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Interfacial structure and correlation functions near a two-dimensional wedge filling transition are studied
using effective interfacial Hamiltonian models. An exact solution for short range binding potentials and results
for Kratzer binding potentials show that sufficiently close to the filling transition a new length scale emerges
and controls the decay of the interfacial profile relative to the substrate and the correlations between interfacial
positions above different positions. This new length scale is much larger than the intrinsic interfacial correla-
tion length, and it is related geometrically to the average value of the interfacial position above the wedge
midpoint. The interfacial behavior is consistent with a breather mode fluctuation picture, which is shown to
emerge from an exact decimation functional renormalization group scheme that keeps the geometry invariant.
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I. INTRODUCTION

Fluid adsorption in wedge and cone-shaped nonplanar ge-
ometries has attracted much attention in the last few years
[1–5]. Geometry plays an important role in the surface phase
diagram, and new phase transitions as the filling transition
arise. Thermodynamic considerations[6–8] predict that the
gas-liquid interface unbinds from the wedge before the wet-
ting temperatureTw corresponding to the substrates. So, the
wedge is completely filled by liquid for temperatures higher
than the filling temperatureTf ,Tw, whereTf is given by the
condition

usTfd = a s1d

and usTd is the temperature-dependent contact angle of a
liquid drop on the planar substrate anda is the tilt angle(see
Fig. 1). Capillary wave models show that the filling transi-
tion can be critical even though the wetting transition corre-
sponding to the substrate is first order, and that interfacial
fluctuations are enhanced with respect to the wetting case
[3,4]. For the two-dimensional(2D) wedge filling transition
in shallow wedges characterized by a small anglea with
respect to thex axis (see below), there exists a remarkable
covariance relationship between the wedge midpoint prob-
ability distribution functionPw

1sl0d in the filling fluctuation
regime and the planar 1-point probability distribution func-
tion Pp

1sl0d characteristic of a strong-fluctuation regime criti-
cal wetting transition:

Pw
1sl0;u,ad = Pp

1sl0;u − ad. s2d

This expression establishes a connection between two appar-
ently unrelated phenomena, the deep origin of which is still
elusive. The covariance relationship has been observed also
in acute wedges[9], Ising model exact calculations[10], and
computer simulations[11]. Although the covariance relation-
ship is restricted to the interfacial behavior above the wedge
midpoint, some other quantities, such as the local suscepti-

bility, which is related to the 2-point correlation function,
also showed a modified covariance relationship[5]. Conse-
quently, it is interesting to see if the covariance extends to
higher-order probability distribution functions.

In this paper we study the structure of the interfacial pro-
file and correlations for 2D wedge filling phenomena. Exact
results for the capillary wave effective Hamiltonian theory in
the filling fluctuation regime are obtained as an extension of
the analysis presented in Ref.[12]. The exact results show
the appearance of a new length scalejF across the wedge
close to the critical filling transition. This scale controls the
decay of the interfacial profile, local roughness, and correla-
tions, and is related geometrically to the wedge midpoint
average interface position. For the local properties, we found
a very interesting relationship between the wedge 1-point
probability distribution function and the corresponding func-
tions in the planar geometry, which can enlighten the origin
of the wedge covariance.

FIG. 1. Schematic illustration of a typical interfacial configura-
tion in the wedge geometry. The relevant correlation length scales
jx and j'sxd are also highlighted. Other notation is defined in the
text.
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Regarding the two-point correlation functions, we found a
confirmation in the scaling limit of thebreather modepicture
[3,4], which states that the interface is effectively infinitely
stiff in the filled region and is driven by fluctuations of the
wedge midpoint interfacial position, i.e., critical effects at 2D
wedge filling arise simply from local translations in the
height of the flat, filled interfacial region.

Finally, we explain the critical behavior of the filling tran-
sition in the functional renormalization group approach. As
the geometry is fundamental in the understanding of the criti-
cal filling transition, we choose a scheme that leaves the
wedge geometry invariant. We show that the breather mode
picture emerges as a straightforward consequence. The pre-
dictions for the critical behavior are in complete agreement
with exact solutions.

Our paper is organized as follows. In Sec. II we describe
the continuous transfer-matrix formalism and the definition
of the wedgen-point interfacial probability distribution func-
tions. We apply this formalism to the case of contact binding
potentials in Sec. III and, in particular, calculate analytically
the 1-point probability distribution function and the 2-point
correlation functions. Some results for Kratzer binding po-
tentials will be presented in Sec. IV. In Sec. V we analyze the
breather mode picture and derive a relation between two im-
portant scaling functions. Section VI is devoted to the devel-
opment of a renormalization group theory of 2D critical fill-
ing transition, which requires a generalization of previous
approaches for critical wetting. A brief conclusion is pre-
sented in Sec. VII.

II. THE FORMALISM

Consider a two-dimensional wedge formed by the inter-
section of two equal planar substrates at angles ±a with re-
spect to the horizontal(see Fig. 1). We suppose that the
wedge is in contact with a bulk vapor phase at saturation
conditions, i.e., in equilibrium with the liquid phase, and the
substrates preferentially adsorb the liquid phase. Our starting
point is the effective interfacial Hamiltonian for shallow
wedges:

bHflg =E
−X/2

X/2

dxHS

2
Sdy

dx
D2

+ Wsysxd − auxudJ , s3d

whereysxd is the interfacial local height measured with re-
spect to the horizontal,X is the interfacial horizontal length,
kBTS is the interfacial stiffness,kBTWsld is the local binding
potential, andb;1/kBT. We impose periodic boundary con-
ditions at the ends, i.e.,ys−X/2d=ysX/2d. While the model
assumes that the wedge angle is shallowstan a<ad, this
does not influence the universal properties occurring in the
asymptotic critical limitu→a at fixeda. Studies of filling in
acute wedges based on more refined interfacial[9] and mi-
croscopic, Ising models[10] yield identical results for uni-
versal quantities.

Defining the local relative height between the vapor-liquid
interface and the substratelsxd=ysxd−auxu, Eq. (3) can be
rewritten as[2]

bHflg = X
Sa2

2
+E

−X/2

X/2

dxHS

2
S dl

dx
D2

+ SaS dl

dx
Df2Usxd − 1g

+ W„lsxd…J , s4d

where Usxd is the Heaviside step function. Integrating by
parts to eliminate the term proportional tosdl /dxd, the effec-
tive Hamiltonian can be expressed as

bHflg = X
Sa2

2
+ 2SalsX/2d − 2Sals0d

+E
−X/2

X/2

dxHS

2
S dl

dx
D2

+ W„lsxd…J . s5d

The first two terms in the equation are irrelevant constants
for the interfacial properties in the wedge, the third one is the
origin of the boost factor that decreases the pinning effect of
the binding potential[2], and the fourth one corresponds to
the effective Hamiltonian of an equivalent planar interface
problem. As the probability distribution of an interfacial con-
figuration is proportional to exps−bHd we can relate the
wedge and planar probability distributions in a straightfor-
ward way. In particular, then-point wedge correlation func-
tions can be related tosn+1d-point correlation functions in
the planar case by adding the wedge midpoint position.
However, the presence of the boost factor will alter signifi-
cantly the behavior of the wedge correlation functions with
respect to their planar counterparts.

Our approach is based on a standard application of
transfer-matrix methods [13]. The partition function
Zpsl1, l2,x1,x2d of the interface with fixed end pointssx1, l1d
andsx2, l2d with x2.x1 in the presence of aplanar substrate
is defined as the following path integral:

Zpsl1,l2,x1,x2d ; Zpsl1,l2;x2 − x1d

=E Dl expS−E
x1

x2

dxFS

2
S dl

dx
D2

+ WsldGD .

s6d

The partition function, Eq.(6), is the solution of the fol-
lowing Schrödinger equation:

F ]

] x
+ Wsl2d −

1

2S

]2

] l2
2GZpsl1,l2;xd = 0, s7d

with the initial condition

Zpsl1,l2;0d = dsl2 − l1d, s8d

wheredsxd is the Dirac delta function. Formally, the partition
function can be expressed as

Zpsl1,l2;xd = o
i

ci
psl1dcisl2dexps− Eixd, s9d

wherecsld andEi are the eigenfunctions and eigenvalues of
the time-independent Schrödinger equation:
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−
1

2S
cn9sld + Wsldcnsld = Encnsld, s10d

with appropriate boundary conditions. In the thermodynamic
limit Zp,exps−bfXd as X→`, where bf =Sscosu−1d is
the excess free energy per interfacial length. Consequently,
Eq. (9) implies thatE0=bf, so that in the low contact angle
limit, E0<−Su2/2.

The n-point distribution functions can be obtained in
terms ofZpsl1, l2;xd as

Pps1; . . . ;nd = lim
X→`

p
i=0

n

Zpsl i,l i+1;xi+1 − xid

Zpsl−X/2,lX/2;Xd

= c0sl1dc0
pslndp

i=1

n−1

Zpsl i,l i+1;xi+1 − xideE0sxi+1−xid,

s11d

where i ;sl i ;xid, xn+1=−x0;X/2, and l0= ln+1= lX/2. For n
=1, Ppsid;uc0sl idu2. From Eqs.(11) and(9) it is clear that if
the distance between two subsetshx1, . . . ,xmj and
hxm+1, . . . ,xnj is much greater than theplanar correlation
lengthji ;1/sE1−E0d (with E1 the first excited state eigen-
value), the distribution function factorizes and the two sub-
sets become uncorrelated.

The n-point wedge distribution functionsPws1; . . . ;nd
can be expressed, in general, in terms ofsn+1d-point
planar distribution functions. So, for a set
hx−m, ¯ ,x−1,0,x1, ¯xnj, they can be expressed as

Pws− m; . . . ;nd =E
0

`

dl0
e2Sal0

k0ue2Sal0u0l
Pps− m; . . . ;

− 1;0;1; . . . ;nd

=
Pws− 1;1dPps− m; . . . ;nd

Pps− 1;1d
, s12d

where knufslduml;e0
` dlcnsldfsldcm

p sld. If 0 øx1, ¯ ,xn,
the expression ofPws1; . . . ;nd is slightly simpler:

Pws1; . . . ;nd =E
0

`

dl0
e2Sal0

k0ue2Sal0u0l
Pps0;1; . . . ;nd

=
Pws1dPps1; . . . ;nd

Pps1d
. s13d

A similar expression is found ifx1, ¯ ,xnø0. Finally, if
x=0 is included in thex set, the wedgen-point distribution
function reduces to

Pws− m; . . . ;nd =
e2Sal0

k0ue2Sal0u0l
Pps− m; . . . ;nd. s14d

Although this approach is general for arbitrary binding
potentials, we will restrict ourselves to some special cases.
The first case will be contact potentials, in whichWsld=0 for
l .0, Wsld= +` for l ,0 and at the wall the eigenfunctions
fulfill the boundary condition[13]

U ]

] l
ln csldU

l=0
= − t, s15d

where t is proportional to the deviation from the critical
wetting temperature. Fort.0 the contact angle is related to
t via t=Su [13]. These potentials can be understood as the
limiting case of a square-well binding potential when the
well width tends to zero. Its importance is threefold. First,
this case corresponds to the filling fluctuation regime, which
previous studies show to be the relevant one for potentials
which decay faster than 1/l. Second, there is an analytical
expression forZpsl1, l2;xd [13] given by

Zpsl1,l2;xd =Î S

2px
se−Ssl2 − l1d2/2x + e−Ssl1 + l2d2/2xd

+ tet2x/2S−tsl1+l2derfcSÎ S

2x
sl1 + l2d − tÎ x

2S
D .

s16d

Finally, this case can be compared to more microscopic re-
sults, such as the exact solutions of the interfacial properties
of the corner filling of an Ising model.

Another interesting case is the Kratzer binding potential
[14]

Wsld = −
fu

l
+

w

l2
, s17d

wheref=s1+Î1+8Swd /2 and we assume Dirichlet bound-
ary conditions at the origin. Previous studies indicate that
this class of binding potentials corresponds to the marginal
case between the mean-field and fluctuation-dominated re-
gimes for the critical filling transition. The Laplace transform

of Zpsl1, l2;xd, Z̃psl1, l2,Ed is given by[14]

Z̃psl1,l2,Ed

=E
0

`

dx eExZpsl1,l2;xd

=

ÎE0

E
GFfS1 −ÎE0

E
DG

uGf2fg
WfÎE0/E,f−1/2sÎ− 8SEl.d

3MfÎE0/E,f−1/2sÎ− 8SEl,d, s18d

where E0=−Su2/2, l.=maxsl1, l2d, l,=minsl1, l2d, Gsxd is
the Gamma function, and finallyMk,mszd and Wk,mszd are
Whittaker functions, related to confluent hypergeometric
functions.

III. EXACT RESULTS FOR CONTACT BINDING
POTENTIALS

In this section we will obtain and analyze some relevant
wedge distribution functions for contact binding potentials.
In particular, we will revisit the 1-point distribution function
(considered previously by our group[12]) and the 2-point
height-height correlation function between the midpoint and
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any other interfacial positions. Related quantities as the av-
erage interfacial profileklsxdlw, the local roughnessj'sxd,
and the correlation length across the wedgejx (see Fig. 1)
will be also obtained.

Some results are already known for the 1-point distribu-
tion functions. The probability distribution function for the
midpoint x=0 interfacial height is given by[2]

Pw
1sl0;u,ad ; Pwsl0,0d = 2Ssu − ade−2Ssu−adl0, s19d

which verifies the remarkable covariance relationship, Eq.
(2).

For arbitraryxù0 the 1-point distribution function has
the expression[12]

Pwsl,xd = Sue−2SulerfcS−ÎSx

2
u +Î S

2x
lD

+ Ssu − ade2Ssa−udle2Saxsa−ud

3 erfcSÎSx

2
su − 2ad −Î S

2x
lD

− Sae−2Sale2Saxsa−ud

3 erfcSÎSx

2
su − 2ad +Î S

2x
lD . s20d

For x,0, we have the symmetryPwsl ,xd=Pwsl ,−xd, so here-
after we will consider only the casexù0.

The momentsklnsxdlw can be obtained after some algebra.
The average interfacial position profile reads

klsxdlw =
1

2Su
+Î x

2pS
e−sSu2/2dx + F u

u − a
−

u

a
G

3
e2Saxsa−ud

4Su
erfc SÎSx

2
su − 2adD

+ F 1

4Su
S u

u − a
+

u

a
− 2D −

ux

2
GerfcSÎSu2

2
xD .

s21d

The wedge excess adsorptionGw measured with respect to
the planar case can be obtained as

Gw = 2srl − rgdE
0

` Sklsxdlw −
1

2Su
Ddx

=
rl − rg

2S2 F 1

usu − ad2 −
1

u3G , s22d

where rg and rl are the coexistence densities of the vapor
and liquid phases, respectively. Close to the filling transition
su→ad, Gw,2srl −rgdkls0dlw

2 /a.
The roughness profilej'sxd (see Fig. 1) is defined as

Îkl2sxdlw−klsxdlw
2, wherekl2sxdlw is given by

kl2sxdlw =
1

2S2u2 − S−
1

Ssu − ad
−

1

Sa
+

1

Su
+ uxD

3Î x

2pS
e−sSu2/2dx + F u2

su − ad2 −
u2

a2G
3

e2Saxsa−ud

4S2u2 erfcSÎSx

2
su − 2adD

− F 1

4S2u2S−
u2

su − ad2 −
u2

a2 + 2D
−

ux

2S
S a

u − a
−

u − a

a
D +

x2u2

2
GerfcSÎSu2

2
xD .

s23d

For generaln, the following expression can be obtained by
induction:

klnsxdlw = klnlpF1 +
1

2
S u n

su − adn −
u n

anDe2Saxsa−ud

3 erfcSÎSx

2
su − 2adDG + PnsxdÎ x

2pS
e−sSu2/2dx

+ Qnsxderfc SÎSu2

2
xD , s24d

whereklnlp=n! / s2Sudn and Pnsxd andQnsxd are polynomi-
als in x of ordern−1 andn, respectively.

These expressions are only valid ifu.a (for smaller val-
ues of u the interface is unbound from the wedge). For x
→0, Eq. (20) reduces to Eq.(19). On the other hand, for
uxu→`, Pwsl ,xd decay toPpsld;2Su exps−2Suld. However,
the scale over which this decay occurs depends on the value
of a. If uù2a, this scale is the planar correlation lengthji

;2/Su2. However, if a,u,2a, the decay length isjF
;1/2Sasu−ad (our notation differs slightly from the one
used in Ref.[12]). Note thatjF is always larger thanji, and
diverges on approaching the filling transition. On the other
hand,jF is related geometrically with the wedge midpoint
average interfacial height viajF=kls0dlw/a<kls0dlw/ tan a
for small a.

It is amusing to note that Eq.(20) verifies the following
differential relation:

Pwsl,xd + jFS ] Pwsl,xd
] x

D
= Lpsl,xd

; Ppsld +
1

u

]

] x
E

0

`

dl0l0Ppsl0,0;l,xd, s25d

whereLpsl ,xd is for contact binding potentials,
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Lpsl,xd = Sue−2Sulerfc S−ÎSx

2
u +Î S

2x
lD

+ 2Î S

2px
e−sÎsSx/2du + ÎsS/2xdld2. s26d

Note that the right hand side(RHS) of Eq. (25) depends only
on the planar properties and, consequently, is independent of
a. It can be shown that Eq.(25) is obtained forany binding
potential if the left hand side(LHS) is expanded in powers of
a and truncated at the lowest-order term, which is indepen-
dent of a. Consequently, this differential field equation im-
plies an infinite hierarchy of integro-differential relationships
for the 2-point planar correlation function. Alternatively, Eq.
(25) provides an elegant route to the calculation of any mo-
ment of the interfacial height. Multiplying Eq.(25) by arbi-
trary power ofl and integrating over all the possible values
of l, the following differential equations are obtained:

klnsxdlw + jF
dklnsxdlw

dx
=E

0

`

dl lnLpsl,xd

; klnlp +
1

u

d

dx
kls0dlnsxdlp, s27d

wherek¯lw andk¯lp mean the average with the wedge and
the planar distribution function, respectively. The RHS of
Eq. (27) depends only on the planar distribution functions,
and consequently decays toklnlp for distances larger thanji.
Close to the filling transition,jF@ji, and we can approxi-
mate Eq.(27) for x*jF by

klnsxdlw + jF
dklnsxdlw

dx
< klnlp, s28d

which has as a solution klnsxdlw<klnlp+fklns0dlw

−klnlpgexp s−x/jFd. Taking into account thatklns0dlw@ klnlp

close to the filling transition, the approximate solution can be
simplified even further to klnsxdlw<klns0dlwexp s−x/jFd
[which is equivalent to setklnlp=0 in Eq. (28)]. These find-
ings are obviously in agreement with Eq.(24) and the
asymptotic behavior ofPwsl ,xd for largex andu,2a [12].

It is interesting to note that the moments obtained from
the actual 1-point distribution function are the only solutions
of Eq. (27) that (a) decay exponentially within a length scale
ji for 0,a /u!1 andx→`; (b) are analytical as a function
of a for 0øa,u, in particular, at the disorder point. The
existence of the relationship, Eq.(25), from which covari-
ance for the moments of the interfacial position profile atx
=0 can be inferred provided the(a) and(b) regularity condi-
tions are fulfilled, leads us to speculate on the existence of a
hidden symmetry of the Hamiltonian that explains wedge
covariance. However, the nature of such a symmetry(if any)
is completely unknown.

In the mean-field approximation, the average interfacial
position profile for binding potentials characterized by a
critical exponentas=0 fulfills the following generalized co-
variance relationship[15]:

lsxd = lpSu − Udlsxd
dx

UD , s29d

wherelsxd represents the(averaged) interfacial position atx,
and lpsud is the planar(averaged) interfacial position for a
given contact angleu. Making the substitution lsxd
→ klsxdlw, it is clear from Eq.(21) that this extended covari-
ance is not verified forxÞ0 (even asymptotically whenx
→0 or uxu→`). However, it is remarkable that there exists
an analogous to Eq.(29), given by Eq.(27) for n=1.

To finish our discussion about the 1-point distribution
functions, we compare our results with computer simulations
of the 2D Ising model[11]. Close to the filling transition
point, we expect that the approximate solution to Eq.(28) for
n=1 will be generalized for arbitrarya to

klsxdlw <
kllp

cosa
+ Skls0dlw −

kllp

cosa
De−x/jF, s30d

where nowjF is defined askls0dlw/ tan a. We have tested this
approximation with the simulation results reported in Ref.
[11] (see Fig. 2). The symbols correspond to the simulation
data obtained for a square 64364 Ising lattice with zero bulk
magnetic field and boundary magnetic fields +h for the
boundary rows ending at the lower left corner, and −h for the
remaining boundary rows. In this geometry,a=p /4. The
temperature is set toT=Tc/2, whereTc is the bulk critical
temperature. For this temperature anda the critical filling
transition occurs athc/J=0.606. Figure 2 shows the com-
puter simulation results forh/J=0.595,0.597, and 0.599. We
have no direct estimation ofkllp. However, we have obtained
kllp by fitting the simulation data withuxuø16 lattice spac-
ings (in order to minimize the effect of the upper left and
lower right heterogeneous wedges) to Eq. (30). The best fit-
ting values are, in lattice spacing units,kllp=0.314,0.335,

FIG. 2. Comparison betweenklsxdlw obtained in Ref.[11] by
Ising model computer simulations for boundary magnetic fields
h/J=0.595 (circles), h/J=0.597 (squares), and h/J=0.599 (dia-
monds); and the approximation given by Eq.(30) (continuous
lines). The Ising model parameters are the following:a=p /4, the
temperatureT=Tc/2, and the bulk magnetic fieldHbulk=0. The
boundary magnetic field at the critical filling ishc/J=0.606. The
lengthsuxu andklsxdlw are measured in lattice spacing units. See text
for explanation.
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and 0.436 forh/J=0.595,0.597, and 0.599, respectively. As
it can be seen, the fitting to the simulation data is quite good,
despite the crude approximations involved in Eq.(30).

Now we want to characterize the 2-point correlations, in
particular, the correlations between the interfacial position
above the wedge midpoint and the corresponding to an arbi-
trary x, which are given by the following function:

kflsxd − klsxdlwgfls0d − kls0dlwglw

; klsxdls0dlw − klsxdlwkls0dlw

=
1

2S
S ] klsxdlw

] a
D . s31d

Substituting Eq.(21) into Eq. (31), we obtain

klsxdls0dlw − klsxdlwkls0dlw

=Î x

2pS

s2a − ude−sSu2/2dx

2Sasu − ad
+

1

8S2u2S u2

su − ad2 −
u2

a2D
3erfc SÎSu2

2
xD +

e2Saxsa−ud

8S2u
F u

su − ad2 +
u

a2

+
2Ssu − 2ad2ux

asu − ad Gerfc SÎSx

2
su − 2adD . s32d

This function decays exponentially to zero for largex. How-
ever, the characteristic correlation lengthjx (see Fig. 1) de-
pends ona: it is ji for u.2a andjF if a,u,2a. Conse-
quently, the disorder point not only introduces a new length
scale for the average interfacial profile, but also for the in-
terfacial fluctuations.

IV. RESULTS FOR THE KRATZER BINDING
POTENTIALS

The Kratzer binding potential[see Eq.(17)] is the border-
line between the filling mean-field and filling fluctuation re-
gimes. While not of direct physical significance, it is instruc-
tive to consider this case in order to understand the influence
of a marginal operator on the critical properties. For such
potentials the wedge midpoint probability distribution func-
tion also obeys wedge covariance, Eq.(2):

Pw
1sl0;u,ad =

f2Ssu − adg2f+1l0
2f

Gf2f + 1g
expf− 2Ssu − adl0g

= Pp
1sl0;u − ad. s33d

It is possible to extend the transfer analysis and obtain exact
results for other quantities of interest. Consider, for example,
the 1-point probability distribution functionPwsl ,xd. The

Laplace transformP̃wsl ;Ed can be expressed as

P̃wsl ;Ed =E
0

`

dl0e
Ss2a−udl0

s2Sud2f+1sl0ldf

Gf2f + 1g

3 exps− SuldZ̃psl0,l,E − Su2/2d, s34d

whereZ̃psl0, l ,Ed is given by Eq.(18). This reduces to

P̃wsl ;Ed =
lfs2Sud2f+1e−Sul

uGf2f + 1gGf2fg
kGffs1 − kdg

3 HE
0

`

l0
feSs2a−udl0Wkf,f−1/2S2Sul0

k
D

3 Mkf,f−1/2S2Sul

k
D −E

0

l

l0
feSs2a−udl0

3 FWkf,f−1/2S2Sul0
k

DMkf,f−1/2S2Sul

k
D

− Wkf,f−1/2S2Sul

k
DMkf,f−1/2S2Sul0

k
DGJ ,

s35d

wherek;1/Î1−2E/Su2. The poles ofP̃wsl ;Ed in theE real
positive semiaxis are the characteristic inverse length scales
across the wedge ofPwsl ,xd. Since the second integral is
over a finite interval and the integrand does not diverges in
that range, no new length scale emerges from it. For the first
integral, we take into account that[16]

E
0

`

xn−1exps− pxdWk,msaxddx

=
Gfm + n + 1/2gGfn − m + 1/2gam+1/2

Gfn − k + 1gsp + a/2dm+n+1/2

32F11m + n +
1

2
,m − k +

1

2
;n − k + 1;

p −
a

2

p +
a

2
2 ,

s36d

where2F1sa,b,c;xd is a hypergeometric function. Ifu.2a,
the integral does not introduce any new characteristic length.
However, fora,u,2a a new singularity emerges forSsu
−2ad+Su /k=0, i.e., E=2Sasu−ad=1/jF. Remarkably,jF

has the same expression as for contact binding potentials,
and is proportional(but not equal) to kls0dlw/a.

From this it follows that the nonthermodynamic singular-
ity occurring atu=2a mentioned in the preceding section is
not specific to contact potentials. A simple geometrical argu-
ment given in Ref.[12] explains why. The most relevant
interfacial fluctuations are those where the interface leaves
the substrate with a contact angleu (relative to the tilted
wall) at an arbitrary substrate point. Ifu.2a, the other side
of the wedge does not play any role and we can anticipate
that the only length scale that controls the 1-point distribu-
tion decay isji. However, ifu,2a, the interface will even-
tually reach the other substrate, and consequently we can
expect the geometry to play an important role leading to the
emergence of a new length scale. Formally, this nonthermo-
dynamic singularity occurs when the following integrals that
arise from the spectral expansion ofZpsl1, l2;xd,
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E
0

`

c0sldexps2Saldcp
psld, s37d

become ill defined. There,cpsld are the scattering eigenstates
with eigenvaluesE=p2/2S and c0sld is the ground eigen-
state. A straightforward WKB asymptotic analysis for the
eigenfunctions shows that, forpÞ0, the integrals given by
Eq. (37) become ill defined foru,2a for quite arbitrary
choices of binding potential.

As u /a decreases,jF exceeds the intrinsic interfacial
length scales 1/sEi −E0d, and becomes the true correlation
length across the wedgejx at an another disorder point when
jF=ji (recall thatjx=ji for u /a larger than the value at the
disorder point). For the case of contact binding potentials
both nonthermodynamic singularities occur at the same value
u=2a. However, in general, the nonthermodynamic singu-
larities are distinct provided there are at least two bounded
eigenstates of Eq.(10). For the pure Coulomb casesf=1d
the second disorder point occurs atu=4a /3.

Close to the new singularityjF
−1 we found that

Pwsl ;Ed ,
1

sjF
−1 − Ed1+2fa/s2a−ud EjF → 1−, s38d

so Pwsl ,xd behaves asymptotically for large values ofx as
x2fa/s2a−udexps−x/jFd, provided thatji ,jF.

A field equation analogous to Eq.(25) can be found for
Kratzer potentials. Transfer-matrix calculations for arbitrary
binding potentials lead to the relation

k0ue2Salu0lH u − a

u
FPwsl,xd + jFS ] Pwsl,xd

] x
DG

−E
0

`

dl0
c̄08sl0d

Suc̄0sl0d
Pwsl0,0;l,xdJ

= Lpsl,xd −E
0

`

dl0
c̄08sl0d

Suc̄0sl0d
Ppsl0,0;l,xd, s39d

where c̄0sl0d;c0sl0dexpsSul0d and c̄08sl0d is its derivative
with respect tol0 [recall thatc0sl0d is the ground state eigen-

function]. For Kratzer potentials,c̄0sl0d~ l0
f, so Eq.(39) can

be expressed as

S u

u − a
Df] Pwsl,xd

] a
+

]

] a
FjFS u

u − a
Df] Pwsl,xd

] x
G = 0.

s40d

As for the contact binding potential case, some interesting
quantities can be evaluated from this expression. For ex-
ample, the wedge adsorption is found to be

Gw = s2f + 1dsf + 1dGCP, s41d

where GCP is the adsorption corresponding to the contact
binding potential, Eq.(22).

V. THE BREATHER MODE PICTURE

In order to understand the origin of the new correlation
length jF we identified in previous sections, we recall the
definition of the 2-point distribution function forx2.x1ù0,
Eq. (13). This expression can be written in the following
way:

Pw
c sl2,x2ul1,x1d = Pp

c sl2,x2ul1,x1d ; Pp
c sl2,x2 − x1ul1,0d,

s42d

wherePw
c sl2,x2u l1,x1d and Pp

c sl2,x2u l1,x1d are, respectively,
the wedge and the planar conditional probability of the inter-
face being at a relative heightl2 from the substrate atx2,
provided that the interface is pinned at a relative heightl1 at
x1, defined as

Pi
csl2,x2ul1,x1d =

Pisl1,x1; l2,x2d
Pisl1,x1d

, s43d

where the subscripti indicates if this probability is consid-
ered in the wedgesi =wd or in the planarsi =pd geometry.

In view of the identity between the wedge and planar
conditional probability distribution functions we first con-
sider the case of a planar substrate. The conditional probabil-
ity can be obtained as

Pp
c sl2,xul1,0d =

c0
psl2d

c0
psl1d

e−sSu2/2dxZpsl1,l2;xd. s44d

For contact binding potentials, Eq.(44) can be written ex-
plicitly as

Pp
c sl2,xul1,0d =Î S

2px
e−Ssl2 − l1 + uxd2/2x

+ e−2Sul2FÎ S

2px
e−Ssl1 + l2 − uxd2/2x

+ SuerfcSÎ S

2x
sl1 + l2 − uxdDG . s45d

If l1 is very large compared withkllp;1/2Su, we can iden-
tify two different behaviors ofPp

c sl2,xu l1,0d as a function of
l2 (see Fig. 3). If x, l1/u, the conditional probability is ba-
sically the free interface conditional probability that fluctu-
ates around an average valuekl2sxdl= l1−ux, with a standard
deviation of the order ofÎx/S. For x. l1/u, the conditional
probability becomes the 1-point planar distribution function
Ppsl2d=2Su exps−2Sul2d, completely uncorrelated to the
value of l1. The transition between the two regimes occur in
an x interval aroundxt= l1/u which has a width of the order
of Î2l1/Su3;Îxtji. These results are confirmed by the exact
evaluation of the first moments of the conditional probabil-
ity:

kl2
nlcsl1,xd =E

0

`

dl2l2
nPp

c sl2,xul10d. s46d

The average conditional interfacial profile, which corre-
sponds ton=1, is given by
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kl2lcsl1,xd = sl1 − uxd +Î S

2px
e−Ssl1 − uxd2/2x

+ F 1

4Su
−

l1 − xu

2
GerfcSÎ S

2x
sl1 − uxdD

−
e2Sul1

4Su
erfcSÎ S

2x
sl1 + uxdD s47d

and the conditional roughnessj'
c sl1,xd is defined as

Îkl2
2lc−skl2lcd2, wherekl2

2lcsl1,xd can be written as

kl2
2lcsl1,xd = Fsl1 − uxd2 +

x

S
G − S 1

Su
− l1 + uxD

3Î S

2px
e−Ssl1 − uxd2/2x + F x

2S
−

1

4S2u2

+
sl1 − xud2

2
GerfcSÎ S

2x
sl1 − uxdD

+ Fxu + l1 −
1

2Su
Ge2Sul1

2Su
erfcSÎ S

2x
sl1 + uxdD .

s48d

We obtain two main conclusions from these results when
l1@ kllp. First, the interfacial positions are highly correlated
to the central one foruxu, l1/u. Second, the intrinsic interfa-
cial fluctuations are small in thisx range compared to the
conditional average value. Actually, if we setl1 as the length
scale, the rescaled conditional probability distribution func-

tion P̃p
c sl2/ l1,x/ l1u1,0d; l1Pp

c sl2,xu l1,0d behaves as

P̃p
c sl2/l1,x/l1u1,0d → dS l2 − l1 + ux

l1
DUsl1 − uxd

+ dS l2
l1
DUsux − l1d, s49d

when Sul1→`. We expect this result to be valid for any
potential and also for random bond disorder, since in all
cases the wandering exponent for the free interfacez,1.
This can be checked for the marginal 1/l potential. The
Laplace transform of the conditional probability distribution
is

LfPp
c sl2,xul1,0dg ; E

0

`

dx eExPp
c sl2,xul1,0d

=
c0

psl2d
c0

psl1d
Z̃psl1,l2,E − Su2/2d. s50d

For S→` at fixed E,u , l1, and l2, and taking into account
Eq. (18) and that the ground state eigenfunctionc0sld
~ lfexps−Suld, we obtain the following behavior for the
Laplace transform of the conditional probability distribution
function:

LfPp
c sl2,xul1,0dg → 1

u
Usl1 − l2deEsl1−l2d/u −

dsl2d
E

eEl1/u.

s51d

The Laplace transform can be inverted, leading to Eq.(49).
To proceed, we return to our discussion about the wedge

geometry. Due to the presence of the boost factor exps2Sald
in the midpoint probability distribution function, the mid-
point interfacial height is almost always further from the sub-
strate than the mean wetting layer thicknesskllp for any
binding potential. If we assume that the conditional probabil-
ity distribution function is given by Eq.(49), which corre-
sponds to neglecting the intrinsic interfacial fluctuations
around the conditional interfacial profile, we can capture the
main features of both the average interfacial profile and the
correlations along the wedge for contact binding potentials.
Actually, this picture is completely equivalent to the 2D
wedge breather mode model[3,4].

The average interfacial profile can be written as

klsxdlw =E
0

`

dl1Pwsl1,0dFE
0

`

dl2l2Pp
c sl2,xul1,0dG

< E
ux

`

dl1Pwsl1,0dsl1 − uxd

=E
0

`

sPwss+ ux,0dds. s52d

The behavior ofklsxdlw for largex is dominated by the large
l asymptotics ofPwsl ,0d. The latter can be obtained by tak-
ing into account Eq.(14) for m=n=0 and making use of the
WKB approximation for the 1-point planar distribution func-
tion:

FIG. 3. Illustration of a typical interfacial configuration pinned
at l1@ kllp for x=0 (thin continuous line). We have setS=1 (it
defines the length scale), u=0.2, andl1=500. The thick continuous
line corresponds to the conditional average profilekl2lcsl1,xd, and
the dotted lines correspond to max(0,kl2lcsl1,xd±3j'

c sl1,xd), where
j'

c sl1,xd is the conditional roughness. Any interfacial configuration
has a probability of at least 95% of being between the dotted lines.
Inset: an enlargement of the area aroundxt= l1/u. Other character-
istic length scales are represented. See text for explanation.
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Ppsld ,
1

Î1 +
2Wsld
Su2

expS− 2SuEl

dtÎ1 +
2Wstd
Su2 D

, e−2SulexpS− 2El

dt
Wstd

u
D, l → `. s53d

The first thing we can see is that, for largex, the decay of
klsxdlw in this approximation is controlled by an exponential
term expf−2Susu−adxg. So, a new length scalejF

p is defined
as 1/2Susu−ad. Close to the filling transition,jF

p =jF

−1/2Sau,jF+Os1d.
Depending on the largel behavior of the(attractive) bind-

ing potentials, different situations can arise[5]. The filling
mean-field regime is characterized by binding potentials that
decay to zero as 1/lp wherep,1/z−1, implying z,1 for
thermal disorder(the wandering exponentz=1/2). A saddle
point calculation shows that close to the filling transition
kls0dlw,1/Ssu−adp. As u→a, the relevant length scale in
the x direction, kls0dlw/u@jF

p , so the latter length scale is
irrelevant (in fact, intrinsic interfacial fluctuations that we
neglected can be more important).

For p=1, both length scales become of the same order,
and consequentlyklsxdlw,kls0dlwfsx/jF

pdexps−x/jF
pd, where

fsxd diverges at most algebraically, and depends on the de-
tailed structure of the binding potential through the short
distancel dependence ofPwsl ,0d. For a pure 1/l potential,
fsxd=s1+2x/3+x2/6d. This expression verifies the differen-
tial equation forklsxdlw that arises from Eq.(40) in the scal-
ing limit.

The filling fluctuation regime corresponds to potentials
with p.1, and is characterized by universal critical expo-
nents and scaling functions. Indeed in the critical regime the
scaling behavior is the same as that found for contact binding
potentials. Forx→`, we find that asymptoticallyklsxdlw

,kls0dlwexps−x/jF
pd. This solution agrees with the asymptot-

ics of klsxdlw for contact binding potentials whenu→a, al-
though with a decay length slightly smaller. However, the
behavior is asymptotically correct if we assume thatjF

p ;jF.
For the correlation functions, we have

klsxdls0dlw − klsxdlwkls0dlw =E
0

`

dl1l1Pwsl1,0dDsl1,xd,

s54d

whereDsl1,xd is defined as

Dsl1,xd =E
0

`

dl2l2fPp
c sl2,xul1,0d − Pwsl2,xdg. s55d

In the breather mode approximation,Dsl1,xd can be obtained
as

Dsl1,xd < sl1 − uxdUsl1 − uxd − klsxdlw. s56d

We find different behaviors depending on the value ofp. In
the filling mean-field regime,Dsl1,xd is negligible in this
scale. For the filling fluctuation regime, the correlation func-
tion decays as

klsxdls0dlw − klsxdlwkls0dlw , kls0dlw
2S1 +

x

jF
p De−x/jF

p

,

s57d

and again is in agreement with the behavior of the exact
correlation function for contact binding potentials, Eq.(32),
whenx→` andu→a (assuming again thatjF

p ;jF). Finally,
for the marginal casep=1 the behavior of the correlation
function is predicted to be forx→` as kls0dlw

2gsx/
jF

pdexps−x/jF
pd, wheregsxd is a function that diverges at most

algebraically.
Another quantity of interest is the midpoint local suscep-

tibility xwsld defined as

xwsld = U ] rsld
] h

U
h=0

= 2srl − rvdE
l

`

dsPwss,0dDssd,

s58d

whereDsld;e0
` dxDsl ,xd. In the breather mode approxima-

tion and in the filling fluctuation regime,Dssd has the follow-
ing expression:

Dsld =
1

u
S l2

2
− kls0dlw

2D , s59d

which is exact for contact binding potentials. This expres-
sion, together with the midpoint wedge covariance, Eq.(2),
leads to the covariance relationship between the local suscep-
tibilities [5]:

xwsl ;u,ad =
u − a

u
xpsl,u − ad, s60d

wherexpsl ,ud is the local susceptibility corresponding to the
planar geometry for a contact angleu.

Finally, we note that the breather mode picture has direct
consequences for the scaling of the interfacial profile in the
filling fluctuation regime. To see this, recall that the wedge
midpoint probability distribution function scales as[5]

Pwsld =
1

kls0dlw
LS l

kls0dlw
D , s61d

whereLssd is a universal function and, due to covariance, is
the same as the scaling function for the corresponding planar
1-point probability distribution function. Complementing the
scaling of the probability distribution function is the position
dependence of the interfacial profile, which we anticipate
satisfies

klsxdlw = kls0dlwfS ux

kls0dlw
D , s62d

where fssd is another universal function. In the breather
mode picture, the interface is infinitely stiff in the filled re-
gion implying that the scaling functionsLssd and fssd are
related via
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fssd =E
s

`

ds̄Lss̄dss̄− sd s63d

or equivalently

f9ssd = Lssd. s64d

A remarkable consequence of this relation is that the behav-
ior of the interfacial profile close to the midpoint is deter-
mined by the short distance behavior of the wedge midpoint
1-point probability distribution function. SinceLssd,s1/z−2

ass→0 [5], we havefssd,1−usu+Ausu1/z for small s. Note
that the first two terms are needed to preserve the continuity
of the true interfacial profilekysxdlw and its derivative at the
wedge midpoint. This result suggests that the interface be-
haves, for small values ofx, as a random walk ofx as a
function of z. This prediction is consistent with the behavior
of klsxdlw for contact binding potentials in the scaling limit
u→a, ji /jF→0 but x/jF finite.

To conclude we note that Eq.(64) is also obeyed by the
(nonuniversal) scaling functions corresponding to the mar-
ginal case.

VI. RENORMALIZATION GROUP APPROACH TO THE
CRITICAL FILLING TRANSITION

In this section we will justify the critical properties of the
filling transition using a renormalization group framework.
Specifically we will generalize an exact decimation func-
tional renormalization group procedure previously used to
study 2D critical wetting[17–19]. Our transfer-matrix results
show that geometry plays a fundamental role in determining
the critical behavior, so we anticipate that the appropriate
renormalization group procedure must preserve the wedge
shape. This implies that the effective wandering exponentz
determining the rescaling of the interfacial heightl must be
z=1. This contrasts with the valuez=1/2, which is appro-
priate for free interfaces and also planar wetting transitions.
We will see that this choice leads naturally to the breather
mode picture of the filling transition, implying that interfa-
cial fluctuations are irrelevant except for those that determine
the wedge midpoint interfacial position.

Before introducing the renormalization group scheme, we
generalize some of the results of previous sections. The set
of s2n+1d-point distribution functions that includes the mid-
point interfacial position can be obtained in terms of the
planar case counterpart by Eq.(14). If we setu=a, it is clear
from that expression thatPws−n; . . . ;nd;0 at the critical fill-
ing transition for any value ofn. However, all the correlation
functions decay at the same rate, since Eq.(14) can be re-
written as

Pws− n; . . . ;nd = Pws0d
Pps− n; . . . ;nd

Pps0d
. s65d

Consequently, theconditional s2n+1d-point probability dis-
tribution function remains finite at the filling transition. The
only relevant operator(in a renormalization group sense)
should be related only to the 1-point probability distribution
function at the midpoint. Taking into account Eq.(11) and

the definition of the 2-point conditional probability distribu-
tion function, Eq.(44), we can rewrite Eq.(65) as

Pws− n; . . . ;nd = Pws0dp
i=0

n−1

Pp
c sl i+1,xi+1 − xiul i,0d

3 p
i=−n

−1

Pp
c sl i,xi+1 − xiul i+1,0d, s66d

where we have chosen the ground state eigenfunction to be
real and positive. The 2-point conditional probability distri-
bution function has a nontrivial limit whenSul1→` [see Eq.
(49)]. Our goal will be to find a renormalization group
scheme in which the 2-point conditional probability distribu-
tion function converges to this limit, and the only relevant
operator is related to the wedge midpoint 1-point distribution
function.

Let us consider a discrete version of the interfacial Hamil-
tonian, Eq.(3):

bH = o
i=−n

n−1 HS

2
szi+1 − zid2 + Wszi − iadJ , s67d

where the spacing between sitesa=1 defines the length unit
for l, S−1, etc. Using a similar transformation to the continu-
ous case, Eq.(67) can be written as

bHflg = 2n
Sa2

2
+ 2Saln − 2Sal0 + o

i=−n

n−1 HS

2
sl i+1 − l id2

+
Wsl id + Wsl i+1d

2
J , s68d

where periodic boundary conditions have been appliedsln
= l−nd. To simplify our discussion, we will considern→`
and neglect the boundary effects. The probability of any in-
terfacial configuration is given by

Pwshl ijd =
e−bH

Z
= e2Sal0+bfW p

i=−`

`

e−bH̃sl i,l i+1d, s69d

whereH̃sl i , l i+1d is defined as

bH̃sl i,l i+1d = bfs +
S

2
sl i+1 − l id2 +

Wsl id + Wsl i+1d
2

, s70d

wherefs is the planar surface free energy per unit length and
is related to the contact angle corresponding to the binding
potentialWsld via

bfs =
1

2
lnS S

2p
D −

Su2

2
. s71d

For u=0, bfs converges towards the free interface free en-
ergy per unit length. Note that in the continuum limit, Eq.
(6), this term is absorbed in the path measure. On the other
hand,bfW is defined as
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bfW = lim
n→`

HS− ln Z + 2n
Sa2

2
D − 2nbfsJ , s72d

which corresponds to the wedge excess free energy(we sup-

pose that this quantity is well defined). Note thatH̃sl i , l i+1d is
invariant under an exchange of its arguments.

Let us now consider a decimation procedure, similar to
the one used for the study of 2D critical wetting. We group
the sites in blocks ofb units, keeping the first one and inte-
grating over all the interfacial positions of the remainingb
−1 sites in the block. Since the sitei =0 plays a special role,
the sites to be kept in each decimation step are those withi
= jb, with j PZ. After that, we rescalex positions by a factor
b and l by a factorbz, i.e.,

x → x8 =
x

b
; l i → l j8 =

l jb

bz . s73d

The new HamiltonianbH8˜ sl j8 , l j+18 d is defined as

e−bH̃sl j8,l j+18 d = bzE
0

`

dl1e
−bH̃sbzl j8,l1d

¯ E
0

`

dlb−1e
−bH̃slb−1,bzl j+18 d.

s74d

Note that the renormalized HamiltonianbH̃8sl1, l2d is sym-
metrical under an exchange of its arguments provided that

the originalbH̃sl1, l2d is also symmetrical[even if it is not
defined as Eq.(70)]. This procedure is iterated, leading to a
sequence of renormalized Hamiltonians.

In order to complete the description of the renormaliza-
tion group (RG) procedure we should give the transforma-
tion rules fora andbfW. First we revisit the planar geometry
sa= fW=0d. We will consider the value of the exponentz
arbitrary, unlike in Refs.[17–19], wherez=1/2. In general,
after an arbitrary number of RG steps, we can write any

bH̃sl i , l i+1d as

bH̃sl i,l i+1d =
S

2
sl i+1 − l id2 + W̃sl i,l i+1d +

1

2
lnS S

2p
D −

Su2

2
,

s75d

whereW̃sl i , l i+1d is a symmetric function under exchange of
its arguments. Obviously, in principle this function need not
decay to zero when both arguments are large[as it does in
Eq. (70)]. However, let us suppose that it decays as −A/ fsl i
+ l i+1d /2gp when l i , l i+1→`. After making a RG step, we
would like to find the asymptotic behavior of the renormal-

izedW̃8sl j8 , l j+18 d for large enoughl j8, l j+18 . Expanding the RHS
of Eq. (74) and keeping terms up to first order inW (sincel j8
and l j+18 are large, the values ofl1, . . . ,lb−1 that contribute
most to the integral are also very large), we find that

e−bH̃8 < bzebSu2/2E
0

`

dl1Î S

2p
expS−

Ssbzl j8 − l1d2

2
D . . .

3E
0

`

dlb−1Î S

2p
expS−

Sslb−1 − bzl j+18 d2

2
D

3 F1 − Wsbzl j8,l1d − Wslb−1,b
zl j+18 d

− o
i=1

b−2

Wsl i,l i+1dG . s76d

The lowest-order term(corresponding to setW=0) can be
estimated for largel j8 , l1, . . . ,lb−1, l j+18 by extending the lower
integration limits to −̀ , and has the value

bzebSu2/2E
−`

`

dl1Î S

2p
expS−

Ssbzl j8 − l1d2

2
D . . .

3E
−`

`

dlb−1Î S

2p
expS−

Sslb−1 − bzl j+18 d2

2
D

= ebSu2/2ÎSb2z−1

2p
expS−

Sb2z−1sl j8 − l j+18 d2

2
D . s77d

So, in order that the renormalized binding potentialW8 de-
cays to zero at large values of both its arguments, the inter-
facial stiffness and the contact angle must transform as

S → S8 = Sb2z−1, u → u8 = ub1−z. s78d

Two comments are pertinent at this point. First, the transfor-
mation of the interfacial stiffness is also valid for a free
interface. Second, the change in the contact angle has a geo-
metrical interpretation, since its scaling, Eq.(78), corre-
sponds exactly to the change of small angles under the coor-
dinates scaling, Eq.(73). Thus it is reasonable to expect that
a must change in the same way.

If we take into account the first order inW, we can char-
acterize the decay of the renormalized potential at large val-
ues ofl j8 and l j+18 . For simplicity, we consider the caseb=2.
The renormalized binding potential has the following expres-
sion:

W8sl j8,l j+18 d <ÎS

p
E

−`

0

dl1e
−Ssl1 − 2zfl j + l j+1g/2d2

+ÎS

p
E

0

`

dl1e
−Ssl1 − 2zfl j + l j+1g/2d2fWs2zl j8,l1d

+ Wsl1,2zl j+18 dg = W18sl j8,l j+18 d + W28sl j8,l j+18 d.

s79d

The first termW18 corresponds to the contribution of the hard
wall to the renormalized binding potential andW28 corre-
sponds to the contribution of the original binding potential
W. The hard wall contribution can be evaluated exactly as
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W18sl j8,l j+18 d =
1

2
erfcFÎ22zS

p
S l j8 + l j+18

2
DG

<
expF−

22zS

p
S l j8 + l j+18

2
D2G

Î22zSsl j8 + l j+18 d
, l j8 + l j+18 → `.

s80d

For W28, we take into account the long distance behavior of
W. After some algebra, the leading order ofW28sl j8 , l j+18 d can
be written as

W28sl j8,l j+18 d < −
21−zpA

sl̄ j8d
p
E

−s0/2

`

ds
e−s2

/Îp

f1 + s/s0gp , s81d

wherel̄ j8;sl j8+ l j+18 d /2 ands0;Îp2z+1l̄ j8. As l̄ j8→`, the inte-

gral tends to 1 and we can see thatW8,W28,A8 / sl̄ j8d
p,

whereA8=Ab1−zp. It is interesting to note that this result is
also obtained by the following scaling argument for the bind-
ing potential:

A

lp
→ A8

sl8dp = b
A

lp
= b

A

sbzl8dp =
Ab1−zp

sl8dp , s82d

where we have taken into account that the binding potential
is a free energy perx unit length.

This analysis shows that the RG procedure leaves invari-
ant the functional dependence of the asymptotic behavior of
the binding potential. Two regimes can be identified. If
p.1/z, the binding potential strength decreases in each RG
step. Forp,1/z the binding potential strength grows in each
RG step. Finally, the marginal casep=1/z corresponds to the
leading asymptotic behavior remaining invariant. Forz
=1/2, which is the relevant value for planar wetting phe-
nomena, this behavior leads to the existence of two and three
fluctuation regimes for complete and critical wetting, respec-
tively [20]. Note that this choice ofz keeps the relevant
microscopic scalejb,S−1 invariant. The analysis of the
critical wetting from this RG approach can be found in Refs.
[17–19].

A special class of effective Hamiltonians are the follow-
ing:

expf− bH̃sl i,l i+1dg = Zp
S,Wfl i,l i+1;1ge−Su2/2, s83d

whereZp
S,Wfl i , l i+1;1g is the partition function, Eq.(6), with

x=a;1 for arbitrary values of the interfacial stiffness and
binding potentialWsld. Such Hamiltonians can be regarded
as those which are generated after one iteration of the renor-
malization group provided thatb is very large. Indeed the
fixed points found in Refs.[17–19] belong to this class. Tak-
ing into account the properties of the path integrals, the
renormalized potential after a RG step, Eq.(74), can be writ-
ten as

expf− bH̃8sl j8,l j+18 dg = bzZp
S,Wfbzl j8,b

zl j+18 ;bge−bSu2/2.

s84d

For contact binding potentials, Eq.(6), and Kratzer poten-
tials, Eq.(18), it can be checked that Eq.(84) corresponds to
an effective Hamiltonian of the same form as the original
since

bzZp
S,Wfbzl j8,b

zl j+18 ;bg = Zp
S8,W8fl j8,l j+18 ;1g, s85d

whereS andu are transformed via Eq.(78) to S8 andu8. For
Kratzer potentialsw must change asS−1, i.e., w8=wb1−2z

=w/b in order to preserve the invariance of the leading order
behavior under renormalization.

Finally to finish our discussion of the RG for planar criti-
cal wetting phenomena, we note that the 1-point distribution
function renormalizes as

Pp8 sl08d = bzPpsbzl08d. s86d

We will require this result later. Returning to our discus-
sion about the RG in the wedge geometry, we need to pro-
vide the transformation rules fora andbfW. We will assume
that a changes asu:

a → a8 = ab1−z. s87d

In order to obtain the transformation rule forbfW, we con-
sider how the 1-point midpoint wedge probability distribu-
tion function renormalizes:

Pw8 sl08,0d ; Pp8 sl08de
2S8a8l08+sbfwd8

= bzPpsbzl08de
2Sabzl08+sbfwd8

= bzPwsbzl08,0d, s88d

implying thatbfw remains invariant,

bfw → sbfwd8 = bfw. s89d

Finally, we note that if we change the effective Hamiltonian
by

bHsl i,l i+1d = bH̃sl i,l i+1d ± ffsl i+1d − fsl idg, s90d

where the sign is positive fori ù0 and negative fori ,0, the
probability of an interfacial configuration is now

Pwshl ijd = e2Sal0+2fsl0d+bfW p
i=−`

`

e−bHsl i,l i+1d. s91d

The renormalization of the Hamiltonian, Eq.(74), is valid
provided

f8sl j8d = fsbzl j8d + C8. s92d

Note that any functionfsl id (unless it is a constant) breaks the
invariance ofbH under exchange of its arguments and con-
sequently introduces a directionality in thex axis. This is
perfectly sensible in the wedge geometry, but is not admis-
sible for the planar substrate, where −x is completely equiva-
lent to x. A convenient choice forfsl id is
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fsl id = 1
2ln Ppsl id, s93d

wherePpsl id is the 1-point probability distribution function
in the planar geometry, and the condition, Eq.(93), is veri-
fied due to Eq. (86). It is not difficult to see that
exps−bHd is the 2-point conditional probability distribution
function. Taking into account this fact and Eq.(88), it is clear
that Eq.(91) is exactly the same as Eq.(66).

The one remaining issue to be decided is the relevant
value of the exponentz. We choosez=1, so that the wedge
tilt anglea and contact angleu remain invariant in each step
of the RG.

The procedure is now standard. The RG flow trajectories
are constrained to theu-constant hypersurfaces in functional

space. Since we know that the filling transition occurs for
u=a, we first check that this situation corresponds to the
critical manifold. Instead of considering an arbitrary poten-
tial, we choose as initial effective Hamiltonians those of the
form given by Eq.(83), in particular, with the partition func-
tion corresponding to contact binding potentials and those of
Kratzer form. When the number of RG stepsn→`, the prob-
ability distribution of an interfacial configuration converges
to a fixed point of the form

Pw
p shl ijd ~ l0

2fesbfwdp p
i=−`

`

e−bH* sl i,l i+1d, s94d

wheresbfwdp=−`, andbH* is defined as

e−bHpsl i,l i+1d = Hdsl i+1 − l i + adHsl i − ad + dsl idHsa − l id, i ù 0

dsl i − l i+1 + adHsl i+1 − ad + dsl i+1dHsa − l i+1d, i , 0
. s95d

It is straightforward to see that Eq.(95) is a fixed point of
Eq. (74). Strictly speaking, sincesbfwdp=−`, we must inter-
pret the normalized probability distribution for any interfa-
cial configuration as zero. Nevertheless, theunnormalized
probability distribution function does not vanish and behaves
differently in the mean-field, marginal, and fluctuation-
dominated regimes. To this end, it is legitimate to regard the
RHS of Eq. (94) as formally different from zero. This is
required in the renormalization group formulation. The basin
of attraction for thef=0 case is expected to be those Hamil-
tonians with binding potentials that decay faster than 1/l
(corresponding to the filling fluctuation regime). Hamilto-
nians that have a binding potential with a leading order
−fa / l will be attracted to the fixed point, Eq.(94), with the
same value off for u=a (marginal case). Finally, if lWsld
diverges asl →`, there is no fixed point and the filling tran-
sition is mean-field-like.

If uÞa, no matter how smalluu−au is, the RG flow
drives the Hamiltonian away from the critical manifold. For
u.0, exps−bHd converges to a fixed point expression, Eq.
(95), with a replaced byu. Even though this new fixed point
for the conditional probability is different from the critical
fixed point, the flow for the 2-point conditional probability
distribution function will remain close(in some functional
sense) to the critical one ifuu−au!a. Consequently, there is
no relevant field associated withbH.

On the other hand, the wedge midpoint 1-point probabil-
ity distribution function behaves differently. We considered
the same initial effective Hamiltonians as for theu=a case.
If u,a, the distribution has an unphysical exponential
growth with l0 as expsSuu−aul0d. The exponential term
grows in each RG step, driving the probability distribution
function to infinity (however,bfw=−`, so the “real” prob-
ability of any interfacial configuration is zero). The attractor
at infinity can be regarded as the complete filling fixed point.
For u.a, the wedge midpoint 1-point probability distribu-

tion function becomes more and more peaked around zero as
S→`, converging to the low temperature fixed point:

Pw
LTshl ijd = p

i=−`

`

dsl id. s96d

These results imply that there is a relevant field(in the RG
sense) associated withPwsl0,0d. Actually, the only other rel-
evant operator ish~mc−m, wherem is the chemical poten-
tial andmc the value at gas-liquid coexistence.

Recall that the critical exponents defined at coexistence
sm=mcd,

kls0dlw , t−bw, j's0d , t−n',

jx , t−nx, bfw , t2−aw, s97d

where t=Tf −T and Tf is the critical filling temperature.
Close to a critical filling fixed point(for any f), all the
relevant scale lengthso−1, kls0dlw, jx, j's0d, etc., are re-
duced by a factor 1/b. To extract the dependence ont we
need to know the largest eigenvalue of the linearized RG
flow close to the critical fixed point. We argued above that
this eigenvalue is associated to the transformation of thex
=0 term of the hamiltonianbH0. We again considered the
special Hamiltonians, Eq.(83), for contact and Kratzer bind-
ing potentials. The expression ofbH0 for these potentials is

bH0 = 2o su − adl0 − 2f ln l0 + C. s98d

Taking into account howbH0 renormalizes, and its expres-
sion at the critical fixed point[see Eq.(94)], it is clear that
the largest eigenvalue isb, and its associated eigenfunction is
proportional toosu−adl0. As a consequence, the critical ex-
ponentsn'=nx=bw=1 for both the filling fluctuation and
marginal regimes.
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To get the leading singularity for the wedge excess free
energy is more complicated. Asbfw remains invariant under
the RG transformations, 2−aw=0. However, this value does
not rule out a logarithmic divergence inTw−T. In order to
get such a dependence, we use the following thermodynamic
relationship:

S ] sbfwd
] a

D
S,u

= − 2Skls0dlw, s99d

where the derivative is made without changingS or any
characteristic of the binding potential(in particular, the con-
tact angle). We can rewrite Eq.(99) as

S ] sbfwd
] Ssu − adDS,u

= 2kls0dlw. s100d

After a renormalization step, we know that, even whenS and
the binding potential have changed, this derivative changes
as 1/b sincebfw, u, anda are invariant, andS−1 andkls0dlw

decrease by a factor 1/b. If we regardSsu−ad (~S, and
recall thatu−a is invariant under a RG step) as proportional
to t when the flow is close to the critical fixed point, Eq.
(100), implies thatbfw diverges logarithmically asT→Tf.
Furthermore,bfw is invariant under renormalization and
must vanish asa→0. Consequently close to the filling tran-
sition it must be proportional to lnsu−ad−lnsud.

The critical exponents obtained for the critical filling tran-
sition are in complete agreement with exact calculations and
scaling arguments[5].

VII. CONCLUSIONS

The structure of the gas-liquid interface bound at a 2D
wedge and close to the filling transition has been studied

using exact transfer-matrix methods. These calculations
show the emergence of a new correlation lengthjF suffi-
ciently close to the phase boundarysa,u,2ad. The
explicit-transfer matrix results for correlation functions and
interfacial roughness completely support the breather mode
picture of fluctuation effects. The same picture also emerges
of a renormalization group approach that leaves the wedge
geometry invariant. The fact that the only relevant fluctua-
tions are those that translate the midpoint interfacial height
leads to a simple relationship between the interfacial struc-
ture and midpoint height probability distribution function in
the scaling limit. The extension of this approach to higher
dimensions and/or different geometries would be very inter-
esting and further work is being carried out in that direction.

Finally it would be instructive to understand the physical
origin of the covariance relationship, Eq.(2). In the filling
fluctuation regime we found that covariance can be inferred
from the existence of the differential relation, Eq.(25), and
some regularity conditions. The very existence of such a field
equation is itself indicative that some unknown symmetry
relates wetting and filling transitions. Further work is re-
quired to elucidate whether any such hidden symmetry ex-
ists.
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