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Manipulating fluids at the nanoscale within networks of channels or chemical lanes is a crucial challenge in
developing small scale devices to be used in microreactors or chemical sensors. In this context, ultrathin(i.e.,
monolayer) films, experimentally observed in spreading of nanodroplets or upon extraction from reservoirs in
capillary rise geometries, represent an extreme limit which is of physical and technological relevance since the
dynamics is governed solely by capillary forces. In this work we use kinetic Monte Carlo(KMC) simulations
to analyze in detail a simple, but realistic model proposed by Burlatskyet al. [Phys. Rev. Lett.76, 86 (1996)]
for the two-dimensional spreading on homogeneous substrates of a fluid monolayer which is extracted from a
reservoir. Our simulations confirm the previously predicted time dependence of the spreading,Xst→`d=AÎt,
with Xstd as the average position of the advancing edge at timet, and they reveal a nontrivial dependence of
the prefactorA on the strengthU0 of interparticle attraction and on the fluid densityC0 at the reservoir as well
as anU0-dependent spatial structure of the density profile of the monolayer. The asymptotic density profile at
long time and large spatial scale is carefully analyzed within the continuum limit. We show that including the
effect of correlations in an effective manner into the standard mean-field description leads to predictions both
for the value of the threshold interaction above which phase segregation occurs and for the density profiles in
excellent agreement with KMC simulation results.
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I. INTRODUCTION

In the context of microfluidics, wetting phenomena at the
micrometer and nanometer scale[1–5] are relevant for appli-
cations such as microreactors or chemical sensors, for which
a crucial challenge is the transport of liquid to networks of
channels or chemical lanes, as well as its precise manipula-
tion within such a network[6–8]. Since at this small scale
the liquid-substrate interaction is important, the flow of thin
films may be eventually controlled by engineering the physi-
cal and chemical properties of the substrate, thus opening the
road for applications which do not have an equivalent at the
macroscopic scale[9–11].

Although the existence of very thin precursor films has
been long ago evidenced by the studies of Hardy[12], only
recent experiments on liquid spreading on atomically smooth
surfaces[13–20], performed with volumes of the order of
nanoliters, have clearly shown by means of dynamic ellip-
sometry or x-ray reflectivity measurements that one or few
precursor films withmolecular thicknessand macroscopic
extentadvance in front of the macroscopic liquid wedge of
the spreading drop. The liquids used were low-molecular-
mass polymer oils which behave as nonvolatile liquids and
experiments performed both for spreading of nanodroplets
and for capillary rise geometries have established that the
linear extentXstd of the precursor film grows in time as
Xst→`d,Ata. The exponenta=1/2 seems to be indepen-
dent of the nature of the liquid and of the substrate, of the

geometry, and of the volume of droplet as long as the droplet
is not emptied and constitutes a reservoir for the extracting
film; only the prefactorA depends on these parameters.

Several theoretical models have been proposed(see Refs.
[21–26] and references therein) and an impressive number of
molecular dynamics(MD) and Monte Carlo numerical simu-
lations have been performed(see Refs.[5,27–34] and refer-
ences therein) in order to understand the mechanisms behind
the extraction of precursor films and to explain the time de-
pendence of the spreading.

The hydrodynamic model of de Gennes and Cazabat[21]
assumes a layered structure of the droplet, each layer being a
two-dimensional incompressible fluid, in which vertical
transport is possible only at the edges of the layers. The
model leads to the correct time dependence for the advancing
layers, but, as pointed out in Refs.[22,24,34], it is debatable
if this hydrodynamic description holds at the molecular level
and can be directly applied to ultrathin films.

A different approach, along the line of earlier work on
activated kinetics by Cherry, Holmes, Blake, and Haynes
[35,36], consists of a microscopic description for the thin
liquid films in terms of lattice gas models for interacting
particles. One such model is the two-dimensional driven
Ising model recently proposed by Abrahamet al. [26]. Using
kinetic Monte Carlo(KMC) simulations it was shown that in
this model the transport of mass occurs via a second layer,
and a particle-hole diffusion equation was used to show that
the model leads to correct predictions(confirmed also by
simulations) for the time dependence of spreading. The
model predicts a uniform density and a compact first mono-
layer, in close resemblance of the incompressible layers of
the hydrodynamical model mentioned before.
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For the case that the precursor consists of a single mono-
layer, a lattice gas model of interacting particles has been
proposed by Burlatskyet al. [24]. This model, which allows
mass transport from the reservoir to the advancing edge only
inside the monolayer, has been extended to the more general
situation of relaxation of a monolayer initially occupying a
half-plane without a reservoir by Oshaninet al. [25]. Based
on several mean-field assumptions, among which the stron-
gest is the replacement of the interparticle attraction in the
“bulk” by an “effective force” acting on the advancing edge,
the authors have been able to derive thet1/2 law for the
spreading and to calculate the dependence of the prefactor on
the fluid-fluid interaction parameters. In contrast to the other
two models, in this case the density in the monolayer de-
pends significantly on the distance from the reservoir. Al-
though it is reasonable to expect that neglecting the attractive
particle-particle interactions in the bulk should not affect the
time dependence,t1/2, one can expect that the behavior in
the presence of attractive interactions is much richer(see, for
example, the recent numerical results, within the continuum
limit, of Lacasta et al. [37] for a closely related one-
dimensional model).

All three models mentioned above recover the correct
time dependence of spreading, but it is unlikely that one can
discriminate between them via experimental tests based on
their predictions for the corresponding prefactors because
these include in each case a number of parameters whose
connections with experimental quantities are not clear. How-
ever, we have already pointed out that these models lead to
qualitatively different predictions with respect to the shape of
the emerging density profiles(constant in the first two cases,
spatially varying in the last) which are, in principle, experi-
mentally accessible.

In this work we analyze in detail the density profiles of
this last model. We present results of KMC simulations on a
square lattice of a model for spreading of a liquid monolayer
closely related to the model in Refs.[24,25]. Our choice for
KMC simulations of a lattice gas model is motivated by the
fact that we are interested in the asymptotic(large spatial and
temporal scales) behavior, a regime which as yet cannot be
explored using molecular dynamics simulations because of
extensive computing resources needed to simulate spatially
large systems and unreasonable large CPU times required to
simulate real times even in the order of microseconds. In
contrast to the previous work mentioned above, we shall ex-
plicitly consider the asymmetry of the jump rates in the bulk,
at the expense of being able to measure the prefactorA from
the simulations but not to predict it analytically. Our results
show a nontrivial dependence of the prefactorA on the
strengthU0 of the interparticle attraction and on the density
C0 at the reservoir. The asymptotic spreading behavior at
long time and large spatial scale of the transversally aver-
aged density profile is analyzed within a continuum limit. We
show that the model predicts qualitatively different structures
for the experimentally accessible density profiles along the
spreading direction above and below a threshold value for
the ratio between the fluid-fluid interaction and the thermal
energy. Including the effect of correlations in an effective
manner into the standard mean-field description, we find ex-
cellent agreement between the theoretical predictions and the

KMC results. We conclude the paper with a summary and
discussion of the results.

II. DEFINITION AND DISCUSSION OF THE MODEL

As mentioned in the Introduction, a simple microscopic
model for the dynamics of a fluid monolayer in contact with
a reservoir was proposed in Refs.[24,25]. Although we use
here this lattice gas model of interacting particles with only
slight modifications, for clarity and further reference we de-
scribe, motivate, and comment on the defining rules as fol-
lows.

(a) The spreading geometry is rectangular(x-y plane)
and the substrate is homogeneous. The half-planex,0 is
occupied by a reservoir of particles(three-dimensional bulk
liquid) at fixed chemical potential which maintains at its con-
tact line with the substrate, positioned at the linex=0, an
averagedensityC0 (defined as number of particles per unit
length in the transversaly direction). For the case of capil-
lary rise, the reservoir would correspond to the liquid bath
and the linex=0 to the edge of the macroscopic meniscus. It
is assumed that the only role of the reservoir is to maintain
C0 constant, and thus to feed the monolayer which is ex-
tracted, but there is no flow of particles from the reservoir to
“push” the film. The parameterC0 is expected to be related
to the difference in the free energy per particleDF between a
fluid particle in bulk liquid, i.e., inside the three-dimensional
reservoir, and one on the surface of the substrate atx=0, and
thus it is a measure of the wettability of the substrate by the
liquid [19]. A general, explicit form for the relation between
C0 and DF is not available, but for a qualitative picture
[19,24] an argument based on Langmuir-type adsorption may
be used to estimateC0<sCreservoirf1−exps−bDFdg, wheres
is the area per adsorption site andCreservoir is the density
(number of particles per unit volume) in the reservoir. At
time t=0, the half-planex.0 is empty.

(b) The substrate-fluid interaction is modeled as a pe-
riodic potential forming a lattice of potential wells with co-
ordination numberz and lattice constanta. The particle mo-
tion proceeds via activated jumps between nearest-neighbor
wells; evaporation from the substrate is not allowed. We as-
sume that the dynamics of the activated jumps can be de-
scribed by the classical reaction-rate theory, i.e., the activa-
tion barrierUA is significantly larger than the thermal energy
kBT, wherekB is the Boltzmann constant andT the tempera-
ture, and the coupling to the substrate is large enough such
that in crossing the barrier all the kinetic energy of the par-
ticle is dissipated[38]. The barrierUA determines the jump-
ing rate V=n0expf−UA/kBTg, where n0 is an attempt fre-
quency defining the time unit. We note that for a two-
dimensional homogeneous, isotropic substrate and a regular
(square, triangular, honeycomb, etc.) lattice structure, this
jumping rate can be absorbed into the one-particle diffusion
coefficientD0=Va2/4 on the bare substrate[39]. Therefore,
in this caseUA is an irrelevant parameter in the sense that it
can be incorporated either into the choice of the unit of time
as V−1 or into that of the unit of length asÎD0/n0. For the
rest of this work we consider a square latticesz=4d; a quali-
tatively significant dependence of the results on the lattice
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type is not expected. This expectation is based on corre-
sponding results obtained from test simulations on a triangu-
lar lattice sz=3d.

(c) The pair interaction between fluid particles at dis-
tance r is taken to be hard-core repulsive at short range,
preventing double occupancy of the wells, and attractive at
long range, −U0/ r6 for r ù1, resembling a Lennard-Jones-
type interaction potential. Here and in the followingr is mea-
sured in units ofa so thatU0 denotes the strength of the
interaction energy. The absence of double occupancy leads to
an a priori removal of thickening of the film as a possible
relaxation mechanism, which is not meant to imply that we
consider it irrelevant. We have decided to disregard this
mechanism here since it would have significantly increased
the complexity of the problem. Thus we leave the issue of
film thickening open for further research.

(d) As we have mentioned in(a), the motion proceeds
via activated jumps between nearest-neighbor wells, the ac-
tivation barrier for any jump beingUA. The selection of the
nearest-neighbor well, i.e., the probabilitypsr → r8 ; td that a
jump from locationr will be directed toward the locationr8,
is biased by the fluid-fluid energy landscape and is given by

psr → r8;td =

expHb

2
fŨsr ;td − Ũsr8;tdgJ

Zsr ;td
, s1d

where Zsr ; td=or8,ur8−r u=1expssb /2dfŨsr ; td−Ũsr8 ; tdgd is the
normalization constant and 1/b=kBT,

Ũsr ;td = − U0 o
r8,0,ur8−r uø3

hsr8;td
ur − r8u6

, s2d

andhsr8 ; tdP h0,1j is the occupation number of the well at
r8 at the timet. We note that, after canceling the common

factor expfbŨsr ; td /2g, the expression, Eq.s1d, may be re-
written in a form which is somewhat simpler for the nu-
merical simulations,

psr → r8;td =

expF−
b

2
Ũsr8;tdG

o
r8,ur8−r u=1

expF−
b

2
Ũsr8;tdG , s3d

the dependence onr being retained because the summation is
carried out over the neighboring locations ofr. We also note
that the summation in Eq.s2d has been restricted to three
lattice units for computational convenience. This corre-
sponds to the cutoff generally used in molecular dynamics
simulations for algebraically decaying Lennard-Jones pair
potentials.

The expression, Eq.(1), for the probability that a certain
direction is chosen for jumping deserves further discussion.
For a particle located atr, it follows from the definition of
psr → r8 ; td [Eq. (1)] that the rates

vr→r8;t = Vpsr → r8;td s4d

for the transitions fromr to neighboring locationsr8 satisfy

o
r8,ur8−r u=1

vr→r8;t ; V. s5d

Thus the total rate of leaving a location for any given particle
at any given location is determined only by the fluid-solid
interaction characterized byUA, it is time independent, and it
equalsV. Therefore, the fluid-fluid interaction will influence
only the choice of adirection for the jump, but not the jump-
ing frequency, and in the dynamics there will be only one
relevant microscopic time scale,V−1, which is dictated by
the solid-fluid coupling.

The choice psr → r8 ; td~exphb/2fŨsr ; td−Ũsr8 ; tdgj is
motivated by the following. If one disregards the reservoir
and considers a system with a given volume and a given
number of particles, the change in the total fluid-fluid energy

(no double occupancy) Ut=1/2orhsr ; tdŨsr ; td due to a
change in configuration

hhsrd = 1,hsr8d = 0j → hhsrd = 0,hsr8d = 1j, ur − r8u = 1

s6d

is given by DUt=Ũsr8 ; td−Ũsr ; td, with Ũsr8 ; td calculated

for the final configuration andŨsr ; td for the initial one.
Then a simple choice of transition ratesvr→r8;t

8 which satis-
fies detailed balance with respect to the equilibrium distribu-
tion

P = exps− bUtd/Z, s7d

whereZ= o
all hhsr;tdj

exps−bUtd, is

vr→r8;t
8 = V exps− bDUt/2d. s8d

If the transition rates would be chosen according to the ex-
pression, Eq.s8d, above, then the fluid-fluid interaction
would effectively change the activation barrier and lead to a
whole spectrum of microscopic time scales. Normalizing
these local transition ratesfEq. s8dg by the slocald total tran-
sition rateor8,ur8−r u=1vr→r8;t

8 , a decoupling results between an
activated dynamics determined by the solid-fluid interaction
and a weak perturbation due to the fluid-fluid interaction,
and the choice given in Eq.s1d for the bias probabilitypsr
→ r8 ; td is obtained. One should note that this decoupling is
obtained at the expense that the transition ratesvr→r8;t de-
fined by Eq.s4d do not satisfy detailed balance with respect
to the distribution in Eq.s7d, although the deviations, which
are equal toZsr ; td /Zsr8 ; td due to

vr→r8;t

vr8→r;t
=

Zsr ;td
Zsr8;td

exps− bDUtd, s9d

are expected to be very small. From this point of view, the
dynamics defined by Eq.s4d is that of an asymmetric exclu-
sion processf40g, but with a position- and time-dependent
bias.

(e) As defined by the rules(a)–(d), the model corre-
sponds to mass transport from the reservoir into a two-
dimensional vacuum so that a phase with very low density,
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due to two-dimensional evaporation, will form in front of the
advancing monolayer. The emergence of this low-density
phase poses problems in that its long-time dynamics, which
is of ideal gas type, mixes with that of the following-up
“compact” film and leads to serious difficulties in defining
the advancing edge of the monolayer. This problem has been
encountered earlier also in three-dimensional simulations
[5,27–29,32,33] and, in general, it has been overcome by
replacing the simple particles by connected chains mimick-
ing polymers. Although this approach is straightforward it is
not very appealing, neither from a theoretical point of view
(an analytical approach becomes at least cumbersome, if not
intractable) nor from a computational one(the memory and
CPU requirements for sufficiently long simulation runs for
large enough systems are unreasonably high).

Therefore, we have adopted a different approach. We de-
fine the advancing edgeGt of a monolayer configuration at
time t as the set of the most advanced particles in each line
y=const for this configuration(see Fig. 1). We eliminate
two-dimensional “evaporation” by imposing the following
additional constraint: moves from sitesr PGt toward sitesr8
ahead ofGt for which uŨsr8 ; tdu,Uc, whereUcù0 is a fixed
threshold value, are rejected. This corresponds to requiring a
given minimum number of particles in the neighborhoodur u
ø rc of any of the components ofGt. The results presented in
this paper correspond to simulations withUc=U0/36, i.e.,
rc=3, in other words to the requirement that in the diskur9
−r8uø3 centered atr8 there is at least one more particle in
addition to the one attempting the jumpr → r8 (see also, cf.,
Fig. 5).

The above constraint is close in spirit to the “effective
boundary-tension” idea used in Refs.[24,25] in which the
attractive interactions have been neglected except for par-
ticles on the advancing edge for which aconstantasymmetry
in the jumping rates “away” and “toward” the reservoir was

imposed. Rule(e) provides a simple and convenient way of
controlling the rate of two-dimensional evaporation. For ex-
ample, settingUc=0 corresponds to fully unconstrained dy-
namics, while replacing the rejection procedure with an “ac-
ceptance rate” will allow for a continuous tuning of the
evaporation rate through the acceptance rate. We note that,
physically, the model defined by the rules(a)–(e) could be
used to study also expansion into an already present vapor
phase instead of expansion into vacuum. In the presence of a
vapor phase there would be an average occupancy of the
sites in front of Gt, and thus some of the jumps fromGt
would be rejected due to the hard-core repulsion, which is an
effect similar to an acceptance rate as discussed above.

III. KINETIC MONTE CARLO SIMULATIONS

We have carried out KMC simulations of the model de-
fined in Sec. II using square lattices with widthsLy of 200 or
500 lattice units, periodic boundary conditions along the
transversalsyd direction (appropriate for simulating an infi-
nitely wide substrate), and an activation energybUA=3.5.
Some simulation runs have been carried out using lattices
with smaller widths in order to check finite-size effects. We
have found that for widths larger than 100 lattice units there
is no detectable influence of the width value on the quantities
we have measured in these simulations. The length of the
lattice in thex direction has been chosen to beLx=1000
lattice units, with the possibility of changing it dynamically
in the course of the simulation if necessary, i.e., ifGt inter-
sects the linex=1000; however, this situation was not en-
countered in any of the simulations we have carried out. We
note here that in the experiments mentioned in Sec. I[13–19]
typical values for the diffusion coefficient were estimated
from the spreading rate to be of the order of
10−11–10−9 m2/s. If we take the lattice spacing asa
.10 nm, i.e., of the order of the lateral size of a polydim-
ethylsiloxane(PDMS) coil [20], then the above values for
the diffusion coefficient imply typical values for the fre-
quencyV of the order of 105–107 s−1, and thus forbUA
=3.5 typical values forn0 of the order of 106–108 s−1.

For the simulations we have used a variable-step
continuous-time kinetic Monte Carlo algorithm[41–43]
which is described in Appendix A. One step in the Monte
Carlo simulation proceeds as follows. At timet, a particle
from the film sxù0d is selected at random. The time is in-
cremented withDt (the time at which a jump attempt with
sufficient energy for leaving the wellwill occur), where
Dt is a random variable distributed according toPsDtd
=NV exps−NVDtd [41–43], andN is the number of particles
in the film at timet (so thatkDtlP=1/NV). The direction for
the jump is chosen at random with probabilities weighted
according to Eq.(1). If the destination site is empty, the jump
takes place; if not, the jump is rejected. Exchange between
the reservoirsx,0d and film sxù0d is subject to the addi-
tional constraint that the density on the linex=0 fluctuates
narrowly around a given valueC0 and proceeds in the fol-
lowing manner. Moves fromx=0 to x=−1 are allowed if
C0std is maintained within the intervalfC0s1−dd ,C0s1+ddg,
where the amplituded has been fixed to 10−2. If this condi-

FIG. 1. Schematic drawing of a typical configurationhhsr ; tdj of
a monolayer spreading on a rectangular lattice(viewed under an
oblique angle). The particles denoted as open circles occupy the
edge of the reservoirx=0 with C0std. Black circles denote the par-
ticles in the bulk of the monolayer whereas gray circles denote
particles at the advancing edgeGt. Also indicated is the average
positionXstd of the advancing edge. HereC0std andXstd correspond
to averages overy for a given realization and not to averages over
runs (for which we use the same notation in the main text). There
are periodic boundary conditions in they direction.
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tion is satisfied, the particle is considered to become part of
the reservoir and is removed; if not, the move is rejected. In
case of moves fromx=0 tox=1, if the density onx=0 would
decrease belowC0s1−dd, then after the move a new particle
is added on an empty site(chosen at random) on the linex
=0. Similarly, in case of moves fromx=1 to x=0 a particle
is removed(at random) from the line x=0 if the density
would increase aboveC0s1+dd. The time is not incremented
upon adding or removing particles, corresponding to the rea-
sonable assumption that the equilibration of the reservoir is
very fast. In order to compute the potential energy at a des-
tination site on the linex=−1, needed for the evaluation of
the weight probabilities for jumping of a particle on the line
x=0, in the beginning of the simulation particles are placed
at random on the lines −4øxø−1 such that the average
density on these lines isC0, and this configuration is kept
unchanged during the simulation run. Due to these proce-
dures one does not have to consider the dynamics on the
lines xø−1, i.e., in the reservoir. In order to have sufficient
fluctuations in C0std on the line x=0, fluctuations which
mimic the stochastic nature of the exchange of particles be-
tween the reservoir and the film, the widthLy has to be large
enough such that the amplituded translates into a reasonable
number of sites. This is the reason why we have used a large
value for the width; for example, atC0=0.8 andLy=500,d
=10−2 translates into four sites.

All the “measured” quantities have been averaged over a
number of independent simulation runs ranging from 10 to
50, a value of 50 runs being used in most of the cases. These
runs differ from each other both with respect to the initial
configurationhhsx=0,y; t=0dj and the subsequent sequence
of jumps. The observables of interest are defined below. The
density rsr ; td is defined asrsr ; td=khsr ; tdl, where k¯l
means average over different KMC runs. Due to the symme-

try of the model, the density profiler̃sr ; td in the limit of
infinitely many runs is independent ofy, while in the average
over a finite number of runs random, uncorrelated fluctua-
tions (whose amplitude decrease with increasing number of
runs) occur along they direction. These fluctuations are sup-
pressed by measuring the transversally averaged density
Csx,td=ks1/Lydoy=1

Ly hsx,y; tdl, and thus it is expected that
Csx,td. r̃sr ; td, with strict equality for infinitely many runs.
The average position of the advancing edge of the monolayer
is defined asXstd=ks1/LydorPGt

xl. For the caseUc=U0/36

(as used for the actual simulations), two-dimensional evapo-
ration is negligible andXstd (which we shall also call front
line) is a good measure for the actual advancing edge of the
monolayer. We note here that in the case when no constraint
is imposed to prevent two-dimensional evaporationsUc=0d,
the front line may be defined asXstd=kx̂stdl [44], wherex̂std
is the most advanced line corresponding to a given(smallest

measurable) density Ĉ=s1/Lydoy=1
L hsx̂,y; td. Alternatively,

one may follow the time dependence of the mass of the film
[37], or use a percolation-type definition for the precursor as
the set composed of all the particles which are connected
along nearest-neighbor bonds with the reservoir, the bound-
ary of this cluster definingGt [26].

Snapshots of typical density profiles during spreading are
shown in Fig. 2 for the cases(a) W0=1.4 and(b) W0=0.8,
where we have introduced the notation

W0 = bU0. s10d

These density profiles reveal already the qualitative dynami-
cal behavior. It can be seen that, as expected, the monolayer
is homogeneous in they (transversal) direction, while along
thex (spreading) direction there are significant density varia-

FIG. 2. (Color) Typical density profiles rsx,y; td (obtained by averaging over 50 KMC runs) for W0

=bU0=1.4 [row (a)] and W0=0.8 [row (b)] at times(left to right) t=23105, t=106, and t=23106 for C0=1.0 andLy=500. Time is
measured in units ofn0

−1=V−1exps−bUAd with bUA=3.5, distances are measured in lattice units, and spreading occurs inx direction. The
color coding(shown on the right) is a linear function of density.
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tions. As intuitively expected, the spreading of theedgeof
the monolayer is faster for smallerW0, i.e., higher tempera-
ture (at a given interaction strengthU0) or smaller interpar-
ticle attraction(at a given temperatureT). In addition, one
observes qualitatively different dynamics as revealed by the
abrupt change from high to low density for the large value of
W0 compared to the smooth and broad decrease for the small
value ofW0. This is accompanied by a different dynamics of
the regions with moderate to low density in the two cases.
While for large value ofW0 [panel(a)] the range of densities
r.0.5 (the green band) and that of low densitiesr&0.2 (the
light blue band) maintain relatively constant widths and ad-
vance with similar rates, for smallerW0 [panel (b)] the re-
gions become broader with increasing time and clearly the
low density(light blue) has a larger rate of advancing. These
features will be discussed more in the following sections,
where a quantitative characterization of the spreading as a
function of the parametersW0 andC0 is presented.

IV. TIME DEPENDENCE OF SPREADING AND
ASYMPTOTIC SCALING OF DENSITIES

A. Time dependence of spreading

We start our analysis of the dynamics of spreading by
studying the time-dependence of the positionXstd of the
front line. As noted in the Introduction, we expect that the
asymmetry in the jumping rates due to the interparticle inter-
actions[Eq. (1)] will not affect the previously(without inter-
particle interactions) predictedXstd,Ît time dependence as
long as the attractive interaction is not too strong. Figure 3
shows the time dependence of the scaled front line,
Xstd /ÎD0t, for several values of the interaction parameterW0

and of the reservoir densityC0. One can see that at low and
intermediate values of the interaction strength[Fig. 3(a)] the
Ît behavior is recovered independent of the valueC0 of the
density in the reservoir. However, for strong attractive fluid-
fluid interaction[Fig. 3(b)] and low densitiesC0, the time
dependence ofXstd clearly deviates from theÎt behavior, the
latter being obtained only for high densitiesC0. Since the
decreasing trend shown by the data in Fig. 3(b) may be either

due to spreading at a rate slower thanÎt or due to the fact
that there is no extraction of a macroscopic film from the
reservoir, we have also analyzed the time dependence of the
total mass of the film extracted,Mstd=kox.0,yhsr ; tdl. As can
be seen in the inset in Fig. 3(b), for largeC0 the time depen-
dence ofMstd is very well described byÎt, as expected[24],
while for low valuesC0 the massMstd shows a clear satura-
tion to a small constant value(which corresponds roughly to
a position of the front of ca. 10 lattice units), thus indicating
that actually there is no macroscopic film extracted from the
reservoir. At early times fluctuations lead to the extraction or
leakage(with a very fast decreasing rate of extraction) of a
small number of particles from the reservoir, but the spatial
extensionXstd of the film in this case remains microscopi-
cally small and becomes time independent fort@1. There-
fore, as a function of the interaction strengthW0 there is a
transition from a “substrate covering” state at low valuesW0,
in the sense of extraction of a film with macroscopic lateral
extension in the spreading direction independent of the den-
sity valueC0 in the reservoir edge, i.e., a film which spreads
according toXst→`d,Ît, to a “noncovering” state at large
valuesW0, in the sense that a macroscopic film is extracted
only for sufficiently large densitiesC0 (eventually for none if
W0 is sufficiently large). Results similar to the ones shown in
Fig. 3, from simulations performed for a broad range of pa-
rameters values(0.4øW0ø1.6 and 0.1øC0ø1.0), indicate
that the valuesW0

scovdsC0d for which this change in behavior
occurs are bounded from below by 1.0,W0

scovdsC0d. We shall
return to this point in the second following paragraph and
during the discussion of the continuum limit.

The results presented in Fig. 3 also show that in case of
spreading the time-independent dimensionless prefactorA in
Xst→`d=AÎD0t depends on bothW0 and C0. From the
curvesXstd /ÎD0t one can estimateA=limt→`Xstd /ÎD0t by
fitting the data in the ranget@1 (in practice the data in the
last tenth of the time interval available) with a constant. The
results forAsC0,W0d are shown in Fig. 4(a). Here we use the
convention that in the case where there is no macroscopic
film spreading in the sense explained above, i.e.,Xstd /ÎD0t
decreases in time andMstd has a time dependenceta1 with a1

significantly smaller than 1/2(in practice a1,0.4), the

FIG. 3. Front line position(divided byÎD0t) as a function of time for(a) W0=0.4 (open symbols) andW0=1.0 (filled symbols) and(b)
W0=1.6 for reservoir densitiesC0=1.0 (squares), C0=0.8 (circles), andC0=0.6 (diamonds). The inset(on logarithmic scales) compares the
time dependence of the(unscaled) massMstd of the film for W0=1.6 and for the same reservoir densities(symbols) with the t1/2 behavior
(dashed line). In (b) for C0=0.8 andC0=0.6 the scaled front line position decays,t−1/2 for large t. Here and in the following timet is
measured in units ofn0

−1=V−1exps−bUAd with bUA=3.5, so thatÎD0t=În0tsa/2dexps−1
2bUAd.
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value of the prefactor is assigned to beA=0. As expected,
AsC0,W0d is an increasing function ofC0 for fixed W0 and a
decreasing function ofW0 for fixed C0. However, the func-
tional dependence is not simple, and one can easily notice a
change in the shape ofAsC0,W0d for W0 close to the value
1.0. For valuesW0*1, the curve shows a plateau over a
range of densitiesC0 which increases with increasingW0,
while for valuesW0&1 the prefactorA is a strictly increas-
ing function ofC0. This property is of a different type than
the transition from covering to noncovering discussed above,
because it involves a change in the dependence of the pref-
actor A on the densityC0 while the spreading lawXstd
, t1/2 holds. This change in behavior emerges(as we shall
discuss in more detail in the following section) as a conse-
quence of the competition between the diffusive motion
driven by the concentration gradient and the clustering ten-
dency (opposing the concentration gradients) driven by the
interparticle attraction. This competition leads to instabilities
at certain density values if the attractive interaction is suffi-
ciently strong. From Fig. 4(a), the value of the threshold
interactionW0

std for the onset of a plateau can be estimated to
be bounded as 1.0,W0

std,1.2. As shown in the inset, these
bounds are confirmed also by the behavior of the derivative
dAsC0d /dC0, which is clearly larger than zero forW0=1.0,
and becomes zero(within the limits of numerical accuracy)
aroundC0.0.5 for W0=1.2.

For C0 fixed the values of the prefactorAsC0,W0d as a
function of W0 can be used to estimate via linear extrapola-
tion, as shown in the inset in Fig. 4(b) for the particular value
C0=1, the interaction strengthW0

scovdsC0d at which for a
given C0 the prefactor vanishes:AsC0,W0

scovdd=0. The data
for W0

scovdsC0d are shown in Fig. 4(b). Since at a givenW0 the
prefactor attains its maximum forC0=1, the dependence of
AsC0=1,W0d on W0 allows one to infer also an estimate of

the interactionW̃0
scovd above which no macroscopic film is

extracted from the reservoir whatever the densityC0 at the

reservoir edge is, i.e.,AsC0,W0.W̃0
scovdd;0. This value can-

not be measured directly due to the unreasonably long simu-
lation times needed to reach the asymptotic regime in this
range ofW0 values, but the linear extrapolation of the avail-
able data, as shown in the inset of Fig. 4(b), yields the esti-

mateW̃0
scovd.2.3.

In the range of low densitiesC0 at the reservoir edge, the
KMC results in Fig. 4 indicate that there is a threshold value
C0

smind.0.1 for the density in the reservoir edge below
which, independent of the interaction strengthW0, there is no
extraction of a monolayer: all the curvesAsC0d reach zero at
a nonzero value ofC0. As we will show below, this is a
consequence of the condition(e) in the model, i.e., of the
requirement that a move fromr PGt toward a forward siter8

FIG. 4. (a) Dependence of the prefactorAsC0,W0d on C0 for several values ofW0. The inset shows the derivativedAsC0d /dC0 as a
function of C0 in the casesW0=1.2 ssd and W0=1.0 sPd; the dashed line in the inset corresponds todAsC0d /dC0=0. (b) Estimate of a
“covering phase diagram” in theW0-C0 plane showing the parameter range for which a macroscopic film is extracted from the reservoir or
is not extracted, respectively. The curveW0

scovd shows the “covering-noncovering” separatrix described in the main text. The line is a guide
for the eye, and the dotted line atC0ø0.2 is a heuristic extrapolation suggestingW0

scovdsC0→0d.1.4. The inset shows the dependence of
AsC0=1,W0d on W0. The line extrapolated toAsC0=1,W0d=0 is a linear fit of the last four points. In all four plots the symbols are KMC
results; dashed and dotted lines connecting the symbols are guides to the eye.

FIG. 5. Schematic drawing of the region around a pointsx0,y0d
(filled circle) belonging to theadvancingedgeGt. The target desti-
nation, for the case of an advancingGt, is denoted by an empty
circle. The shaded area shows the domain in which at least one
other site must be occupied so that the particle atsx0,y0d can move
to sx0+1,y0d in accordance with our KMC rule(e) (see Sec. II).
Sincesx0,y0dPGt, all sitessx.x0,y0d must be empty so that in the
unshaded sector there are no occupied sites.
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is accepted only if there is at least another particle in the
neighborhoodur8−r uø rc. As we have mentioned before, this
condition is equivalent to requiring a minimum valueC1 for
the density on the advancing edge of the film. This density
C1 can be estimated as follows. For a fluid particle at
sx0,y0dPGt (the filled circle in Fig. 5) to move to the site
sx0+1,y0d (the open circle in Fig. 5), in the shaded area of
the disk of radiusrc=3 centered atsx0+1,y0d there must be
at least one more particle in addition to the one attempting
the jump. The unshaded sector of the disk is due to the fact
that by definition ofGt the sitessx.x0,y0d are empty. There-
fore, at least two of theM =25 sites in this shaded region are
occupied, and thusC1=0.08 is an estimate for the minimum
density onGt. Since extraction of a film requires amoving
edgeGt, the density at the reservoir edge should be greater
than C1 for spreading to be possible. This explains the
threshold valueC0

smind.0.1 observed in the simulations.

B. Asymptotic scaling

We now turn to the analysis of the time dependence of the
transversally averaged density profilesCsx,td of the spread-
ing monolayer. Since the time dependence of the advancing
edge follows asymptoticallyXstd,Ît in all the cases in
which spreading occurs, it is natural to test if the density
profiles Csx,td actually scale as a function of the scaling
variable l=x/ÎD0t. In Fig. 6 we show density profiles
Csx,td for (a) W0=0.6,C0=1.0; (b) W0=1.4,C0=1.0; (c)

W0=1.0,C0=1.0; and(d) W0=1.0,C0=0.6 as functions of
the scaling variablel=x/ÎD0t, and as functions ofx in the
insets. The results at late times show a very good data col-
lapse and actually only the data corresponding to the earliest
time seems to show some significant deviations. This
strongly suggests that in the asymptotic limitft@1,Xstd
@1g the density profiles can be described by a scaling func-

tion C̃sl=x/ÎD0t ;W0,C0d. Here we have explicitly indicated
the parametric dependence of the scaling function on the
interaction strengthW0 and on the densityC0 at the edge of
the reservoir(see Fig. 6). We note that for smallC0 [such as
C0=0.6 in Fig. 6(d)], one observes deviations from scaling in
the range of densitiesCsx,td&0.1. These deviations are most
probably due to insufficient statistics, although they may also
indicate that the true asymptotic regime has not yet been
reached in the simulations. However, since even in this range
there is a clear tendency of smaller changes in the shape of
the density profile for increasing timet, it is reasonable to
expect that the results in Fig. 6 are good approximations for

the corresponding scaling functionC̃sl ;W0,C0d.
The scaled density profiles in Fig. 6 reveal three important

features. First, we have already noted that the change in
shape of the functionAsC0d as W0 crosses 1.0,W0

std,1.2
signals a change in the spreading behavior. As shown by the
data in Fig. 6(b), for largeW0 the monolayer has an almost
compact structure, and at the advancing edge there is a sharp
transition from a large density to a small, almost zero, den-

FIG. 6. Density profilesCsx,td for (a) W0=0.6,C0=1.0; (b) W0=1.4,C0=1.0; (c) W0=1.0,C0=1.0; and(d) W0=1.0,C0=0.6 as functions
of the scaling variablel=x/ÎD0t. The insets show these profiles as functions ofx. The results correspond tot= 1

10T ssd, 4
10T shd, 7

10T sLd,
andT s3d in (a), (c), and(d) and tot=T ssd, 4T shd, 7T sLd, and 10T s3d in (b), whereT=23106. The space and time units are the same
as those used in Figs. 2–4.
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sity. Therefore, in this range of interaction the spreading is
accompanied by the emergence of a well defined interface
between two phases. We note that a similar emergence of
interfaces has been observed also in the one-dimensional
case considered by Lacastaet al. (see, e.g., Fig. 4 panelrF
=0.95 in Ref. [37]). In contrast, at smallW0 the density
decreases smoothly from the value at the edge of the reser-
voir to zero and no jump in the density is visible. ThusW0

std

is a threshold value above which the attractive interaction is
strong enough to support the buildup of an interface. In this
sense, the change atW0

std may be interpreted as the onset of a
phase separation.

The second point regards the shape of the density profile
as a function of the parameterC0. For a weak attractive
interactionW0 [Fig. 6(a)] or at small densitiesC0 [Fig. 6(d)],
the density profiles resemble well the error function solution
of a regular diffusion equation for noninteracting particles
[24,25]. As we shall show in the following section, in this
range such a description is not only qualitatively but even
quantitatively accurate. However, for larger valuesW0 (but
still below W0

std) and for largeC0 [see Fig. 6(c)], one finds the
formation of a pronounced shoulder in the scaling function in
the range of smalll (i.e., l&0.5), and thus a significant
deviation from an error function solution. This shows that in
this range of parameters the asymmetry in the jumping prob-
abilities due to the attractive interaction between particles
cannot be fully accounted for by an effective boundary force
approach as in Refs.[24,25]. Therefore one has to include
explicitly this asymmetry into the description of the dynam-
ics in order to accurately capture the structure of the expand-
ing film. Finally, interaction strengths aboveW0

std have dra-
matic effects on the spreading behavior, leading to the
emergence of interfaces[Fig. 6(b)], and the simple descrip-
tion in terms of noninteracting particles breaks down com-
pletely. We note here that in the MD studies in Refs.[29,30]
also there seems to be evidence that in the monolayer foot
extracting from the droplet the particle density varies spa-
tially, and that the shape of the density profile is dependent
on the details of the “polymer chains” and substrate consid-
ered(for example, in Ref.[30] an almost compact monolayer
is observed for flexible chains, see Fig. 15, while a smoothly
decreasing profile seems to emerge for stiff chains, see Fig.
20).

The third feature of the profiles to be discussed is the
formation of a “foot” at the right end of the profile. The
height of the foot is approximately equal toC1 and this is due
to the fact that the density value on anadvancingedgeGt
cannot decrease belowC1. The formation of the step implies
that the fluctuations of the interfaceGt around the mean
value Xstd are constant or increase in time slower thanÎt,
such that the width of the interface divided byÎD0t vanishes
in the long-time limit. This sharp interface is occurring natu-
rally due to the fact that the eventually large fluctuations are
suppressed by blocking the advancing of isolated particles
ahead of the film[see rule(e) in Sec. II], and thus the width
of the interface would be expected to be of the order of the
cutoff rc=3 of the attractive potential and to be almost con-
stant in time. Although the formation of the foot of heightC1
is a somewhat artificial feature introduced in the model by

rule (e) (“artificial” because it depends on the particular
value for the cutoffrc of the attractive potential—increasing
the value ofrc would lead to a smaller valueC1 and, even-
tually, to a hardly distinguishable foot), the advantage of it is,
as discussed in the Introduction, that it leads to the clear
formation of an interface with its associated dynamics.

V. CONTINUUM LIMIT

A. Differential equation for the density and scaling behavior

Neglecting all spatial and temporal correlations, i.e., as-
suming that averages of products of occupation numbers
hsr ; td are equal to the corresponding products of averaged
occupation numbersrsr ; td=khsr ; tdl, wherek¯l denotes the
average with respect to the corresponding probability distri-
bution Pshhsr ; tdjd of a configurationhhsr ; tdj, one can for-
mulate the following mean-field master equation for the local
occupational probability(density) rsr ; td:

Drsr ;td
Dt

= − rsr ;td o
r8,ur8−r u=1

vr→r8;tf1 − rsr8;tdg

+ f1 − rsr ;tdg o
r8,ur8−r u=1

vr8→r;trsr8;td, s11d

where

Usr ;td ; kŨsr ;tdl = − U0 o
r9,0,ur9−r uø3

rsr9;td
ur9 − r u6

s12d

is replacingŨsr ; td in the definition forpsr → r8d [Eq. (1)].
As shown in detail in Appendix B, in the continuum space

and time limit(Dt→0, a→0, V−1→0, D0=Va2/4 finite) of
Eq. (11), by taking Taylor expansions forpsr → r8d and
rsr8 ; td aroundr and keeping terms up to second-order spa-
tial derivatives of the densityrsr ; td [37,45,46], one obtains
the following nonlinear andnonlocalequation forrsr ; td:

]tr = D0 = f=r + brs1 − rd = Ug + Osa2d. s13d

Since the derivation of Eq.(13) presented in Appendix B
is not a rigorous proof(as we shall discuss below, such a
proof appears to be extremely difficult to obtain) but rather a
heuristic derivation in the spirit of Ref.[46], several com-
ments are in order before proceeding. The only lattice gas
system with long-ranged interactions for which it has been
rigorously shown that Eq.(13) represents the correct con-
tinuum limit at all temperatures is the hard-core lattice gas
model with a Hamiltonian composed of short-ranged(on-
site) repulsion and long-ranged(infinite) Kac potentials
evolving via rates which satisfy detailed balance[47–49].
Recently, it has been argued that similar equations will also
hold for systems with relatively short-ranged interactions
[50–52]. The system discussed in Refs.[50–52] is a hard-
core lattice gas model with attractive interparticle interaction
in the form of either a finite range constant potential or of
Morse potentials, a microscopic dynamics defined by
nearest-neighbor jumping rates depending on the energy at
the departure site(Arrhenius dynamics) or on the difference
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in energy between the two sites(Metropolis dynamics), and a
fixed density gradient imposed by fixed densities at the
boundaries of the simulation box. As shown in Ref.[52], the
solutions of such continuum equations compare fairly well
with results of corresponding kinetic Monte Carlo simula-
tions in cases where the interaction range is greater than
several lattice units. Typical values are 5–10 lattice units,
depending on the dimensionality of the problem, the type of
potential, and the type of dynamics defined by the micro-
scopic rates. Moreover, it has been shown by Leung[46] that
heuristic derivations, based on formal Taylor expansions, of
continuum equations from microscopic dynamics give very
good results both for the dynamics of Ising models with
nearest-neighbor interactions and Kawasaki rates and for that
of driven lattice gases. Based on these results we assume that
Eq. (13) is at least a good approximation for the continuum
limit of our system, although it was not rigorously derived
and although the range of the attractive potential in our prob-
lem is rather shortsrc=3d. Finally, since the continuum limit
for our system seems to be described by the same equation as
that for the dynamics in systems evolving via rates preserv-
ing the detailed balance condition, one may conclude that
indeed the deviations(calculated in Appendix B) from de-
tailed balance in the rates defined by Eq.(4) are small and do
not carry over to the macroscopic scale.

The constraint of a fixed densityC0 at the edgex=0 of the
reservoir implies the boundary condition

rsx = 0,y;td = C0. s14d

As we have pointed out in Sec. IV A, the condition(e) in the
model leads to a well defined interface and implies that for a
spreading film the minimum density on the advancing edge
is C1*0.08. In the absence of other additional constraints
imposed by the formation of interfaces, i.e., for interactions
W0,W0

std, and for large times, these considerations and the
KMC results [see also Figs. 6(a), 6(c), and 6(d)] strongly
suggest that the density on the advancing edgeXstd can be
considered as fixed and equal toC1, leading to the boundary
condition

r„x = Xstd,y;t… = C1. s15d

In what follows, we shall use the valueC1=0.11 obtained in
the KMC simulations. We note in passing that the boundary
condition, Eq.(15), also naturally occurred in the effective
boundary force model[24,25], the expression ofC1 in this
case beingC1=1−m, with m as the ratio between the forward
and the backward jumping rate for particles on the advancing
edge.

Since there are no boundaries along they direction and
the boundary condition at the reservoir[Eq. (14)] is indepen-
dent of y, an important consequence of they independence
of Eq. (15) is that the solutionrsr ; td does not actually de-
pend ony, which implies that the monolayer is homogeneous
along they direction, in agreement with the KMC results.
Therefore one has to solve an effectively one-dimensional
problem. The study of the occurrence of spontaneous trans-
versal instabilities of the advancing edge would require to
replace Eq.(15) by a moving, transversally varying bound-

ary condition. This might become relevant if the monolayer
is driven by external forces or encounters an obstacle. How-
ever, in view of the KMC results we have no reason to con-
sider such effects for the present system.

Although the reduced dimensionality is a significant sim-
plification, Eq.(13) remains quite complex because it is non-
local due to the term involving the interaction potential
Usr ; td. However, assuming that the densityrsr ; td is a slowly
varying function of the spatial coordinates(which certainly
is a reasonable hypothesis everywhere except near interfaces,
see Figs. 2 and 6), the potentialUsr ; td may be expanded as

Usr ;td = − U0 o
r8,0,ur8−r uø3

rsr8;td
ur8 − r u6

. − U0rsr ;td o
r8,0,ur8−r uø3

1

ur8 − r u6
+ Osa2d. s16d

As discussed in Appendix B, the rotational symmetry of the
lattice and of the factorur8−r u−6 implies that the summation
over r8 will cancel the contributions of the first-order deriva-
tives, and thus the leading gradient term does not appear in
the expansion above. Because in the derivation of Eq.(13)
only terms up to second-order spatial derivatives of the den-
sity have been kept, i.e., second order in the lattice constant
a, and a factora2 has been already absorbed into the diffu-
sion coefficientD0, only the zeroth-order term in the expan-
sion above will contribute. This leads to thelocal equation

]tr = D0 = hf1 − gW0rs1 − rdg = rj + Osa2d, s17d

whereg=o1øur uørc
ur u−6 is a geometrical factor dependent on

the lattice type(e.g., square, triangular, etc.) and on the cut-
off range of the potential. For the present case of a square
lattice and a cutoff atrc=3 one hasg.4.64.

Rescaling the time ast→t=D0t and defining an effective
diffusion coefficient

Desrd = 1 −gW0rs1 − rd, s18d

Eq. (17) may be written in the usual form of a diffusion
equation

]tr = = fDesrd = rg + Osa2d. s19d

The functional form ofDesrd [Eq. (18)] implies that for
W0.4/g there will be valuesri of the density for which
Desrid,0 (see Fig. 7). For parameters such thatW0,4/g,
Eq. (19) is a proper diffusion equation, while forW0.4/g
instabilities are expected in the range of densities where
Desrid,0, i.e., forri P sra

− ,ra
+d where

ra
± =

1

2
S1 ±Î1 −

4

gW0
D . s20d

It is known [47,53] that these instabilities are discontinuities
in the density profile(shocks), i.e., they correspond to the
formation of interfaces, which is exactly what is observed in
the KMC results. Thus, the value for the threshold interac-
tion strengthW0

std (introduced in Sec. IV) for which interfaces
emerge is predicted by the continuum theory asW0

std=4/g

M. N. POPESCU AND S. DIETRICH PHYSICAL REVIEW E69, 061602(2004)

061602-10



.0.86. This value is significantly smaller than the lower
bound estimate 1.0,W0

std from KMC simulations, which is
not unexpected because of the mean-field character of the
derivation of the continuum equation. However, a simple,
intuitive argument allows an effective inclusion of correla-
tions into the mean-field description and leads to a simple
correction to the mean-field valueg=4.64. The dynamics is
possible only by jumps into empty locations. This means that
the summation ing should include at most three contribu-
tions from nearest-neighbor sites, givingg.3.64 and an es-
timate for the threshold interactionW0

std.1.1, in good agree-
ment with the KMC results. Thus for the rest of the analysis
we will use this corrected value ofg.

We now proceed with the analysis of the density profiles
for the asymptotic scaling limit. Since the solutionrsr ; td
depends only onx, Eq. (19) yields an equation for the trans-
versally averaged densityCsx,td:

]tCsx;td = ]xfDesCd]xCsx;tdg + Osa2d. s21d

Introducing the scaling variablel=x/Ît leads to the follow-

ing equation for the scaling solutionC̃sld in the asymptotic
limit t@1:

l

2

dC̃

dl
+

d

dl
FDesC̃d

dC̃

dl
G + Ofsa/Îtd2g = 0 s22d

with the boundary conditions

C̃s0d = C0, s23ad

C̃sAd = C1. s23bd

Since the solution of Eq.(22) depends on whetherW0,W0
std

or W0.W0
std, we shall discuss these two cases separately.

B. Scaling solution for W0,W0
„t…

For W0,W0
std, in Eq. (22) the termOfsa/Îtd2g may be

neglected, and Eq.(22) together with the boundary condi-
tions given in Eq.(23) is a well posed problem and thus

admits a regular solutionC̃sl ;W0,C0d. Although the solution
cannot be found in closed form, the numerical integration of
Eq. (22) is straightforward. Results for small and intermedi-
ate values of the attractive couplingW0 and for several val-
ues ofC0 are presented in Fig. 8. For comparison, we also
show results corresponding to the mean-field effective
boundary force(EBF) approach[24] subject to the same
boundary conditions[Eq. (23)], for which the density profile
is given by[54]

C̃mfsld = C0 − sC0 − C1d
erfsl/Î2d
erfsA/Î2d

, s24d

where erfszd=s2/Îpde0
zdye−y2

is the error function.
There is excellent agreement in all cases between the the-

oretical results from Eq.(22) and the KMC results. Similar
conclusions hold for all values ofC0 and W0ø1.0. (These
results are not shown.) These findings offer additional strong
support both to the assumption that Eq.(22) is an accurate

FIG. 7. Effective diffusion coefficientDesrd [Eq. (18)] for
gW0=3 (upper curve) and gW0=5 (lower curve), i.e., below and
above the threshold valuegW0

std=4, respectively. The valuesra
− and

ra
+ indicate the range of densitiesri for which Desrid,0, corre-

sponding to instabilities in Eq.(19).

FIG. 8. Asymptotic scaling solutionC̃sld for (a) W0=0.6,C̃sl=0d=C0=1.0,0.8,0.4 and(b) W0=1.0,C̃sl=0d=C0=1.0,0.8,0.4 with
l=x/ÎD0t. Shown are theoretical mean-field results from Eq.(22) (solid lines), results of the EBF theory from Eq.(24) (dashed lines), and
corresponding KMC results at timeT=23106 ssd (assumed to be close to the asymptotic limit).
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description of the continuum limit forW0,W0
std and to our

heuristic correctiong.3.64 for taking correlations into ac-
count [see the paragraph preceding Eq.(21)]. When com-
pared to the EBF results from Eq.(24), we see that, as ex-
pected, at low densities of the reservoir(see, e.g., the curves
in Fig. 8 corresponding toC0=0.4) the predictions of Eq.
(22) and the EBF results are almost identical because the
monolayer is dilute and thus the particle-particle interactions
are less effective. For similar reasons, at low values for the
strength of the interparticle attraction or at high temperature,
i.e., whenW0 is small, the EBF description performs well
even for high densities[see in Fig. 8(b) the curve corre-
sponding toC0=0.8]. However, at very high densities of the
reservoir or for large values of the attractive couplingW0,
there are significant discrepancies even in thequalitativebe-
havior between the EBF predictions and the simulation re-
sults. In particular, the formation of a “shoulder” in the case
in which W0 is large[see in Fig. 8(a) the curves correspond-
ing to C0=1 andC0=0.8] is remarkably well reproduced by
the theoretical curve obtained from Eq.(22), but it is com-
pletely missed by the EBF solution[Eq. (24)]. Therefore we
conclude that even in this case, i.e., below the threshold
valueW0

std for interface formation, the interparticle attraction
has to be explicitly included into the model in order to obtain
a correct prediction for the mass distribution inside the
monolayer which is extracted.

The above results should also be discussed in the context
of the similar work in Refs.[51,52] mentioned in the begin-
ning of this section. We have emphasized that the derivation
of the continuum limit is mean-field-like in character, and
that only after correcting for correlations, i.e., after adopting
the improved valueg.3.64, the continuum limit accurately
predicts both the threshold valueW0

std for the interaction cou-
pling and the scaled asymptotic density profiles

C̃sl ;W0,C0d. Such a correction has not been included in the
similar continuum equations discussed in Refs.[51,52], and
we suggest that this explains the discrepancies observed by
the authors in the case in which the range of the interparticle
potential is short(see, e.g., the density profiles corresponding
to cutoff rangesrc=2 andrc=5 in Fig. 4(a) in Ref. [52]). For
the longer-ranged potentialssrcù5d used in Refs.[51,52],
further than nearest neighbors contribute significantly tog
and the exclusion of a nearest-neighbor term becomes rela-
tively less important, which explains the good agreement ob-
tained in the casesrcù5 without any correction included.

Before proceeding to the caseW0.W0
std, we would also

like to briefly comment on the connection between our above
results, the experimental results for the precursing films of
Pb on Cu(111) reported in Ref.[55], and the MD results for
precursing films of Ag on Ni(100) presented in Ref.[56].
The density profiles measured experimentally[see Fig. 3(b)
in Ref. [55]] and in the MD simulations(see Fig. 3 in Ref.
[56]) for the 2D spreading of Pb or Ag films show a striking
resemblance with the ones we have obtained in the KMC
simulations. Moreover, by assuming a macroscopic diffusive
dynamics described by an equation of the same form as the
one derived in Eq.(21), effective diffusion coefficients
DesCd have been obtained from the density profiles, and the
data shown in Fig. 3(a) in Ref. [55] are in qualitative agree-

ment with a quadratic dependence forDesCd as in Eq.(18).
Therefore, the very simple microscopic model we discussed
seems to capture the essential features of the dynamics in
these cases. Moreover, this suggests that this form ofDesCd
for Pb on Cu(111) is not necessarily due to surface
alloying—a mechanism which is not included into the dy-
namics of our model—but is rather already a consequence of
the interplay between the concentration gradients and the
interparticle interaction, which leads to “jamming” and thus
significantly slows down the diffusion for large values of the
densityCsx,td.

C. Scaling solution for W0.W0
„t…

We now turn to the discussion of Eq.(22) for the case
W0.W0

std. Because in this case the effective diffusion coef-

ficient DesC̃d becomes negative within a range of densities,
the problem is known to be mathematically ill posed and to
lead to discontinuities(shocks) in the long-time limit if the
small termsO(sa/Îtd2) [see Eq.(22)] are set to zero[53].
For this problem the existence and uniqueness of a “weak”

solutionC̃sld [weak in the sense thatC̃sld has a discontinu-
ity at a point l=ls but satisfies Eq.(22) for lÞls] have
been recently addressed by Witelski[57,58] using singular
perturbation methods. We will use here directly the explicit
construction of the shock solution derived in Ref.[57] for the
case in which the termOsa2/Îtd is proportional to]x

4Csx,td,
the details of the calculation being presented in Appendix C.

Defining

msCd =E
0

C

dC8DesC8d, s25d

Eq. (21) may be rewritten as

]tC = ]x
2msCd + Osa2d, s26d

i.e., it has the form of a diffusion equation forCsx,td with a
mobility M =1 and a “chemical potential”msCd. Moreover,
as we will discuss below, the values ofmsCd across the dis-
continuity satisfy conditions which are similar to those de-
termining the equilibrium liquid-vapor coexistence line in
the van der Waals–Maxwell mean-field theory of liquid-
vapor transitions. Because of these similarities, in what fol-
lows we shall informally denotemsCd as chemical potential.

Following Refs.[57,58], we look for a weak solution of
Eq. (22), subject to the boundary conditions given in Eq.
(23), in the form of a shock defined as

C̃sld = HC,sld, l , ls,

Crsld, l . ls,
s27d

whereC,sld andCrsld satisfy Eq.(22) in the intervalsf0,lsd
and sls,A=Xstd /Îtg, respectively, subject to the boundary
conditions

C,s0d = C0, C,slsd = CM ,

M. N. POPESCU AND S. DIETRICH PHYSICAL REVIEW E69, 061602(2004)

061602-12



Crslsd = Cm , CM, CrsAd = C1, s28d

respectively. As discussed in Appendix C, the singular per-
turbation analysis of Eq.(22) implies that the valuesCM and
Cm of the density at the left and the right of the shock,
respectively, are determined from the following conditions
expressed in terms ofmsCd:

msCMd = msCmd, s29ad

E
Cm

CM

dC8fmsC8d − msCMdg = 0, s29bd

i.e., continuity of the “chemical potential”msCd across the
shock and a Maxwell equal area rule across the shock, as
mentioned at the beginning of this section. Solving Eq.(29),
we find that the only solution satisfying the condition
CM .Cm is

CM =
1

2
+

Î3

2
Î1 −

4

gW0
, s30ad

Cm =
1

2
−

Î3

2
Î1 −

4

gW0
. s30bd

Comparison with the similar expressions forCa
±, where

DesCa
±d=0 [Eq. (20)], shows that for allW0.W0

std one has
Cm,Ca

− ,Ca
+ ,CM, thus the shock occurs both above and

below the interval corresponding to unstable states. For the
states corresponding to densities CPC
=sCm,Ca

−dø sCa
+ ,CMd the effective diffusion coefficient is

positive, but the density gradients are very large in the long-
time limit and the state becomes part of the shock; thus den-
sitiesCPC correspond to metastable states.

The last unknown, the positionls of the shock, is ob-
tained from the conservation of mass. In an infinitesimal
time intervaldt, the displacementds=xsst+dtd−xsstd of the
position xs=ls

Ît of the shock leads to an increasesCM

−Cmdds in the mass inside the stripexsst+dtd−xsstd. This
should be equal to the net mass transferdtf jsxsd− jsxs+dsdg,

where the mass currentjsxd=−]xmsCd [see Eq.(26)] is dis-
continuous at xs. Since ds/dt=s1/2dlst

−1/2 and ]xC
=t−1/2dC/dl, one obtains the following expression for the
positionls of the shock:

ls = − 2

DesCMdUdC

dl
U

CM

− DesCmdUdC

dl
U

Cm

CM − Cm
. s31d

We note that the above result can be also obtained via a
direct integration of Eq.(22) across the shock, i.e., froml
=ls−j to l=ls+j in the limit j→0, using for the density
profile there the approximation by a step functionCsld
=CM −sCM −CmdHsl−lsd, whereHsxd is the Heaviside func-
tion fHsx,0d=0,Hsxù0d=1g. It is important to note here
that for sufficiently large valuesW0 of the attractive interac-
tion the densityCm may become smaller thanC1. Since the
density at the advancing edge cannot be smaller thanC1, in
this case the branchCrsld disappears and the shock position
is obtained by settingCm=0 in Eq. (31).

OnceCm andCM are known, Eqs.(22), (28), and(31) can
be, in principle, solved for the corresponding quantities
C,sld, Crsld, and the positionls of the shock. Since Eq.(22)
cannot be solved in closed form, the above system of equa-
tions has to be solved numerically. Such a numerical solution
is shown in Fig. 9 for the cases(a) W0=1.2, C0=1.0, for
which Cm.0.25.C1, and (b) W0=1.4 and C0=1.0, for
which Cm.0.098&C1. It can be seen that the agreement
between the theoretical asymptotic “shock” solution and the
KMC measured density profiles is good for the large value
W0=1.4, but it is not so good in the caseW0=1.2. This is
very likely due to the fact that in the latter case the simula-
tion has not yet reached the true asymptotic regime, while for
W0=1.4 the approach to the asymptotic shape is faster be-
cause the low density branchCr is suppressed. In both cases
the KMC results confirm the valueCM as the onset of large
density gradients, and there is good agreement between the
theoretical prediction and the simulations in the range of
densitiesC.CM. This also supports the above conclusion

FIG. 9. Asymptotic scaling solutionC̃sld for (a) W0=1.2,C0=1.0 and(b) W0=1.4,C0=1.0. Shown are theoretical results obtained from
Eqs.(22), (28), and(31) (solid lines), and corresponding KMC results at timeT=23107 ssd (assumed to be close to the asymptotic limit).
The dotted line is a guide to the eye. The dashed lines indicate the corresponding valuesCm andCM from Eq.(30), Ca

± from Eq.(20) where
DesCa

±d=0, which determines the onset of the density range leading to instabilities(see Fig. 7), C1 from the boundary condition Eq.(23b),
and the positionls of the discontinuity given by Eq.(31).
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that the discrepancies in the rangeC,CM are due to simu-
lation times which are not large enough.

The jumpCM −Cm in the density atls explains the forma-
tion of the plateau(for W0.W0

std) in the dependence of
AsC0,W0d on C0: if the densityC0 at the reservoir is within
the rangeCmøC0,CM, in the immediate vicinity of the
reservoir edge the density drops toCm and in the long-time
limit the extraction of the film proceeds effectively as if the
reservoir density would have beenCm. Also, since1/2−Cm
=−1/2+CM, it follows that the plateau should be symmetric
with respect toC0=0.5; indeed the KMC data in Fig. 4(a)
exhibit this symmetry(as long asW0 is such thatCm.0.1).
Moreover, since the density must satisfyCø1, one may con-
clude that for interaction valuesW0 such thatCM .1 the
extraction of a monolayer is no longer possible. This implies
that the exact value for the upper limit of the interaction

W̃0
scovd above which no macroscopic film is extracted from

the reservoir is given byW̃0
scovd=6/g.1.65. This value is

significantly below the valueW̃0
scovd=W0

scovdsC0=1d.2.3 ex-
tracted from the linear extrapolation of the KMC data[see
Fig. 4(b)], the discrepancy very likely reflecting that the
KMC simulations have not yet reached the true asymptotic
limit (or that a linear extrapolation is not appropriate). Thus
it is to be expected that in the rangeC0*0.85 the separatrix
W0

scovd shown in Fig. 4(b) significantly overestimates the cor-
rect curve.

VI. SUMMARY AND CONCLUSIONS

Using kinetic Monte Carlo(KMC) simulations and a non-
linear diffusion equation within the continuum limit, we have
studied a lattice gas model with interacting particles for the
two-dimensional spreading on homogeneous substrates of a
fluid monolayer which is extracted from a reservoir(Fig. 1).
We have obtained the following main results.

(1) The two-dimensional KMC simulations confirm the
time dependenceXst→`d=AÎt of the spreading, whereXstd
is the average position of the advancing edge of the mono-
layer at timet, and reveal a nontrivial dependence of the
prefactorA on the strengthU0 of interparticle attraction and
on the fluid densityC0 at the reservoir(see Figs. 2–4). A
careful analysis of this behavior has allowed us to identify, in
terms ofW0=U0/kBT, a transition pointW0

std.1.1 associated
with the occurrence of interfaces inside the extracted mono-
layer, and to estimate a covering phase diagram in theW0
-C0 plane (Fig. 4) together with a covering–noncovering
separatrixW0

scovd below which a macroscopic film is ex-
tracted from the reservoir, while aboveW0

scovd it is not ex-
tracted.

(2) The asymptotic(i.e., at long time and large spatial
scales) transversally averaged density profilesCsx,td mea-
sured in the KMC simulations exhibit a scaling behavior as
function of the scaling variablel=x/ÎD0t, whereD0 is the
one-particle diffusion coefficient on the bare substrate(Fig.
6). They clearly show that for this model the density in the
extracted monolayer is not spatially constant, in contrast to
the predictions of other theoretical models mentioned in the
Introduction. This provides an unambiguous—and otherwise

difficult—way to experimentally discriminate between the
various theoretical models proposed. Moreover, the simula-
tions show that the present model predicts qualitatively dif-
ferent structures for the experimentally accessible density
profiles below and above the threshold valueW0

std (see Figs. 7
and 8), in particular, the formation of sharp interfaces inside
the extracted monolayer forW0.W0

std.
(3) The asymptotic, scaled density profilesC̃sld have

been analyzed within a continuum limit with the correspond-
ing nonlinear diffusion equation derived from the micro-
scopic master equation. Within this approach we have in-
cluded the effect of correlations in an effective manner into
the standard mean-field description by adapting the value of
the integrated attractive interaction to account for the pres-
ence of empty nearest-neighbor sites(see Fig. 5). This leads
to an excellent agreement between the theoretical predictions
based on the continuum limit and the KMC results both for
the valueW0

std and for the scaled density profiles(Fig. 8).
Additionally we have shown that, even below the threshold
valueW0

std for interface formation, the interparticle attraction
has to be explicitly included into the model in order to obtain
correct predictions for the mass distribution inside the ex-
tracted monolayer. The formation of the interfaces in the
rangeW0.W0

std has been related to instabilities of the diffu-
sion equation associated with densities for which the corre-
sponding effective diffusion coefficient becomes negative
(Fig. 7). We have constructed the corresponding discontinu-
ous density profiles(shocks) and critically compared them
with the KMC measured ones(Fig. 9). Based on the results
of a singular perturbation analysis, we have obtained a good

estimateW̃0
scovd.1.65 for the upper limit of the interaction

above which no macroscopic film is extracted from the
reservoir.

Finally, we comment on the connection between this
model and experimental systems. As briefly discussed in Sec.
V B, the present model appears to provide a successful de-
scription for the diffusion of solid metals on metal surfaces
as studied in Refs.[55,56]. We have found a qualitative
agreement between the experimental results in the case of
diffusion of Pb on Cu(111) [55] and our theoretically derived
density profiles and effective diffusion coefficient. It seems
to be promising to explore quantitatively the applicability of
the present model for such metal on metal systems. To this
end the experimental setup described in Refs.[55,56] would
have to be modified in order to have straight instead of cir-
cular spreading geometries and a deposit-substrate combina-
tion chosen such as to avoid surface alloying effects.

As noted in the Introduction the experiments with fluids
performed so far deal with polymer oils. As long as the en-
tanglement of the polymer chains is not important, one may
consider a coarse-grained description in which the chain is
replaced by an effective particle of the size of the corre-
sponding radius of gyration and only the motion of the center
of mass is considered. Although the motion of these effective
particles might not resemble simple, activated jumping pro-
cesses so that the microscopic model description is not di-
rectly applicable, it is reasonable to expect that the macro-
scopic evolution will be diffusive. Therefore, one may expect
that the continuum limit of the present model can be used to
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describe the spreading behavior observed in experiments
with polymer oils, but the macroscopic parameters entering
into the diffusion equation should be regarded as fit param-
eters and not quantities calculated from microscopic dynam-
ics as considered here.

In order to obtain a direct, quantitative test of the present
theoretical predictions for precursor liquid films, new experi-
ments would have to be performed using simple liquids cho-
sen such that they have a spreading rate large compared with
the evaporation rate. This should be combined with observa-
tion techniques chosen such that the density profiles, and not
only the spreading rate, could be measured, which would
require an in-plane(lateral) resolution in the order of few
nanometers for the case of simple liquids, i.e., several lattice
constants, and in the order of 10–50 nm for the case of poly-
mer oils, i.e., several inter “effective” particle distances, be-
cause the density variations are expected to occur on larger
length scales. One technique which possibly may fulfill these
requirements is reflection interference contrast microscopy
[59], assuming that the microscope objective may scan the
area of interest(of the order of mm2) in times sufficiently
small compared to those on which the density profile
changes. The technique has been used before in studies of
(equilibrium) wetting properties on micropatterned solid sur-
faces[59], and already at the time of its first implementation
a lateral resolution of at least 200 nm(see Fig. 13(b) in Ref.
[59]) combined with a normal resolution of the order of 1 nm
has been achieved.
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APPENDIX A: KINETIC MONTE CARLO METHOD

In this section we discuss in some detail the variable-step
continuous-time kinetic Monte Carlo algorithm[41–43] that
we have used. The main idea is to consider the sequence of
independent, uncorrelated events represented by jumps of
particles away from the wells in which they were residing.
Each of these events has an identical time- and environment-
independent rateV as shown by Eq.(5), in contrast to the
location-dependent rates of particular transitionsr → r8 [Eq.
(4)].

Consider the system at timet when there areN particles in
the film sx.0d and an event just occurred. Since the at-
tempts of any particle to leave its well are uncorrelated to
similar events of other particles, and since for each particle
the rate for a successful jump isV, for each one of the
particles the probability that until timet8. t no successful
attempt occurs isP1std=exps−Vtd, where t= t8− t. There-
fore, since the jumps are uncorrelated, the probability that
noneof theN particles experienced a successful attempt int
is PNstd=fP1stdgN=exps−NVtd and the probability that the
first successful jump will take place att8 will be given by

P = NVPNstd = NV exps− NVtd. sA1d

Thus the time intervalt between successful jumping at-
tempts(between “events”) is a random variable distributed
according to Eq.(A1). Since all theN particles have identical
ratesV for events, the probability for a certain particle to be
the one undergoing the jump isV / sNVd=1/N, i.e., the par-
ticle to jump is selected at random. Let us assume the se-
lected particle is at locationr. There arez=4 nearest-
neighbor locations, and thusz=4 possible realizations of the
jump; the one to be actually attempted is selected according
to the probability defined by Eq.(1). Specifically, calling the
four probabilitiesp1, . . . ,p4, with p1 corresponding to the
jump sx,yd→ sx+1,yd and the others being indexed counter-
clockwise, one compares the successive sumss0;0, sj

=ok=1
k=j pk, j =1,2,3,4,with a random numbervP f0,1g and

selectspk for whichsk−1,vøsk. As described in the text, the
jump takes place if the selected destination site is empty, and
is rejected if the destination site is occupied.

We note here that, as shown in Ref.[43], incrementing the
time between events using intervals generated according to
Eq. (A1) and not a constant time interval equal to the aver-
age time 1/sNVd between events, such as in a classical
Monte Carlo simulation, is essential in assuring that the
simulated time is the correct real time, and thus that the
simulations capture the correct time development of spread-
ing.

APPENDIX B: HEURISTIC DERIVATION OF THE
CONTINUUM LIMIT

The (mean-field) master equation for the local occupa-
tional probability(density) rsr ; td is given by

] rsr ;td
] t

= − rsr ;td o
r8,ur8−r u=1

vr→r8;tf1 − rsr8;tdg

+ f1 − rsr ;tdg o
r8,ur8−r u=1

vr8→r;trsr8;td, sB1d

where

vr→r8;t = V

expHb

2
fUsr ;td − Usr8;tdgJ

o
r8,ur8−r u=1

expHb

2
fUsr ;td − Usr8;tdgJ sB2d

and

Usr ;td = − U0 o
r9,0,ur8−r uø3

rsr9;td
ur − r9u6

. sB3d

We consider a two-dimensional regular lattice of coordi-
nation numberz and lattice constanta and choose the or-
thogonalx-y coordinate system such that thex axis is along
one of the lattice directions. For a given siter we index the
nearest neighbors asr j8, j =0,1,2, . . . ,z−1, where j =0 is
chosen such thatr08−r is parallel to thex axis andj runs in
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counterclockwise direction. Denoting the angle formed by
the vectorr j8−r with the x axis asf j so thatf j =2p j /z, the
componentsxj8 andyj8 of r j8−r are given byxj8=a cossf jd and
yj8=a sinsf jd. The following relations are satisfied by the
anglesf j [60] and will prove to be useful for the rest of the
calculation:

o
j=0

z−1

sinksf jd = 0, o
j=0

z−1

cosksf jd = 0, for oddk,0 , k , z,

sB4ad

o
j=0

z−1

sin2sf jd =
z

2
, o

j=0

z−1

cos2sf jd =
z

2
, sB4bd

o
j=0

z−1

sins2f jd = 0, o
j=0

z−1

coss2f jd = 0. sB4cd

Defining

dhsr,r j8;td = hsr j8;td − hsr ;td, sB5d

wherehsr ; td is any of the functionsrsr ; td, Usr ; td, or prod-
ucts of them, expandinghsr j8 ; td near r, and summing
dhsr ,r j8 ; td over r j8 one obtains

o
j=0

z−1

dhsr,r j8;td = aF ] h

] x
o
j=0

z−1

cossf jd +
] h

] y
o
j=0

z−1

sinsf jdG
+

a2

2 F ]2h

] x2o
j=0

z−1

cos2sf jd

+ 2
]2h

] x ] y
o
j=0

z−1

sinsf jdcossf jd

+
]2h

] y2o
j=0

z−1

sin2sf jdG + ¯ . sB6d

In the relation above,h;hsr ; td and the derivatives are
evaluated atr. Replacing the corresponding sums by the re-
sults in Eq.(B4), it follows that

o
j=0

z−1

dhsr,r j8;td =
za2

4
¹2h + Osa4d. sB7d

Straightforward algebra allows one to derive from the defi-
nition (B5) the following additional useful relations involv-
ing a second functionfsr ; td:

fsr j8;tddhsr,r j8;td = dsfhdsr,r j8;td − hsr j ;tddfsr,r j8;td,

sB8ad

dfsr,r j8;tddhsr,r j8;td = dsfhdsr,r j8;td − hsr j ;tddfsr,r j8;td

− fsr j ;tddhsr,r j8;td. sB8bd

Assuming thatUsr ; td varies slowly on the scale of the
lattice constant so thatbdUsr ,r8 ; td!1, one has the
expansion

expF−
b

2
dUsr,rk8;tdG

o
j=0

z−1

expF−
b

2
dUsr,r j8;tdG .

expF−
b

2
dUsr,rk8;tdG

o
j=0

z−1

h1 − bdUsr,r j8;td/2 + fbdUsr,r j8;td/2g2 + ¯j

. sB9d

Thus using Eqs.(B7) and (B8b) one obtains

vr→r8;t

V
.

1

z
expF−

b

2
dUsr,rk8;tdGH1 +

ba2

8
f¹2U − bs=Ud2g

+ Osa4dJ , sB10d

where as beforeU;Usr ; td and the spatial derivatives are
evaluated atr. As we shall show below, the zeroth-order term
in the above expansion[Eq. (B10)] contributes to the master
equation already in the ordera2, and therefore the other
terms on the right-hand side(RHS) of Eq. (B10) will lead to
contributions proportional toa4 and higher orders. Therefore,

up to contributions which are of second order in the lattice
constant in the master equation, Eq.(B10) may be rewritten
as

vr→r8;t .
V

z
expF−

b

2
dUsr,r8;tdG . sB11d

This means that the deviations of the ratesvr→r8;t from de-
tailed balance, which according to Eq.(B10) are of second
order and higher in the lattice constant, in the equation cor-
responding to the continuum limit contribute with terms of
fourth order and higher in the lattice constant. These terms
become negligible in the limita→0.
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The expression(B11) may be now expanded in terms of
powers ofbdUsr ,r8 ; td:

vr→r8;t . p0 + p1 + p2 + ¯ , sB12d

where

p0 =
V

z
, sB13ad

p1 = −
Vb

2z
dUsr,r8;td, sB13bd

p2 =
Vb2

4z
fdUsr,r8;tdg2. sB13cd

Note that the expression(B11) implies

vr8→r;t .
V

z
expF−

b

2
dUsr8,r ;tdG =

V

z
expF+

b

2
dUsr,r8;tdG

sB14d

and thus its expansion in powers ofbdUsr ,r8 ; td is

vr8→r;t . p0 − p1 + p2 + ¯ . sB15d

We now will compute separately the contributionsRs jd of
these terms to the RHS of Eq.(B1). For the contribution due
to p0 one has

Rs0d =
V

z
o
j=0

z−1

hrsr j8,tdf1 − rsr,tdg − rsr,tdf1 − rsr j8,tdgj

=
V

z
o
j=0

z−1

drsr,r j8;td =
Va2

4
¹2r + VOsa4d. sB16d

For p1 one has

Rs1d =
bV

2z
o
j=0

z−1

dUsr,r j8;tdhrsr j8,tdf1 − rsr,tdg

+ rsr,tdf1 − rsr j8,tdgj

=
bV

2z
f1 − 2rsr ;tdgo

j=0

z−1

rsr j8;tddUsr,r j8;td

+
bV

2z
rsr ;tdo

j=0

z−1

dUsr,r j8;td. sB17d

Using Eqs.(B7) and (B8a) to replace the two sums in the
expression above, one obtains

Rs1d =
bVa2

8
hs1 − 2rdf¹2srUd − U¹2rg + r¹2Uj + VOsa4d

=
bVa2

4
= frs1 − rd = Ug + VOsa4d. sB18d

Finally, for p2 one has

Rs2d =
b2V

4z
o
j=0

z−1

fdUsr,r j8;tdg2hrsr j8,tdf1 − rsr,tdg

− rsr,tdf1 − rsr j8,tdgj

=
b2V

4z
o
j=0

z−1

fdUsr,r j8;tdg2drsr,r j8;td. sB19d

Using repeatedly Eqs.(B8a) and(B7) in the above sum, one
obtains

Rs2d =
b2Va2

4
f¹2srU2d − r¹2U2 − U2¹2r − 2U¹2srUd

+ 2Ur¹2U + 2U2¹2rg + VOsa4d

= VOsa4d. sB20d

It is easy to see that higher-order terms,p3, . . ., will contrib-
ute with terms which are at least of the ordera4, and thus the
expressions(B16) and (B18) are the only terms relevant for
Eq. (B1).

Collecting the terms and passing to the continuum limit
a→0, V−1→0 such thatD0=Va2/4 stays finite, one arrives
at the result given in Eq.(13) in the main text, i.e.,

]tr = D0 = h=r + bfrs1 − rd = Ugj + Osa2d. sB21d

APPENDIX C. DERIVATION OF THE SHOCK
SOLUTION

Following Ref. [57], we start from Eq.(26) written in
terms of the scaling variablel as

−
1

2
l

dC

dl
=

d2

dl2msCd + S a
Ît
D2

QFd4C

dl4 ,Sd2C

dl2D2

, . . .G ,

sC1d

where the function Q is a linear combination of
fourth-order derivatives terms of the form
d4C/dl4,sd2C/dl2d2,fd2sUCd /dl2g2, . . .. The region of in-
terest,lP f0,Ag, naturally decomposes into the region near
the interface,ls−hsedøløls+hsed, and the outer region
ul−lsu.hsed with e=a/Ît; hsed is a smooth function such
that hse→0d=0 (which ensures that in the long-time limit
the width of the interface becomes negligible) and
lime→0hsed /e→`, i.e., it is assumed that the decrease of the
width is slower thane. In the outer region, the solution
Cl,rsld is a slowly varying, smooth function ofl, and the
terms proportional toe2 in Eq. (C1) are negligible. In con-
trast, in the inner region the gradients are very large, and the
fourth-order terms become relevant.

In order to obtain the shock structure, we change to the
“stretching” variablez=sl−lsd /e for ul−lsuøhsed and look
for a smooth, strictly decreasing solutionCszd. In terms ofz
Eq. (26) turns into
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−
1

2
sls + zede−1dC

dz
= e−2 d2

dz2msCd + e−2QFd4C

dz4 ,Sd2C

dz2 D2

, . . .G ,

sC2d

which in the limit e→0 leads to the zeroth order in thee
approximation:

d2

dz2msCd + QFd4C

dz4 ,Sd2C

dz2 D2

, . . .G = 0. sC3d

Since in the limit e→0 the inner region −hsed /eøz
øhsed /e is mapped into −̀ ,z, +` and at the ends of the
shock region the inner solution must match the outer solution
Cl,rsld, Eq. (C3) should be solved subject to the boundary
conditions

lim
z→−`

Cszd = CM, lim
z→+`

Cszd = Cm, sC4d

which implies also that all the derivativesCskdszd of the
smooth inner solutionCszd tend to zero asz→ ±`.

Although the functionQ may be computed explicitly by
using Eq.(B7),

o
j=0

z−1

dhsr,r j8;td =
za2

4
¹2h +

3za4

8
¹4h + Osa6d, sC5d

and following similar steps as in calculating the terms pro-
portional toa2 in Appendix B, the result is very complicated
and a singular perturbation analysis appears to be extremely
difficult, if at all possible. However, one may argue that the
term ]x

4C is always relevant in the region of the shock be-
cause it is associated with an interface contributionFi
=edxf=Csx,tdg2 to the free energy functionalF=Fi +¯ of a
dynamical Cahn-Hillard theory of phase separation,]tC
= = fMsCd¹ sdF /dCdg [where MsCd denotes the mobility]
[58]. Therefore, all the other terms that are relevant should
be of the same order as]x

4C. This leads us to the approxima-
tion

QFd4C

dz4 ,Sd2C

dz2 D2

, . . .G . q
d4C

dz4 , sC6d

with q a constant or a very slowly varying function ofl, e.g.,
qszd= q̃sls+ezd. In this case, Eq.(C3) reduces to

d2

dz2FmsCd + q
d2C

dz2 G = 0. sC7d

A first integration leads tosd/dzdfmsCd+qd2C/dz2g=const
=0 because bothsd/dzdmsCd and d3C/dz3 are zero atz
→ ±`, and thus a second integration yields

msCd + q
d2C

dz2 = b, sC8d

where b is an integration constant. Since limz→±`d2C/dz2

=0, one obtainsmfCsz→ ±`dg=b, i.e., the requirement of
continuity of msCd across the shock[Eq. (29a) in the main
text]:

msCMd = msCmd. sC9d

SincedC/dzÞ0 (except at infinity) andb=msCMd, Eq. (C8)
may be rewritten in the form

q

2

d

dz
FSdC

dz
D2G = fmsCMd − msCdg

dC

dz
, sC10d

which leads to

E
Cm

CM

dCfmsCMd − msCdg =
q

2
E

+`

−`

dz
d

dz
FSdC

dz
D2G = 0,

sC11d

i.e., the equal area rule formsCd [Eq. (29b) in the main text].
Finally, we remark that all the details of the calculation, as

well as the main results[Eqs. (C9) and (C11)], remain un-
changed if the correctionsQ would have the form
QfCs4d ,sCs2dd2, . . .g=sd2/dz2dPfC,Cs2d ,sCs1dd2, . . .g, with P a
linear combination of terms of second-order spatial deriva-
tives satisfying limz→±`P→0 [61], and thus it seems reason-
able to assume that in general it isonly the inner structure of
the shock that depends on the particular form ofQ [57,58].
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