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Ising fluids in an external magnetic field: An integral equation approach
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The phase behavior of Ising spin fluids is studied in the presence of an external magnetic field with the
integral equation method. The calculations are performed on the basis of a soft mean spherical approximation
using an efficient algorithm for solving the coupled set of the Ornstein-Zernike equations, the closure relations,
and the external field constraint. The phase diagrams are obtained in the whole thermodynamic space including
the magnetic fieldH for a wide class of Ising fluid models with various rati@sf the strengths of magnetic
to nonmagnetic Yukawa-like interactions. The influence of varying the inverse screening lepgthd z,,
corresponding to the magnetic and nonmagnetic Yukawa parts of the potential, is investigated too. It is shown
that changes iR as well as inz; andz, can lead to different topologies of the phase diagrams. In particular,
depending on the value @&, the critical temperature of the liquid-gas transition either decreases monotoni-
cally, behaves nonmonotonically, or increases monotonically with incre&kififpe para-ferro magnetic tran-
sition is also affected by changeskand the screening lengths. Mt=0, the Ising fluid maps onto a simple
model of a symmetric nonmagnetic binary mixture. Fbr o, it reduces to a pure nonmagnetic fluid. The
results are compared with available simulations and the predictions of other theoretical methods. It is demon-
strated that the mean spherical approximation appears to be more accurate compared with mean field theory,
especially for systems with short ranged attraction potentialseen z; and z, are large. In the Kac limit
z,,2,— +0, both approaches tend to nearly the same results.
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[. INTRODUCTION the space of the microscopic model parameters, such as in-
teraction strength or range of the potentials
During the past decades, much attention has been paid to The global phase diagrams in one-dimensidR@aomain

the phase behavior of ferromagnetic fluid models withwere obtained for Ising and Heisenberg spin fluids within
coupled spin and spatial interactioftls-20. The investiga- MF theory[4,5]. To our knowledge, no such diagrams have
tions have been carried out using the mean fip1é) theory ~ been investigated up to now using the integral equation
[1-7], the method of integral equatioi8—13, as well as method. As is well _re_cognized, the_ latter method_leads to
Monte Carlo (MC) simulation techniqueg7,8,11,14—2p  More accurate predictions. It takes into account pair correla-
They dealt mainly with simplified models belonging to a tions between particles in spin space, which are completely

so-called ideal class of spin fluids, where the attractive pargnored by the MF approach. Previous integral equation

of nonmagnetic interactions is absefR=cx). Moreover studies on magnetic fluids have been restricted exclusively to
these models were considered, as a rule, in the absence of 952! Systems with Heisenberg spin interactions in the ab-
' ! sence of an external field,9] or only included a few non-

external magnetlc fieldH=0). At finite yalues OfR, it hag zero field value§10-13. No integral equation calculations
been establlshetﬂl,_2,4,51 that_, depending on the relative have been performed for nonideal spin fluiddHat 0, even
strength of magnetic interactions, the gas, liquid, paramaggithin the well-known Ising model. Note that here we are
netic, and ferromagnetic states in the system may form phasgsajing with genuine fluid models, meaning that the spatial
diagrams of different topologies. For instance, an orderpositions of spins are distributed continuously, contrary to
disorder liquid-liquid phase transition may appear addition-simplified lattice gas schemg&1-23, where the spins are
ally to the gas-liquid one. positioned on fixed lattice sites.

A complete picture of the phase diagram topology can Due to the discrete character of spin reorientations in the
only be obtained if the magnetic field is includ@d+0) in  Ising fluid, it can be mapped onto a binary nonmagnetic mix-
the consideration. Then the phase diagram shows the twire with symmetric interparticle interactions. In this context,
other critical lines(so called wings meeting the magnetic it should be pointed out that in recent years a lot of papers
transition line in theH=0 plane at the tricritical liquid-liquid have been devoted to study phase properties in symmetric
transition [4,5]. The gas-liquid critical point extends to a mixtures by means of MC simulations, the MF theory, as
critical line in the magnetic field. Whether the gas-liquid or well as the Ornstein-Zernik@dZ) integral equation method
liquid-liquid critical line ends in a critical end point and the [24-31. Various closure relations, including the standard
corresponding other critical line tends to infinite magneticmean spherical approximatiofMSA) [32] and a self-
field depends on the model parameters mentioned. This emonsistent OZ approactSCOZA) [29,33, have been ex-
larges the number of different “phases” in the global phaseloited within the latter method. Note that these studies con-
diagram(the regions where the different topologies exist insidered in fact only the case when the chemical potentials of
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different species are fixed to be equal. In the language ahe total number of particlesi,j=|ri—rj| denotes the interspin
Ising fluids this corresponds to the absence of an externaeparation, anéf relates to the homogeneous external mag-
magnetic field. netic field. The exchange integr&l>0) of ferromagnetic

It has been realized that despite its relative simplicity, thenteractions and the attraction pgit>0) of nonmagnetic
MSA is able to give reliable results for the coexistence phasenes can be chosen in the form of Yukawa functions,
boundaries including the location of critical points. The ac-
curacy of the MSA scheme gets worse only when calculating

. 2(z,0)? &0
critical exponents. On the other hand, the more cumbersome J(r)= ML

exg-z(r-oa)l,

SCOZA technique can provide us with highly precise results zo+lr

for the phase boundaries and it remains accurate even near

criticality [33]. The other concept is the hierarchical refer- 22,0) %80

ence theoryHRT) [30,34—36 that combines features of the I(r) = =2 "exd - z(r - 0], (2)
renormalization group theor§RGT) and theoretical liquid- o+l

state approaches and allows to reproduce some critical expo-

nents more precisely with respect to the MSA. For instanceyherez; andz, are the inverse screening lengths of the po-
the critical exponeni3 (which gives the curvature of the tentials,e; and ¢ denote the interaction intensities, and
coexistence curve near the critical poiakes the values relates to the particle size. The repulsipetween particles
7/20 and 0.345 within the SCOZA and HRT, respectively.can be modeled by @ore realistig LJ-like SC potentia[7],
They are close to the experimental and RGT prediciibon

=0.327, contrary to the MF and MSA valygs=1/2 (see Sec. o\12 [g\® -

1l B). B e[(—) —(—) }+e, r< {20
However, the SCOZA has so far been implemented only olr) = ' ' — )

for a restricted class of hard-sphere-Yukawa potentials. For 0, r= {20,

these potentials, some solutions within the MSA ansatz can

be derived37-39 in a semianalytical form as a set of non- rather than by the hard-sphegS) function

linear algebraic equation@vhich should further be solved

numerically. The SCOZA employs such solutions at an in- { r<go

termediate stage of the calculations. In the presence of po- ous(r) = (4

tentials of any other structure, for instance, of Lennard-Jones 0, r=o.

(LJ) type or potentials with a soft-cor&C) repulsion part, The multipliers 2z, ,0)?/(z, ,0+1), entering in Eq.(2),

the mathematical structure is less amenable. In addition, thgaye been used for the sake of convenience of comparison of
SCOZA enforces the consistency between different thermogr results with previous predictiorisee Sec. I). Then, for
dynamic routes in a somewhat phenomenological manner byysiance, the integralg” 1(r)dr =8me0® and [~ J(r)dr
introducing an artificial “temperature” depending on densityzgwejas are independ of; andz,, respectively. Within the
and concentration. The high level of sophistication of thegiangard hard-sphere MF thediSMF), such integrals de-
SCOZA and HRT concepts leads, in turn, to substantial COMgcripe the contribution of the interactions to the free energy
putational problems, when applying them to more realistiqz) Thys, we can say in advance that the HSMF results will
interaction potentials. Therefore, for our problem we stick top, 5 depend ore, ,. At 7, ,0=1 (the case which is usually
a variant of the MSA, being well aware of the properties of ;qnsidered in theory and simulatjorthe multipliers go to
this approximation near the critical point. _unity, and we come to the usual form faofr) and J(r).

In the present paper, the global phase diagram of the ISinginin the soft-core MF theorySCMP), introduced recently

fluid is investigated on the basis of the OZ integral equation, pef. [7], a slightz, , dependency should appear. Then the

method with a soft MSA closure. This allows us to obtain theintegrals transform o [? exp—Besdfl,I}r)dr

complete thermal phase diagrams covering the whole rangeg T+ -1_
. L . = ,Z a3, where3 *=kgT denotes the temperature
of the relative strength of magnetic interactions and other NT 20 me s B =k b

parameters of the interaction potentials. The dependenciesWth kg being Boltzmann's constant, andlT,z, ) is the

the critical temperatures and densities on the external fiel Inction Wh.'Ch takes into account the softness of th_e repul-
are analyzed in detail as well, Sion potential{see Eqs(8)—«(10) of Ref. [7]). For the inte-

gral equation approach we expect a more pronounced depen-
Il. BACKGROUND dence of the results on .

A. The Ising model

The full potential energy of the Ising fluid can be written B. Integral equation approach

in its most general form as 1. Mapping to a symmetric binary mixture

N Since the sping in an Ising fluid take only two values,

N
1
U= 52 Le(rij) = 1(riy) = Irip)sis;] - H; S (1) +1, we can map the system with particles carrying spin 1
7 =t or —1 onto a binary mixture witiN, andN, particles of type
wherer; is the (three-dimensionalspatial coordinate of the a andb, respectively, wher®&,+N,=N. Then Eq.(1) trans-
ith particle carrying spig;=+1 withi=1,... NandN being  forms to the equivalent form
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Na Np Na.Np
1 1 ! ! ’
U= dadlip) + 22 o) + 2 bap(ri)) —HM, hag(r) = Cag(r) + 2 ny Cay(Ir = 1", g(r")dr’,
2isﬁj 2i¢j ij=1 v=a,b
(5 (10)
N where the total and direct correlation functiomg; andc,

whereM =22, §=N,~N, relates to the total magnetization to 5 nair of particles of speciesand 3 will depend only on
of the system and their separation distance,,=N,/V is the particle number
density of theyth species, and the indices B, and y take
Baalr) = dpp(r) = @(r) = [I(r) +I(r)], two values,a (spin up andb (spin down.

Equation (10) must be complemented by a@approxi-
mate closure relation to be solved with respecthg; and
Cop- The standard MSA schemi@2], proposed originally
describe the interactions between like and unlike particles i t?] é(;;zys;/etﬁz \évétf? ,\H/é Legﬁémsﬂo[zlf fae rggggf)?i_m

Pan(1) = dpa(r) = @(r) = [1(r) = I(r)] (6)

the mixture. ;
In a further step, we have to rewrite the energy, the mag?lte fora SC potentia). It reads
netic field, and the magnetization per partice=M/N in Uap(r) = eXH— Bap(r) + hop(r) = Coplr) +B,p(r)],

terms of appropriate variables suitable for the mixture. Apart (11)
from the total number density=N/V, whereV denotes the

volume, such variables include the particle concentration whereg,(r)=h,,(r)+1 denotes the radial distribution func-
and the chemical potentials. One has the concentration relgon, and

tions
Bap(r) = IN[1 +5,5()] = S44(r) (12)
X= &i’ 1-x= %, m=2x-1. (7) s the bridge function with
N N
Sup(1) = () = Co(r) = Bebl4(1) (13

In addition, we emphasize that due to a finite value of the
external field term on the right-hand side of Eg), we have (
to deal with a mixture prepared in an unusual way. Indeed
when transferring one particle from speciasto species
b—in the Ising liquid this amounts to flipping a spin from up
to down and thusAM=-2—without changing the spatial
coordinates, the total change in energy is equahitb=2H
(the other terms do not contribute AdJ due to the symmetry
baa= Ppp Of the particle interactionsOn the other hand, the
change in energy of the mixture is given by

no confusion may arise between the index and the Boltz-
mann factorB). Formally setting83=0 in Eq.(11) leads to the
hypernetted-chaigHNC) approximation[32].

The SMSA additionally requires the separation of the total
potentiale,, in its short- and long-ranged pauﬁiﬁ and d’laﬁ
with ¢,z= ¢fw+ ¢'aﬁ. There is no general procedure to per-
form such a separation uniquely for arbitrary potentials.
Since the SMSA itself is not exact, the Yukawa potentials in
the region of core repulsion=g¢ allow splitting to some
extent in various ways, leading to various versions of the
SMSA. Usually the splitting is carried out by introducing a
AU = ANgpta + ANoup = un(p, X T) = ua(p,XT), - (8)  gwitch function. One choice among others is to extract the

_ _ _ long-ranged part using the Boltzmann-like switching expo-
wherepu, andu, are the chemical potentials of specéeand  nent built on the soft-core potential, i.e.,

b, respectively. This leads to the identification

Bp(r) = =[1(r) £ I(n)Jexd - Be(n)]. (14)

Such an extraction is quite natural, because rforo the
function d)'aﬁ(r) rapidly tends with increasing to the
Yukawa potential H(r)£J(r)] (we note that exXp-Be(r)]
=1 forr= {20, whereas lim o exd—B¢(r)]=0). By the re-
placementp(r) — ¢us(r), we come to the standard HS MSA
with h,s(r)=0 for r <o andc,s(r)=pg[I(r)xJ(r)] for r=0.
Another trick lies in a modification of the bridge function

Alu = Mb(PaXaT) - Ma(PaXaT) =2H. (9)

Condition (9) can be considered as an additional constrain
imposed on the concentration at given valuep,of, andH,

namely,x=x(p,T,H). The reason for this procedure is the
following. In the case of a magnetic fluid, the external field
(not the magnetizationis accessible to experiment, whereas
for a mixture it is the concentratiomot the chemical poten- .
tials). In order to study the IsingO(quid in the notatign of a t0 the form of Eq.(12) if Sap(r) >0 and t0B,(r)=0 when

binary mixture one, therefore, has to fix the difference of theSs(r) =<0, which combines the SMSA with the HNC ap-
chemical potentials. proximation. This is in the spirit of the KH closure proposed

by Kovalenko and Hirat§43,44). Note that the pure SMSA
sometimes leads to unphysigatlomains with negative val-
ues ofg(r). The modified SMSA preserves by construction

For mixtures, the OZ integral equations haj@?] the the positiveness af(r) everywhere in density and tempera-
form ture space.

2. Formulation of the integral equations
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3. Calculation of thermodynamic quantities the sake of simplicity we will use the virial pressure comple-
Equations(10) and(11) constitute a system of six nonlin- mentesd b);l an appropriately chosen Maxwell construction
ear integroalgebraic equations for the same number of urfSee Sec. I G

knowns{h,c},a {h,cly, and{h,c},,={h,c}y.. Once the so-
lutions are found, the thermodynamic quantities are C. Phase separations
calculated in a straightforward way. In particular, the pres-

Yy ! For a general binary mixture, the densiti¢d and con-
sure can be calculated from the virial equation of state

centrationsx""" of coexisting phases | and Il are determined
at a given temperaturé from the well-known mechanical

b
27 “do, i ilinri it
P(p,x,T) = pkgT - 3 2 Papﬁf drégaﬁ(f)fsdfa and chemical equilibrium conditions
o,B 0

(15)
Iy Ty = Ty — Ll
where p=p,+p,. Although the energy and compressibility palp X T) = palp™, X0 T) = g (19
routes can also be used, we will prefer the virial ro(its) L " o
because it is most easily implemented. mo(p' X, T) = p(p” X0 T) =
The chemical potentials can be written in the form In our case, they should be complemented by the condition
Mo o+ ke T(IN pe+3 1N A,), (16) pp' =y =2H (20

wherea=a,b, and A, being the de Broglie thermal wave- following from the gxternal field constraifiEq. (9)] for each
length (which is independent op and x). Explicit expres-  Phase. It is convenient to replagg and u;, by the sum

sions for the excess part qf, can be derived using the
Mat Uy

(exac) Kirkwood formula[45] uw= o (21
1 ©
w=>p f d)\J 51 )\)a—%‘M4wrzdr. and the differencé\u defined in Eq.(9). Then two of the
“ pmab A 0 0 B dN three chemical-potential conditions in E¢%9) and(20) can
(17) be rewritten in the equivalent form
Aup(p' X, T) = Au(p" X", T) = 2H. (22

Here, the integration ovex corresponds to the computation
of the work of transferring a separate particle from a vacuum These conditions will be satisfied automatically, provided
[N=0 with ¢,5(r,\)=0] to the systen[A=1 and ¢,4(r,\) the integroalgebraic equatiorid0) and (11) are solved in
=¢,p(r)]. Performing the\ integration in a manner similar to  conjunction with Eq(9). Then one finds a consistent set of
that proposed in Refg43,44, one obtains, taking into ac- correlation functions together with the solution

count Eqs(10) and(11) that x=X(p,T,H) (23

. 11, 1 for the concentration in the mixture. For the Ising fluid, the
Mo = kBTB:Ea bpﬂfo {Ehaﬁ(r) - §haﬁ(r)caﬁ'(r) ~ Cap(r) magnetizationm(p,T,H) can easily be reproduced from
’ whenever it is necessary, using relat{@n Solution(23) can

+ B (10l - has(r) Sapll) B(s’)ds’}4wr2dr, now be inserted into the remaining conditions yielding
%s) Jo P(p',T.H) = P(", T.H),
(18)
| — 1l
with [§ B(s')ds being equal ta1+s)In(1+s)-s(s+2)/2 at wle! T H) = ulp”, TH), @9
s>0 or O fors<0. where the mapping fron{p,x,T) space to the new set
It is worth mentioning that since the correlation functions[p,X(p,T,H),T]=(p,T,H) has been performed.

are calculated approximately, the above expresgibBsand Relations(24) look now like the coexistence conditions

(18) for the pressure and chemical potentials will not be therfor a one-component fluid. Indeed, the Gibbs free energy of
modynamically self-consistent. In particular, the virial, en-the mixtureG=u,N,+ N, can be rewritten in terms dfl
ergy and compressibility routes will lead to different results.=Na+N, and M=N,-N, as G=N(ua+up)/2-M(u,
Although the differences are, as a rule, relatively small, they- u,)/2=uN-HM, so that the introduced quantify [Eq.
may distort the phase coexistence properties near a criticé21)] has the meaning of the chemical potential of the Ising
point. A derivation of the self-consistent expressions in thefluid. It can be calculated using expressiqid$) and (18)
case of the nonideal Ising model in the presence of the eXwhich were already used when solving the external field
ternal field is a nontrivial problem that needs a separate sesonstraint(see Eqs(9) and(23)]. Alternatively, a Maxwell-
rious investigation. It could be solved, for instance, withinconstruction scheme has been utilized. In order to demon-
the SCOZA by extending its present implementation fromstrate that this scheme can be applied in its standard form to
hard-sphere to soft-core repulsion potentials. In this paper fathe magnetic fluid, let us consider the change in the Gibbs
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free energy. According to the thermodynamic relations, weyields h(r)=1/(2m)3 4mk?h(K)sin(kr)/(kr)dk. With the
have dG=-SdT+VdP+ u dN;+ 1, dNy=-SdT+VdP+udN  current values o€(r), h(r), andx, the residuals to the SMSA
—HdM, whereS denotes the entropy. During the isothermal closure (11) and field constrain{9) are evaluated. Using
(dT=0) process 1l we obtain, integrating by parts, that them, new values of(r) andx are updated according to the
for the system with a fixed number of particledN=0) i MDIIS corrections, and the iteration procedure is repeated
the presence of a constant external fieldthe free energy until the solutions lead to residuals with a relative root mean
increment is equal tdG=PV|;'~ [|' PdV-H(M;=M,). On  square magnitude of 10 The coexistence phase densities
the other hand, from the definition @ it follows that AG ~ were then found by applying the Maxwell construction.
=Nul!'=H(M,—M,). Since the increment caused by the The ratioR of the integrated strengths of magnetic to
changeH(M;,—M)) in the magnetic energy is the same for nonmagnetic interactions can be calculated as

both routes, we come to the Maxwell constructi@Qq

=(L1p"=11p'YP+ [ P(p,T,H)dp!p?=0, whereP denotes J 4mg(r)3(r)r?dr
the coexistence pressure. The construction guarantees that R= 0 (25)
the chemical potential will be the samigl;'=0) in both * .
phases | and Il, so that the second line of &4) transforms L 4mg(n1(rredr

to Q(p',p",T,H)=0.
In such a way, the gas-liquid and liquid-liquid phase tran-where g(r)=x?ga4(r)+2X(1=X)gap(r) +(1=X)°gpy(r) is the

sitions of the first order can be determined. The second-ordétotal) radial distribution function of the Ising fluid. From the

para-ferromagnetic transition ai=0 can be found as a form of the Yukawa potential&(r) andJ(r) [Eqg. (2)] it fol-

boundary (Curie) curve T,(p). Below this curve, i.e., for lows that the relatiof25) transforms to

T<T,(p), Eq.(9), being solved aH=0 with respect to the

concentratiorx [see EQ.23)], should have a nontrivial so- R= ) (26)

lution x=x(p,T,0)# 1/2 (i.e., m#0). For T>T,(p), only €

the trivial one should satisfy Eq9) at H=0. Note that the ¢, ; =7 'We have preferred the latter definition even when
trivial solution x=1/2 (or m=0) appears as a result of the ; - ;. hecause the former is sensitive to the approximation
symmetry of the interparticle potential&€q. (6)]. For the | 54e forg(r).

same reason, the coexisting phases will have an identical 11,4 strengthe appearing in the SC potentiiq. (3)] was
density at concentrationsand 1, or at magnetiza_tionm set toe;. This corresponds to a moderate softnes af¥ith

and -m. From the structure of Eqe9), (15), and(18), italso oqnact 1o the total potentifgee Eq(1)]. In the presentation

fc:(llowshthat, ifx (orm) is ?Ill solution to Iﬁq(g) at sor::_e value o our results we use the dimensionless densitypo®, tem-
0 H, 1 in :#__de(or _mLW' fauton;]atlcz y sac:!sfyt IS eq,lljlat') perature T =kgT/¢;, external fieldH =H/¢; and inverse
tion at the field H. Therefore, the phase diagrams will be ¢¢reening lengths, =2 0.

symmetric with respect to the magnetic fidtd

B. Results for the ideal system(R=)

lll. NUMERICAL CALCULATIONS Examples of the phase diagrams obtained within the Oz/

A. Computational algorithm SMSA/FC integral equation approach for the soft-core ideal
Ising fluid with z,=1 at various values{"=0, 0.1, 0.5, 1, 5,
and«, of the external field are shown in s¢&—(f) of Fig. 1

in the (T",p") plane. For the purpose of comparison, the
results of the SCMF theory and available MC simulation
data[7] are also included in this figure.

The set of OZ integral equationi%0) was first reduced to
a system of linear algebraic onesh,s(k)=c,z(K)
+2 —ab P,Cay(K)N,5(K), by applying the three-dimensional
Fourier transform Ak)=[y A(r)expik -r)dr

=[g 4mr?A()sin(kr)/ (kdr, whereA is any function ofr. It As can be seen clearly, the OZ/SMSA/FC approach leads
can be presented in the compa2ix 2) matrix form h(k) 5 much more accurate predictions of the liquid-gas coexist-
=c(k)+c(k)ph(k) with p being the diagonal density matrix ence densities with respect to the usual version of the SCMF
having nonzero elementg]i;=pa=xp and [pl,=pp=(1  theory. Even the adjustable version, when a semiphenomeno-
=X)p. logical parameter is introduced within the SCMF and fitted
Because of the nonlinearities in the SMSA closfiEgls.  to MC data atH — o (see Ref[7]), provides us with worse
(1)—«14)] and the external field constrai(fC) [see EQs(9)  results. At the same time, the deviations between the OZ/
and (18)], the coupled set of OZ/SMSA/FC equations haveSMSA/FC predictions and MC data are relatively small, es-
to be solved iteratively. The iterations have been carried ougecially for regions which are well below the critical point.
by adapting the method of modified direct inversion in theQOn the other hand, the precision decreases when approaching
iterative subspaceMDIIS) [46]. At given values op, T, and  the critical point, where the uncertainties in critical tempera-
H the iteration starts from initial guesses foys(r) andx,  ture and density estimations can reach about 10-15 %.
and the Fourier transformed functioog,(k) are calculated. Moreover, the computations have shown that the OZ/
Then the total correlation functions inspace are obtained SMSA/FC approach reproduces, such as the MF theory, the
analytically,h(k)=[1 —c(k)p] c(k), wherel denotes the unit classical values of critical exponents. For instance, the den-
matrix. Applying the backward Fourier transform tgk) sity difference in liquid and gas phasg%,—p; appears to be
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3.8 ; 3.4 3.0 — 3.4 —
i H*=0 H*=0.1 ! z*=0.5 i z*=1

3.4

3.0
3.0

0.8 ‘00 02 04 06 08
(d) p*

FIG. 2. The liquid-gas coexistence densiti¢sas a function of
temperaturd” obtained within the OZ/SMSA/FC integral equation
approach for the soft-core ideal Ising fluid at different valués,
=0.5, 1, 2, and 3, of the inverse screening lengthbsetya)—(d),
respectively as well as different values of the external field,
16 namely, top to bottom and alternating solid and dasheg CukVes,

00 02 04 06 08 1.0 =0,0.01,0.1, 0.3, 0.5, 1, 2, andWwithin each subsgtAt z;=3, an
® P* additional curve corresponding té" =9 is included in subsgi).
Note that the curves corresponding #d=% are not shown, be-
cause they practically coincide with those relatedHo=5 at 21
=0.5, 1, and Zsubsetsa), (b), and(c)] or toH" =9 atz’i:S [subsets
(d)]. The para-ferro magnetic phase transiti@ahH"=0) is plotted
in the subsets by the long dashed line.

FIG. 1. The liquid-gas coexistence densitiesas a function of
temperaturd” obtained within the OZ/SMSA/FC integral equation
approach(bold curve$ for the soft-core idealR=«) Ising fluid
with z*lzl and different values of the external field’; =0, 0.1, 0.5,

1, 5, and= [subsetqa)—f), respectively. The results of the usual

and the adjustable versiorig] of the SCMF theory are plotted

correspondingly by thin and dashed curves. The Gibbs ensembg
MC simulation datg7] are shown as circles. The para-ferro mag- ;
netic phase transitiofat H"=0, subset@)] is shown by the long
dashed curve.

The change inz (this quantity will be denoted below
mply asz’) does also not affect the tendency of the critical
emperature(density to decreasdincreas¢ monotonically
with increasing the external field strendg#. The dependen-
ciesT,(H") andp,(H") are plotted in detail in subseta) and
proportional near a critical point t6T.-T")# independently (b) of Fig. 3, respectively. The OZ/SMSA/FC calculations
of H" with the critical exponeng=1/2 (instead of the values SNOW that in the limit of weak fields, the functiog(H)
B~=1/3 and 7/20 obtained within the RGT and SCOZA,and p(H) can be cast in the formsT (H')=T.0)
respectively. —cr(Z)(H")?" and pe(H") =p(0) +c,(Z)(H")?3, with cr(2)

The influence of varying the screening lengihof mag- ~ andc,(Z) being quantities depending only @h The expo-
netic interactions on the OZ/SMSA/FC phase diagram is il-
lustrated in Fig. 2. In this respect, it should be emphasized
that within the SCMF scheme, the results will dependzpn
very weakly(see comments at the end of Sec. )l AJsing
the more precise integral equation approach, we can observi,
an obviousz dependence of the binodal for all values of the
external field. In particular, the dimensionless critical tem-
peratureTz and densitypz increase considerably with rising
z, at each fixed value oH. However, the topology of the
phase diagram remains the same and is not affected by vary,,
ing the screening length. Namely, as in the case of the SCMF
theory [7], the OZ/SMSA/FC approach predicts a tricritical  FiG. 3. The critical temperaturg, [subset@] and critical den-
point for the ideal Ising fluid aH =0 and not a critical end ity p; [subset(b)] as functions of the external field", evaluated
point besides a gas-liquid critical point. This holds Ir  within the 0Z/SMSA/FC approach for the ideal Ising fluid at vari-
<5 and at least to within the relative accuracy®0f the  ous values of the inverse screening lengthAt ' — 0, the result
numerical calculations. corresponds to the SCMF theory.

2 0.10
10101072107 1 10 107410 °10 10 1 10

061506-6



ISING FLUIDS IN AN EXTERNAL MAGNETIC FIELD: . .. PHYSICAL REVIEW E 69, 061506(2004)

25

of  of af ~LFS
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FIG. 4. (a) The para-ferro magnetic transition temperattlfﬁe
obtained atH"=0 within the OZ/SMSA/FC integral equation ap-
proach for the soft-core ideal Ising fluid for different values of
inverse screening length, from right to leff=0.5, 1, 2, 3, and 5.
The result of the standard HSMF theory is plotted as the dashed
straight line and relates to the case—0. (b) The results of the FIG. 5. The gas-liquid coexistence densitiésas a function of
SCMF and OZ/SMSA/EC theories for the cade 1 are shown as temperaturdl” obtained within the OZ/SMSA/FC approach for the
dashed and solid curves, respectively, in comparison with canonic&ioft-core nonideal Ising fluid witls, =z,=1 atH"=0 for large val-
MC simulation datgcircley taken from Ref[7]. ues ofR.

nent of this power law behavior is in accordance with the
mean field tricritical exponernd,7] (where, of course;; and

c, are independent of'). With increasingH”, the functions . " S
Lo P , , , larger values of (namely, atz > 2), the deviations from the
Te(H) andpc(H') begin to tend rapidlyespecially at small |injting behavior become significant. A similar, but consid-

and moderate values @ to their infinite field limits. For erably weaker' dependence GF, to that presented in Fig.
largerz,, the saturation regime shifts to higher valuesof = 4.4 for the 0Z/SMSA/FC approach is observed within the
At small inverse screening lengtliz <0.5), the OZ/  SCMF theory, due to the existence of the faciT”,Z') in
SMSA/FC and SCMF results are practically indistinguish-¢,o temperaturd, =8myp" (see Ref[7]). Note also that the
able. . | - difference between the SCMF and OZ/SMSA/FC functions
It is worth mentioning that in the Kac limiz. —0, the  1*( ;) increases with rising’. However, even for small val-
SCMF theory should lead to exact resuIFs provided the equa;eg ofZ', where thez” dependence is not so pronounced, the
tion of state of the reference system is chosen exact 10~ \E theory leads to worse predictions. This is demon-
p - 5 .
Indeed, az — 0 the magnitude @0)*/(zo+1) of the mag-  qyated in Fig. @) for a particular case =1 by comparison
netic potential vanishes, whereas the screening length 1/

with MC results. Although it seems that both theories agree

tends to infinity. Under such conditions, the magnetic inter'quite well, a closer look shows that the SCME deviations

actions can be treated as an infinitesimally small perturbatiog; 1, the MC data are slightly larger than those of the 0Z/
to the reference potential and the assumptions of the Mks\sa/FC theory.

theory become exact. With increasing the precision of the
SCMF description goes down. Note that within the standard
HSMF and SCMF theories, the reference system relates ex-
clusively to nonmagnetic HS or SC repulsion. This is accept- 1. Zero magnetic field
able for long-rangedz < 1) potentials. When the screenin . . . o
radius is shgrt er?mjﬂgtz* z)Z)p a more appropriate choice o? *_be phase coeX|§tenpes of ”3(3 nonideal Ising .ﬂu'd with
the reference systekincluding a part of the Yukawa poten- 2=2,=1 are shown in Fig. 5 foH =0, when the ratiaR of
tial) should be made. On the other hand, the accuracy of the

OZ/SMSA/FC approaches, the linear dependenc‘é\mfn p
is recovered only in the particulaiKac) limit z°—0. At

C. Results for nonideal models(0<R< )

OZ/SMSA/FC approach when evaluatiig and p. is ex- 48
pected to be of order of 10-15%, in a wide region of 23 44
Z -values. This is the same accuracy as for the casd, 21 40
where the direct comparison with the MC data could be per-Z_ g z, 36
formed(see Fig. 1 32 =014

R=015

The OZ/SMSA/FC results for the magnetic phase transi- : 28
tion (which takes place only &" =0) are shown in Fig. &) 15 24 m\
for the setz'=0.5, 1, 2, 3, and 5 of the inverse screening 13 20
length over a wide temperature and density regiqn. It can be(a) 0.0 0204 Opﬁ* 0.8 1012 ) 0.00.20.4 ospo*a Lo121a
seen that the dependence of the Curie temperatuen p’
shifts considerably to smaller values@fwith increasingz’. FIG. 6. The coexistence densitigs as a function of tempera-
This dependence is nonlinear contrary to the HSMF predicture T* obtained within the OZ/SMSA/FC approach for the soft-
tion, where the functioT, =8mp" depends linearly op and  core nonideal Ising fluid wittZ;=z,=1 atH=0 for moderate{sub-
is independent ok Within the more accurate SCMF and set(a)] and small[subset(b)] values ofR.

%
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FIG. 7. The coexistence densitips as a function of tempera-
tureT" obtained within the OZ/SMSA/FC approach for the nonideal
Ising fluid atR=0.215[subset(a)] and R=0.14 [subset(b)] corre-
sponding to different valueg, =z,=0.5, 1, 2, and 3, of the inverse &
screening radii.

strengths of the magnetic to nonmagnetic interaction is not
too small. As can be seen, all the curves exhibit a tricritical
point behavior—type | of the thermodynamic phase ©
diagrams—of the same topology as the cBsec. Note that
because of the great number of curves, the magnetic phas
transition lines have been omitted in Fig. 5 as well as in Figs.
6-9. They are presented in detail in Fig. 14 below. "
With further decreasind?, the shape of the phase dia- &
grams changes in a characteristic way. This is illustrated in
subsets(a) and (b) of Fig. 6. Beginning from the upper
boundary valueR=R,=0.215, beside the tricritical point
(TCP) a gas-liquid critical pointGLCP) appears in the para-
magnetic phase regiam@t smaller densities than the tricriti-
cal point densityindicating that the nonmagnetic interaction
is strong enough to condense here the system into a liquic
phase. In addition, a triple point becomes visible. The TCP
now corresponds to a liquid-liquid transition between para- ¥
magnetic and ferromagnetic phases. This is different from
the phase behavior of type | in the regiBp<R=<, where
the TCP relates to the transition between a paramagnetic ga

(e)

PHYSICAL REVIEW E 69, 061506(2004)
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FIG. 8. The same as in Fig. 7 but fpr+ z, atR=0.215[subsets

FIG. 9. The complete thermodynamic phase diagrams of the
nonideal Ising fluid with z=z,=1 evaluated using the OZ/
SMSA/FC approach and projected onto {fié,p") plane at some
typical values ofR=5, 1, 0.29, 0.215, 0.2, 0.19, 0.16, and 0.12
[subsetga)—(h), respectively. The families of the diagrams in each
of the subsets correspond to different values of the external field,

H"=0, 0.01, 0.1, 0.5, 1, 2, 3, 5, 9, and(the valueH"=0.3 forR
=5 and 1, as well abl" =20 for R=0.12 are included additionally,

whereasH" =9 is excluded folR=5 and .

and a ferromagnetic liquid phase. Such a new topology of the
phase behavior belo®, will be referred to as type Il. The
appearance of the additional critical point with decreastng
is explained by an increased weight of nonmagnetic attrac-
tions in the system. The nonmagnetic interaction is suffi-

(@) and(b)] andR=0.14[subsetgc) and(d)].

ciently strong to produce a gas-liquid transition before the
liquid becomes ferromagnetic.

If the nonmagnetic interaction becomes too strong,
namely, if the value oR is below the lower boundary level
R, i.e.,R<R=0.14, the TCP disappears and transforms into
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a critical end pointCEP) [see subsetb) of Fig. 6]. At the 16 =

same time, the GLCP remains and further shifts away from 14% o im
the CEP. Such a topology of the phase diagram in the regiorg 12[ pog 5 2 ma
R< R, will be defined as of type Ill. Note that for extremely %, 10“ S =
small values oR (whenR<R), the phase coexistence will — 85 & 21 -
behave like that inherent in a simple nonmagnetic fliie- 6% 18 w_/
cause therl>J and magnetic interactions can be ignored A ] =
completely. o T 15

These three phase diagram topologiesiat0 have been @ o 10* 1 10t () A
found earlier for other systems, such as symmetric binary  3° 55
nonmagnetic mixture§24,25,28,29 the Heisenberg fluid 32 / 50} R-os
[4,17], or the Stockmayer fluid47]. It is interesting to re- 5 29[ &=010 3 45
mark that the boundary valu&;=0.215 and==0.14 calcu- ‘;:, o =21 ”*B:, 20} pon /
lated by us within the OZ/SMSA/FC approach for the Ising £=0.17 —
fluid correspond t08,=0.646 and§=0.754. Heres=(1 ] — i S /
-R)/(1+R) denotes the ratio of interparticle potentiabsit- 20 e 30
side the hard or soft coydetween unlike and likésee Eq. 17 b \ 25 Lo e -
(6), & is proportional to the ratid!(r)=J(r)]/[1(r)+J(r)]) ©) 10 IOH* v (d) 10 IOH* v
particles in the mixture. The latter values are very close to
those(8,=0.65 andg=0.75 reported in Ref[29] for a sym- FIG. 10. The critical temperature of the wing lin€$", subsets

metric binary mixture and evaluated within the SCOZA tech-(a) and (b), and the gas-liquid critical lineF, 9", subsetgc) and
nique (the HRT yieldss,=0.665[30]). However, the direct (d), as a function of the external magnetic fi¢dd for the nonideal
comparison is not possible since we used the soft-core pdsing fluid at different values of paramet®r
tential instead of the hard-sphere repulsion and another value
of the inverse screening lengte z,=7,. one has a phase diagram symmetriddin-—-H) and moves
Varying the parameter’ can lead to a qualitative modifi- monotonically in the temper:clture—density Plane with increas-
cation of the phase diagrams and thus to a shift of the boundng H to the side of lowerlT and higherp . This demon-
aries between different topologies. This is seen in Fig. 7strates that the critical lines meet in a tricritical point. At
where the caseg =2,=0.5, 1, 2, and 3 are consideredrat intermediate and small values Bf the phase diagram modi-
=0.215[subset(a)] and R=0.14 [subset(b)]. From the to- fications exhibit nonmonotonic features. For instanceRat
pologies of these diagrams it can be concluded that the uppét0-29[see subse(r)], the critical temperature, starting from
R.(Z) and lowerR(z') boundary values decrease with in- the valueT¢(0) atH=0, begins first to go down, reaching a
Creasing Z*EZZ:Z;_ A more Comp"(:ated situation arises minimum atH ~ 2. Further it increases up to its |Im|t|ng
whenz, #z, that is presented in Fig. 8. Here, the quantitiesvalue Te.=limy_..Tc(H), whereT.. can be lesgsubset(c)]
R, and R, should be treated as depending on both invers@r greateffsubset(d)] thanT.(0).
screening Iengths;*l and z*z. Analyzing the set of curves in More complicated scenarios are observed for parameters
Fig. 8, it can be stated that the behaviorRf(z,z,) and R=0.14<R<0.215=R, (the region of topologies of type
R(z,,z) is not monotonic. In particular, the functions I, when the gas-liquid critical point exists simultaneously to
Ru(7.2) andR(Z;,2,) increase with rising, at fixedz, =1, the tricritical one. However, only one of these two critical
but they decrease with increasi@gat constant,=1. points atH=0 can be connected by a critical line with the
It is worth mentioning that the above three types of theCritical point atH=c. With increasingH, one of the two
phase diagrams can also be observed within MF thégiry cnpcal lines h_as to end. This is only possible in a critical end
The disadvantage of the MF description is that it produce$int. How this happens depends on the concrete valui of
boundary value®R, and R, which are independent @ and [see subsetge)—(g) of Fig. 9. In the infinite field limitH

Z,. This corresponds, in fact, to the limiting behaviorRf ~ — > the phase diagrams tend at edfio the gas-liquid
andR atZz,z,—0. binodals of simple nonmagnetic fluids with the interparticle

potential ¢(r)=¢(r)—1(r)=J(r). This is because then all the
spins align exactly along the field vector, so that the product
s -s; will be equal to 1[see Eq(1)] for any pair of particles.

A set of phase diagrams for different values of the exterA similar behavior even for finite fields can be observed for
nal field H and relative strengtiR of internal magnetic to regions with too low values dR<R =0.14[see subseth)],
nonmagnetic interactions are plotted in Fig. 9. Here, we camwhere the influence of magnetic interactions can be ne-
see that the change iH modifies considerably the phase glected(J<I).
coexistence curves in the nonideal Ising system. At large The dependencies of the gas-liquid critical temperature
values ofR, such modifications are similar to those of the T.9", the liquid-liquid critical(wing) temperaturel,™), and
ideal Ising fluid[compare, for example, the subgatof Fig.  the corresponding densitigg® and p.™ of the nonideal
9, R=5, with the subsetb) of Fig. 2, R=]. Since there is no Ising fluid on the valued” of the external field are shown in
magnetic phase transition at finite fields, the tricritical pointdetail in Figs. 10 and 11, respectively. They cover the whole
atH"=0 transforms into a critical point fad" # 0 (note that  region of varyingR and include all the three types[dubset

2. Nonzero magnetic field
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FIG. 11. The critical density of the wing lingg", subsetga)
and(b), and the gas-liquid critical lines. 9", subsetgc) and(d), as
a function of the external magnetic fiel for the nonideal Ising
fluid at different values oR.

()], Il [subsetgb) and(c)], and Ill [subsetd)] of the phase

diagram topology. Note that both phase transitions exist onl

in region Il of the global phase diagram, whereas the win
line disappears foR<R, and the gas-liquid phase transition
line does not appear fdR>R,,. For type I[subset(a)], the
wing line will correspond to the gas-liquid critical poi(o
liquid-liquid phase transitions are presentRmegions corre-
sponding to types | and I As can be seen, the monotonic
decrease off,™ with rising H", observed at 0.5R<c,

PHYSICAL REVIEW E 69, 061506(2004)
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FIG. 12. The thermodynamic phase diagrams obtained within
the OZ/SMSA/FC approach for the soft-core nonideal Ising fluid
with z,=z,=1 atR=R,,=0.196. The phase coexistence curves pro-
jected onto thgT",p") plane are shown in subsgd) for different
external field valuesH*=0, 0.01, 0.1, 0.5, 1, 2, 3, 5, 9, and A
more detailed phase behavior near the asymmetric tricritical point is

resented in subséb) for (bottom to top H" =1, 1.2, 1.4, 1.6, 1.8,

, 2.2, and 2.6. Here, the gas liguioh the lefy and wing line(on
the righy critical points(circley are connected by thin curves. The
critical temperaturel, 9" and critical densityp, 9" of the gas-
liquid and liquid-liquid phase transitions are plotted as functions of
H" in subset(c) and (d), respectively. They meet in the van Laar
point (dots).

gradually transforms into a nonmonotonic function iquid and liquid-liquid transitions can coexist simulta-

T.W(H"), when the paramete lies in the interva[R,;,0.4]
with R, =0.196 [subset(a) of Fig. 10. The position of the
minimum in T,")(H") shifts fromH" ~ 3 to 1 with decreas-
ing R. At R=R,;, the wing line can exist for arbitrary fields
0<H"<=. For R<R,, the wing line terminates at some
finite vaIueHZe(R) [subset(c) of Fig. 10 until it disappears
atR<R=0.14.

The wing line density."(H") also exhibits a nonmono-
tonic field behavior in the interval 0s6R<1.25 with a
maximum atH" ~ 1 to 2. Outside of this interval, it increases
(R=1.25 or decreasefR<0.6) monotonically[see subsets
(@ and (b) of Fig. 11]. On the other hand, for 0.196
=R, <R<R,=0.215 the gas-liquid critical point ends in a
critical end point at some finite value;,ce(R) [subset(c) of
Figs. 10 and 1l For R<R,, the gas-liquid transition line
exists for arbitrary fields & H" <. The critical temperature

neously not only aH=0 but also forH+#0. On the other
hand, it has been realized that for sufficiently strong fields
including the limitH — oo, we have a simple nonmagneticlike
phase behavior with the presence of only one gas-liquid tran-
sition (see Fig. 9. Thus, region Il in the global phase dia-
gram has to split into two subregions depending on whether
the gas-liquid(type lla, R, <R<R,) or the liquid-liquid
(type lIb, R <R<R,) critical line terminates in a critical
end point at some finite value ¢1". The boundary in the
global phase diagram between these two regions defines a
van Laar-like point48].

Our calculations have shown that this special point is
identified atR,=0.196 withH; ~2.2 for p, ~0.55 andT,,
~21.3. As can be seen in Fig. 12, there exists a finite critical
valueH,,, where both the gas-liquid and liquid-liquid critical
lines merge in one point in the temperature-density plane

T.9(H") of this transition increases always monotonically projection. It is an asymmetric tricritical point and the

with increasingH” [subsetgc) and(d) of Fig. 10], whereas
the critical densityp.9"(H") is always a nonmonotonic func-
tion exhibiting a maximum aH" ~ 3 to H" ~ 30 depending
on R [see subset&) and(d) of Fig. 11].

3. Van Laar point in the global phase diagram

change of the critical exponet from the mean field value
(B=1/2) to its tricritical value(8=1/4) is seen in Fig. 12
[subseib)]. The van Laar point has been found in symmetric
mixtures[49] but so far not in Ising liquids. In van der Waals
theory the value of the van Laar point R{"=0.279 in
agreement with the valué=0.564 given in Ref[49] (note

From the phase diagram analysis presented it follows thahat A=1-5=0.436 therg The valueR,=0.196 is compa-

in the region of topologies of type R <R<R,), the gas-

rable to that foundat z' =1.8) in Ref. [30] (their 5,,=0.67
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FIG. 13. Global phase diagram of an Ising fluid. Type | contains [

at H=0 a tricritical point, where the magnetic transition line and
two wing lines, existing for arbitrary H, meet. Type lla contains a
tricritical point (at H=0) and the gas-liquid critical linegfor +H),
ending in a critical end point at finite magnetic field, while the wing
lines exist for arbitrary magnetic field. Type Ilb contains a tricritical
point (at H=0) and the gas-liquid critical line€or +H) extending

to infinite magnetic field, whereas the wing lines end in a critical 0.0 0.4 0.8 1.2 1.6

end point at finite magnetic field. Type Ill contains only gas-liquid p*

critical lines extending to infinite values of magnetic field, and the

magnetic transition line ends in a critical end point&t0. FIG. 14. The para-ferro magnetic coexistence curves evaluated

at H=0 using the OZ/SMSA/FC theory for the soft-core nonideal
Ising fluid with z;:zzzl at different values of the system param-
eter, namely, top to bottonkR=0.1, 0.12, 0.14, 0.17, 0.215, 0.29,
?)_.4, and«. The results of the HSMF and SCMF approaches are
plotted as the short- and long-dashed curves, respectively.

corresponds t&,=0.197%. In order to collect our results for
the thermodynamic phase diagrams, the global phase di
gram inR space is presented in Fig. 13.

4. Magnetic critical line . . .
fluid system, four types of thermodynamic phase diagrams

Let us consider, finally, the OZ/SMSA/FC result on the have been identified.
para—ferro coexistence in the nonideal |Sing fluidHat 0. It As has been established, the OZ/SMSA/FC approach pro-
is shown in Fig. 14 for various values Bfin a wide region  vides us with more accurate predictions in comparison to
of the temperature-density plane. In the case of the ideal fluighose of the MF theory and corroborates the MF global phase
(R=), a strong dependence of the Curie temperaliyren  diagram, changing of course the boundary valueR ahich
the screening length of the magnetic interactjeee subset separate the different topologies. It is expected that some
(@) of Fig. 4] has been found. As can be observed in Fig. 14pther more complicated schemes, such as the SCOZA, for
the functionT,(p) exhibits also arR dependence, especially example, should lead to a higher precision of the calcula-
at low densities. This is in contrast to prediction§ of thetions. However, they are not yet developed in their present
HSMF and SCMF theories which lead to valuesTQfp’)  formulations to be directly applied to magnetic fluids with
independent oR [see dashed curves in Fig.]1#owever at  soft-core repulsion potentials. Due to their high level of so-
larger densitiegp” > 1) all the OZ/SMSA/FC functions be- phistication, they meet considerable computational difficul-
gin to converge to the same curve, which is almost a straigties in actual implementations. On the other hand, the ap-
line, and theR dependence vanishes. This line does not coproach proposed here can be used for systems with arbitrary
incide with the HSMF and SCMF results. potentials at relatively low computational costs.

The OZ/SMSA/FC scheme can also be extended to mag-
netic systems where spins take more than two discrete values
(they map onto a nonmagnetic multicomponent mixture

We have formulated a generalization of the integral equal he present SMSA can be applied to soft XY and Heisenberg
tion formalism for symmetric binary mixtures in order to fluids (replacing the discrete external field constrdiggs.
study phase coexistence properties of Ising spin fluids in th€9) and(18)] by its continuous spin counterpart, such as the
presence of an external magnetic fi¢ld Mapping the spin  Lovett equation[50], for instance. These questions as well
system onto the binary mixture shows that the calculation@s the problem of improving the thermodynamic self-
for the soft-core Ising fluid at a certain magnetic field reduceconsistency of the integral equation approach is left for fu-
in the mixture picture to the calculations at a certain value ofure considerations.
the chemical-potential difference of the constituents of the
mixture. This introduces a field constraint to the OZ equa-
tions and modifies the MSA closure to the SMSA ansatz. It Part of this work was supported by the Fonds zur
has been demonstrated that the resulting OZ/SMSA/FC ag-6rderung der wissenschaftlichen Forschung under Project
proach is able to describe adequately the phase behavior bio. P15247. 1.O. and I.M. thank the Fundamental Re-
such models. Depending on the raR®f the strengths of the searches State Fund of the Ministry of Education and Sci-
magnetic and nonmagnetic interactions inherent in the spience of Ukraine for support under Project No. 02.07/00303.
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