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Manipulating fluids at the nanoscale within networks of channels or chemical lanes is a crucial challenge in
developing small scale devices to be used in microreactors or chemical sensors. In this context, @l&athin
monolayey films, experimentally observed in spreading of nanodroplets or upon extraction from reservoirs in
capillary rise geometries, represent an extreme limit which is of physical and technological relevance since the
dynamics is governed solely by capillary forces. In this work we use kinetic Monte G&€) simulations
to analyze in detail a simple, but realistic model proposed by Burlasia). [Phys. Rev. Lett.76, 86 (1996)]
for the two-dimensional spreading on homogeneous substrates of a fluid monolayer which is extracted from a
reservoir. Our simulations confirm the previously predicted time dependence of the spre({tdmgq):A\E,
with X(t) as the average position of the advancing edge at tjirmad they reveal a nontrivial dependence of
the prefactorA on the strengtiJ, of interparticle attraction and on the fluid dend@y at the reservoir as well
as anUg-dependent spatial structure of the density profile of the monolayer. The asymptotic density profile at
long time and large spatial scale is carefully analyzed within the continuum limit. We show that including the
effect of correlations in an effective manner into the standard mean-field description leads to predictions both
for the value of the threshold interaction above which phase segregation occurs and for the density profiles in
excellent agreement with KMC simulation results.
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[. INTRODUCTION geometry, and of the volume of droplet as long as the droplet
is not emptied and constitutes a reservoir for the extracting
film; only the prefactorA depends on these parameters.
Several theoretical models have been propdgsed Refs.
1-24 and references thergiand an impressive number of
molecular dynamicéMD) and Monte Carlo numerical simu-
?ations have been performédee Refs[5,27-34 and refer-

In the context of microfluidics, wetting phenomena at the
micrometer and nanometer sc@le-5] are relevant for appli-
cations such as microreactors or chemical sensors, for whi
a crucial challenge is the transport of liquid to networks of
channels or chemical lanes, as well as its precise manipul

tion within such a network6—g|. Since at this small scale ences thereinin order to understand the mechanisms behind
the liquid-substrate interaction is important, the flow of thin . ) . .
the extraction of precursor films and to explain the time de-

films may be eventually controlled by engineering the phystpendence of the spreading
cal and chemical properties of the substrate, thus opening the The hydrodynamic model of de Gennes and Cazpt

road for applications which do not have an equivalent at the | £th | h .
macroscopic scalg9—11]. assumes a _ayereql structure of the dr_op et, each layer b_elng a
Although the existence of very thin precursor films has:\r’;?{s'rgr?r}i'on(;islsiggognnﬁre:'?ﬁ gg'dés'r;f V':/r?édl]a \é?;t'C?Le
been long ago evidenced by the studies of Hefttj, only I[lnodeIC; leads Po the correc%/time depen%ence for the);dvéncing
recent experiments on liquid spreading on atomically smoot layers, but, as pointed out in Ref@2,24,34, it is debatable

surfaces[13-2, performed with volumes of the order of if this hydrodynamic description holds at the molecular level
nanoliters, have clearly shown by means of dynamic eIIip-and Car>1l be d%rectl a Iiedpto ultrathin films
sometry or x-ray reflectivity measurements that one or few . y app . o

A different approach, along the line of earlier work on

precursor films withmolecular thicknessand macroscopic activated Kinetics by Cherrv. Holmes. Blake. and Havnes
extentadvance in front of the macroscopic liquid wedge of 353 ) fy erry, Ho d P for th yh'
the spreading drop. The liquids used were Iow-molecular-[. 5’. q’. consists of a microscopic description for the thin
mass polymer oils which behave as nonvolatile liquids anc!'qu'.d films in terms of Iattlc_e 9as mode]s for '|nteract|.ng
articles. One such model is the two-dimensional driven

experiments performed both for spreading of nanodroplets . .
: . . . sing model recently proposed by Abrahatnal. [26]. Usin
gnd for capillary rise geometries have establlsheq that thEinegtic Monte Carlt%/KFl)\/lclio) simulei/tions it was S[hO\]Nn tha?in
linear extentX(t) of the precursor film grows in time as _, . )
X(t— o)~ At?. The exponeniz=1/2 seems to be indepen- this modell the transport _of mass occurs via a second layer,
j o and a particle-hole diffusion equation was used to show that
dent of the nature of the liquid and of the substrate, of the(he model leads to correct predictiotsonfirmed also by
simulationg for the time dependence of spreading. The
model predicts a uniform density and a compact first mono-
*Electronic address: popescu@mf.mpg.de layer, in close resemblance of the incompressible layers of
"Electronic address: dietrich@mf.mpg.de the hydrodynamical model mentioned before.
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For the case that the precursor consists of a single mond<MC results. We conclude the paper with a summary and
layer, a lattice gas model of interacting particles has beeudiscussion of the results.
proposed by Burlatsket al. [24]. This model, which allows
mass transport from the reservoir to the advancing edge only
inside the monolayer, has been extended to the more general Il. DEFINITION AND DISCUSSION OF THE MODEL
situation of relaxation of a monolayer initially occupying a  As mentioned in the Introduction, a simple microscopic

half-plane without a reservoir by Osharetal. [25]. Based  nodel for the dynamics of a fluid monolayer in contact with
on several mean-field assumptions, among which the strony raservoi

“bulk” by an “effective force” acting on the advancing edge
the authors have been able to derive thé law for the
spreading and to calculate the dependence of the prefactor

the fluid-fluid interaction parameters. In contrast to the othe Th di . |
two models, in this case the density in the monolayer de- (2 The spreading geometry is rectangulery plang

pends significantly on the distance from the reservoir. Al-8nd the substrate is homogeneous. The half-pler® is
though it is reasonable to expect that neglecting the attractiveccupied by a reservoir of particlggree-dimensional bulk
particle-particle interactions in the bulk should not affect theliquid) at fixed chemical potential which maintains at its con-
time dependence-t’2 one can expect that the behavior in tact line with the substrate, positioned at the lxe0, an
the presence of attractive interactions is much rigeee, for ~ averagedensityC, (defined as number of particles per unit
example, the recent numerical results, within the continuuntength in the transversaf direction. For the case of capil-
limit, of Lacastaet al. [37] for a closely related one- lary rise, the reservoir would correspond to the liquid bath
dimensional modg! and the linex=0 to the edge of the macroscopic meniscus. It
All three models mentioned above recover the correctS assumed that the only role of the reservoir is to maintain
time dependence of spreading, but it is unlikely that one caffo constant, and thus to feed the monolayer which is ex-
discriminate between them via experimental tests based dfiacted, but there is no flow of particles from the reservoir to
their predictions for the corresponding prefactors becausg?ush” the film. The parametet, is expected to be related
these include in each case a number of parameters whol@the difference in the free energy per partidle between a
connections with experimental quantities are not clear. Howfluid particle in bulk liquid, i.e., inside the three-dimensional
ever, we have already pointed out that these models lead f§Servoir, and one on the surface of the substraxe=8f and
qualitatively different predictions with respect to the shape ofthus it is a measure of the wettability of the substrate by the
the emerging density profilgsonstant in the first two cases, liquid [19]. A general, explicit form for the relation between
spatially varying in the lagtwhich are, in principle, experi- Co and AF is not available, but for a qualitative picture
mentally accessible. [19,24 an argument based on Langmuir-type adsorption may
In this work we analyze in detail the density profiles of be used to estimatgy=~ 0Creseroirl 1 ~€XH~BAF)], whereo
this last model. We present results of KMC simulations on ds the area per adsorption site alfse,o;r is the density
square lattice of a model for spreading of a liquid monolaye{number of particles per unit volumen the reservoir. At
closely related to the model in Ref®4,25. Our choice for time t=0, the half-planex>0 is empty.
KMC simulations of a lattice gas model is motivated by the (b) The substrate-fluid interaction is modeled as a pe-
fact that we are interested in the asymptolécge spatial and riodic potential forming a lattice of potential wells with co-
temporal scalesbehavior, a regime which as yet cannot beordination numbee and lattice constard. The particle mo-
explored using molecular dynamics simulations because dfon proceeds via activated jumps between nearest-neighbor
extensive computing resources needed to simulate spatiallyells; evaporation from the substrate is not allowed. We as-
large systems and unreasonable large CPU times required $¢me that the dynamics of the activated jumps can be de-
simulate real times even in the order of microseconds. Irscribed by the classical reaction-rate theory, i.e., the activa-
contrast to the previous work mentioned above, we shall extion barrierUy is significantly larger than the thermal energy
plicitly consider the asymmetry of the jump rates in the bulk,keT, wherekg is the Boltzmann constant affdthe tempera-
at the expense of being able to measure the prefacfmm  ture, and the coupling to the substrate is large enough such
the simulations but not to predict it analytically. Our resultsthat in crossing the barrier all the kinetic energy of the par-
show a nontrivial dependence of the prefactoron the ticle is dissipated38]. The barrietU, determines the jump-
strengthU, of the interparticle attraction and on the density iNg rate Q=wveexg-Ua/kgT], where v is an attempt fre-
C, at the reservoir. The asymptotic spreading behavior aguency defining the time unit. We note that for a two-
long time and large spatial scale of the transversally averdimensional homogeneous, isotropic substrate and a regular
aged density profile is analyzed within a continuum limit. We (square, triangular, honeycomb, gttattice structure, this
show that the model predicts qualitatively different structuregumping rate can be absorbed into the one-particle diffusion
for the experimentally accessible density profiles along th&oefficientDy=0a?/4 on the bare substraf89]. Therefore,
spreading direction above and below a threshold value foin this caseU, is an irrelevant parameter in the sense that it
the ratio between the fluid-fluid interaction and the thermalcan be incorporated either into the choice of the unit of time
energy. Including the effect of correlations in an effectiveas Q™! or into that of the unit of length asDy/ vo. For the
manner into the standard mean-field description, we find exrest of this work we consider a square lattiee4); a quali-
cellent agreement between the theoretical predictions and thatively significant dependence of the results on the lattice

' slight modifications, for clarity and further reference we de-
fﬁribe, motivate, and comment on the defining rules as fol-
ows.
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type is not expected. This expectation is based on corre- S e =0, (5)
sponding results obtained from test simulations on a triangu- ot
lar lattice (z=3).

(c) The pair interaction between fluid particles at dis- Thus the total rate of leaving a location for any given particle
tancer is taken to be hard-core repulsive at short rangeat any given location is determined only by the fluid-solid
preventing double occupancy of the wells, and attractive atteraction characterized Wy, it is time independent, and it
long range, t,/r® for r=1, resembling a Lennard-Jones- equals(). Therefore, the fluid-fluid interaction will influence
type interaction potential. Here and in the following mea-  only the choice of alirectionfor the jump, but not the jump-
sured in units ofa so thatU, denotes the strength of the ing frequency, and in the dynamics there will be only one
interaction energy. The absence of double occupancy leads tglevant microscopic time scal€*, which is dictated by
ana priori removal of thickening of the film as a possible the solid-fluid coupling. _ _
relaxation mechanism, which is not meant to imply that we The choice p(r—>l";t)ocexp{ﬁ/Z[U(l’;t)—U(l" ;t)]} is
consider it irrelevant. We have decided to disregard thisnotivated by the following. If one disregards the reservoir
mechanism here since it would have significantly increase@nd considers a system with a given volume and a given
the complexity of the problem. Thus we leave the issue ohumber of particles, the change in the total fluid-fluid energy

film thickening open for further research. (no double occu _ N
. i . pangyU,=1/2>, 5(r;t)U(r;t) due to a
(d) As we have mentioned i(a), the motion proceeds é:hange in configuration

via activated jumps between nearest-neighbor wells, the ac-
tivation barrier for any jump beingy,. The selection of the  {5(r) =1,7(r') =0} = {7(r)=0,5(r") =1}, |r-r'|=1
nearest-neighbor well, i.e., the probabilipgr —r’;t) that a (6)
jump from locationr will be directed toward the locatiort,

is biased by the fluid-fluid energy landscape and is given bys given by AU,=U(r’;t)-U(r;t), with U(r’;t) calculated

e’ —rj=1

,3[~ _ ~ ] for the final configuration andj(r;t) for the initial one.
exp) LU -uir':y Then a simple choice of transition rate$ . which satis-
p(r—r';t)= Z(r:t) ' 1 fies detailed balance with respect to the equilibrium distribu-
' tion
where Z(r;t) =2,/ =1€xXp((B/2)[U(r; 1) =U(r';t)]) is the P = ex~ BUYIZ, )

normalization constant and BEkgT,
whereZ= 3 exp-BU,), is

~ r';t
U(r;t) =-Uq > |:](_ r'|?5' (2) all {»(r;t)}
r’,0<|r'-r|<3 ,

o =0 exp- BAU/2). 8)

r—riit

and »(r’;t) €{0,1} is the occupation number of the well at
r’ at the timet. We note that, after canceling the common If the transition rates would be chosen according to the ex-
factor ex;ﬁ,BD(r;t)IZ], the expression, Eq1), may be re- pression, Eq.(8), above, then .the_ quid-fIqid interaction
written in a form which is somewhat simpler for the nu- would effectively change the activation barrier and Ieaq toa
merical simulations whole spectrum of microscopic time scales. Normalizing
' these local transition rat¢&q. (8)] by the (local) total tran-
!

oxol - ED(r"t) sition rateX, /=1, ., @ decoupling results between an
' activated dynamics determined by the solid-fluid interaction

p(r—r';t) = B~ : (3 and a weak perturbation due to the fluid-fluid interaction,
> exp - —U(r’;t)J and the choice given in Eq1) for the bias probabilityp(r
r’ e =r=1 —r';t) is obtained. One should note that this decoupling is

the dependence arbeing retained because the summation isobtamed at the expense that the transition rafes;  de-

. . . . fined by Eq.(4) do not satisfy detailed balance with respect
carried out over the neighboring locationsrofVe also note L T e !
that the summation in E¢2) has been restricted to three to the distribution in Eq(7), although the deviations, which

lattice units for computational convenience. This corre-2r€ equal taZ(r;t)/Z(r" ) due to
sponds to the cutoff generally used in molecular dynamics
simulations for algebraically decaying Lennard-Jones pair =
potentials. wp oy Z051)

The expression, Eq1), for the probability that a certain are expected to be very small. From this point of view, the

direction is chosen for jumping deserves further discussion : ' : . )
For a particle located at, it follows from the definition of dynamics defined by Edd) is that of an asymmetric exclu

p(r—r":1) [Eq. ()] that the rates legg proces$40], but with a position- and time-dependent
@ =Qp(r — ') (4) (e) As defined by the rulegsa)—(d), the mpd_el corre-
’ sponds to mass transport from the reservoir into a two-
for the transitions fronr to neighboring locations’ satisfy ~ dimensional vacuum so that a phase with very low density,

Wy it Z(r;t)

exp(— BAUY, 9)
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imposed. Rulge) provides a simple and convenient way of
controlling the rate of two-dimensional evaporation. For ex-
ample, settindJ.=0 corresponds to fully unconstrained dy-
namics, while replacing the rejection procedure with an “ac-
ceptance rate” will allow for a continuous tuning of the
evaporation rate through the acceptance rate. We note that,
physically, the model defined by the rulem—(e) could be
used to study also expansion into an already present vapor
phase instead of expansion into vacuum. In the presence of a
vapor phase there would be an average occupancy of the
sites in front ofI';, and thus some of the jumps froin
would be rejected due to the hard-core repulsion, which is an
effect similar to an acceptance rate as discussed above.

FIG. 1. Schematic drawing of a typical configuratioy(r ;t)} of 1. KINETIC MONTE CARLO SIMULATIONS
a monolayer spreading on a rectangular laticewed under an
oblique angle The particles denoted as open circles occupy the We have carried out KMC simulations of the model de-
edge of the reservox=0 with Cy(t). Black circles denote the par- fined in Sec. Il using square lattices with widthsof 200 or
ticles in the bulk of the monolayer whereas gray circles denoteb00 lattice units, periodic boundary conditions along the
particles at the advancing eddg. Also indicated is the average transversaly) direction (appropriate for simulating an infi-
positionX(t) of the advancing edge. He@(t) andX(t) correspond  nitely wide substrate and an activation energgU,=3.5.
to averages ovey for a given realization and not to averages over Some simulation runs have been carried out using lattices
runs (for which we use the same notation in the main xeXhere  with smaller widths in order to check finite-size effects. We
are periodic boundary conditions in tiyedirection. have found that for widths larger than 100 lattice units there
due to two-dimensional evaporation, will form in front of the is no detectable influence of the width value on the quantities

advancing monolayer. The emergence of this low-density'€ have measured in these simulations. The length of the
phase poses problems in that its long-time dynamics, whictftticé in thex direction has been chosen to bg=1000
is of ideal gas type, mixes with that of the following-up !att|ce units, with the pOSSIb.IIIty .of changing it dynamlcally
“compact” film and leads to serious difficulties in defining in the course of the simulation if necessary, i.e I'ifinter-
the advancing edge of the monolayer. This problem has beefects the linex=1000; however, this situation was not en-
encountered earlier also in three-dimensional simulation§ountered in any of the simulations we have carried out. We
[5,27-29,32,3Band, in general, it has been overcome bynote here that in the experiments mentioned in SEL3+19
replacing the simple particles by connected chains mimicktypical values for the diffusion coefficient were estimated
ing polymers. Although this approach is straightforward it isfrom the spreading rate to be of the order of
not very appealing, neither from a theoretical point of view10*-10°m?/s. If we take the lattice spacing aa
(an analytical approach becomes at least cumbersome, if net10 nm, i.e., of the order of the lateral size of a polydim-
intractable nor from a computational onghe memory and ethylsiloxane(PDMS) coil [20], then the above values for
CPU requirements for sufficiently long simulation runs for the diffusion coefficient imply typical values for the fre-
large enough systems are unreasonably high quency Q) of the order of 18-10 s, and thus forgU,
Therefore, we have adopted a different approach. We de=3.5 typical values fow, of the order of 18-1C° s™.
fine the advancing edgg, of a monolayer configuration at ~ For the simulations we have used a variable-step
time t as the set of the most advanced particles in each lingontinuous-time kinetic Monte Carlo algorithrf41-43
y=const for this configuratiorisee Fig. 1L We eliminate ~which is described in Appendix A. One step in the Monte
two-dimensional “evaporation” by imposing the following Carlo simulation proceeds as follows. At timiea particle
additional constraint: moves from sites I'; toward siteg’ ~ from the film (x=0) is selected at random. The time is in-
ahead ofl", for which |D(r’ ;)| <U,, whereU.=0 is a fixed cremented withAt (the time at which a jump attempt with
threshold value, are rejected. This corresponds to requiring $fficient energy for leaving the wellill occur), where
given minimum number of particles in the neighborhddd ~ At iS @ random variable distributed according RiAt)
<r. of any of the components &f,. The results presented in =N exp(-NQAY) [41-43, andN is the number of particles
this paper correspond to simulations with=Uy/35, i.e., 1N the film at timet (so that(At)p=1/N(). The direction for
r.=3, in other words to the requirement that in the digk  the jump is chosen at random with probabilities weighted
-r'|<3 centered at’ there is at least one more particle in according to Eq(l). If the destination site is empty, the jump

addition to the one attempting the jump-r’ (see also, cf., takes place; if not, the jump is rejected. Exchange between
Fig. 5). the reservoir(x<0) and film (x=0) is subject to the addi-

The above constraint is close in spirit to the “effective tional constraint that the density on the lire0 fluctuates
boundary-tension” idea used in Ref24,25 in which the narrowly around a given valu€, and proceeds in the fol-
attractive interactions have been neglected except for patlowing manner. Moves fronx=0 to x=-1 are allowed if
ticles on the advancing edge for whicltanstantasymmetry  Co(t) is maintained within the intervdiCy(1-6),Co(1+0)],
in the jumping rates “away” and “toward” the reservoir was where the amplitudé has been fixed to 18, If this condi-
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FIG. 2. (Colon Typical density profiles p(x,y;t) (obtained by averaging over 50KMC rynsfor W,
=BUo=1.4 [row (a)] and Wp=0.8 [row (b)] at times(left to right) t=2x10°, t=10°, andt=2x 10° for C,=1.0 andL,=500. Time is
measured in units oflalzﬂ‘lexp(—,BUA) with BU,=3.5, distances are measured in lattice units, and spreading occudirgction. The
color coding(shown on the rightis a linear function of density.

tion is satisfied, the particle is considered to become part dfry of the model, the density profilg(r;t) in the limit of

the reservoir and is removed,; if not, the move is rejected. Innfinitely many runs is independent gf while in the average
case of moves from=0 tox=1, if the density ox=0 would  over a finite number of runs random, uncorrelated fluctua-
decrease belowy(1-9), then after the move a new particle tions (whose amplitude decrease with increasing number of
is added on an empty sitehosen at randoyon the linex  rung occur along the direction. These fluctuations are sup-

=0. Similarly, in case of moves from=1 tox=0 a particle  pressed by measuring the transversally averaged density
is removed(at random from the line x=0 if the density C(X,t):«l/,_y)gby

. he time i : ¥, m(X,y;1)), and thus it is expected that
would increase abov€y(1+6). The time is not incremented Cx,H) =Tp(r;1), with strict equality for infinitely many runs.

upon adding or removing partlcles_,. correspondlng to the rathe average position of the advancing edge of the monolayer
sonable assumption that the equilibration of the reservoir is

) _ - 6
very fast. In order to compute the potential energy at a des> defined asX(t)-((l/Ly)Ererlx) For the casdJ;=Uo/3

tination site on the linec=-1, needed for the evaluation of (@S used for the actual simulationfwo-dimensional evapo-

the weight probabilities for jumping of a particle on the line Fation is negligible and(t) (which we shall also call front
x=0, in the beginning of the simulation particles are placed!"®) IS @ good measure for the actual advancing edge of the
at random on the lines <¢x<-1 such that the average _m(_)nolayer. We note here thz_it in th_e case when no constraint
density on these lines i€, and this configuration is kept IS imposed to prevent two-dimensional evaporafibg=0),
unchanged during the simulation run. Due to these procethe frontline may be defined agt)=(x(t)) [44], whereX(t)
dures one does not have to consider the dynamics on tHg the most advanced line corresponding to a giigmnallest
linesx=<-1, i.e., in the reservoir. In order to have sufficient measurable density C:(1/Ly)252177(>‘<,y;t). Alternatively,
fluctuations inCy(t) on the linex=0, fluctuations which one may follow the time dependence of the mass of the film
mimic the stochastic nature of the exchange of particles bef37], or use a percolation-type definition for the precursor as
tween the reservoir and the film, the width has to be large the set composed of all the particles which are connected
enough such that the amplituddranslates into a reasonable along nearest-neighbor bonds with the reservoir, the bound-
number of sites. This is the reason why we have used a largary of this cluster definind’; [26].
value for the width; for example, &,=0.8 andL,=500, & Snapshots of typical density profiles during spreading are
=102 translates into four sites. shown in Fig. 2 for the casg®) Wy=1.4 and(b) W;=0.8,

All the “measured” quantities have been averaged over avhere we have introduced the notation
number of independent simulation runs ranging from 10 to
50, a value of 50 runs being used in most of the cases. These W, = BU,. (10
runs differ from each other both with respect to the initial
configuration{7(x=0,y;t=0)} and the subsequent sequenceThese density profiles reveal already the qualitative dynami-
of jumps. The observables of interest are defined below. Theal behavior. It can be seen that, as expected, the monolayer
density p(r;t) is defined asp(r;t)=(#(r;t)), where (---) is homogeneous in the (transversaldirection, while along
means average over different KMC runs. Due to the symmethex (spreading direction there are significant density varia-
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FIG. 3. Front line positior{divided by \fD—()t) as a function of time fofa) Wy=0.4 (open symbolsandW,=1.0 (filled symbolg and(b)
W,=1.6 for reservoir densitie§y=1.0 (squarey Cy=0.8(circles, andCy=0.6 (diamonds$. The insef(on logarithmic scalescompares the
time dependence of th@inscalegl massM(t) of the film for Wy=1.6 and for the same reservoir densitisgmbolg with the t*2 behavior
(dashed ling In (b) for C,=0.8 andC,=0.6 the scaled front line position decays 2 for larget. Here and in the following time is
measured in units ofy'=Q"lexp(-BU,) with BUA=3.5, so that/Dt=1ret(a/2)exp-38U,).

tions. As intuitively expected, the spreading of thégeof  due to spreading at a rate slower thénor due to the fact
the monolayer is faster for small®,, i.e., higher tempera- that there is no extraction of a macroscopic film from the
ture (at a given interaction strengthly) or smaller interpar- reservoir, we have also analyzed the time dependence of the
ticle attraction(at a given temperatur€). In addition, one total mass of the film extracted] (t) =(Z,- o, 7(r;1)). As can
observes qualitatively different dynamics as revealed by thée seen in the inset in Fig(13, for largeC, the time depen-
abrupt change from high to low density for the large value ofdence ofM(t) is very well described byt, as expecte@24],

W, compared to the smooth and broad decrease for the smailhile for low valuesC, the mas3dMi(t) shows a clear satura-
value of W,. This is accompanied by a different dynamics of tion to a small constant valugvhich corresponds roughly to
the regions with moderate to low density in the two casesa position of the front of ca. 10 lattice unjfghus indicating
While for large value of/\, [panel(a)] the range of densities that actually there is no macroscopic film extracted from the
p=0.5(the green bandand that of low densities< 0.2 (the reservoir. At early times fluctuatio_ns lead to the extr_action or
light blue bangl maintain relatively constant widths and ad- leakage(with a very fast decreasing rate of extractiai a
vance with similar rates, for smallan, [panel(b)] the re- small number of particles from the reservoir, but the spatial
gions become broader with increasing time and clearly th&XtensionX(t) of the film in this case remains microscopi-
low density(light blue) has a larger rate of advancing. TheseCally small and becomes time independent tierl. There-

features will be discussed more in the following sections Ore @s a function of the interaction strengt there is a

where a quantitative characterization of the spreading as &ansition from a “substrate covering” state at low valués
function of the parametend, andC, is presented. in the sense of extraction of a film with macroscopic lateral

extension in the spreading direction independent of the den-
sity valueCy in the reservoir edge, i.e., a film which spreads

IV. TIME DEPENDENCE OF SPREADING AND according toX(t— o0) ~ \Vt, to a “noncovering" state at Iarge
ASYMPTOTIC SCALING OF DENSITIES valuesW,, in the sense that a macroscopic film is extracted
only for sufficiently large densitie§, (eventually for none if
A. Time dependence of spreading W, is sufficiently large. Results similar to the ones shown in

We start our analysis of the dynamics of spreading byrig- 3, from simulations performed for a broad range of pa-
studying the time-dependence of the positift) of the rameters valuegd.4<Wy<1.6 and 0.k Co=<1.0), indicate
front line. As noted in the Introduction, we expect that thethat the valuesA{(Co) for which this change in behavior
asymmetry in the jumping rates due to the interparticle interoccurs are bounded from below by £@V ) (C,). We shall
actions[Eq. (1)] will not affect the previouslywithout inter-  return to this point in the second following paragraph and
particle interactionspredictedX(t) ~ \t time dependence as during the discussion of the continuum limit.
long as the attractive interaction is not too strong. Figure 3 The results presented in Fig. 3 also show that in case of
shows the time dependence of the scaled front linespreading the time-independent dimensionless prefdctor
X(t)/\Dqt, for several values of the interaction paramatgr ~ X(t—<)=A\Dgt depends on bottW, and Co. From the
and of the reservoir densi,. One can see that at low and curvesX(t)/ VDot one can estimaté&=lim,_..X(t)/ VDot by
intermediate values of the interaction strenfiiy. 3@)] the  fitting the data in the range>1 (in practice the data in the
\Vt behavior is recovered independent of the valigeof the  last tenth of the time interval availablaith a constant. The
density in the reservoir. However, for strong attractive fluid-results forA(Cy, W) are shown in Fig. &). Here we use the
fluid interaction[Fig. 3b)] and low densitie<C,, the time  convention that in the case where there is no macroscopic
dependence oX(t) clearly deviates from thet behavior, the  film spreading in the sense explained above, Két)/ Dt
latter being obtained only for high densiti€%. Since the decreases intime ari(t) has a time dependent® with a;
decreasing trend shown by the data in Fign)3nay be either  significantly smaller than 1/Zin practice a;<0.4), the
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FIG. 4. (a) Dependence of the prefact®(Cy,Wy) on Cy for several values of\. The inset shows the derivativdA(Cy)/dCy as a
function of Cy in the caseiVy=1.2 (O) and W,=1.0 (®); the dashed line in the inset correspondsifgC,)/dCy=0. (b) Estimate of a
“covering phase diagram” in thé/,-C, plane showing the parameter range for which a macroscopic film is extracted from the reservoir or
is not extracted, respectively. The cuMéCO") shows the “covering-noncovering” separatrix described in the main text. The line is a guide
for the eye, and the dotted line @,<0.2 is a heuristic extrapolation suggestmém“)(coﬁ 0)=1.4. The inset shows the dependence of
A(Cp=1,Wy) onW,. The line extrapolated t&(Cy=1,Wp) =0 is a linear fit of the last four points. In all four plots the symbols are KMC
results; dashed and dotted lines connecting the symbols are guides to the eye.

value of the prefactor is assigned to Be0. As expected, not be measured directly due to the unreasonably long simu-
A(Cy,W,) is an increasing function of, for fixed W, and a  lation times needed to reach the asymptotic regime in this
decreasing function df\; for fixed C,. However, the func- range ofW, values, but the linear extrapolation of the avail-
tional dependence is not simple, and one can easily notice @ble data, as shown in the inset of Figby yields the esti-
change in the shape @f(C,,W,) for W, close to the value mateﬁvvoc"“):zlg_

1.0. For valuesWy=1, the curve shows a plateau over a In the range of low densitie§, at the reservoir edge, the
range of densitieC, which increases with increasing,, = KMC results in Fig. 4 indicate that there is a threshold value
while for valuesWy=<1 the prefactoA is a strictly increas- Cémin)zo_l for the density in the reservoir edge below
ing function of Co. This property is of a different type than which, independent of the interaction strendif, there is no
the transition from covering to noncovering discussed abovegxtraction of a monolayer: all the curvé$C,) reach zero at
because it involves a change in the dependence of the pre4 nonzero value of,. As we will show below, this is a
actor A on the densityC, while the spreading lawX(t)  consequence of the conditiqe) in the model, i.e., of the

~tY2 holds. This change in behavior emerges we shall  requirement that a move frome I', toward a forward site’
discuss in more detail in the following sectjoas a conse-

quence of the competition between the diffusive motion
driven by the concentration gradient and the clustering ten-
dency(opposing the concentration gradientsiven by the
interparticle attraction. This competition leads to instabilities /f ﬁ\
at certain density values if the attractive interaction is suffi- /
ciently strong. From Fig. @), the value of the threshold / \
interactionvvg) for the onset of a plateau can be estimated to r
be bounded as 1:0W)'<1.2. As shown in the inset, these ¥ =Y,
bounds are confirmed also by the behavior of the derivative \
dA(Cy)/dC,, which is clearly larger than zero fal,=1.0, \ /
and becomes zer@vithin the limits of numerical accuragy N /
aroundCy=0.5 for Wy=1.2. \.‘ 4-/
For C, fixed the values of the prefactadx(Cy,W,) as a y
function of W, can be used to estimate via linear extrapola- |
tion, as shown in the inset in Fig(l¥) for the particular value XxX=x+1
Co=1, the interaction strengt\{*®'(C,) at which for a o
given C, the prefactor vanishesA(Co,V\/gcw)):O. The data FIG. 5. Schematic drawing of the region around a péigtyo)
for WBCOU)(CO) are shown in Fig. é). Since at a givei, the  (filled circle) belonging to theadvancingedgel';. The target desti-
prefactor attains its maximum fa€,=1, the dependence of nation, for the case of an advanciig, is denoted by an empty

A(Cy=1,W,) on W, allows one to infer also an estimate of circle. The shaded area shows the domaip in which at least one
. ore) b hich ic film i other site must be occupied so that the particl&gtyy) can move
the interactionW, ™ above which no macroscopic film is 14 (x 11 y) in accordance with our KMC rulée) (see Sec. Il

extracted from the reservoir Wﬂatever the den€lyat the Since(xy,Yo) € Iy, all sites(x>xo,Yo) must be empty so that in the
reservoir edge is, i.eA(CO,W0>V\/f)°°“)) =0. This value can- unshaded sector there are no occupied sites.

X= Xo

X
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FIG. 6. Density profile<(x,t) for (a) Wp=0.6,Cy=1.0; (b) Wp=1.4,C,=1.0;(c) Wp=1.0,C,=1.0; and(d) Wy=1.0,C,=0.6 as functions
of the scaling variabla =x/Dgt. The insets show these profiles as functions.dfhe results correspond te l—loT (0), %T (0O, 1—70T (),
andT (X) in (@), (c), and(d) and tot=T (O), 4T (0), 7T (), and 1@ (X) in (b), whereT=2x 10°. The space and time units are the same
as those used in Figs. 2—4.

is accepted only if there is at least another particle in théN;=1.0,Cy=1.0; and(d) W;=1.0,Cy=0.6 as functions of
neighborhoodr’ -r|<r.. As we have mentioned before, this the scaling variablé.=x/\Dgt, and as functions of in the
condition is equivalent to requiring a minimum valQg for  insets. The results at late times show a very good data col-
the density on the advancing edge of the film. This densityapse and actually only the data corresponding to the earliest
C, can be estimated as follows. For a fluid particle attime seems to show some significant deviations. This
(Xg,Yo) € I'y (the filled circle in Fig. 5 to move to the site strongly suggests that in the asymptotic linht>1,X(t)
(xg+1,yp) (the open circle in Fig. b in the shaded area of > 1] the density profiles can be described by a scaling func-

the disk of radiug =3 centered atx,+1,yo) there must be  tion C(\=x/\/Dgt; W, Co). Here we have explicitly indicated

at least one more particle in addition to the one attemptinghe parametric dependence of the scaling function on the
the jump. The unshaded sector of the disk is due to the faghteraction strengthV, and on the densitg, at the edge of
that by definition ofl’; the sites(x>X,,Yo) are empty. There- e reservoirsee Fig. . We note that for smalC, [such as
fore, at least two of th1 =25 sites in this shaded region are c,=0.6 in Fig. d)], one observes deviations from scaling in
occupied, and thu€,=0.08 is an estimate for the minimum the range of densitie8(x,t) <0.1. These deviations are most
density onl'i. Since extraction of a film requiresraoving  probably due to insufficient statistics, although they may also
edgel’, the density at the reservoir edge should be greatejgicate that the true asymptotic regime has not yet been
than C, for spreading to be possible. This explains thergached in the simulations. However, since even in this range

threshold valueC{™ =0.1 observed in the simulations. there is a clear tendency of smaller changes in the shape of
_ _ the density profile for increasing tinmte it is reasonable to
B. Asymptotic scaling expect that the results in Fig. 6 are good approximations for
We now turn to the analysis of the time dependence of théhe corresponding scaling functi€@(\ ; Wy, Cy).
transversally averaged density profilééx,t) of the spread- The scaled density profiles in Fig. 6 reveal three important

ing monolayer. Since the time dependence of the advancinfgatures. First, we have already noted that the change in
edge follows asymptoticallyX(t)~t in all the cases in shape of the functiolA(C,) as W, crosses 1.@[\/\/g)<1.2
which spreading occurs, it is natural to test if the densitysignals a change in the spreading behavior. As shown by the
profiles C(x,t) actually scale as a function of the scaling data in Fig. €b), for largeW, the monolayer has an almost
variable )\:x/\s‘“D—ot. In Fig. 6 we show density profiles compact structure, and at the advancing edge there is a sharp
C(x,t) for (@) Wp=0.6,C4=1.0; (b) Wp=1.4,Co=1.0; (c) transition from a large density to a small, almost zero, den-
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sity. Therefore, in this range of interaction the spreading igule (e) (“artificial” because it depends on the particular
accompanied by the emergence of a well defined interfacealue for the cutoffr. of the attractive potential—increasing
between two phases. We note that a similar emergence @fe value ofr, would lead to a smaller valug€, and, even-
interfaces has been observed also in the one-dimensionglally, to a hardly distinguishable fopthe advantage of it is,
case considered by Lacasthal. (see, e.g., Fig. 4 pangk  as discussed in the Introduction, that it leads to the clear
=0.95 in Ref.[37]). In contrast, at small\, the density formation of an interface with its associated dynamics.
decreases smoothly from the value at the edge of the reser-
voir to zero and no jump in the density is visible. Thﬂ/go
is a threshold value above which the attractive interaction is V. CONTINUUM LIMIT
strong enough to support the buildup of an interface. In this
sense, the change w‘y may be interpreted as the onset of a
phase separation. Neglecting all spatial and temporal correlations, i.e., as-
The second point regards the shape of the density profileuming that averages of products of occupation numbers
as a function of the parameté, For a weak attractive #(r;t) are equal to the corresponding products of averaged
interactionW, [Fig. 6@)] or at small densitie€, [Fig. 6d)],  occupation numbera(r ;t) =(x(r ;t)), where(: - -) denotes the
the density profiles resemble well the error function solutionaverage with respect to the corresponding probability distri-
of a regular diffusion equation for noninteracting particlesbution P({#(r;t)}) of a configuration{7(r;t)}, one can for-
[24,29. As we shall show in the following section, in this mulate the following mean-field master equation for the local

range such a description is not only qualitatively but everpccupational probabilitydensity p(r ;t):
quantitatively accurate. However, for larger valudlg (but

A. Differential equation for the density and scaling behavior

still below\/\/f)t)) and for largeC, [see Fig. €¢)], one finds the Ap(r;t) =—pr:it) S [1-p(r":0)]
formation of a pronounced shoulder in the scaling function in At ' It et P

the range of smalk (i.e.,, A=0.5), and thus a significant ’

deviation from an error function solution. This shows that in +[1-p(r;0] X @5, (12
this range of parameters the asymmetry in the jumping prob- Pl =1

abilities due to the attractive interaction between particles

cannot be fully accounted for by an effective boundary forceVnere

approach as in Ref§24,25. Therefore one has to include - p(r":t)
explicitly this asymmetry into the description of the dynam- Ur)=Ur)=-U, > e (12
ics in order to accurately capture the structure of the expand- r,0<|r"-r|<3 " =rl

ing film. Finally, interaction strengths abowg) have dra-
matic effects on the spreading behavior, leading to th ) o X ; .
emergence of interfacd&ig. &b)], and the simple descrip- S shown in detail mAppen_dllx B, in the continuum space
tion in terms of noninteracting particles breaks down com-2nd time limit(At—0,a—0, Q™" —0, Do=0a"/4 f|r]|te) of
pletely. We note here that in the MD studies in R¢g29,3q  E9- (11, by taking Taylor expansions fop(r—r’) and
also there seems to be evidence that in the monolayer fo{!’ ;) aroundr and keeping terms up to second-order spa-
extracting from the droplet the particle density varies spadial derivatives of the density(r;t) [37,45,46, one obtains
tially, and that the shape of the density profile is dependenihe following nonlinear aneonlocalequation forp(r ;t):
on the details of the “polymer chains” and substrate consid- _ 2
ered(for example, in Ref[30] an almost compact monolayer ap=DoV[Vp+fp(1-p) VU]+O@). (13
is observed for flexible chains, see Fig. 15, while a smoothly Since the derivation of Eq13) presented in Appendix B
decreasing profile seems to emerge for stiff chains, see Figs not a rigorous proofas we shall discuss below, such a
20). proof appears to be extremely difficult to obtpbut rather a

The third feature of the profiles to be discussed is theheuristic derivation in the spirit of Ref46], several com-
formation of a “foot” at the right end of the profile. The ments are in order before proceeding. The only lattice gas
height of the foot is approximately equal@ and this is due  system with long-ranged interactions for which it has been
to the fact that the density value on advancingedgel’;  rigorously shown that Eq(13) represents the correct con-
cannot decrease belo®;. The formation of the step implies tinuum limit at all temperatures is the hard-core lattice gas
that the fluctuations of the interface, around the mean model with a Hamiltonian composed of short-ranged-
value X(t) are constant or increase in time slower thdn  site) repulsion and long-rangedinfinite) Kac potentials
such that the width of the interface divided bRt vanishes evolving via rates which satisfy detailed balane&—49.
in the long-time limit. This sharp interface is occurring natu- Recently, it has been argued that similar equations will also
rally due to the fact that the eventually large fluctuations arehold for systems with relatively short-ranged interactions
suppressed by blocking the advancing of isolated particle50-53. The system discussed in Re{§0-57 is a hard-
ahead of the filnfsee ruleg(e) in Sec. Il], and thus the width core lattice gas model with attractive interparticle interaction
of the interface would be expected to be of the order of theén the form of either a finite range constant potential or of
cutoff r,=3 of the attractive potential and to be almost con-Morse potentials, a microscopic dynamics defined by
stant in time. Although the formation of the foot of heiglit  nearest-neighbor jumping rates depending on the energy at
is a somewhat artificial feature introduced in the model bythe departure sitéArrhenius dynamicsor on the difference

ds replacinng(r ;) in the definition forp(r—r’) [Eq. (1)].
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in energy between the two sit@gletropolis dynamics and a  ary condition. This might become relevant if the monolayer
fixed density gradient imposed by fixed densities at thds driven by external forces or encounters an obstacle. How-
boundaries of the simulation box. As shown in R&2], the  ever, in view of the KMC results we have no reason to con-
solutions of such continuum equations compare fairly wellsider such effects for the present system.

with results of corresponding kinetic Monte Carlo simula-  Although the reduced dimensionality is a significant sim-
tions in cases where the interaction range is greater thaplification, Eq.(13) remains quite complex because it is non-
several lattice units. Typical values are 5-10 lattice unitsjocal due to the term involving the interaction potential
depending on the dimensionality of the problem, the type olU(r;t). However, assuming that the densify ;t) is a slowly
potential, and the type of dynamics defined by the microvarying function of the spatial coordinatéshich certainly
scopic rates. Moreover, it has been shown by Led@ythat  is a reasonable hypothesis everywhere except near interfaces,
heuristic derivations, based on formal Taylor expansions, ofee Figs. 2 and)6the potentialU(r;t) may be expanded as
continuum equations from microscopic dynamics give very

good results both for the dynamics of Ising models with U(r:t) = - U, D p(r';y

nearest-neighbor interactions and Kawasaki rates and for that 0l ~1]<3 Ir"=r|®

of driven lattice gases. Based on these results we assume that ’ b

Eqg. (13) is at least a good approximation for the continuum o i 2

limit of our system, although it was not rigorously derived =~ Uor(r1) - IE | S - r|® +0(@). (16
r,o<|r'—-ri=

and although the range of the attractive potential in our prob-
lem is rather shortr.=3). Finally, since the continuum limit  As discussed in Appendix B, the rotational symmetry of the
for our system seems to be described by the same equation lstice and of the factojr’ —r|~® implies that the summation
that for the dynamics in systems evolving via rates preserveverr’ will cancel the contributions of the first-order deriva-
ing the detailed balance condition, one may conclude thatives, and thus the leading gradient term does not appear in
indeed the deviationgcalculated in Appendix Bfrom de-  the expansion above. Because in the derivation of(E8).
tailed balance in the rates defined by Et).are small and do  only terms up to second-order spatial derivatives of the den-

not carry over to the macroscopic scale. sity have been kept, i.e., second order in the lattice constant
The constraint of a fixed densi€ at the edgex=0 of the  a, and a factora® has been already absorbed into the diffu-
reservoir implies the boundary condition sion coefficientD,, only the zeroth-order term in the expan-

sion above will contribute. This leads to thecal equation

p(x=0,y;t) = Cq. (14)
dp=Do V{[1-gWep(1-p)]V p} +O(@@), (17

As we have pointed out in Sec. IV A, the conditic in the
model leads to a well defined interface and implies that for avhereg=2; |r|® is a geometrical factor dependent on
spreading film the minimum density on the advancing edgéhe lattice typgle.g., square, triangular, etand on the cut-

is C;=0.08. In the absence of other additional constraintoff range of the potential. For the present case of a square
imposed by the formation of interfaces, i.e., for interactionslattice and a cutoff at.=3 one hagy=4.64.

W0<Wg), and for large times, these considerations and the Rescaling the time as— 7=Dgt and defining an effective
KMC results [see also Figs. (8), 6(c), and &d)] strongly  diffusion coefficient

suggest that the density on the advancing e¥gg can be

considered as fixed and equal@g, leading to the boundary De(p) =1 -gWop(1 =p), (18)
condition Eqg. (17) may be written in the usual form of a diffusion
equation
p(X=X(1),y;1) = Cy. 1y
d.p= V[Delp) V p] +0O(a?). (19

In what follows, we shall use the vali& =0.11 obtained in
the KMC simulations. We note in passing that the boundaryThe functional form ofDJ(p) [Eq. (18)] implies that for
condition, Eq.(15), also naturally occurred in the effective W,>4/g there will be valuesp; of the density for which
boundary force modefl24,25, the expression o€, in this  Dy(p;) <O (see Fig. J. For parameters such the,<4/g,
case bein@,=1-u, with u as the ratio between the forward Eq. (19) is a proper diffusion equation, while fol,>4/g
and the backward jumping rate for particles on the advancinghstabilities are expected in the range of densities where
edge. De(p) <0, i.e., forp; € (p,,,p.) Where

Since there are no boundaries along thdirection and
the boundary condition at the reservfiig. (14)] is indepen- . 1 4
dent ofy, an important consequence of tiigndependence Pa= 5(1 £y 1 _M) : (20)
of Eqg. (15) is that the solutiorp(r;t) does not actually de-
pend ony, which imp|ieg that the m0n0|ayer is homogeneou5|t is known [47,53 that these instabilities are discontinuities
along they direction, in agreement with the KMC results. in the density profile(shocks, i.e., they correspond to the
Therefore one has to solve an effectively one-dimensiondiormation of interfaces, which is exactly what is observed in
problem. The study of the occurrence of spontaneous tranghe KMC results. Thus, the value for the threshold interac-
versal instabilities of the advancing edge would require tdion Strength/\/g) (introduced in Sec. IYfor which interfaces
replace Eq(15) by a moving, transversally varying bound- emerge is predicted by the continuum theoryVn$:4/g
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10 ' 3,C(x; 1) = 4,[De(C)4,C(x; )] + O(@%). (21)
Introducing the scaling variable=x/7 leads to the follow-
ing equation for the scaling solutiod®(\) in the asymptotic

05| gW, =3 _ limit t>1:

—_ ~ ~
& AdC  d { ~ dc} o
——+—| DJ(C)— | +O[(a/\N7)?]=0 22
S LW, =5 St x| PeOrgy | +ol@n?] (22)
0 frovmreeeeeees N SREARMEEERLAILLEERI fovnneemeeeee with the boundary conditions
C(0)=C,, (233
= : 1 } C =
0.5 5 o 05 o 10 C(A) =C;. (23b)
« ® Since the solution of Eq22) depends on WhethM/o<V\/§)
P or WO>V\/0‘), we shall discuss these two cases separately.
FIG. 7. Effective diffusion coefficientD¢(p) [Eq. (18)] for
gW,=3 (upper curvg and gW,=5 (lower curve, i.e., below and B. Scaling solution for Wo< W
H_ : - -
above the threshold valtgél\fo =4, respectively. The valugs, and For W0<V\/g), in Eq. (22) the term o[ (a/\n?] may be

p.. indicate the range of densitigs for which Dg(p;) <O, corre-

sponding to instabilities in Eq19). neglected, and Eq22) together with the boundary condi-

tions given in EQ.(23) is a well posed problem and thus

admits a regular solutio@(\ ; Wy, Cp). Although the solution
~0.86. This value is significantly smaller than the lower cannot be found in closed form, the numerical integration of
Eq. (22) is straightforward. Results for small and intermedi-
Hie values of the attractive coupliM, and for several val-
ues ofCy are presented in Fig. 8. For comparison, we also
show results corresponding to the mean-field effective
boundary force(EBF) approach[24] subject to the same
eboundary condition$Eq. (23)], for which the density profile
its given by[54]

bound estimate 1:@V\/g) from KMC simulations, which is
not unexpected because of the mean-field character of t
derivation of the continuum equation. However, a simple,
intuitive argument allows an effective inclusion of correla-
tions into the mean-field description and leads to a simpl
correction to the mean-field value=4.64. The dynamics is
possible only by jumps into empty locations. This means tha
the summation irg should include at most three contribu- ~ erf(\12)
tions from nearest-neighbor sites, givigg-3.64 and an es- Cri\) =Co~(Co~ 1)m,
timate for the threshold interacticwg):l.l, in good agree- . ) ‘
ment with the KMC results. Thus for the rest of the analysiswhere erfz)=(2/\ ) [3dye " is the error function.
we will use this corrected value of There is excellent agreement in all cases between the the-
We now proceed with the analysis of the density profilesoretical results from Eq22) and the KMC results. Similar
for the asymptotic scaling limit. Since the solutigiir;t)  conclusions hold for all values &, and W,=<1.0. (These
depends only o, Eq. (19) yields an equation for the trans- results are not shownThese findings offer additional strong
versally averaged density(x, 7): support both to the assumption that Eg2) is an accurate

(24)
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FIG. 8. Asymptotic scaling solutio£(\) for (8) W=0.6,C(A\=0)=C,=1.0,0.8,0.4 andb) W,=1.0,C(\=0)=Co=1.0,0.8,0.4 with
A=x//Dgt. Shown are theoretical mean-field results from &) (solid lines, results of the EBF theory from E¢4) (dashed lines and
corresponding KMC results at timiE=2x 10° (O) (assumed to be close to the asymptotic ljmit
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description of the continuum limit foW0<Vv<ot) and to our ment with a quadratic dependence @gC) as in Eq.(18).
heuristic correctiorg=3.64 for taking correlations into ac- Therefore, the very simple microscopic model we discussed
count [see the paragraph preceding Eg1)]. When com- seems to capture the essential features of the dynamics in
pared to the EBF results from E(R4), we see that, as ex- these cases. Moreover, this suggests that this form.(E)
pectgd, at low densiti.es of the reserv(ee, eg., the curves for Pb on Cglll) is not necessarily due to surface
in Fig. 8 corresponding t&,=0.4) the predictions of Eq. a|loying—a mechanism which is not included into the dy-
(22) and the EBF results are almost identical because thgamics of our model—but is rather already a consequence of
monolayer is dilute and thus the particle-particle interactiongpe jnterplay between the concentration gradients and the
are less effective. For similar reasons, at low values for the,ie harticle interaction, which leads to “jamming” and thus
strength of the interparticle attraction or at high temperaturesignificantly slows down the diffusion for large values of the
i.e., whenW,;, is small, the EBF description performs well densityC(x, )
even for high densitie§see in Fig. &) the curve corre- e
sponding toCy=0.8]. However, at very high densities of the
reservoir or for large values of the attractive coupling, C. Scaling solution forW0>Wg)
there are significant discrepancies even indhalitative be- . .
havior between the EBF predictions and the simulation re- we Q)OW trn to Fhe Q'SCUSS'OH of ECQ_Z) for_ the_ case
sults. In particular, the formation of a “shoulder” in the case o> W - Because in this case the effective diffusion coef-
in which W, is large[see in Fig. 8) the curves correspond- ficient D¢(C) becomes negative within a range of densities,
ing to Cy=1 andCy=0.8] is remarkably well reproduced by the problem is known to be mathematically ill posed and to
the theoretical curve obtained from E®2), but it is com- lead to discontinuige$shock3 in the long-time limit if the
pletely missed by the EBF solutidiq. (24)]. Therefore we  small termsO((a/\t)?) [see Eq.(22)] are set to zerd53].
conclude that even in this case, i.e., below the threshol@or this problem the existence and uniqueness of a “weak”
vaIueV\/(O” for interface formation, the interparticle attraction solutionC()) [weak in the sense th&(\) has a discontinu-
has to be explicitly included into the model in order to obtainity at a pointA=\, but satisfies Eq(22) for A #\¢] have
a correct prediction for the mass distribution inside thepeen recently addressed by Witel§Ki7,58 using singular
monolayer which is extracted. _ _ perturbation methods. We will use here directly the explicit
The above results should also be discussed in the contegbnstruction of the shock solution derived in Ri&f7] for the
of the similar work in Refs[51,52 mentioned in the begin-  case in which the ter(a2/t) is proportional tos’C(x, 1),

ning of this section. We have emphasized that the derivatiog,e getajls of the calculation being presented in Appendix C.
of the continuum limit is mean-field-like in character, and Defining

that only after correcting for correlations, i.e., after adopting

the improved valug = 3.64, the continuum limit accurately c

predicts both the threshold valwg) for the interaction cou- w(C) =f dC'D(C’), (25)
pling and the scaled asymptotic density profiles 0

C(\;W,,Cy). Such a correction has not been included in theEq. (21) may be rewritten as

similar continuum equations discussed in R¢8.,52, and

we suggest that this explains the discrepancies observed by _ 2

the authors in the case in which the range of the interparticle 9L = ai’“(c) + 0@, (26)
potential is shorgsee, e.g., the density profiles correspondingi.e.
to cutoff ranges =2 andr.=5 in Fig. 4a) in Ref.[52]). For i
the longer-ranged potentials.=5) used in Refs[51,53,
further than nearest neighbors contribute significantlygto
and the exclusion of a nearest-neighbor term becomes rel
tively less important, which explains the good agreement o

it has the form of a diffusion equation f&(x, r) with a
mobility M=1 and a “chemical potentialit(C). Moreover,

as we will discuss below, the values @fC) across the dis-
continuity satisfy conditions which are similar to those de-
?érmining the equilibrium liquid-vapor coexistence line in
: : : S the van der Waals—Maxwell mean-field theory of liquid-
tained in the cases =5 without any C\;\’;{)ecuon included. vapor transitions. Because of these similarities, in what fol-
. Beforg proceeding to the cait,> Vo, We would also |5 ¢ \we ghall informally denot@(C) as chemical potential.
like to briefly comment on the connection between our above Following Refs.[57,58, we look for a weak solution of
results, the experimental results for the precursing films OiEq (22), subject 'to tﬁe i)oundary conditions given in Eq
Pb on Cy111) reported in Ref[55], and the MD results for (23') in fhe form of a shock defined as '
precursing films of Ag on NILOO) presented in Ref[56]. '
The density profiles measured experiment@dige Fig. &) C0. A<\
in Ref. [55]] and in the MD simulationgsee Fig. 3 in Ref. E()\) :{ G s’ (27)
[56]) for the 2D spreading of Pb or Ag films show a striking C(N), N>,

resemblance with the ones we have obtained in the KMC

simulations. Moreover, by assuming a macroscopic diffusivevhereC,(\) andC,(\) satisfy Eq(22) in the intervald0,\s)
dynamics described by an equation of the same form as thand (A5, A=X(t)/\t], respectively, subject to the boundary
one derived in Eq.(21), effective diffusion coefficients conditions

D.(C) have been obtained from the density profiles, and the

data shown in Fig. @) in Ref. [55] are in qualitative agree- C/(0)=Cy Ci(\)=Cpy,
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FIG. 9. Asymptotic scaling solutioé()\) for (a) Wp=1.2,Cy=1.0 and(b) Wy=1.4,Cy=1.0. Shown are theoretical results obtained from
Eqgs.(22), (28), and(31) (solid lines, and corresponding KMC results at tirfie 2 X 107 (O) (assumed to be close to the asymptotic [mit
The dotted line is a guide to the eye. The dashed lines indicate the correspondingGahresCy, from Eq.(30), C;. from Eq.(20) where
De(Ci)zo, which determines the onset of the density range leading to instabigesFig. 7, C, from the boundary condition E@23b),
and the position\g of the discontinuity given by Eq.31).

C(A\)=C,<Cy C/(A=Cy, (28)  where the mass curreiptx) =-d,u(C) [see Eq(26)] is dis-
_ _ _ _ _ continuous at x. Since 85/8r=(1/2 72 and 4,C
respectively. As discussed in Appendix C, the singular per— 7124C/d\, one obtains the following expression for the
turbation analysis of Eq22) implies that the value€, and position \ of the shock:

C,, of the density at the left and the right of the shock,
respectively, are determined from the following conditions

expressed in terms qi(C): ac|  _ dc
De(CM) dh c De(cm) d\ c
m(Cn) = m(Cry), (293 Ag=—2 . m (3D
CM - Cm
Cm
dC'[w(C") = w(Cy]=0, (29b) We note that the above result can be also obtained via a
Cm direct integration of Eq(22) across the shock, i.e., froim

i.e., continuity of the “chemical potential(C) across the =Ms”& 10 A=As+&in the limit £~ 0, using for the density
shock and a Maxwell equal area rule across the shock, (,goﬁle there the approximation by_ a step fu_n_cuﬁmx)

mentioned at the beginning of this section. Solving &§), - <M~ (Cu—=CwH(\=Ay), whereH(x) is the Heaviside func-
we find that the only solution satisfying the condition fion [H(x<0)=0,H(x=0)=1]. It is important to note here

~C_i that for sufficiently large value¥y, of the attractive interac-
Cu>C,is X . i
_ tion the densityC,, may become smaller thab;. Since the
1 3 4 density at the advancing edge cannot be smaller @arin
Cu= 2 + 2 1- M)' (309 this case the brandg,(\) disappears and the shock position

is obtained by settin€,,=0 in Eq.(31).
= OnceC,, andCy, are known, Eqs(22), (28), and(31) can
—-_X° - (30b) be, in principle, solved for the corresponding quantities

m2 2 gW, C/(\), C,(\), and the position of the shock. Since E¢22)
. . - . N cannot be solved in closed form, the above system of equa-
Comparison with the similar expressions fQ,, Where ons pas to be solved numerically. Such a numerical solution
De(C3)=0 [Eq. (20)], shows that for alMy>W,’ one has is shown in Fig. 9 for the casa®) Wy=1.2, C,=1.0, for
Cm<C_,<C!<Cy, thus the shock occurs both above andhich C,=0.25>C;, and (b) Wp=1.4 and C,=1.0, for
below the interval corresponding to unstable states. For thgnich C,,=0.098<C;. It can be seen that the agreement
states co[rrespondmg to densites CeC  petween the theoretical asymptotic “shock” solution and the
=(Cyn,CU(C,,Cy) the effective diffusion coefficient is kKmc measured density profiles is good for the large value
positive, but the density gradients are very large in the longyy,=1.4, but it is not so good in the cas¥,=1.2. This is
time limit and the state becomes part of the shock; thus denyery Jikely due to the fact that in the latter case the simula-
sitiesC e € correspond to metastable states. tion has not yet reached the true asymptotic regime, while for
The last unknown, the positions of the shock, is ob-  \W,=1.4 the approach to the asymptotic shape is faster be-
tained from the conservation of mass. In an infinitesimalcause the low density brane) is suppressed. In both cases
time intervaldr, the displacemengs=xy(7+7) ~Xs(7) of the  the KMC results confirm the valug,, as the onset of large
position x;=\s\V7 of the shock leads to an increa$€y,  density gradients, and there is good agreement between the
—-C,) s in the mass inside the stripg(7+67)—xs(7). This  theoretical prediction and the simulations in the range of
should be equal to the net mass transfdij(xs) —j(xs+ 8s)],  densitiesC>Cy,. This also supports the above conclusion
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that the discrepancies in the ranGe<Cy, are due to simu-
lation times which are not large enough.

The jumpCy,—C,, in the density ak¢ explains the forma-
tion of the plateau(for Wo>W,)) in the dependence of
A(Cqy, W) on Cy: if the densityC, at the reservoir is within
the rangeC,<Cy<Cy, in the immediate vicinity of the
reservoir edge the density drops@g, and in the long-time
limit the extraction of the film proceeds effectively as if the
reservoir density would have be&h, Also, sincel/2-C,,
-1/2+Cy, it follows that the plateau should be symmetric
with respect toCy=0.5; indeed the KMC data in Fig.(&
exhibit this symmetryas long ad\; is such thaiC,,>0.1).
Moreover, since the density must sati€fy= 1, one may con-
clude that for interaction value®/, such thatCy>1 the

PHYSICAL REVIEW B9, 061602(2004

difficult—way to experimentally discriminate between the
various theoretical models proposed. Moreover, the simula-
tions show that the present model predicts qualitatively dif-
ferent structures for the experimentally accessible density
profiles below and above the threshold v (see Figs. 7
and 8, in particular, the formation of sharp interfaces inside
the extracted monolayer f(WO>va).

(3) The asymptotic, scaled density profil€\) have
been analyzed within a continuum limit with the correspond-
ing nonlinear diffusion equation derived from the micro-
scopic master equation. Within this approach we have in-
cluded the effect of correlations in an effective manner into
the standard mean-field description by adapting the value of
the integrated attractive interaction to account for the pres-

extraction of a monolayer is no longer possible. This impliesSnce of empty nearest-neighbor sitsse Fig. 3. This leads

that the exact value for the upper limit of the interaction
'WOC"”) above which no macroscopic film is extracted from
the reservoir is given bmcw):G/gzl.GS. This value is
significantly below the valu:d\’lgco”):\l\/f)“’”)(cozl) =2.3 ex-
tracted from the linear extrapolation of the KMC ddtee
Fig. 4(b)], the discrepancy very likely reflecting that the

to an excellent agreement between the theoretical predictions
based on the continuum limit and the KMC results both for
the vaIueVVg) and for the scaled density profil€Eig. 8).
Additionally we have shown that, even below the threshold
value\/\/g) for interface formation, the interparticle attraction
has to be explicitly included into the model in order to obtain
correct predictions for the mass distribution inside the ex-

KMC simulations have not yet reached the true asymptotidracted monolayer. The formation of the interfaces in the

limit (or that a linear extrapolation is not appropriat€hus

it is to be expected that in the ran@g=0.85 the separatrix
W) shown in Fig. 4b) significantly overestimates the cor-
rect curve.

VI. SUMMARY AND CONCLUSIONS

Using kinetic Monte CarlgKMC) simulations and a non-
linear diffusion equation within the continuum limit, we have
studied a lattice gas model with interacting particles for th

fluid monolayer which is extracted from a reservgtig. 1).
We have obtained the following main results.

(1) The two-dimensional KMC simulations confirm the
time dependencx(teoo):Av‘T of the spreading, wher(t)

rangeW0>V\lg) has been related to instabilities of the diffu-
sion equation associated with densities for which the corre-
sponding effective diffusion coefficient becomes negative
(Fig. 7). We have constructed the corresponding discontinu-
ous density profilegshock$ and critically compared them
with the KMC measured ong§ig. 9). Based on the results

of a singular perturbation analysis, we have obtained a good

estimatﬁé)CW):l.65 for the upper limit of the interaction
above which no macroscopic film is extracted from the

. . : Seservoir.
two-dimensional spreading on homogeneous substrates of a

Finally, we comment on the connection between this
model and experimental systems. As briefly discussed in Sec.
V B, the present model appears to provide a successful de-
scription for the diffusion of solid metals on metal surfaces
as studied in Refs[55,5. We have found a qualitative

is the average position of the advancing edge of the monosgreement between the experimental results in the case of

layer at timet, and reveal a nontrivial dependence of the
prefactorA on the strengthJ, of interparticle attraction and
on the fluid densityC, at the reservoisee Figs. 2-4 A

diffusion of Pb on Cyl11) [55] and our theoretically derived
density profiles and effective diffusion coefficient. It seems
to be promising to explore quantitatively the applicability of

careful analysis of this behavior has allowed us to identify, iny, o present model for such metal on metal systems. To this

terms ofWy=Uy/kgT, a transition poinwg) =1.1 associated

end the experimental setup described in RE5,5 would

with the occurrence of interfaces inside the extracted monohaye to be modified in order to have straight instead of cir-

layer, and to estimate a covering phase diagram inVige
-Cy plane (Fig. 4) together with a covering—noncovering
separatrixvvgco") below which a macroscopic film is ex-
tracted from the reservoir, while aboW&°®’ it is not ex-
tracted.

(2) The asymptotic(i.e., at long time and large spatial
scale$ transversally averaged density profil€$x,t) mea-

cular spreading geometries and a deposit-substrate combina-
tion chosen such as to avoid surface alloying effects.

As noted in the Introduction the experiments with fluids
performed so far deal with polymer oils. As long as the en-
tanglement of the polymer chains is not important, one may
consider a coarse-grained description in which the chain is
replaced by an effective particle of the size of the corre-

sured in the KMC simulations exhibit a scaling behavior assponding radius of gyration and only the motion of the center

function of the scaling variable=x/VDgt, whereDy, is the
one-particle diffusion coefficient on the bare substi@iig.

of mass is considered. Although the motion of these effective
particles might not resemble simple, activated jumping pro-

6). They clearly show that for this model the density in thecesses so that the microscopic model description is not di-
extracted monolayer is not spatially constant, in contrast teectly applicable, it is reasonable to expect that the macro-
the predictions of other theoretical models mentioned in thescopic evolution will be diffusive. Therefore, one may expect

Introduction. This provides an unambiguous—and otherwise¢hat the continuum limit of the present model can be used to
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describe the spreading behavior observed in experiments P =NQPy\(7) = NQ exp(- NQ7). (A1)
with polymer oils, but the macroscopic parameters enteringl_ . ) . )
into the diffusion equation should be regarded as fit param.hus the time |r1tervalr”between successful jumping at-
eters and not quantities calculated from microscopic dynam€Mpts(between “events’is a random variable distributed
ics as considered here. according to Eq(Al). Since all theN particles have identical

In order to obtain a direct, quantitative test of the presenfat€s(2 for events, the probability for a certain particle to be
theoretical predictions for precursor liquid films, new experi-the one undergoing the jump &/(NQ)=1/N, i.e., the par-
ments would have to be performed using simple liquids choficle to jump is selected at random. Let us assume the se-
sen such that they have a spreading rate large compared wicted particle is at locatiom. There arez=4 nearest-
the evaporation rate. This should be combined with observa1€ighbor locations, and thus-4 possible realizations of the
tion techniques chosen such that the density profiles, and né¢MP; the one to be actually attempted is selected according
only the spreading rate, could be measured, which would the probability defined by Eq1). Specifically, calling the
require an in-plandlatera) resolution in the order of few four probabilitiespy, ...,ps with p; corresponding to the
nanometers for the case of simple liquids, i.e., several latticBiMP (X,y) — (x+1,y) and the others being indexed counter-
constants, and in the order of 10—50 nm for the case of poIW'OgKW'Se, one compares the successive sigws0, s
mer oils, i.e., several inter “effective” particle distances, be-==i-1Pw ] =1,2,3,4,with a random numbev [0,1] and
cause the density variations are expected to occur on largéelectspy for whichs,_; <v <s,. As described in the text, the
length scales. One technique which possibly may fulfill thesdump takes place if the selected destination site is empty, and
requirements is reflection interference contrast microscopis rejected if the destination site is occupied.
[59], assuming that the microscope objective may scan the We note here that, as shown in Ref3], incrementing the
area of interestof the order of mrf) in times sufficiently ~ time between events using intervals generated according to
small compared to those on which the density profileEd. (Al) and not a constant time interval equal to the aver-
changes. The technique has been used before in studies @g€ time 1{N()) between events, such as in a classical
(equilibrium) wetting properties on micropatterned solid sur-Monte Carlo simulation, is essential in assuring that the
faces[59], and already at the time of its first implementation simulated time is the correct real time, and thus that the
a lateral resolution of at least 200 rnisee Fig. 1&) in Ref.  simulations capture the correct time development of spread-
[59]) combined with a normal resolution of the order of 1 nming.
has been achieved.

APPENDIX B: HEURISTIC DERIVATION OF THE

CONTINUUM LIMIT
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APPENDIX A: KINETIC MONTE CARLO METHOD 1 p(r,t)]r,’zrlzlqu;tp(r ), (BL)

In this section we discuss in some detail the variable-stegnere
continuous-time kinetic Monte Carlo algorith1-43 that
we have used. The main idea is to consider the sequence of
independent, uncorrelated events represented by jumps of exp) —[U(r;t) —U(r’;v)]
particles away from the wells in which they were residing. 2
Each of these events has an identical time- and environment- oy =0 (B2)
independent rat€é) as shown by Eq(5), in contrast to the
location-dependent rates of particular transitiorsr’ [Eq. > exp) —[U(r;) - U(r';)]
@] o Jr'=rl=1 2

Consider the system at tinh@vhen there ar&l particles in
the film (x>0) and an event just occurred. Since the at-
tempts of any particle to leave its well are uncorrelated to Uit =-U >
similar events of other particles, and since for each particle O
the rate for a successful jump B, for each one of the r.0<lr’r|<3
particles the probability that until tim& >t no successful We consider a two-dimensional regular lattice of coordi-
attempt occurs iP;(7)=exp(—Q7), where 7=t’~t. There-  nation numberz and lattice constana and choose the or-
fore, since the jumps are uncorrelated, the probability thathogonalx-y coordinate system such that tkexis is along
noneof the N particles experienced a successful attempt in one of the lattice directions. For a given siteve index the
is Py(7)=[P1(n)]N=exp-NQ7) and the probability that the nearest neighbors a# j=0,1,2,...z-1, wherej=0 is
first successful jump will take place Htwill be given by chosen such thaty-r is parallel to thex axis andj runs in

and

p(r";t)
=" (B3)
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counterclockwise direction. Denoting the angle formed by z1 hit
the vectorr/ —r with the x axis as¢; so thatg;=2mj/z, the 2 sh(r,r/;t)=a E cog¢) + —E sin(¢;)
components; andy; of rj —r are given by =a cog ¢;) and
yj’:a sin(¢;). The following relations are satisfied by the a2 azh
angles¢; [60] and will prove to be useful for the rest of the +— —22 cos’-(qﬁj)
calculation: 2| Ix%j=0
5 z-1
-1 1 2y E Sin(¢;)cod &)

> sif(¢) =0, > cos(¢)=0, foroddk,0<k<z
j=0

=0

(B4a)
z-1 . z-1 .
2 sif(g) ==, X2 cos(¢y) =1, (B4b)
j=0 2 =0 2
z-1 z-1
> sin(2¢;) =0, X, cog2¢;) = 0. (B4c)
j=0 j=0
Defining
sh(r,r{;t) =h(r;t) - h(r;t), (B5)

whereh(r;t) is any of the functiong(r;t), U(r;t), or prod-
ucts of them, expandingh(rj' ;t) near r, and summing
5h(r,rj’;t) over rj’ one obtains

ex —g&u(r,r{(;t)}

Ph’c
+ —22 sir(¢y) | + (B6)
dYi=o
In the relation aboveh=h(r;t) and the derivatives are
evaluated at. Replacing the corresponding sums by the re-
sults in Eq.(B4) it follows that

2 h(r,r/;t) = —azvzh +0(a%). (B7)

Straightforward algebra allows one to derive from the defi-
nition (B5) the following additional useful relations involv-
ing a second functiof(r ;t):

f(r{;0)oh(r,ri;t) = (fh)(r,r{;t) = h(ry;t) of (r,r;t),
(B8a)

St (r,r{;)oh(r,ri;t) = 8(fh)(r,rj;t) — h(rj;t) 8f(r,r{;t)
— f(rj;t)oh(r,r J,t). (B8b)

Assuming thatU(r;t) varies slowly on the scale of the
lattice constant so thatBsU(r,r’;t)<1, one has the
expansion

exp{—géu(r,r,ﬁ;t)]

z-1

j=0 j=0

Thus using Eqs(B7) and(B8b) one obtains

@ 1 1 B ' Ba* o _ 2
a - Zex 25U(r,rk,t)H1+ : [VU - B(VU)4]
+0(@% [, (B10)

where as beford&J=U(r;t) and the spatial derivatives are

z-1 .
S ex _Eéu(rlj,t)} 2 A1=BaU(r,r{ ;02 +[BaU(r,r];)/2]7 + -}

(B9)

up to contributions which are of second order in the lattice
constant in the master equation, E§10) may be rewritten

Q
O g = ;ex - g&u(r,r’;t)]. (B11)

This means that the deviations of the raigs.,.., from de-

evaluated at. As we shall show below, the zeroth-order termtailed balance, which according to E@10) are of second

in the above expansiditq. (B10)] contributes to the master
equation already in the ordex®, and therefore the other
terms on the right-hand sid®HS) of Eq. (B10) will lead to

contributions proportional ta* and higher orders. Therefore,

order and higher in the lattice constant, in the equation cor-
responding to the continuum limit contribute with terms of
fourth order and higher in the lattice constant. These terms
become negligible in the limia— 0.
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The expressiofiB11) may be now expanded in terms of

powers of BoU(r,r’;t):

wrar’t p0+ pl + p2 T (812)
where
Q
Po= 7> (B13a)
z
Qp
=—-—58U(r,r';t), B13b
P==" (r,r';t) ( )
Q 2
pzzz[w(r,r’:t)]z- (B130¢

Note that the expressigB11) implies

Opr it = %exp{— g&u(r’,r;t)} = %exp{+ gw(r,r’;t)]

(B14)

and thus its expansion in powers 8U(r,r’;t) is

p1+pot (B15)

Wt =P~

We now will compute separately the contributioRg), of
these terms to the RHS of E@1). For the contribution due
to pp one has

Z—l

Ro = 2{p(r,,t)[l p(r,t)] = p(r,t)[1 - p(r{,0]}

QO 2
- —E oI =, Vip+00@).  (B16

For p; one has

= —2 SU(r,r{;H{p(r],H[1 - p(r,0)]

+ p(l’,t)[l - P(r] !t)]}
z-1

QO
= Bz—[l = 2p(r;0)]2 p(r{;H)8U(r 1] ;1)
Z J:O

z-1

+ [Z—Qp(r;t)z sU(r,r];b). (B17)
Z 1':0

Using Egs.(B7) and (B8a) to replace the two sums in the

expression above, one obtains

39

R = pl+pV2U} + QO(a’)

_poa?
4

(B18)

Finally, for p, one has

PHYSICAL REVIEW B9, 061602(2004)

2

R(Z) E [6U(I’, j 1t)]2{p(rj ,t)[l P(r t)]

- p(r O[L = p(rj,O)]}

2071
B

= —2 [8U(r,r{ ;) P8p(r,r];0). (B19)

Using repeatedly Eq$B8a) and(B7) in the above sum, one
obtains

2()a2
[V#(pU?) - pV2U? -

R = U2v2p - 2UV?(pU)
+2UpV2U + 2U%V?p] + Q0(a%
=00(@%. (B20)
It is easy to see that higher-order terrps,.. ., will contrib-

ute with terms which are at least of the or@éyand thus the
expressiongB16) and(B18) are the only terms relevant for
Eqg. (B).

Collecting the terms and passing to the continuum limit
a—0, 01— 0 such thaD,=a?/4 stays finite, one arrives
at the result given in Eq13) in the main text, i.e.,

ap=DoV{V,+Blp(1-p) VU +0(@). (B21)

APPENDIX C. DERIVATION OF THE SHOCK
SOLUTION

Following Ref.[57], we start from Eq.26) written in
terms of the scaling variable as

(2S5

(Cy

1 dCc d?
TN T et O

where the function Q is a linear combination of
fourth-order derivatives terms of the form
d*C/d\*,(d?C/dN?)?,[d?(UC)/dN?]?,.... Theregion of in-
terest,\ € [0,A], naturally decomposes into the region near
the interface,)\s—h(e)s)\§ Asth(e), and the outer region
IN=\J>h(e) with e=a/\7, h(e) is a smooth function such
that h(e— 0)=0 (which ensures that in the long-time limit
the width of the interface becomes negligibleand
lim__oh(e)/e— oo, i.e., it is assumed that the decrease of the
width is slower thane. In the outer region, the solution
C,(\) is a slowly varying, smooth function of, and the
terms proportional ta in Eq. (C1) are negligible. In con-
trast, in the inner region the gradients are very large, and the
fourth-order terms become relevant.

In order to obtain the shock structure, we change to the
“stretching” variable/=(\-\g)/ € for [\—\d <h(e) and look
for a smooth, strictly decreasing soluti@t?). In terms of{
Eqg. (26) turns into
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1 dc o? d‘c (d2C>2 ]
- 1 - 2 (O +e0| — | — | ...
O T LA Q[dﬁ, )|
(C2

which in the limit e—0 leads to the zeroth order in the
approximation:

¢ ond €S (] o
d§2'u Q dé"l' d{z ,...|=0.

Since in the limit e—0 the inner region k(e)/e<{

(C3)
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o4 (2] -ate
d\az) T Tag
with g a constant or a very slowly varying function®fe.g.,
q(0)=Gq(\g+€?). In this case, Eq(C3) reduces to

2 { dZC]

| WO +q—— | =0.
d§2 ,LL( ) ngz

A first integration leads tdd/d{)[ u(C)+qdPC/d{?]=const

=0 because bottid/d{)u(C) and d°C/d® are zero atl

— +o0, and thus a second integration yields
2

(Co)

(C7

<h(e)/ e is mapped into = <<+ and at the ends of the
shock region the inner solution must match the outer solution
C,(\), Eq. (C3) should be solved subject to the boundary
conditions

d
w(C) +q b, (C8)

a2~
whereb is an integration constant. Since |im...d°C/d¢?
=0, one obtainsu[C({— tx)]=b, i.e., the requirement of
continuity of u(C) across the shockEqg. (299 in the main

lim C(g) = CM! text]'

{——o0

lim C(¢) =C,, (Co
[+

1(Cy) = u(Cpy). (C9

which implies also that all the derivative8¥(?) of the
smooth inner solutioi€(¢) tend to zero ag— .

Although the functionQ may be computed explicitly by

using Eq.(B7),

3z

z-1

&
S an(rrf0 =7+ ZEvh e 0),  (CH
j=0

and following similar steps as in calculating the terms pro-
portional toa? in Appendix B, the result is very complicated

and a singular perturbation analysis appears to be extremely
difficult, if at all possible. However, one may argue that the
term af(‘C is always relevant in the region of the shock be-

SincedC/dZ # 0 (except at infinity andb=u(Cy), Eg.(C8)
may be rewritten in the form

qd|(dc } _ _ o endC
2d§{<d§) =[m(Cw) M(C)]dé,,
which leads to

Cw = d[[{dc)?
f dcwa)—M(c:)]:gf dg&[(f) ]:o,

(C10

m

(C1y
i.e., the equal area rule far(C) [Eq. (29b) in the main text

Finally, we remark that all the details of the calculation, as

cause it is associated with an interface contributén | oIl as the main resultiE ;
. gs.(C9) and(C11)], remain un-
=[d{VC(x,0]* to the free energy functionaf=Fi+---ofa  changed if the corrections) would have the form

dynamical Cahn-Hillard theory of phase separatiofG QICW,(C@)2,.. ]1=(d*dPP[C,C? (CD)2 .. ], with P a
=VIM(C)V(6F15C)] [where M(C) denotes the mobilifly  |inear combination of terms of second-order spatial deriva-
[58]. Therefore, all the other terms that are relevant shouldives satisfying ling_...P—0[61], and thus it seems reason-
be of the same order @C. This leads us to the approxima- able to assume that in general itdsly the inner structure of

tion

the shock that depends on the particular fornQof57,58.
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