(s),
thermal disorderfthe wandering exponerdt=1/2). A saddle N In=o I

point calculation shows that close to the filling transition (58)

{(0))y~1/2(6—-a)P. As 6— «a, the relevant length scale in B
the x direction, (1(0)),,/ 6> &, so the latter length scale is whereA(l)= [§ dxA(l,x). In the breather mode approxima-
irrelevant (in fact, intrinsic interfacial fluctuations that we tion and in the filling fluctuation regime\(s) has the follow-
neglected can be more important ing expression:

For p=1, both length scales become of the same order,
and consequentlyl (x)),,~ (1(0)),f(x/ &) exp(-x/ &), where an=1 12 102
f(x) diverges at most algebraically, and depends on the de- T\ 2 wj
tailed structure of the binding potential through the short = o ) )
distancel dependence oP,(1,0). For a pure 1l potential, whlch is exactfo_r contact_ bln_dlng potentials. _Thls expres-
f(x)=(1+2x/3+x2/6). This expression verifies the differen- SION, together with the midpoint wedge covariance, €.
tial equation for(I(x)),, that arises from Eq(40) in the scal- leads to the covariance relationship between the local suscep-

(59

oo tibilities [5]:
ing limit.
The filling fluctuation regime corresponds to potentials 0-
with p>1, and is characterized by universal critical expo- xull;6,0) = TXW(LQ—Q), (60)

nents and scaling functions. Indeed in the critical regime the
scaling behavior is the same as that found for contact binding . o )
potentials. Forx—o, we find that asymptoticallyl(x)),, wherey.(l, 0) is the local susceptibility corresponding to the

‘ ; ; . lanar geometry for a contact angle
~(1(0))eXp(—x/ £). This solution agrees with the asymptot- P'a™ . .
ics< (()f)<>|vEX)X>FVf f())(r %gntaclt bin;ir:g po%entia;g"wh g ay a?— Finally, we note that the breather mode picture has direct

though with a decay length slightly smaller. However, theconsequences for the scaling of the interfacial profile in the

behavior | icall i filling fluctuation regime. To see this, recall that the wedge
ehavior is asymptotically correct it we assume e & midpoint probability distribution function scales g5
For the correlation functions, we have

o 1 I
1010 = 1001 (O}, = fo d113P 15, 0A (13,0, Pull = <|(0)>WA(<|(0>>W)' oy

(54) whereA(s) is a universal function and, due to covariance, is
the same as the scaling function for the corresponding planar
1-point probability distribution function. Complementing the

* . scaling of the probability distribution function is the position

A(lbx):fo dlolo[PZ(2.X[11,0) = Pu(l20]. (55 dependence of the interfacial profile, which we anticipate

satisfies

whereA(l,,x) is defined as

In the breather mode approximatiak(l,,x) can be obtained
as

<|<x>>W:<l<o>>W¢( i ('(’;; ) 62
A1) = (1= 0001~ )~ (1. (56) w

We find different behaviors depending on the valugpofn  where ¢(s) is another universal function. In the breather
the filling mean-field regimeA(l;,x) is negligible in this mode picture, the interface is infinitely stiff in the filled re-
scale. For the filling fluctuation regime, the correlation func-gion implying that the scaling function&(s) and ¢(s) are
tion decays as related via
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© the definition of the 2-point conditional probability distribu-
@(s) = f dsA(s)(s—s) (63)  tion function, Eq.(44), we can rewrite Eq(65) as
S
n-1

or equivalently S o (1m0
#'(s) = A(9). (64) i=0

A remarkable consequence of this relation is that the behav- c
ior of the interfacial profile close to the midpoint is deter- X 1__[ P2 %1 = Xillis1, 0), (66)
mined by the short distance behavior of the wedge midpoint =

1-point probability distribution function. Sinc&(s)~s"  \here we have chosen the ground state eigenfunction to be

ass—0 [5], we haves(s) ~1-|g+Als|'* for smalls. Note  yea| and positive. The 2-point conditional probability distri-

that the first two terms are needed to preserve the continuityytion function has a nontrivial limit whelél, — = [see EQq.

of the true interfacial profiléy(x)), and its derivative at the (49)]. Our goal will be to find a renormalization group

wedge midpoint. This result suggests that the interface bescheme in which the 2-point conditional probability distribu-

haves, for small values of, as a random walk ok as a tion function converges to this limit, and the only relevant

function of z. This prediction is consistent with the behavior operator is related to the wedge midpoint 1-point distribution

of {I(x)),, for contact binding potentials in the scaling limit function.

0— a, &/ & — 0 butx/ & finite. Let us consider a discrete version of the interfacial Hamil-
To conclude we note that E¢64) is also obeyed by the tonian, Eq.(3):

(nonuniversgl scaling functions corresponding to the mar-

ginal case.

-1

n-1
p .
pH= 2 {E(Ziﬂ— z)*+W(z —ia) (, (67)
i=—n
VI. RENORMALIZATION GROUP APPROACH TO THE
CRITICAL FILLING TRANSITION where the spacing between si@s1 defines the length unit
for I, 271, etc. Using a similar transformation to the continu-

In this section we will justify the critical properties of the ous case, Eq67) can be written as

filling transition using a renormalization group framework.
Specifically we will generalize an exact decimation func-

5 n-1
tional renor_malizatio_n group procedure previou:f,ly used to ,3H[|]:2n2—a+22a|n— aly+ 2 {g(hﬂ—h)2
study 2D critical wetting17-19. Our transfer-matrix results 2 i=n ( 2
show that geometry plays a fundamental role in determining W) + W)
the critical behavior, so we anticipate that the appropriate +— e S (68)
renormalization group procedure must preserve the wedge 2

shape. This implies that the effective wandering expordent . -
determining the rescaling of the interfacial heigtihust be where pe“_Od'C_ boundar_y conqmons haye beer_l appllgd
=l_,). To simplify our discussion, we will considaer— «

¢=1. This contrasts with the valug=1/2, which is appro- > )
priate for free interfaces and also planar wetting transitions"d Neglect the boundary effects. The probability of any in-

We will see that this choice leads naturally to the breatheférfacial configuration is given by
mode picture of the filling transition, implying that interfa- o
cial fluctuations are irrelevant except for those that determine P, () = e e | s (69)
the wedge midpoint interfacial position. Z

Before introducing the renormalization group scheme, we
generalize some of the results of previous sections. The SWhereﬂ(l
of (2n+1)-point distribution functions that includes the mid-
point interfacial position can be obtained in terms of the _ s W) + W)
planar case counterpart by Ed44). If we setf=q, it is clear BH(liwy) = B+ =iy = )%+ ———=, (70
from that expression thd&,(—n; ... ;n)=0 at the critical fill- 2 2
ing transition for any value af. However, all the correlation
functions decay at the same rate, since @4) can be re-
written as

oo
j=—x

i,li+1) is defined as

wheref, is the planar surface free energy per unit length and
is related to the contact angle corresponding to the binding
potentialW(I) via

P.(=n;...;n)
P,(=N; ... :n) = P,(0)———————. (65) 1 (2 )_2_02

0 _z
P.(0) Bfs 2|n 5

(71)

Consequently, theonditional (2n+1)-point probability dis-

tribution function remains finite at the filling transition. The For 6=0, Bf, converges towards the free interface free en-
only relevant operato(in a renormalization group sense ergy per unit length. Note that in the continuum limit, Eq.
should be related only to the 1-point probability distribution (6), this term is absorbed in the path measure. On the other
function at the midpoint. Taking into account Ed.1) and  hand,Bfy is defined as
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2 _ o 1 _ 2
Bfw= Iim{(— InZ+ 2n27a> - Znﬂfs}, (72 B bgebzez/zf dl, ,Zzexp<— 2(b I-2 [y )
n—oo B T

: - 3 3 (lp-g — bf{,p)?
which corresponds to the wedge excess free en@vgysup- X dlp-1 Zex - >
pose that this quantity is well definedNote thatH(l;,l;,,) is 0

invariant under an exchange of its arguments.
Let us now consider a decimation procedure, similar to X [1 =W(b/,1p) = W(lp-q,b% ;)
the one used for the study of 2D critical wetting. We group
the sites in blocks ob units, keeping the first one and inte- b-2
grating over all the interfacial positions of the remaining -> Wi, i) |- (76)
-1 sites in the block. Since the site 0 plays a special role, i=1

the sites to be kept in each decimation step are thoseiwith )
=jb, with j  Z. After that, we rescalg positions by a factor The lowest-order terntcorresponding to setV=0) can be

b and! by a factork?, i.e., estimated for largé’, 14, ... l,-1,1j,4 by extending the lower
integration limits to <o, and has the value
=X e 73 PN U O
Xﬂx‘b' T e bée™ ’Zf diyy/——exp - —L——] ...
o 2 2
o~ , ) * ly-1— b4, ,)?
The new HamiltoniargH' (1] ,1,,) is defined as xf dlb_lwzzex;{— M)
— v

- s - 8 - [Sp% T SN - 1,)?
1 ' ’ —_ bEGZ/ Eb +1
e BHI[ ) = e fo dl,e FHOA I .. f dl,_e FHlb-1b]y), =772 o exp(— 2' B==1. (77

0

(74 so, in order that the renormalized binding potent! de-
cays to zero at large values of both its arguments, the inter-

. . L~ . facial stiffness and the contact angle must transform as
Note that the renormalized Hamiltonig##’(l,l,) is sym- g

metrical under an exchange of its arguments provided that
the original BH(l,1,) is also symmetricaleven if it is not
defined as Eqc70)]. This procedure is iterated, leading to & Tywo comments are pertinent at this point. First, the transfor-
sequence of renormalized Hamiltonians. ~mation of the interfacial stiffness is also valid for a free
In order to complete the description of the renormaliza-interface. Second, the change in the contact angle has a geo-
tion group (RG) procedure we should give the transforma- metrical interpretation, since its scaling, E(8), corre-
tion rules fora and Bfy,. First we revisit the planar geometry sponds exactly to the change of small angles under the coor-
(a=fy=0). We will consider the value of the exponeit ginates scaling, Eq73). Thus it is reasonable to expect that
arbitrary, unlike in Refs[17-19, where{=1/2. Ingeneral, 4 must change in the same way.
after an arbitrary number of RG steps, we can write any |f we take into account the first order i, we can char-
BH(;,l,41) as acterize the decay of the renormalized potential at large val-
ues ofl{ andl{,,. For simplicity, we consider the case-2.
The renormalized binding potential has the following expres-
- 2_‘92 sion:
5

0
(79 vv'(lj’,l,-’ﬂ)*\/gf dl,e 30~ 20 + a2
TJ -0

whereW(l;,l;,1) is a symmetric function under exchange of S ol ol ot 12 ,
its arguments. Obviously, in principle this function need not + \/;fo dlye 0= 2T+ a2 w24 1)
decay to zero when both arguments are Id@age it does in

Eq. (70)]. However, let us suppose that it decays ad[4; +W(I1,24Ij’+1)] = Wi, 15) + Wa(lf ).
+1i41)/2]° when I;,1;,;—cc. After making a RG step, we (79
would like to find the asymptotic behavior of the renormal-

ized \7V’(|j’ I{,1) for large enoughy, I,,. Expanding the RHS  The first termW; corresponds to the contribution of the hard

S 3 =3pb¥ 19— ¢ =6bY. (78)

~ S, ~ 1
BH(; i) = E(|i+1_ )2+ Wl lip) + 5'”(%)

of Eq. (74) and keeping terms up to first order\id (sincelj’ wall to the renormalized binding potential aMl, corre-
andl/,, are large, the values df, ... l,; that contribute sponds to the contribution of the original binding potential
most to the integral are also very lajgeve find that W. The hard wall contribution can be evaluated exactly as
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1 22 (1 +|! — 2 (11 V= hZEWTR ! h! - pla b 62
Wi(lj 1) = Eerfc{ \/—2(4—1—2 +1)} expl- g1 (1,11, ] =b"Z b}, bilj, s ble '
& (84)
2205 (11 417, \? - .
expl - == 1 i+t For contact binding potentials, E¢6), and Kratzer poten-
™ 2 - tials, Eq.(18), it can be checked that E(B4) corresponds to
szzgg(” +11,p) B R A an effective Hamiltonian of the same form as the original
since
(80)
bZE b4 b4yl =25 W 1], (85)

For W;, we take into account the long distance behavior of , , ,
W. After some algebra, the leading order\(l’,I/,,) can whereX and¢ are transformed via Eqr8) o and¢ '1'5(2);
be written as Kratzer potentialsv must change a&™, i.e., w' =wb

=w/b in order to preserve the invariance of the leading order
behavior under renormalization.

R 2L [ e Finally to finish our discussion of the RG for planar criti-
Walljlje) ~ = = S pr (81) | wetting ph te that the 1-point distributi
(17)P <2 [1+5/s] cal wetting phenomena, we note that the 1-point distribution
J function renormalizes as
wherel! = (I{ +1/,,)/2 andsy = 72411/, As1/ <, the inte- Pr(1g) = b*P(b%lp). (86)
gral tends to 1 and we can see that ~W,~A"/(lj)P, We will require this result later. Returning to our discus-

where A’=Ab'™P. It is interesting to note that this result is sion about the RG in the wedge geometry, we need to pro-
also obtained by the following scaling argument for the bind-vide the transformation rules far and gf,,. We will assume
ing potential: that « changes a9:

’r— 1-
A A A A ApLEP a— a' =ab'™¢. (87)
————=b—=b =—, 82
PP IR (AP T (1P 82

In order to obtain the transformation rule f@f,,, we con-
sider how the 1-point midpoint wedge probability distribu-

where we have taken into account that the binding potentiatlIon funciion renprmalizes:

is a free energy pex unit length.

oyt =p'(l" E’a'|'+(ﬁfw)’
This analysis shows that the RG procedure leaves invari- Pull0,0) = Pr(lg)e™ o

ant the functional dependence of the asymptotic behavior of =bépP (b§|6)ezzab4|(’,+(ﬁfw)’
the binding potential. Two regimes can be identified. If T )
p>1/¢, the binding potential strength decreases in each RG =b*P,(bl5,0), (88)

step. Foip<1/¢ the binding potential strength grows in each . : s :
RG step. Finally, the marginal cape1/{ corresponds to the implying that 5, remains invariant,

leading asymptotic behavior remaining invariant. For Bty — (Bf) = Bfy,. (89)
=1/2, which is the relevant value for planar wetting phe-

nomena, this behavior leads to the existence of two and threieinally, we note that if we change the effective Hamiltonian
fluctuation regimes for complete and critical wetting, respecby

tively [20]. Note that this choice of keeps the relevant

microscopic scalef,~371 invariant. The analysis of the BH (i, lisp) = BH(3 i) £ [F(lig) = £, (90)
f{';'fﬂiwettmg from this RG approach can be found in REfS'where the sign is positive foe=0 and negative for<0, the
A special class of effective Hamiltonians are the follow- probability of an interfacial configuration is now
ing: oo
PW({II}) - e22a|0+2f(|0)+BfWH e_ﬁH(li'li+1). (91)

exf- ARl 1= 221, 1 1067272, (83)
The renormalization of the Hamiltonian, E((4), is valid

whereZ=[I;,1;,1;1] is the partition function, Eq(6), with provided

x=a=1 for arbitrary values of the interfacial stiffness and (1) = f(b4!) +C’. (92)
binding potentialW(l). Such Hamiltonians can be regarded ! !

as those which are generated after one iteration of the renoNote that any functiorf(l;) (unless it is a constanbreaks the
malization group provided thai is very large. Indeed the invariance of@H under exchange of its arguments and con-
fixed points found in Refd.17—19 belong to this class. Tak- sequently introduces a directionality in thkeaxis. This is

ing into account the properties of the path integrals, theperfectly sensible in the wedge geometry, but is not admis-
renormalized potential after a RG step, Efd), can be writ-  sible for the planar substrate, whereis completely equiva-
ten as lent to x. A convenient choice fof(l;) is
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f(|i):%|n P, (93 space. Since we know that the filling transition occurs for
0=a, we first check that this situation corresponds to the
where P_(I;) is the 1-point probability distribution function critical manifold. Instead of considering an arbitrary poten-
in the planar geometry, and the condition, £8@), is veri-  tial, we choose as initial effective Hamiltonians those of the
fied due to Eq.(86). It is not difficult to see that form given by Eq(83), in particular, with the partition func-
exp(-BH) is the 2-point conditional probability distribution tion corresponding to contact binding potentials and those of
function. Taking into account this fact and K@8), itis clear  Kratzer form. When the number of RG stapss «, the prob-
that Eq.(91) is exactly the same as E(56). ability distribution of an interfacial configuration converges
The one remaining issue to be decided is the relevanio a fixed point of the form
value of the exponent. We choose/=1, so that the wedge
tilt angle & and contact anglé remain invariant in each step
of the RG.
The procedure is now standard. The RG flow trajectories
are constrained to thé-constant hypersurfaces in functional where(gf,,)*=-%, and8H" is defined as

PL{I)) o 1296w T e tilis), (94)

j=—

e_BH*(IiJHl)— 5(|i+1—|i+a)H(|i—a/)+5(|i)H(a—|i), |20
8=l + @Hi = @) + 8(li)H(a =1y, i<0

(95

It is straightforward to see that E¢Q5) is a fixed point of tion function becomes more and more peaked around zero as
Eq. (74). Strictly speaking, sincégf,,)*=—«, we must inter- 3 — 0, converging to the low temperature fixed point:

pret the normalized probability distribution for any interfa- .

cial configuration as zero. Nevertheless, th@normalized T

probability distribution function does not vanish and behaves Py ({li}) = H aly). (96)
differently in the mean-field, marginal, and fluctuation- =

dominated regimes. To this enq, it is legitimate to reggrq therhese results imply that there is a relevant figidthe RG
RHS of Eq.(94) as formally different from zero. This is sensgassociated wittP, (1o, 0). Actually, the only other rel-
required in the renormalization group formulation. The basing,ant operator i#1o .~ u, wherep is the chemical poten-

of attraction for thep=0 case is expected to be those Hamil-i5| and 1. the value ;t gés—liquid coexistence.

tonians with binding potentials that decay faster thah 1/ Recall that the critical exponents defined at coexistence
(corresponding to the filling fluctuation regimeHamilto- (1= o)

nians that have a binding potential with a leading order .

-¢all will be attracted to the fixed point, E¢94), with the 1(0))yy ~ tPw, & (0) ~t7",
same value ofp for =« (marginal casg Finally, if IW(l)
diverges as— «, there is no fixed point and the filling tran- iy £ f2may
éx t 1 B w t l (97)

sition is mean-field-like.

If 6+ a, no matter how smallfé-ca| is, the RG flow where t=T;—T and T; is the critical filing temperature.
drives the Hamiltonian away from the critical manifold. For Close to a critical filling fixed pointfor any ¢), all the
6>0, exd—-BH) converges to a fixed point expression, Eq.relevant scale length&%, (1(0)),, &, &,(0), etc., are re-
(95), with « replaced bys. Even though this new fixed point duced by a factor 1. To extract the dependence orwe
for the conditional probability is different from the critical need to know the largest eigenvalue of the linearized RG
fixed point, the flow for the 2-point conditional probability flow close to the critical fixed point. We argued above that
distribution function will remain closg¢in some functional this eigenvalue is associated to the transformation ofxthe
sensgto the critical one iff - a|<a. Consequently, there is =0 term of the hamiltoniaBH,. We again considered the
no relevant field associated wii. special Hamiltonians, Eq83), for contact and Kratzer bind-

On the other hand, the wedge midpoint 1-point probabil-ing potentials. The expression B, for these potentials is
ity distribution function behaves differently. We considered
the same initial effective Hamiltonians as for the « case. BHo=2> (0-a)lg—2¢ Inly+C. (98
If #<a, the distribution has an unphysical exponential
growth with 15 as exg2|#-ally). The exponential term Taking into account howsH, renormalizes, and its expres-
grows in each RG step, driving the probability distribution sion at the critical fixed poinfsee Eq(94)], it is clear that
function to infinity (however, 8f,,=—%, so the “real” prob- the largest eigenvalue is and its associated eigenfunction is
ability of any interfacial configuration is zexoThe attractor ~proportional to2(6—-a)lo. As a consequence, the critical ex-
at infinity can be regarded as the complete filling fixed pointponentsv, =»,=8,=1 for both the filling fluctuation and
For 6> «, the wedge midpoint 1-point probability distribu- marginal regimes.
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To get the leading singularity for the wedge excess freaising exact transfer-matrix methods. These -calculations
energy is more complicated. A&f,, remains invariant under show the emergence of a new correlation lengthsuffi-
the RG transformations, 2a;,=0. However, this value does ciently close to the phase boundafyw< #<2«a). The
not rule out a logarithmic divergence i, —T. In order to  explicit-transfer matrix results for correlation functions and
get such a dependence, we use the following thermodynamiaterfacial roughness completely support the breather mode

relationship: picture of fluctuation effects. The same picture also emerges
2(Bf,) of a renormalization group approach that leaves the wedge

<_W) == 25(1(0))y, (99)  geometry invariant. The fact that the only relevant fluctua-

da /s tions are those that translate the midpoint interfacial height

leads to a simple relationship between the interfacial struc-
ture and midpoint height probability distribution function in
: the scaling limit. The extension of this approach to higher
tact anglg. We can rewrite Eq99) as dimensions and/or different geometries would be very inter-
a(Bfy) esting and further work is being carried out in that direction.
m . 0: 21(0)w- (100 Finally it would be instructive to understand the physical
' origin of the covariance relationship, E). In the filling
After a renormalization step, we know that, even wheand  fluctuation regime we found that covariance can be inferred
the binding potential have changed, this derivative changefom the existence of the differential relation, E85), and
as 1b sincepf,, 6, anda are invariant, an&* and(/(0)),, ~ some regularity conditions. The very existence of such a field
decrease by a factor i/ If we regardX(6-a) (<2, and equation is itself indicative that some unknown symmetry
recall thatf— « is invariant under a RG stgjas proportional relates wetting and filling transitions. Further work is re-
to t when the flow is close to the critical fixed point, Eq. quired to elucidate whether any such hidden symmetry ex-
(100, implies thatpgf,, diverges logarithmically ag — T;. ists.
Furthermore, Bf,, is invariant under renormalization and
must vanish ast— 0. Consequently close to the filling tran-
sition it must be proportional to (#—«a)—In(6). ACKNOWLEDGMENTS
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