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We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of repro-
ducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type,
i.e., they possessBy (equilateral trianglesymmetry, with three bonding arms. Bond formation depends both
on orientation and local density. We work out phase diagrams, response functions, and stability limits for the
liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is
verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ¢@sdidggphase
which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical
anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is
observed.
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I. INTRODUCTION dimensional Mercedes Benz model, originally proposed by

Water is an anomalous fluid with respect to several therBen-Naim [14], in which model molecules possess three
modynamic propertiegl—3]. At ordinary pressures the solid bonding arms arranged as in the Mercedes Benz logo. In
phase(ice) is less dense than the corresponding liquid, the'ecent papers by Dill and co-workef24,28, a similar (off
liquid phase has a temperature of maximum density, whildattice) model has been simulated at constant pressure by a
both isothermal compressibility and isobaric heat capacityMonte Carlo method, allowing to describe in a qualitatively
display a minimum as a function of temperature. Moreovercorrect way several anomalous properties of liquid water and
the heat capacity is unusually large. There is general agre@lso of hydrophobic solvation. Nevertheless, in view of in-
ment, among physicists, that an explanation of such anomarestigations on the behavior of water in contact with other
lous properties is to be found in the peculiar features of hy€hemical species, as it happens for instance in several bio-
drogen bonds, and the ability of water molecules to formlogical processes, it would be desirable to obtain an even
such kind of bond$4,5]. It is also widely believed that the simpler representation of the physics of hydrogen bonding.
same physics should be responsible for the unusual proper- In this paper we investigate a model of the Mercedes
ties of water as a solvent for apolar compouf@lg], that is  Benz type on the triangular lattice, with a twofold purpose.
of the hydrophobic effect, of high importance in biophysicsAs mentioned above, we are first meant to explore the pos-
[8]. Nevertheless, a comprehensive theory which explains aBibility of obtaining a simpler model with the same underly-
of these phenomena has not been developed yet. A lot ahg physical mechanism, and with qualitatively the same
work has been done in “realistic” simulatiof$-12, based macroscopic properties. Moreover, we are interested in ex-
on different interaction potentials, but they generally requiretending the model analysis to the global phase diagram and
a large computational effort, and it is not always easy tan particular to the supercooled regime, in which water
understand which detail of the model is important to deteranomalies are thought to find an explanation. Such a detailed
mine certain properties. On the contrary, simplified modelsanalysis is just made easier by increased simplicity. Working
generally need easier numerical calculations and allow quiten a lattice, we have to resort to a trick to describe hydrogen
easily to trace connections between microscopic interactiongond weakening, when the two participating molecules are
and macroscopic properti€s3—24. A simplified mechanism too close to each other. Such a trick is similar to the one
which has been proposed to describe the relevant physics pfoposed by Roberts and Debenedetti for their three-
hydrogen bonding is the following orisee for instance, Ref. dimensional mode]23,29. The energy of any formed bond
[5,25]). Hydrogen bond formation requires that the two in-is increasedweakened bondof some fraction by the pres-
volved molecules are in certain relative orientations and stagnce of a third molecule on a site close to the b@rel, on
(on averaggat a distance which is larger than the optimal the third site of the trianghle Due to the presence of only
distance for van der Waals interaction. In other words, ther¢hree bonding arms, it is not possible to distinguish between
exists a competition between van der Waals interactgdéh  hydrogen bond donors and acceptors, but this seems to be of
lowing higher densityand higher orientational entropybut  minor importance to the physics of hydrogen bondjgd].
resulting in aweaker bondingand hydrogen bondingre-  Let us notice that the model has the same bonding properties
quiring lower densityand lower orientational entropybut  as the early model proposed by Bell and Laji8], and the
resulting in astronger bonding This simple mechanism has same weakening criterion as the model recently investigated
been implemented in different models, both on-latticeby Patrykiejew and co-workef26,27), but here nonbonding
[22,23,26,27 and off-lattice[24], in three[22,23 as well as  orientations are added. Such a feature is essential to describe
two dimensions[24,26,27. One of them is the two- directional selectivity of hydrogen bonds.
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TABLE |. Possible site configurations, with corresponding la- sumed to denote configurations of sites placedAqB,C
bels (i) and multiplicities(w;). sublattices, respectively. Assuming also t#aB,C are or-
dered counterclockwise on up-pointing triangl@sd then
clockwise on down-pointing trianglgswe can define; =1
>_ _< /< if i=1 andj=2, andh;; =0 otherwise. Let us notice that both
config. empty van der Waalg—-enn;) and H bond energies-7h;j), that are
two-body terms, are split between two triangles, whence the
1 2 3 1/2 prefactor in Eq.(1). On the contrary the three-body
weakening termg zh;cn/2) are associated each one to a

given triangle, and the 1/2 factor is absorbed in the prefac-
tor. Let us denote the triangle configuration probability by
The paper is organized as follows. In Sec. Il we define thePijx. and assume that the probability distribution is equal for
model in detail and analyze its ground state. In Sec. Il weEVery triangle(no distinction between up- or down-pointing
introduce the first-order approximation in a cluster- tnangles). Taking m_to account t_hat there are two trlangles
variational formulation, which we employ for the analysis. Per Site, we can write the following expression for the inter-
Sec. IV describes the results and Sec. V is devoted to sonfé! €nergy per site of an infinite lattice:
concluding remarks.

Z 0

w; 1 1 1 w

3 3 3
u=>> Wi W Wi Hiic - )
Il. MODEL FORMULATION AND GROUND STATE i=0 j=0 k=0

The model is defined on a two-dimensional triangular lat-The multiplicity for the triangle configuratiorii,j,k) is
tice. A lattice site can be empty or occupied by a moleculegiven byw;w,w, wherew;=w for i=3 (nonbonding configu-
with three equivalent bonding arms separated by/2 ration) and w,=1 otherwise(bonding configuration or va-
angles. Two nearest-neighbor molecules interact with an atancy).
tractive energy = (e>0) representing van der Waals forces.  Let us now have a look at the ground-state properties of
Moreover, if two arms are pointing to each other, an orienthe model. In order to do so, let us investigate the zero-
tational term - (> 0) is added to mimic the formation of temperature grand-canonical free ene&gy u—up (u being
a hydrogenH) bond. Due to the lattice symmetry, a particle the chemical potential and the density, i.e., the average
can form three bonds at most and there are only two bondingite-occupation probabilijy which can be formally written
orientations, when the arms are aligned with the latticejn the same way as the internal enemgyof Eq. (3), by
while we assume that nonbonding configurations exiétv  replacing the triangle Hamiltoniak, by
is another input parameter of the modélinally, the H bond
energy is weakened by a terw/2 (c € [0, 1]) when a third T = Ho = g g 4)
molecule is on a site near a formed bond. In the two- iik = ik T AT g '
dimensional triangular lattice there are two such weakening
sites per bond, so that a fully weakened H bond energy turn¥/e find an infinitely dilute “gas” phas@) with zero density
out to be £1-c)#. Let us notice that, in the above descrip- and zero-free energy, and an ordered “open ice” pliage
tion, H bonding is a three-body interaction. The Hamiltonianwith maximum number of H bonds per molecule. The latter

of the system can be written as a sum over the triangles, configuration is realized through the formation of an open
L (honeycomb H bond network with density 2/3 and free en-

5 2 Hiii @ &9

(rr'x"

H =
wroz—e—n—Z,u,/S. (5)
where Hjj is a contribution which will be referred to as

triangle Hamiltonian, and, i, ,i.» label site configurations Another possibility is the “closed ice” phask), in which all

for the three vertices,r’,r”, respectively. Possible configu- interstitial sites are occupied and all hydrogen bonds are
rations are empty sité =0), site with a molecule in one of fully weakened. The resulting free energy is

the two bonding orientation§i=1,2) or in one of thew .

nonbonding onesi=3) (see Table ) The triangle Hamil- w ==3e=7(1-0)-pu. (6)

tonian reads . - . .
Let us notice that it is never possible to form three bonds in

Hij = — e(nin; + niny + nny) — 7 hy; (1 —cny) + hy (1 —cny) a triangle, which means that we have frustration. It is easy to
+hg(L-cn)], 2 show that theG phase is stable{w,0>0) for u<upe-,
where
wheren; is an occupation variable, defined gs0 for i=0
(empty sitg¢ and nj=1 otherwise(occupied sitg while h; MG-1,= = 3(e+ n)l2, (7)

=1 if the pair configuratior(i,j) forms a H bond, and; ' i . R
=0 otherwise. Let us notice that triangle vertices are set othe |, phase is stable(w; <0 and o <w,) for
three triangular sublattices, sa@,B,C, andi,j.k are as-  ug| <u<m i, Where
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w - =—6e+3cy, (8) cluster probability distributions, to be minimized, according

°c . R . to the variational principle of statistical mechanics.
and the I phase is stable(w; <0 and o <, ) for For our model we choose up-pointing triangles as basic
B> Thel, phase has actually a stability region, i.e., cl_usters(an gnalogous_ tre;ttment_works for down-pointiqg
K1, < M1 provided tr|angles. This approximation, whlch_ seems to be good in

particular for frustrated mode[83,34, is easily shown to be

- 3 c 9) equivalent to a first-order approximation on a triangle cluster
7 2c+1"’ [13]. Let us notice that the internal energy is treated exactly,

L _ because the range of interactions does not exceed the basic
which, in the worst casec=0), reads»>3e. We shall al-  cjyster size, unlike the ordinary mean-field approximation.
ways work in the latter regime, which is the most significantthe grand-canonical free energy per siieu-up-Ts (s

show that, at the transition point between the open anghe triangle probability distribution as

closed ice phase($L=,u|o_|C), any configuration built up of a
honeycomb H bond network with any number of occupied =~ ~ 2 A B.C
interstitial sites has the same free energy. Hence we expe8® = % %E)Wiwiwkpiik[ﬁHijk +1n pij — 5 IN(P; Py P ]
that thel,—I. transition does not exist at finite temperature, =R

and actually we shall observe a unique id¢ phase, in (10)

which the interstitial site-occupation probability gradually \ynere B=1/T (temperature is expressed in energy units,

increases upon increasing the chemical potential. whence entropy in natural unjtandp* is the probability of
Let us finally notice that another possible phase is a hoy, i configuration for a site on theX sublattice (X
mogene(;)us gmd |Isotr|op|c one in which ltheb Iatg_ce IS ﬂ]f_”yzA,B,C). The site probability can be obtained as a marginal
occupied and molecules can assume only bonding configu- ; ' . Ny
rations(i=1,2). This “bonded liquid” phase, whose free en—Lbf the triangle configuration probabilitg, namely,

3 3 3

ergy coincides with that of thé, phase in Eq(6), is ob- s 3
served in thew=0 case, studied by Patrykiejew and others piA:_E > Wi WiBijk »
[26,27. In this scenario, nonbonding configurations are ab- j=0 k=0

sent and the bonded liquid ground state has,cférl, the

same degeneracy as the Ising triangular antiferromd@gt 8

Nevertheless, in this work we shall deal with the case Pj :E EWiWkpijkv

>1, which is relevant to describe H bond directionality. In 1=0 k=0

this case the closed ice phase is entropically favored with s 3

respect to the bonded liquid phase, which cannot appear at c

finite temperature. In conclusion, because of the introduction P = E 2 WiW;Dijk - 11

of nonbonding configurations, the ground-state degeneracy is =0 ]=0

removed aff =07, where only an infinitely dilut¢gag phase The above expressions show that the only variational param-

and a symmetry-brokefice) phase are present. Such a phaseeter inw is the triangle probability distribution, that is the 64

behavior is closer to the one of water than the one obtainedariables{pj}-.

for w=0. The minimization ofw with respect to these variables,
with the normalization constraint

3 3

lIl. FIRST-ORDER APPROXIMATION 3 3 3
- . 22 > Wwwipi = 1, (12)
We shall carry out the finite temperature analysis of the i=0 j=0 k=0

model mainly by means of a generalized first-order approxi- o .
mation on a triangle cluster, which we introduce in theC@n be performed by the Lagrange multiplier method, yield-
framework of the cluster-variation method. The cluster-iNd the equations

variation method is an improved mean-field theory based on _ _BH o A B.C

an approximate expression for the entropy. In Kikuchi's Pij = & e PK(p] P PO, (13
original formulation[30], the entropy is obtained by an ap- where ¢, related to the Lagrange multiplier, is obtained by
proximate counting of the number of microstates. In a modimposing the constraint, E¢12),

ern formulation[31], the approximate entropy can be viewed s 3 3

as a truncation of a cluster cumulant expansion. The trunca- y

tion is justified by the expected rapid vanpishing of the cumu- £= E E > wiw;wie ik (pfpp) . (14)
lants upon increasing the cluster size, namely, when the clus- =0 ]=01=0

ter size becomes larger than the correlation length of th&q. (13) is in a fixed-point form and can be solved numeri-
system (the method necessarily fails near critical pojnts cally by simple iteration(natural iteration methog35]). In
[32]. The approximation is completely defined by the maxi-our case the numerical procedure can be proved to lower the
mum clusters left in the truncated expansion, usually denoteffee energy at each iteratidi34,35, and therefore to con-
as basic clusters. One obtains a free-energy functional in theerge to local minima. The solution of E¢l3) gives the
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FIG. 1. TemperaturéT/e) vs chemical potentia(w/€) phase P
diagram forw=50, »/e=4, c=0.5. G, L, and| denote the gas, 1.1 F ‘;-....,_,. -
liquid, and solid(ice) phases, respectively. CP denotes the critical """%-,.,.:'___
point and TRP the triple point. 0.8 R =
. . ost | T
equilibrium {p;; } values, from which one can compute the
thermal average of every observable. Inserting these values 02 | © 4
into Egs.(3) and(10) gives respectively the equilibrium in- S N
ternal energy and free energy. The latter can be also easily 9876 -543-2-10
expressed through the normalization constant as Chemical potential
Bo==1In ¢, (15 FIG. 2. The same phase diagram as in Figdashed lines

compared to different parameter choicgg:w=20 (solid lineg and

w=100 (dash-dotted lings (b) #/e=5 (solid lineg and 7/e=3

(dash-dotted lings (c) c=0.2 (solid lineg and c=0.8 (dash-dotted
lines).

whence¢ can be viewed as the approximatgngle site
grand-canonical partition function. It is also worth mention-
ing that Eq.(13) preserves homogeneity; :piY; i, X,Y),
due to the invariance df(y, under cycle permutation of the _ _
subscriptdsee Eqs(3) and(4)]. Let us finally notice that the ~ Let us now investigate the role of model parameters, by
free-energy expressidiq. (10)] can be also derived by con- analyzmg phase diagrams obtained for qn*ferent values. In
sidering the model on a triangular Husimi tr@gangle cac-  Fi9. 2@), 7/ e andc are left unchanged, while the number of
tug [34] as a bulk free-energy density, that is, the free-Nonbonding conflgurat_lonw is \(arl_ed within the interval
energy contribution far enough from the boundary, where ah20,10d. Upon increasingy, the liquid phase turns out to be

invariance condition for the configuration probability of the MOre stable with respect to the ice phase, and théransi-
triangles is assumed to hold. tion temperature decreases. On the contrary, for loweal-

ues, thel phase is increasingly stabilized and the transi-

IV. RESULTS tion temperature increases. Fav=20 the whole L-G
_ coexistence and also the critical point disappears. Such a
A. Phase diagrams behavior can be explained by the fact that thehase is

In order to provide a first insight into the model, let us characterized by. a higher number of nonbonding molecules
report in Fig. 1 the phase diagram in the chemical potentialthan thél phase, in which bonding molecules tend to form an
temperature plane, for/e=4, c=0.5, andw=50. Three ordered structure. Therefore high values largely increase
phases can be observed: An i¢e phase, with broken sym- thelrl]quui|d phbassvznr:crjocp)gre held fixed and the ratio/c is
metry among the three sublattices, a liquid phase, and a g. 2b), 9/€

) oh The latter t h th blatti varied within the interva[3,5]. Let us notice that we have
gas(G) phase. The latter two phases preserve the subla IG&stricted the investigation to cases in which the orientational

symmetry but the liquid phase has a higher density. The i@ 1ong interaction is stronger than the nonorientational
phase has a lower density than the liquid phase, and its strugpe, which is the case for real water. It turns out that the ratio
ture reminds that of ground-state ice, with interstitial sites, ¢ affects the stability of thé phase with respect to both
occupied by molecules in nonbonding configurations. Wethe G andL phases. In fact, higher values gfmeans stron-
can observe a triple poiRP), in which the three phases ger H bond, which favors thiephase, that is, the only exten-
coexist, and a gas-liquid critical poii€P). All displayed  sively H-bonded phase. On the contrary, thandG phases
transition lines are of first order. The above phase diagrarare dominated by nonoriented interactions with coupling
shares several properties with the one of real water. Otheronstants, therefore both these two phases are unfavored by
crystalline phases, such as a real close-packed ice, cannot biglh 7/ € values. Even in this case theG coexistence may
reproduced by the model. become metastable.
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FIG. 3. PressuréP/e) vs temperaturéT/ )
phase diagram fow=20, n/e=3, and c=0.8.
Solid lines denote first-order transitions, a dashed
line denotes the TMD locus, and a dash-dotted
line denotes the stability limit for the liquid
phase. The inset displays, in addition, the locus of
divergence of the density response functions at
low temperature(solid line) with its “critical”

4 point and the Kauzmann lin@ashed ling

Pressure
o
T

0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0 1.1 12

Temperature

The ice phase at high pressures has maximum density aradong isobars for the liquid phase. Joining TMD at different
number of weakening molecules per H bond. Raisinthe  pressures defines the so-called TMD locus, which is a nega-
stability of this configuration is lowered with respect to the tively sloped line in thél-P phase diagram of real water. We
liquid phase with few H bonds. This is shown in Figc?  determine the TMD locus numerically, by adjusting the
wheren/ e andw are fixed and the weakening parametés  chemical potential in order to fix the pressure and then im-
varied in its interval of definitior{0,1]. This trend is re- posing the(isobarig thermal expansion coefficient vanishes.
versed for loww values(w=0 as wel), because in the latter  The limit of stability of the liquid phaséspinoda) is the
case the liquid has the maximum number of fully weakeneqocys in which the metastable liquid ceases to be a minimum
bonds. of the free energy, and becomes a saddle point. The stability

In the next part of this work we focus on a particular |jmit can be obtained b ; ;

: . y studying the eigenvalues of the
choice of parametersw=20, nle=3, and c=0.8) which, _ hessian matrix of the free energg6]
from the above analysis, turn out to correspond to a waterlike

phase diagram. Figure 3 shows the temperature-pressure Sy o
phase diagram, and Fig. 4 the temperature-density phase dia- _PBo) _ _ W, k{ 9irdijr G _ Z[ Oir\Wi Whe
gram. Let us notice that pressuReis simply given byP 9 Pijk 9 Pirjrie : Pijk 3 pf
=-w (the volume per site is assumed to be equal to 1, i.e., s
pressure is expressed in energy unisie to the fact that the L o Wae Wi’Wi’gkk’} (16)
free energy has been defined as a grand-canonical potential. pjB o '
B. TMD locus and stability limits Let us notice that, when the liquid phase stability is lost

One of the water anomalies that the present model is ablessome eigenvalue of the above matrix vanighedso the
to reproduce is the temperature of maximum dend@ityiD)  corresponding fixed point of the natural iteration equations

1.2 T T T T T T T T T
G L
G-L
1.0 | i
0.8

g FIG. 4. TemperatureT/€) vs density (p)

g phase diagram fow=20, 7/e=3, and c=0.8.

= 06F G-I L 1 Solid lines denote phase boundaries; a thin

e dashed line corresponds to the triple point. Phase
o4 | | labels as in Fig. 1; double labels denote two-
’ phase coexistence regions.
0.2 I .

0.0 0.1 02 03 04 05 06 07 08 09 1.0
Density
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0.04 /
0.00

(13) becomes unstable. In order to determine the stability
limit with respect to the symmetry-broken ice phase, it is
sufficient to impose homogeneity during the iterative proce-
dure, which is done by replacing Eq4.1) with

Thermal expansion
coefficient

3 3 -0.04 7
-+ D+ D
pr=pP=pf= 3 3 ww PP ag) oos f (@ ]
j=0 k=0 t } } }
055 | 7

This trick cannot be applied when the liquid stability is lost
with respect to a homogeneous phase, because the liquid
fixed point of equationg13) becomes definitely unstable,
due to divergence of the density response functions. In the
latter case the spinodal is determined by solving the eigen-
value problem for the hessian matrix rewritten by forcing the
homogeneity conditiofi17). 0.016 .
The results are shown in Fig. 3. The stability limit of the

0.45
0.35

0.25

Specific heat

0.15

)
liquid with respect to the gas phase starts from the critical EE oot

point and reaches a minimum in the negative pressure re- Sg ooy 7
gion. After this point the line becomes negatively sloped and 2 g‘ 0.010 | .
joins continuously the stability limit with respect to the or- ° 0008 L © .
dered ice phase. The TMD locus intersects the limit of sta- s s : :

bility in its minimum in the T-P plane, according to the 050 055 060 065 070 075
predictions of Speedy and Debened¢87—43, based on Temperature

thermodynamic consistency arguments. In fact, the TMD lo- _

cus causes the liquid limit of stability line to retrace, giving  FIG- 5. Response functions at constant pres¢ie=1) as a

rise to a tensile strength maximum and to a continuoué””c“on of terpperature(T/e): .(a) thermal-expansm.n.(.:oefﬂ(:lent
boundary. Let us recall that, while at the stability limit with (€2r); () specific heatcp); (c) isothermal compressibilityexr).
respect to the gas phase, the density response functions di-

verge, this is not the case at the stability limit with respect tocoefficient ap=(-din p/dT)p, which is proportional to the

the ordered phase. Nevertheless, we can observe that tRetropy-specific volume cross-correlation. For a typical fluid,
density response functions tend to diverge also upon decreasp is always positive because if in a region of the system the
ing temperature, as observed experimentally. The locus dgpecific volume is a little larger then the average, then the
divergence, terminating at some kind of critical point, can bdocal entropy is also larger, i.e., the two quantities are posi-
defined, in the framework of a simplified variational free tively correlated. On the contrary, for our modep [Fig.
energy forced to describe a homogeneous system, as an dua)] displays an anomalous behavior. As temperature is low-
ditional stability limit with respect to a low-density liquid eredap vanishes(at the TMD), becomes negative, and fi-
phase. Such “phase” corresponds to a saddle point of theally tends to diverge. As previously mentioned, divergence
original (not symmetrizegifree energy, unstable with respect can be observed only for pressure values less than some
to the solid phase. As the low-pressure solid phase remindritical” pressure. Anyway, before divergence is actually
the ground-state “open ice” structure, which is threefold de+teached, the liquid loses stability with respect to the ice
generate, the triangle probability distribution of the low- phase.

density liquid phase turns out to be essentially an arithmetic The trend of the isothermal compressibilitycr
average over the three ice distributions. The unphysical na=(dln p/dP) is also anomalougFig. 5c)]. For a typical

ture of this solution is also reflected in its negative entropyliquid, « decreases as one lowers temperature, because it is
The divergence locus, together with the locus at which theroportional to density fluctuations, which decrease upon de-
liquid phase entropy vanishé&auzmann ling are shown creasing temperature. On the contrary, in Fi() e can

for completeness in the inset of Fig. 3. Upon increasing temebserve thai, once reached a minimum, begins to increase
perature the divergence locus meets the spinodal tangentialiypon decreasing temperature. Such a behavior is observed in
and they become the same curve ending in the “true” gaseeal liquid water. An analogous behavior characterizes the
liquid critical point. constant pressure specific heat (-Téu/ dT?)p [Fig. 3b)].

C. Response functions D. Numerical simulation

Let us now investigate the density response functions and We have studied the model in the first-order approxima-
the specific heat of the liquid at constant pressBfe=1  tion to obtain easily detailed information about phase dia-
(pressure is kept fixed by numerically adjusting the chemicagrams and in particular the metastable region. In order to
potential w). It turns out that these functions display an check this approximation and obtain an estimate of its quan-
anomalous behavior similar to that of real liquid water. Thetitative accuracy, we have also performed sofgend ca-
first response function we consider is the thermal-expansiononica) Monte Carlo simulations on a 6060 triangular lat-
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; 0.660 P . ° FIG. 6. Gas-liquid transition at fixed tempera-
. 06 r3 v, N ture (T/€=1.05, upon varying the chemical po-
7 s B 0.657 - 1 tential (u/e€): first order approximation results
A 0.654 L— \ ¢ (solid line) compared to Monte Carlo simulations
04 -64 -6.2 61 ° - (scattery for w=20, 5/ e=3, andc=0.8. The in-
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Chemical potential

tice with periodic boundary conditions. From the very tions in the metastable region, the spinodal has been deter-
beginning, we have chosen quite a low number of nonbondmined by an arbitrary criterion for the lifetime of the meta-
ing configurations for our analysiav=20), in order to in- stable phas€l00 Monte Carlo stepsas it has been done in
crease the speed of simulation dynamics. In fact a lower previous studie$22]. Such a criterion allows us to find the
value corresponds to a smaller configuration space. We reinetically controlled limit of supercoolinghomogeneous
port some results in the following. nucleation locug shown in Fig. 7, along with the corre-

In Fig. 6 we show a first-order transition between the gasponding first-order approximation result. Both methods
and the liquid phases along a constant temperature paghow a reentrant spinodal forming a continuous boundary.
T/€=1.05, quite less than the critical temperature. At theThe simulations also confirm the distinction between liquid
critical point, the correlation length increases and the aplimit of stability with respect to the gas or to the ice phase, as
proximation may give worse predictions. Figure 6 suggestén the first-order approximation.
that the first-order approximation well localizes the transition
and that far enough from the critical point its predictions are
nearly quantitative. Of course, Monte Carlo simulations dis-
play smooth density variations, due to finite size effects, but In this paper we have investigated a two-dimensional lat-
the Binder cumulantinsed, displaying a minimum, gives tice model in which model molecules possess three equiva-
evidence of a first-order transition. lent bonding arms, and bonding energy depends on the pres-

The reentrance of the liquid stability limit, which is one of ence of neighbor molecules, giving rise to a three-particle
the striking features of th@netastablgphase diagram of this interaction. The observed behavior is qualitatively similar to
model, is also confirmed by simulations. Performing simula-that of water, exhibiting the correct anomalies. Upon super-

V. DISCUSSION AND CONCLUSIONS

1.2 T T T T T T T T T
Y
Lo % |
T
0.8 | : S ,
O FIG. 7. Stability limits from first-order ap-
El ; proximation (thick lineg and homogeneous
g 0.6 nucleation points from Monte Carlo simulations
g* : (scattery for w=20, 5/e=3, andc=0.8. Open
et circles and a solid line denote the stability limit to
04 i the ice phase, filled circles and a dashed line the
stability limit to the gas phase. Thin dash-dotted
i lines denote equilibrium phase boundaries.
02 1
0'0 1 1 1 1 1 1 1 1 1
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cooling, k<t and cp increase andvp becomes negative and Let us notice that a previous lattice model on the three-
large in magnitude. Nevertheless, at ordinary pressiiess  dimensional body-centered-cubic lattice had pointed out a
than the critical pressuyethe density anomalfap=0) is  qualitatively similar behaviof22]. Nevertheless, in such a

found in the metastable liquid region. We have also determodel, orientational degrees of freedom of water are not
mined the spinodal limits to the liquid state, and pointed outréated explicitly and two equivalent sublattices are artifi-
the relationship between these limits and the TMD locus Cidlly distinguished by the Hamiltonian. This is necessary to
The growth in the response functions upon decreasing temf@Vor an open structured phase. Moreover, the analytical

perature can be interpreted on the basis of a reentrant Spig_eatment is based on the determination of a temperature-

: - . ependent two-particle interaction. On the contrary in our
odal scenario. The liquid-gas spinodal meets the TMD locu model there exists an explicit, though simplified, modeling

at the reentrance point, as req”"‘?d by thermOdynam'C CONs hydrogen bonding and no temperature-dependent interac-
sistency. Actually the reentrant spinodal conjecture is one of.

. ) ! : ion is introduced. The open structured phase is favored in
the possible theoretical explanations of water anomalies, al}f

. : . . inciple by the triangular lattice structure.
some experimental results are consistent with this explana- \we nave mentioned in the Introduction that the present

tion [44]. Nevertheless, it is important to note that, for the mogel is actually an extension over an early model proposed
specific case of water, alternative interpretations of the stapy Bell and Lavis[13] (corresponding to the case in which
bility problem exist, based on the second critical-point cony=0 andc=0) and over a recent model investigated by Pa-
jecture [4]. The latter, supported by molecular dynamicstrykiejew and co-worker§26,27 (corresponding tov=0).
simulations[12], seems to be more consistent with the exis-The former model in the same approximation actually dis-
tence, in the negative pressure region, of a monotonic liquidplays, for»/e> 3, a density anomalgwithout singularitie,

gas spinodal and a reentrant TMD locus. On the contrary, ousut we have verified that the anomaly occurs in a negative
model displays a metastable liquid state which is bounded bgntropy region. The latter model shows an unrealistic phase
a spinodal both at positive as well as negative pressuresliagram, in which, for high enough pressure, the liquid phase
forming a continuous boundary. The lower temperature paréxtends its stability region down to zero temperature. In the
of the boundary is the limit of stability with respect to the present work we have shown that the addition of nonbonding
ordered ice phase, while the higher temperature part is theonfigurations to such a simple class of two-dimensional lat-
limit of stability with respect to the gas phase. While thetice models allows us to reproduce a qualitatively correct
response functions diverge at the liquid-gas spinodal, at thevaterlike behavior. Moreover, this result has been obtained
liquid-solid spinodal they do not, even if they tend to higherin a computationally much simpler way than a conceptually
values. Anyway, in our framework, it is also possible to in- similar model with continuous degrees of freedom, that is the
vestigate the behavior of the unstable liqgadsaddle point Mercedes-Benz one. The latter model is highly appealing,
of the variational free energyand determine the locus of because of its ability to explain most phenomena related to
divergence. The latter always turns out to lie at a temperatureydrophobicity [28]. Therefore, it would be interesting to
less than the limit of stability, according to experimejts]. analyze also the properties of the present model for a solu-
It also turns out that the divergence locus terminates at somgon of an inert(apolaj solute, whose peculiar properties are
kind of critical point, meaning that response functions shouldhought to be strictly related to hydrogen bonding. This goes
not show divergentlike behavior for pressure values greateeyond the scope of the present paper and will be the subject
than some critical pressure. of a forthcoming article.
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