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Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid
and sponge mesophases: Lattice-Boltzmann simulations
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By means of a three-dimensional amphiphilic lattice-Boltzmann model with short-range interactions for the
description of ternary amphiphilic fluids, we study how the phase separation kinetics of a symmetric binary
immiscible fluid is altered by the presence of the amphiphilic species. We find that a gradual increase in
amphiphile concentration slows down domain growth, initially from algebraic to logarithmic temporal depen-
dence, and, at higher concentrations, from logarithmic to stretched-exponential form. In growth-arrested
stretched-exponential regimes, at late times we observe the self-assembly of sponge mesophases and gyroid
liquid-crystalline cubic mesophases, hence confirming @eamphiphile-amphiphile interactions need not be
long-ranged in order for periodically modulated structures to arise in a dynamics of competing interactions, and
(b) a chemically specific model of the amphiphile is not required for the self-assembly of cubic mesophases,
contradicting claims in the literature. We also observe a structural order-disorder transition between sponge and
gyroid phases driven by amphiphile concentration alone or, independently, by the amphiphile-amphiphile and
the amphiphile-binary fluid coupling parameters. For the growth-arrested mesophases, we also observe tem-
poral oscillations in the structure function at all length scales; most of the wave numbers show slow decay, and
long-term stationarity or growth for the others. We ascribe this behavior to a combination of complex am-
phiphile dynamics leading to Marangoni flows.
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[. INTRODUCTION archaebacteriunsulfolobus solfataricusave been found at
physiological conditions in cell organelles and physiological
transient processes such as membrane budding, cell perme-
: r?‘;{tion, and the digestion of fa{&]. Amphiphilic cubic me-
nature. A surfactant moleculdrom surface active agent gophases can also be synthesised for important applications
which we shall also refer to as an amphiphiEntains a i3 membrane protein crystallization, controlled drug release,
polar headgroup attached to a hydrocarbon tail which, diszng piosensorgs,7]. These phases are termetesophases
persed in a binary immiscible fluid mixture, such as oil andyst only because their intrinsic internal length scales range
water, is driven towards and adsorbed at the interface b&enyeen those characteristic of molecular and hydrodynamic
tween the two fluids. The selective chemical affinity betweer\(Or macroscopigrealms, but also their mechanical properties
each.part of _the su_rfactant molec_ule and the pomponents efe halfway between those found in a liquid and a solid
the binary mixture is the mechanism responsible for such g1 5 g

taxis [1]. Not only are amphiphilic fluids important in physi- * Amphiphiles have the property of lowering the interfacial
cal chemistry, structural biology, soft matter physics, andignsion in a binary immiscible, say oil-water, fiL@]. Given
materials science from a fundamental perspective, but thelfe pinolar nature of their molecular structure, amphiphile
applications are also widespread. Detergents and mammaligysorption at the oil-water interface is a process which is
respiration are two common examples in which surfactantgnergetically favored relative to their entropically beneficial
are present. Living cell membranes are complex macromogispersion in the bulk. This effectively reduces the pressure
lecular assemblies comprised in large part of self-assemblegysor at the interface, making the immiscible species more
phospholipids, of an amphiphilic natuf@]. Sponge me- ke As more interfacial surface is created, so more am-

sophases are formed as a result of an amphiphile dispersigyyiphile dispersed in the bulk can be accommodated at it.
or melt at an appropriate composition, and enjoy NUMerous The effect of adding surfactant above a critical concentra-
applications in medical research as well as the pharmaceutiiyn, 1o an oil-water mixture undergoing phase separation is
cal, cosmetic, food, and agrochemical and petrochemical ing sjow down the demixing process, which, with the addition
dustries [3,4]. Liquid-crystalline bicontinuous cubic me- f gyfficient amphiphile, can be totally arrested. Langevin,
sophases of monoglycerides and the lipid extract fromygjecular dynamics, and lattice-gas simulations have shown
that, as the concentration of dispersed surfactant increases,
the temporal growth law of the average size of the immis-
*Also at Department de Fisica, Universitat Autonoma de Barcecible oil-water domains, of the power-law fortf in the
lona, 08193 Bellaterra, Barcelona, Spain. Email addresssurfactantless cag®,10), is seen to cross over to a slower,
n.gonzalez-segredo@ucl.ac.uk logarithmic growth of the form(In t)?, wherea and 6 are
"Email address: p.v.coveney@ucl.ac.uk fitting parameters antis the time[11-13. Emertonet al.

The termamphiphilic fluidis broadly used to denote mul-
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showed that increasing the surfactant concentration even futhe surfactant concentration. We shall also see that these
ther leads to growth well described by the stretched expophases exhibit temporal oscillations in the size of the oil-
nential A-B exp(-CtP), where A, B, C, andD are fitting  water domains, which we ascribe to Marangoni flows.
parameters, including halted segregation at sufficiently late

times [13]. Depending on temperature, pressure, and fluid

composition in such a stretched exponential regime, the amll- OVERVIEW OF MODELING AND SIMULATION OF

phiphile can self-assemble and force the oil-water mixture AMPHIPHILIC FLUID SELF-ASSEMBLY

into a wealth of equilibrium structures. The self-assembling  \/arious methods have been used to date to model and
process is dictated by the competing attraction-repulsioRjmylate ternary amphiphilic mixtures and to study their
mechanisms present among the species. Lamellae and hejhase-segregation kinetics and the formation of microemul-
agonally packed cylinders are examples of these mesophasgfyns and liquid-crystalline phases. We briefly review them
also referred to ak, andH, respectively, with continuous in this section.
translational symmetry along one or two dlrectlons: Other kawakatstet al. studied segregation kinetics employing a
examples are the sponde;) mesophase and the micellar tyo-dimensional hybrid model with thermal noise but with-
(Q**% or PmBn, andQ*?" or Fd3m), primitive (“P", Q°*% or  out hydrodynamics, combining a continuum, Langevin diffu-
Im3m), diamond (“D”, “F”, Q** or Pn3m), and gyroid  sjon equation for the oil-water dynamics and Newtonian dy-
(“G”, Q%0 or la3d) cubic mesophases, all of which lack namics with dissipation for bipolar particles modeling the
continuous translational symmetiiy4]. Among all the afore- surfactant[11]. They used a free energy in the form of a
mentioned phases, only the sponge mesophase is devoid @f-Ginzburg-Landau expansigt5] plus terms modeling the
long-range order and so cannot be classified as a liquid crysurfactant-interface and surfactant-surfactant interactions.
tal: it is rather characterized by glassy features. They found the average domain size of symmetric binary
A sponge mesophase formed by the amphiphilic stabilizaimmiscible fluids with amphiphile to grow with time more
tion of a phase-segregating binary fluid mixture is called aslowly thant3, the latter expected for binary alloys in two
microemulsion. Since we shall be dealing with oil and waterand three dimensions. Laradji al, instead of modeling the
in equal proportions, we shall be concerned with bicontinu-amphiphile as a particulate species, regarded it as a continu-
ous microemulsions. A bicontinuous microemulsion is aous density coupled to the oil-water order parameter in a
structure consisting of two percolating, interpenetrating oil¢*Ginzburg-Landau free energil2]. In their work, they
and water phases separated by a monolayer of surfactastudied several cases of two-dimensional Langevin diffusion
molecules adsorbed at the interface. Oil and water are isotr@quations, one of which being the so-called MoBe[16].
pically mixed, and ordering is short range. Sponge phasellodel D incorporates noise, a conserved order parameter,
formed by the dispersion of amphiphile in a single-phaseand surfactant density, but excludes hydrodynamics. Laradji
solvent differ from microemulsions in that it is a surfactantet al. not only found logarithmic growth for the behavior of
bilayer which underlies the structure, and the regions it dithe average domain size with time, but also observed a slow-
vides are occupied by the same fluid component. A gyroidlown from it for higher surfactant concentrations and dy-
phase is also a bicontinuous, interpenetrating structure; howtamical scaling for the structure function at intermediate
ever, ordering is evidently long range, whence its classificatimes. Yao and Laradji, using a modified Lifshitz-Slyozov
tion as a liquid crystal. In the gyroid, the locus where most ofnucleation theory for continuum fields in two and three di-
the surfactant resides is a triply periodic minimal surfacemensions, studied how the Ostwald ripening dynamics of an
(TPMS) whose unit cell is of cubic symmetry. The surface asymmetric mixture of oil and water is altered by the pres-
has zero mean curvature, no two points on it are connecteehce of a surfactant specigk/]. They found results similar
by a straight segment, and no reflexion symmetries aréo those of Laradjet al. [12].
present. Isosurfaces of the gyroid phase for which oil and The segregation kinetics of amphiphilic fluids have also
water are not at equal compositigminority phasesform  been studied with fully particulate methods such as classical
mutually percolating, threefold coordinated, regular latticesmolecular dynamics and, more recently, hydrodynamic lat-
Other examples of triply periodic surfaces of zero mean curtice gases. Using a minimalist molecular dynamics model in
vature arise in thé®> andD mesophases, the minority-phase two dimensions, Laradgt al. [18] found a crossover scaling
isosurfaces of which exhibit coordination numbers of six andunction similar to previous Langevifill] and Lifshitz-
four, respectively. Slyozov modelg17], yet with a different algebraic exponent,
The purpose of the present paper is to report on a theand a slowing down from the algebraic growth laws for bi-
retical study of the segregation kinetics in ternary am-nary mixtures. Using two-dimensional hydrodynamic lattice-
phiphilic fluids and the self-assembly of the sponge and gygas models for symmetri¢l3] and asymmetric mixtures
roid mesophases. By progressively adding surfactant to afl9], the group of Coveney found that surfactant induces a
initially homogeneous immiscible oil-water mixture on the crossover to a logarithmic slow growth, and, with sufficient
way to achieving arrested domain growth, we shall give arsurfactant, full arrest of domain growth which is well de-
account of how the segregation kinetics of the fluid domainsscribed by a stretched exponential function. The group found
is affected by the addition of surfactant, and study the feasimilar results with a three-dimensional hydrodynamic
tures of the associated mesophases that are formed. The mattice-gas mode[20].
sophases corresponding to such late time, arrested growth Particulate methods have also been used to tackle me-
regimes are sponges which turn into gyroids as we increassophase self-assembly. Using classical molecular dynamics
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methods, Marrinket al. simulated evolution of a surfactant the question of what use particulate methods, such as is the
bilayer, initially set up on the morphology of ®” TPMS,to  one we report in this paper, have in the simulation of am-
study both the surfactant packing structure and how closehiphilic fluid systems. Our method, by reducing the descrip-
such a bilayer would remain to the TPMS after relaxationtion of the amphiphilic molecule to its minimal possible
[6]. They, however, did not address self-assembly dynamicsexpression—a point dipole,—retains the minimum number
time scales required for that are orders of magnitude abovef degrees of freedom necessary to model interfacial adsorp-
those reachable with atomistic techniques on present-dayon and micellization, and, additionally, in a hydrodynami-
cutting-edge supercomputers. In dissipative particle dynameally consistent framework which does not require processes
ics (DPD) approaches, a Langevin dynamics with momen-to be quasistatic. With these basic properties at our disposal,
tum conservation is solved to model ill-defined, mesoscopiave want to fully exploit our model's capabilities to deter-
dissipative particles interacting via repulsive, soft potentialsmine the nonequilibrium amphiphilic dynamics and the equi-
hydrodynamics is emergent and the amphiphile is reprelibrium fluid structures arising from it. The minimalistic
sented by dissipative particles bound together by rods dbottom-up approach is in line with the fact that, far enough
springs[21-23. The DPD simulations of Groot and Madden from criticality, distinct molecular structures and micro-
of copolymer melts[21] showed that melts of symmetric scopic dynamics can produce similar macroscopic
amphiphile led to lamellar phases, whereas a gyroidlikebehavior—this is universality emerging from microscopic
structure appeared only for asymmetric amphiphile as a trarcomplexity [33]. In addition, particulate methods are much
sient phase, precursor to a hexagonally packed tubular phaseore suitable than conventional continuum fluid dynamics
Nekovee and Coveney, using the lattice-Boltzmann modemethodg34] for the simulation of interface dynamics. Such
we employ in this work, were able to reproduce the"“ dynamics is an emergent property of the underlying interpar-
mesophase in a binary amphiphilic mixture of surfactant andicle interactions among the immiscible species; a set of con-
solvent[24]. _ _ _ ~ tinuum partial differential equations describing the locus of
Many of the simulation studies on the formation kineticsthe interface is, rather, its macroscopic manifestation, and its
of microemulsion and liquid-crystalline mesophases haveqytion a much more laborious endeavdrortiori, model-
made use of stochastic Langevin diffusion methods, in whichyg grfactant adsorption and self-assembly in an explicit
mass currents are driven by chemical potential gradientgqpion via particulate methods provides a more realistic pic-

computed from free energies of the ubiquitousy o of the microscopics than doing so at the continuum,
¢*-Ginzburg-Landau expansion form. These models treat thﬁwacroscopic limit described by free-energy approaches.

amphiphile only implicitly through the functional depen- . S i
dence of the surface tension parameter with the amphiphile Lattice-Boltzmann(LB) ”.‘ethOdS were on_gmally devel _
density [25-29. In cases in which the amphiphile is a co- oped as a means of reducing the computational cost associ-

polymer, however, the free energy is often derived fromated with Iattice-gas_automatithA) a]gor_ithms[35]. LB
polymer models which aim at accounting for the am_methods evolve a smgle-part.lcle d|str|but|9n funct_lon via a
phiphile’s molecular structure with a certain degree of specidiscretized Boltzmann equation, usually in the linearized,
ficity [30-33. The validity of these Flory-Huggins-type ap- '€laxation-time(BGK) approximation. Such a single-particle
proaches rests on being able to derive the free energy from@istribution, at a particular time slice and spatial position on
microscopic model, which not only might entail considerablethe lattice, is an average over the LGA velocity space for a
difficulty but does require the segregation to be a quasistatigtatistically large number of different microscopic realiza-
local equilibrium process. Under general far from equilib-tions (initial conditions. The fact that much of the phenom-
rium conditions, such as occurs in the sudden-quench scenology of binary immiscible and ternary amphiphilic fluids
nario so often employed in the literature, equilibrium ther-occurs for small spatiotemporal gradients permits us to take
modynamic potentials are known not to adequately describthe mean-fieldor molecular chagsapproximation, and the
the process. Besides, free-energy-based methods also requeltzmann-Grad limit in which such an approximation
surfactant adsorption and relaxation on the interface to bholds, as heuristically appropriate for the modeling of their
much faster than interface motion, a so-calketiabatic ap-  universal properties. Heuristics come into play in that tun-
proximation Free-energy approaches are frequently repreable parameters are introduced in LB models in order to
sented as paradigms of thermodynamically consistent mesoeproduce desired quantities of dense and/or complex fluids,
scopic methods; some of them also pursue chemicaduch as surface tension, viscosity, and thermal conductivity
specificity in elaborate empirical exercises amounting tafor required values of Reynolds and Prandtl numpestsess
litle more than parameter fitting of polymer models. Thetensors(for required viscous or viscoelastic behayjoand
philosophy behind them, nonetheless, is the use of macreequations of statéfor liquid-gas and phase-segregating tran-
scopic, local equilibrium information to specify a stochastic,sition9. It is worth noting that the increasing popularity of
and hence mesoscopic, nonequilibrium dynamics. None dfB methods in recent years is primarily based on pragmatic
these methods offers a dynamics satisfying detailed balancepnsiderations associated with their simplicity and algorith-
let alone anH theorem(Lyapunov function guaranteeing mic efficiency.
irreversible evolution towards the equilibrium state described This paper presents the first quantitative account of am-
by the prescribed free energy. As a consequence, the “thephiphilic phase-segregation dynamics using a three-
modynamic consistency” of these methods remains on shakgimensional model based on the Boltzmann transport equa-
grounds. tion. It describes the spontaneous self-assembly of the gyroid
The fact that some free-energy approacf&k32 focus liquid-crystalline cubic mesophase and an order-disorder
on the specific molecular structure of the amphiphile raisesransition between the latter and the sponge mesophase, of

061501-3



N. GONZALEZ-SEGREDO AND P. V. COVENEY PHYSICAL REVIEW B9, 061501(2004

glassy features. The remainder of the paper is structured a$ componenix in an interacting fluid mixture at positiox
follows. In Sec. Ill we describe the model. In Sec. IV we instantt, and for discrete molecular velocity, on a regular
look at how the segregation kinetics of the fluid domains igattice and in discrete time. Herey® is the particle mass
affected by the addition of surfactant. Section V studies thevhich we set to unity for convenience, and the single-
temporal oscillations of the average domain size and thearticle distribution ni(x,t) obeys the lattice-BGK
structure function, which are only observed for segregationte|axation-streaming mechanism:

halted regimes. In Sec. VI we characterize the morphology
of the mesophases corresponding to those regimes via direct-
and Fourier-space imaging, and identify the speraggroid

structural transition. Finally, we provide conclusions in Sec. - o .
where the collision term has two contributions accounting

NE(X + ¢, t+ 1) — ni(x,t) = Q, (1)

VIl for the kinetics of noninteractingideal) plus interacting
lll. A LATTICE-BOLTZMANN MODEL FOR TERNARY (nonidea) multicomponent species, respectively:
AMPHIPHLIC FLUIDS
The amphiphilic lattice-Boltzmann model we employ in QR(x, 1) = Q2(x,1) + Z > Agnf, 2
this paper is derived from that originally proposed by Chen a |

et al. [36,37. The method can be regarded as a fully meso-

scopic, bottom-up approach, which does not require the exthe sums extending over all available species and directions,
istence of a thermodynamic potential describing phase trarand
sitions. In fact, the method is athermal in the sense that, for
algorithmic efficiency reasons, the microdynamics is devised
ex professdo conserve velocity moments of the distribution
function only up to first order; this simplification is valid
wherever fluctuations are negligible, e.g., away from critical-ygre the time increment and lattice spacing are both wnity,
ity. This is, for example, the case of deep quenches into thg; 5 node of such a lattice;=r,b [e.g. oil (r) or water(b)],
spinodal region of the fluid’s phase diagram, which is OUrandc, is one of the 24=N,.)) discrete velocity vectors plus

Ease din thirs] paper. .A.S op}pos]:ed to top—d;)wn .Llésmethodsone null velocity of the projected face centered hypercubic
ased on the imposition of a free-energy functiofss, 39, D4Q25 lattice we use to guarantee isotropy in the macro-

Fhe glopal dynamics arise as an emergent prope(ty. of thgcopic equations that the model reproduces for a bulk,
interactions between mesoscopic levels of description, ifginqie phase fluig42]. The parameter* defines a velocity-
agreement with a complexity paradigi83]. Oil-water seg- i, janendent relaxation rate towards equilibrium for compo-
regation Is achlevc_ad via interspecies f°fC9S W.h'Ch modify th%entoz' A2* can be regarded as a matrix element of a cross-
fluid's macroscopic velocity. The dynamics in the bulk of collisi(;n (k)lperatorA which is a function of both® and the

zaqh t();r]]cary |mré1|slf[:|ble specufei.g., 0|I'tﬁndfwat'erc?n beA acceleratiora®, the latter being experienced by a fluid ele-
erived from a boflzmann equation with a foreing term. An o g6 10 jts neighbors, as will be defined later. The func-

amphiphilic molecule is modeled as a continuously orient-,. (eq) ) . . o :
able massive point dipole subjected to thermal noise anHOn M . (x_,t),\|/|n Eﬁ'(?’) |Zthe;j|s|cretllzi1/lt|on Ofn‘_"‘ third-order
relaxing towards an equilibrium that minimizes its interac- £XPansion in Mach number of a local Maxwe IE81, repre-

tion energy with mean fields generated by its nearest neigh’s—entlng the local equilibrium state of tagh component,

bors on the lattice. The densities of surfactant, oil, and water

evolve via coupled lattice-BGK equations. This is a mean- nf(’(e“)(x,t) = wkn“(x,t){l +l2ck-u + i(ck ‘u)?- izuz
S

ng(x,t) = ng9(x, 1)
- .

QP(x,t) = - 3

field approach which exhibits Galilean invariance and repro- 2c‘31 2c
duces correct hydrodynamics. We have also shown, in a pre- 1 1

vious paper which serves as a reference benchmark for this +—5(cc-u)* - —u¥(cy - u)}, (4)
study [9], that the model reproduces the dynamical scaling 6cg s

hypothesis during the phase segregation experienced by bi-
nary immiscible(oil-water fluids. Its algorithmic simplicity ~Where wy are the coefficients resulting from the velocity
allows it to achieve extremely high performance on masspace discretization, antd is the speed of sound, both of
Sive|y para||e| ComputerMO], and substantia”y reduces the which are determined by the choice of the lattice. For the
domain of numerical instability present in free-energy-basedrojected D4Q25 lattice we use, the speed of sound;is
LB methods[9]. Because atm theorem is lacking in essen- =1/\3, w=1/3 for thespeedc,=0, and 1/36 for speeds
tially all multiphase lattice-Boltzmann models hitherto pro- C=1 andv2. In Eq.(4), u=u(x,t) is the macroscopic veloc-
posed[41], we consider it artificial to try to enforce a pre- ity of the mixture, through which the collision term couples
scribed thermodynamic equilibrium in these schemes; &he different molecular velocities,. This is because is a
method which is algorithmically simpler, fully mesoscopic, function of the components’ macroscopic velocities, defined
mean-field and bottom-up is of greater fundamental interes@sn“(x,tHu®=Z,n(x,t)cy.
_ o _ A judicious choice of the coefficients in the expansion of
A. Binary immiscible fluids the equilibrium distribution Eq4), allows for mass and mo-
The core of our model is a lattice-BGK equation govern-mentum to benonlocally) conserved for the noninteracting,
ing the evolution of the mass density distributiofing(x,t) ideal gas mixture case, i.e.,
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D Q(ko)a =0, S maz Ckﬂ(kom -0, (5) velocitiescy t(_)lsingle-dipole vectors but to site-averaged sur-
K o K factant densities instead, as can be seen, for example on the

. . ) right-hand side of Eq(7).
It can be shown that in the limit of creeping flows to second Dipole relaxation is governed by the BGK process
order, i.e.u?=0, the expression for the fluid mixture’s mac-

roscopic velocityu required for momentum conservation in

the absence of interactions, as a functioru®f simplifies to

that obtained for a second-order expansion of the equilibrium ) ) ]

distribution, namelyu==_(p®u®/ #)/= (p®/ 7*), which we where 7° is a new parameter controll'mg_the relaxation to-

have incorporated in our implementation. wards the local equilibriund®Y(x,t), which is understood as
The form of the collision terni2) derives from adding an the average orientation with respect to the Gibbs measure,

incrementAu to the fluid mixture’s macroscopic velocity €+

which enters in the equilibrium distributio@), i.e., Qg(u) A

= 09(u+Au®) whereAu®=a"* anda®*=F*/p®. Here f d?) e PHalxi()

~ deYx,t) = d
FOS(x,0) = ~ XD Ga X DK =%) () S

X

dix,t) =d(x,t) - %S[d(x,t) - dUx, )], (8)

1 (9)
f dZQ e—BH()(X,t)

is the mean-field force density felt by phaseat sitex and  whered?() is an element of solid angle whose director is the

?mﬁt d;f t(.) Lts fsurrcl)lf[ndlr)gsg%; It\SNa Co?ﬁl”}? .E]atl‘lx €ON- it vectorQ) representing the dipole orientation, ads an
rofiing the intertacial tension between he Tluit SPECIES, N5y, erse temperaturelike parameter. The modulus of the left-

lecul dth : ; ! S Mand side of Eq(9) ranges between 0 and the scale valge
molecules, and the surfactant-surfactant interacfénis an  o\,qen 9 e unity for convenience. That, along witk 1,

effective massrvhlch SErves as a functl.onal parameter andguarantees the magnitude of the dipole vector to be less than
can have a variety of forms for modeling various types of

fluids. We only allow nearest-neighbor interactions=x do at all times. Equation9) favors surfactant orientations
+Cy, .and choose ¢#(x,t) = 1—exg-n“(x, )], Where, na which minimize theenergy H,=-Q-h(x,t), whereh(x,t) is
==, n This choice fory has also been made by Shan andthe sum of the mean fields created by surrounding bulk fluid

Chen to model liquid-gas phase transitigad8] although, as and surfactant, namely,
we shall see, our motivation here is different. hex, ) =S an (X + G 1)Gy, (10)
@ k

B. Amphiphilic fluids

The mcorp_oratlo_n of a third, amphlphlllc species not only hsx,t) = > nS(x,Hd(x,t) + S n(x + ¢, 06 -d(x +c,t)
requires the inclusion of an extra lab@k’) for the super- K 140
script denoting the species in Hd,), but also a modification (11)
of the cross-collision operatok since amphiphiles interact
with fluid elements and between themselves. In addition, thellowing for nearest-neighbor interactions only. The first
physics of amphiphilic molecules, namely, self-assembly an@quation is a discrete approximation to the color gradient for
adsorption to immiscible fluid interfaces, cannot be modeledhe immiscible species, wherg,=0, +1 is the color charge
without introducing a new type of body force: in Sec. Ill A of speciesa. The second equation is a dipole vector density,
ordinary bulk fluid species are thought of as pointlike par-where summation ovek performs local dipole averaging,
ticles given that their interactions depend on their relativesummation over includes all nearest-neighbor contributions,
distances alone. For surfactant molecules, however, their orand the second-rank tensér=I|-Dcc,/c?, wherec is the
entations are important tq@6], and a dipole is the simplest modulus ofc; andD is the spatial dimension, picks up de-
configuration to mimic their essential character. In short, wesired orientations from nearest-neighbor dipoles. Finally, Eq.
must extend the scalar lattice-BGK model hitherto described9) can be integrated analytically in three dimensions to give
into a vector model. , de9=dy[coth(Bh) - 1/8h]h, whereh is the magnitude oh

Each surfactant molecule is represented by an average |- . .
dipole vectord(x,t) at each site and time step, whose orien-andh Its unlt_ vector._ . . . .
tation is allowed to vary continuously. The average is taken The new interactions that modify the interspecies colli-

over nearest neighbors before advection, according to th jon optehrato]rzl\ %re tlhe for(t:e on:n mn;:sc;ﬁlegglid e'I:eaTent
propagation equation rom other fluid elements and amphiphileB2= g,

+0psF*S, whereF*€ is that in Eq.(6), and the force on an
NSt + DA t+1) = S TX - e )d(X = e t), (7 amphiphilic molecule from neighboring fluid elements and
( ( ) Ek: 2 D () amphiphiles,F°= g, F5+g.F>° In these expressiongy,,,

) . i Ops @ndgssare coupling scalar parameters, and the analytical
where the tildes denote postcollisional values, as defined biynressions for each force term, derived in R86], are

Eqg. (1) for the A=0 (g,;=0) case if we replace the leftmost
summand withig(x,t). For the sake of simplicity and com- Fos= — 29, (x,0) > d(x + ¢, )6, - p5(x + ¢,1), (12)
putational efficiency, the model does not assign microscopic k#0
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Foo= 203X DA+ 0 - D Gps D B (X + G ),
@ k#0
(13 0339 .
4D 1 = 0.338 —
Fos= - ngslf(xi)z {d(x + ¢ t) - 6 - d(x,t)cy
k ° L
+[d(x+ g ydx,B) +dx,0d(x + ¢, 1] - 6 ]
XYA(X+ g b). (14)
0.336 ]
Equations(12)—(14) were derived considering only nearest-
neighbor interactions, modeling each dipole as a dumbbell of
oppositely color-charged particles displaced/2 from the B A R
dipole’s center of mass locatiox, and carrying out Taylor 3

expansions of the force) to leading order ird aboutx as FIG. 1. Surface tension dependence on the surfactant concentra-

well as those at the neighboring site5]. AIS,O’ Eq'(13) IS . tion (mass fraction, cf. Table)las measured at a planar interface
the reaction to forc€l12), and Taylor expansions in the ratio making use of Eq(15). A lattice of size 4< 4x 128 was allowed to
of ¢ to the length scale that the color gradient sets can bgyojye up to time step 25 000, and pressure tensor components were
used to further simplify the expressions. Finally, additionalyeasured every 1000 time steps. The surface tension tends to grow
coupling parameterg,, have been introduced, whem®s  with time and reaches a horizontal asymptote; at that time step the
should be chosen negative to model attraction between tweyrface tension only differs in 16 % from that at the previous mea-
amphiphile heads or tails, and repulsion between a head arirement. Interpolation serves as a reference to the eye. Coupling
a tail. constants used wergy,,=0.08, g,s=—0.006, andgss=-0.003. Oil

and water densities used wen®R=n(®8=0.7. All quantities are

. ) ) reported in lattice units.
C. Selection of the parameters for the simulations

The model is implemented as a parallel codeFDR-  fractions to 1:1, specifically at®*=0.7 for a=r,b.
TRAN90 making use of the message passing interface parallel |t js experimentally known that the addition of amphiphile
paradigm[44] and spatial domain decomposition, and incor-into an immiscible fluid mixture reduces the interfacial ten-
porating wrap-around, periodical boundary conditions in allsjon, as has also been reported for various lattice-gas models
three dimensions. It was executed on 16 to 64 processors GR two and three dimensiongl3,20. To confirm that our
SGI Origin2000 and Origin3800 parallel platforms. The form model reproduces this important property, we ran simulations
=1 ) _ _ on a 4X4x128 lattice of a planar interface with surfactant
—exd-n(x,t)] for the effective mass in the force in E@®)  adsorbed onto it and whose initial density was varied be-
was heuristically chosen so as to broaden the region of nuween simulation runs. The surface tension was calculated

merical stability in parameter space: numerical instabilitiesyith the line integral along the normal to the interfddé),
can arise as the result of high values of forces and speeds,

and are more likely to occur in our model when surfactant (T
interactions are included than for binary immiscible fluids i [P;42) -~ Py(2)]dz, (15
[9,49.

Preliminary studies allowed us to determine the values Ohoere’ for the pressure tengaE{Pij}, we used the expres-
the model's various parameters for which an initially thor-gjo [9]

ough mixture of two immiscible fluid phases plus a dispersed

amphiphilic species produced a segregated mixture with ar- 1 _

rested domain growtfd5]. Those values were the surfactant P00 = 2 2 pi(X)GiC+ ZE_QCJE [ )9 (x")

thermal parameteB=10.0, all particle masses and relaxation a K e x

times set to 1.0, and coupling constargs=0.08, gys + (X)X ](x = X ) (x = X'). (16)
=-0.006, andy,=—-0.003.[Massesm” enter in the descrip-

tion through p®(x,t) =Z,m*n¢(x,t).] We simulated the be- We restrict ourselves in this study to nearest-neighbor inter-
havior of a ternary mixture by varying the coupling constantsactions x’ =x+c,, and transversal symmetry allows the sec-
around the values mentioned above, and for initial surfactamtnd summand within the integrand in EEL5), which in
particle densities ranging in the interval 090°5<0.90.  general is%(PXX+ Py, to be simplified as shown. Equation
The lattice sites and directions were initially populated with(16) contains a kinetigfirst) term, the momentum flux, due
flatly distributed mass densities=(pg(x,0) <m*n@9/N,.,  to the free streaming of particles corresponding to an ideal
wheren@¢ is the particle density of phase andk numbers  gas contribution, plus a potential or viriedecond term due
each of theN,,.=24 velocity vectors. We determined that to the interparticle momentum transfer derived from the
settingn®*> 0.6 for both species guaranteed immiscibility. force (6) [47,48.

In all the simulations we present here we set oil:water mass Figure 1 shows the surface tensiarplotted against ini-
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TABLE |. Surfactant densities employed in the study of the
algebraic-to-logarithmic and logarithmic-to-stretched exponential
transitions. The mass fractiotf is the ratio ofn(@s to n(@b=n(Or
=0.7, and the rest of the parameters used wgge=0.08,
Ops=—0.006,9,=-0.003, masses and relaxation times set to 1.0,
and3=10.0. The lattice used was sized®@dr all simulation runs
except 01, for which it was 128n order to avoid finite size effects
entering at aboutt = 25.

L@

Simulationrun 01 02 03 04 05 06 07 08

n©s 0.0 0.15 0.22 0.30 0.35 0.40 0.60 0.90
N 0.0 021 0.31 043 050 057 0.86 1.3

tial surfactant density, and details on parameters and densi-
ties used are included in the caption. Notice that in the re-
gime the binary fluid is in, and for the values of surfactant ize for surfactant concentrations 0.0, 0.15, 0.22, 0.30, 0.35, 0.40
density we use, the _surfac_e ten_sion decr_eases linearly wi .60, and 0.90 for curves from top to bottorﬁ and’correépond’ing to,
surfactant concentrat.lon. I.t is entirely posgble that there may;juiation runs 01, 02, 03, 04, 05, 06, 07, and 08, respectivély

be departures from linearity were we to increase the surfacrgpie ). Measurements have been taken every 25 time steps, and

tant concentration beyond that shown in Fig. 1 because afe plots include error bars, which represent the uncertaig
interfacial saturation with surfactant, as observed in two- andtandard errgrtransmitted from the standard error of the structure

FIG. 2. Temporal evolution of the average fluid-fluid domain

three-dimensional lattice-gas studids3,2Q. function spherical average. We used a lattice of size® 1@8simu-
lation run 01 and 6%for the remaining curves, since finite size
IV. DOMAIN GROWTH KINETICS effects start to creep in for domain sizes larger than30. All

qguantities are reported in lattice units. Note that the surfactant-
We ran simulations starting with a homogeneous mixturecontaining fluids lack the zero-growth, linear transient found for
of oil and water particle mixture to which surfactant was simulation run 01/11].
randomly added across on the lattice. Lattice sizes employed
were 64 and 128 to assess finite size effects. Each latticep1) is seen to be relatively low. We now need to find the

site was populated with a density uniformly distributed in thegro\wth laws that best fit these data. Previous simulation stud-

range zero up to the values summarized in Table I. ies, for 1:1 oil-water fluid mixtures with or without surfac-

The average size of the oil-water domains is a naturajant[9,13,20,37, have found algebraic, logarithmically slow
measure of the degree of segregation within the mixture. Wanq stretched exponential behaviors, given as
define it as the inverse first moment of the spherically aver-
aged oil-water structure function, (t)=2w/k,(t), where ay(t—by)°t, (18)
ki(t)=2,kSk,t)/=,Sk,t). The spherically averaged oil-
water structure functio®(k,t) is =; S(k,t)/=Z; 1, where the a,(In 1) (19)
Sk,t) is the oil-water structure function, 2 '

/ b, ext— ca(t — do)%].
S(k,t)E%|¢k(t)|2, (17) ag— by exy - cy(t - dg) %3] (20)

to be those characterizing the temporal growth of the average

and 2; denotes summation over the set of wave vectorglomain sizel(t), of an oil-water mixture without surfactant,
contained in the spherical sherh—% < (V1’3(k/27-r)< n Eq. (18) [9], and when surfactant is added above a minimum
+1/2, for integern. Equation(17) is the Fourier transform threshold concentration, E¢19), and at a sufficiently high
of the spatial autocorrelation function for the oil-water orderamphiphile concentration, EQRO0), the latter being a regime
parameterp=p"'—pP, whereV is the lattice volumes is the  for which arrested growth is reached at late times. The coef-
volume of the lattice unit cell, ang(t) is the Fourier trans- ficientsa andb; (i=1,2,3 are fitting parameters. While we
form of the fluctuations of the order parametef, Our  shall take these functional forms as suggested choices, we
choice of the structure function, rather than alternative meawould also like to find out how closely they in fact fit our
sures of domain size such as the autocorrelation functiorfata.
was made on the basis that it is directly proportional to x-ray ~ Linearity in the(t,L) data cloud on a log-log plot would
or neutron scattering intensities, hence facilitating directpermit us to ascertain whether or not the data follow Eqg.
comparison with empirical datai9]. (18), regardless of the zero-time offset valogsince this is

In Fig. 2 we plot the temporal evolution of the averagea horizontal displacement. To find out which data may be
domain sizeL for the surfactant concentrations of Table I. better fit by Eq.(19), we would requirdln t,L) pairs of data
The amount of surfactant needed to slow down the kineticén a search for linearity on a log-log plot. This method, how-
of the binary immiscible oil-water mixturésimulation run  ever, is not likely to be of much help given the small differ-
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ence between plots of the logarithm of a data series and plots [T T
of the logarithm of such logarithmic data, as we shall see. We
therefore prefer to adopt the criterion of considering candi-
dates for the model of Eq.18) from the log-log linearity
method, while resorting to both visual inspection and a
search for a reduced chi-squared statigji¢/ndf) close to
1.0 in order to identify a slower growth such as that of Eq. |
(19) (ndf is the number of degrees of freedpriinally, Eq. oF
(20) possesses a distinctive horizontal asymptote which best
fits data whose domain growth at late times is fully arrested.
From the linearity of curves in Fig. 3 we can infer that )
simulation runs 01 and O@rable | are good candidates for ~ |.....-: R
the growth model of Eq.18). Figure 3, however, leads to the of i 1

30

same conclusion, as expected given the small difference be- Gz o 50060 7000
tween these two plots. We then resort to looking at the t
X2/ ndf statistic in assessing how well Eq48) and (19) fit (a)

simulation runs 01, 02, and 03, see Table Il. The binary
immiscible fluid simulation run 01, with no surfactant
present, exhibits an exponent consistent with the system be- 4 -
ing in a crossover between the known diffusi@t&®) and
viscous hydrodynami@'©) regimes, already reported for bi- 30k
nary immiscible fluids simulated with the lattice-BGK model
we employ in this papef9]. Simulation run 02 has the pe-
culiarity that Eq.(18) holds (poorly) only during an initial Sk
transient, and Eq.19) takes over to give a very good fit at
later times,t>1100. This transient is due to the time re-
quired by the surfactant to adsorb onto the interface and af-
fect the binary immiscible interfacial dynamics. Finally,
simulation run 03 is best fit by Eq19), although the high
X2/ ndf value indicates that the data contain more detail than '"f7*" , | \ | 7
the model does. In addition, from Fig(l8, this mixture 7 7.5 8 85
segregates at a slower speed than that given by 1By, yet (b)
it does not reach total arrest, at least up to 7200 time steps.
Rather, total arrest is seen at higher surfactant concentra- FiG. 3. Panela) shows the time evolution of the average do-
tions, as in runs 06 and O&ee Fig. . We conclude that main size for simulation runs 01, 02, and 03, see Fig. 2. The log-log
simulation run 03 represents a fluid which is in a transitionscale helps to visually detect behaviors following EtB)—in this
regime between the logarithmic and the stretched exponemase, that of the uppermost curve. The straight line above it serves
tial behaviors. A similar behavior was previously observedas a guide to the eye only and its slope is givenchyn Table II.
by others using lattice-gas methods in tj8] and three Panel(b) shows the evolution of the average domain size with the
dimensions[20], and lattice-Boltzmann methods in two di- logarithm of the time step for simulation runs 01, 02, and 03, on a
mensions[37]. Emertonet al, using a two-dimensional log-log scale. This is useful to discriminate growth between that of
lattice-gas model, reported the divergence of the coefficient5ds. (18) and (19); see Table II for the fitting parameters. The
of Eq. (20) in an attempt to fit data for which total growth straight solid line shown indicates a good fit tc_J E4.9) for
arrest had not been achievgk8]. The fits to our data, which t>1100In t=7). Fort<1100, the curve is better fit by EqL8),
include error bars, also produced the same divergences. ThéPeit still quite poorly. Measurements have been taken every 25
fluid mixtures as well as ours, we conclude, were, rather, in 4M€ Steps, and the plot includes error bars representing the uncer-
transitional regime well described by a growth law slower!@nY (one standard d;g latiorof the spherical averaged strucéure
than Eq.(19) which still allowed for domain growth. It is, fungnon. We use a 1 lattice for“5|mu|at|on run 01 and. a 64
. . lattice for the remainder. All quantities are reported in lattice units.

however, possible that growth arrest could be achieved af
later times; this prearrest regime would then be a long-lived
transient. ing the formation of structures, statistically weak, of size

We now look at wave numbers of the spherically averagealose to half the lattice side length. Inspectiondgk) snap-
structure functionS(k) other than the first moment, already shots suggests the spurious presence of elongated domains of
provided byL(t). Figure 4 shows the spherically averagedsuch sizes which are extended rather than folded. At the late
structure function for simulation run 06 at several time stepstimes we examined, these elongations tend to vanish or fold.
The temporal evolution of the curves resembles the segreg&till in Fig. 4, it is worth noting that for all length scales
tion kinetics for binary immiscible fluid mixtures, except that above a thresholéaboutk<0.9), curve superposition is not
domain growth arrest for late times makes them tend to susharp. This is a consequence of the fact that for the fluid
perimpose. Note that a hump appears at these times, indicatemposition of simulation run 06, and those of higher sur-

50 T T T T
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TABLE Il. Fits of the average domain size growth with time to
the models of Eqq.18) and(19) for simulation runs corresponding 1x10°
to surfactant mass fractions 0.0, 0.21, and 0.31, from top to bottom
respectively, as detailed in Table I. Lattice sizes used weré fb28
simulation run 01 and 64for the rest. Poor fits are indicated as
blank fields. Simulation run 02 shows two behaviors in its temporal
evolution, Eq.(18) for t<1100 and Eq(19) for t>1100. Note the 1x10'
very good value of the?/ndf statistic for the latter. The poor value
of the statistic for simulation run 03 indicates that Etp) is insuf-

1x10?

S(K)
LBLILRLLL/ B B L0 0 L) e e L)

1x10°
ficient and a more detailed model is required, albeit not(2Q). *
Simulation run c X2/ ndf c, X2/ ndf ix10"
01 0.896+0.007  0.18 el S N N
X
02 0.644+0.004 75 3.850+0.010 092 (4 ° 0z 04 06 0B ! 12 4
03 2.649+0.022 39
1x10°

LA L L B L B B L BN L L B

,\....
&
l’l

4
/

factant concentrations, there are small temporal oscillations .
in S(k). All these mixtures have in common that they have ™"
achieved total growth arrest—in fadt(t) decreases in time )
for simulation run 08, as we shall see later on and discuss ir !
more detail. Oscillations in the structure function and a hump

at low wave numbers have been reported previously in & ixio®
hydrodynamic Langevin model of sponge phase dynamics
using field-theoretic method8]. However, this approach 16
did not consider the amphiphile concentration explicitly but,
rather, embedded it into a Ginzburg-Landau free energy
through the surface tension, in a scenario where amphiphile
relaxation is assumed to be fast compared to that of the oil-
water order parameter. (b)““’ 16 L8 2 22 24 26 128 3

In Figs. Ha) and %b) we show the spherically averaged
structure function at time step 7200 of the mixtures in Table

1x107

FIG. 5. Log-linear plots of the spherically averaged structure
functions at time step 7200 for increasing surfactant concentrations
indicated by the numerical labeling on each curve, corresponding to
simulation runs 01, 02, 03, 04, 05, 06, 07, and 08, respectively, cf.
Table I. For large wavelengths, pariaj, we can see how the peaks
move to higher wave numbers, decrease in height, and broaden.
Note that for short wavelengths, pan®), the only straight tail is
for curven@$=0.0, whose slope is —4.46107*. Error bars repre-
sent one standard error of the shell avergge. Lattice size is 128
for simulation run 01 and 64for the others. All quantities are
reported in lattice units.

S0

I, for the larger and smaller length scales, respectively. As the
initial density of surfactant is increased in a series of replica
initially homogeneous water-oil-surfactant fluid mixtures, as
indicated by Table I, it is expected that the oil-water structure
water order parameter simulation run @8. Table Ill). According functlon peaks will move to higher vyaye .numbers, decrease
to how close to asymptotic behavior the distribution of domain sized" IntenSI_ty, gnd broadef,8,50. This is indeed what W?
appears to be, we have classified simulation times for this simulal®PS€rve in Fig. &). Note that at smaller length scales, Fig.
tion run in three groups: early timatime steps 25, 50, 75, 125, o(b), the exponential decay of the structure function that oc-
150, 175, and 300 in the plotintermediate timesgtime steps curs for simulation run 01 does not hold for the ternary am-
roughly from 800 to 1700 and late timestime steps 1800, 2300, Phiphilic mixtures. This can be explained by the contribution
2800, 3300, 3800, 4300, 4800, 6000, 10000, 14 000, 18 000of small micellar structures that form in the bulk of each
22 000, 26 000, and 30 000 in the ploError bars represent the immiscible phase, more likely to take place for mixtures of
standard error of the shell average. Lattice size & A4 quantites  higher surfactant concentration. Indeed, in Figh)bthe lat-

are reported in lattice units. ter exhibit the most manifest deviations.

FIG. 4. Spherically averaged structure functions for the oil-
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TABLE Ill. Parameters employed in studying domain size os-
cillations, whose onset occurs for surfactant mass fractions
x¥=0.57; the remaining parameters of the model are stated in the
caption of Table I, also for the additional runs 09 and 10, in lattice

PHYSICAL REVIEW B9, 061501(2004
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units. 1o
Simulation run n©s X3 Ose Obs ol
=~ L
06 0.40 0.57 -0.0030 -0.006
08 0.90 1.3 -0.0030 -0.006 K G i
09 0.60 0.86 -0.0045 -0.006 7 10 i
10 060 086  -0.0030  -0.009 T —" ]
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V. SELF-SUSTAINED OSCILLATIONS

A fd . h for hiah f d FIG. 6. Temporal evolution of the average domain size for simu-
rrest of domain growth occurs for high surfactant €N~ )ation runs 06, 07, 09, 10, and 08, as seen from top to bottom at

sity only, cf. Fig. 2, as expected. Further inspection, hc_’W'z 10 000(cf. Table Ill). Measurements have been taken every 25
ever, shows that not only are there small temporal oscillagme steps; error bars are included and represent the uncertainty
tions of the average domain size, as we mentioned at the enene sigmaj transmitted from the standard error of the spherically
of the last section, but also that they do not die out during thyeraged structure functioBaveat lector:an oscillation in the av-
simulation window. Similarly to what was previously re- erage domain size is genuinely representative of oscillations in the
ported using a bottom-up lattice-Boltzmann method in twodomain sizes only if error bars are smaller than the oscillation am-
dimensions akin to the one employed hgs&], the ampli-  plitude. Lattice size is 64 All quantities are reported in lattice
tude of the oscillations is very small compared to the averagenits.
domain size, and smaller than previous lattice-gas simula-
tions in two and three dimension$3,20. The fact that, in  than one lattice site hence remains physically meaningful.
lattice-gas methods, these oscillations persist after ensemb@®scillations are, therefore, the signature of all growth-halted
averaging is consistent with their occurrence in lattice-regimes.
Boltzmann approaches, since the latter are effectively The structure function plots of Fig. 7 provide further in-
ensemble-averaged versions of the former. Since the systerggjht into the role of coupling constantg. and g, in the
we simulate are dissipative and isolatéitere is no mass or oscillation dynamics. Note that mixture 08 produces a peak
momentum exchange with external souicesscillations,  of intensity similar to that of mixture 07, a feature already
however, are expected to die out at sufficiently late times. seen at much earlier timdsee Fig. £a)]. This peak height
Motivated by the observation of oscillating average do-similarity could have been ascribed to a transient, such as
main sizes, we performed additional simulation runs in ordeturned out to be the case for the difference in peak intensities
to check the role of the coupling constagtsandgysin the  between mixtures 06 and 07; however, it persisted in time.

reproduction of such oscillations, our hypothesis being thaMixture 09 also shows a peak intensity similar to that of
both an increased surfactant-surfactant interaction and an in-

creased tendency for surfactant to adsorb on the interface 2s - . T - T - T —
might be expected to have an influence on their frequency
and amplitude. In Table Ill we summarize the parameters
used in the new simulation ruii89 and 10 along with those

of previous oscillating fluid mixtures.

Figure 6 shows the temporal oscillations in the average
domain size for the mixtures of Table Ill, and Fig. 7 shows _
their structure functions at time step 17 000. All these mix- &
tures exhibit domain growth arrest; interestingly, Fig. 6 1o
shows that the average domain size shrinks in time for some
of them (mixtures 08 and 0P In addition, we uncover the
role that the coupling constanggs and gy have in the oscil- 5
lations: while increasindg.d seems to enhance their fre-
quency, an increase ifg,d drastically dampens them and g . .
reduces their amplitude. However damped the oscillations of % 025 05 0.75 1 125
simulation run 10 may seem, zooming into smaller scales
reveals the existence of minute oscillatiofsss than 0.10 FIG. 7. Structure functions at late time step 17 000 for simula-
lattice sites in amplitude which is not the case for simula- tion runs 06, 07, 09, 10, and @8f. Table Ill). Error bars represent
tion runs 01 through to 05Note that the length scales re- the standard error of the shell averag(&). Lattice size is 62 All
ported in Fig. 6 are lattice averages; an amplitude being lesguantities are reported in lattice units.

20
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mixture 07. Peak intensities bear a direct relation to the L L™

steepness of oil-water domain walls and, hence, to their sur 10 0.982 E
face tension. The fact that increasing the surfactant concer ]
tration (in mixture 08 compared to mixture Ptoes not
reduce the surface tension denotes that the interface is clos
to its saturation limit with respect to surfactant adsorption. If 1 —
enough surfactant is dispersed in the bulk, a process of difg 1
fusion towards and adsorption onto the interface could con® 118
tinue to occur, much slower compared to the initial adsorp-
tion leading to growth arrest, which could explain the slow 0.
domain size reduction. In the cases of simulation runs 08 an

09, close to interface saturation, surfactant concentration i

the bulk is high. An amphiphilic mixture being close to the | o = 1
saturation limit implies that the value of its surface tension is = eo1—— Lot Lol s
the lowest among all amphiphilic mixtures sharing the same(a) t

composition, relaxation times and coupling constamis:
Surface tension may be further reduced only by allowing
more surfactant molecules onto the interface, which can be 10f
done by increasingp,d. This is exactly what we observe in n
Fig. 7 for fluid composition 10.

As we saw in Fig. 4, small oscillations in the average
domain size indicate that the structure function varies in time
back and forth between distributions of sizes which are close¢ &
to each other. The first moment of such distributions, as stud
ied in Fig. 6, may not be representative of the dynamics a
other length scales, as we shall see immediately. In Fig. 8 wi
show the temporal evolution d8(k) for mixture 09 for a
range of wavelengths. Note three characteristic features c
the S(k) curves: they all oscillate, decrease fox 0.785 and O e e T T30 36000
k>1.08, and increase or remain stationary in the long time(b) f
average fork=0.884 andk=0.982. This behavior corre-
sponds to the sharpening of the distributi8(k) with time. FIG. 8. Temporal dependence of the structure function for simu-
Modes with k>1.28(L<4.91) decay fast enough lationrun 09, cf. Table lll. Panel&) and(b) show the short and
[S(k) <0.1 fort~ 1000 for them to be negligible in terms of long wa_velengths, respectively. Measurgments have peen_ tak_en ev-
their contribution to the fluid mesostructure. Other decreasS" 2° time steps; error bar_s hav_e beer_l included. Lattice siz€’is 64
ing modes take much longér>30 000 to vanish. All quantities are reported in lattice units.

Our study of the oscillations would be incomplete without
looking at frequency power spectra. The time series we ana-
lyze correspond t&(k=0.589 of fluids 06, 07, 09 and 10; .
this choice is made on the basis that this wave number adl_ow caused wherever an inhomogeneous temperature or

prehends characteristic features of each data set. From eali#ss dls'trl'butlon Iopally altgrs the mterfaqal tensiard).
time series we subtracted its longest wavis., its enve- By visualizing the oil-water interface for mixtures 06 to 10

lope), computed as the average/\)3, Sk,t'), X being a We observed that the density of adsorbed surfactant is not
lag large enough so as to decouple high-frequency from low€Venly distributed on it; h_e_nce tr_\_e_cond!tlons are _set for the
frequency wavegA=5000 time steps the sum extending @apPpearance of Marangoni instabilities. Figure 10 displays the
over the intervat=\/2<t’ <t—\/2. The Fourier transform late-time evolution of a subdomain of a fluid of the same
of the resulting time series we take as the definition ofcOmposition as simulation run 09 but simulated on a larger
Sk, w), cf. Fig. 9. Note therein two high peaks for simulation (128°) lattice. We display the surfactant density on a slice
run 06, and a collection of weak peakshich we define as through the midplane of the subdomain, along with the locus
those whose heights are less than 5% the height of the largest the oil-water interface depicted as an isosurface cropped
peak occurring for higher frequencies. An increase in sur-close to the plane. Surfactant inhomogeneities on the inter-
factant densitysimulation run 07 causes the number of ex- face are evident from these images, as well as the existence
cited high-frequency modes to grow slightly, yet they alsoof a slow, creeping flow. Distinctive features include the
decrease in intensity. Simulation run 09, which differs fromregularity of the order parametgéwhich we shall study in
mixture 07 in having an increasegkd, very clearly exhibits ~detail shortly, the existence of high surfactant density necks
a substantial increment in the number of excited high-bridging adjacent portions of the interface, and local regions
frequency modes. Finally, the spectrum for mixture 10 cor-where regularity is absent, reminiscent of the defects in crys-
roborates the quenching effect on fluctuations caused by irtalline materials, which possess their own larger-scale dy-
creasing/gpd.- namics.

1.08
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The term Marangoni instability describes a convective
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latter can be seen as vestigial in fluid system 06. Fluid sys-
tems 09 and 10 show that this sponggyroid structural
order-disorder transition not only occurs via an increase in
surfactant concentratio(a lyotropic transitiof but in the
interaction strength between surfactant with itself and with
the interface. We leave for further work a systematic inves-
tigation of the{n©%, gy, 9ss, O} Parameter space in mapping
out the equilibrium mesostructures’ phase diagram. In this
endeavor, recently developedmpusteeringools [53] may
iafh fost 3 prove valuable in optimizing expensive simulation time: they
g $3N AR A o] allow the user to postprocess and visualize the compute job’s
i, 3 output at run time with negligible turn-around times, and
] eventually temporarily stop execution in order to modify
s simulation parameters which are fed back into the algorithm
on immediate restart.

Finite size effects can play an important role in the stabi-
lization of fluidic structures such as these, given that we are
using periodic boundary conditions. With this in mind, and
using the same parameters as for mixture 09, we computed
the wave-number-averaged differer{dg, 'S for each time
step of evolution of the spherically averaged structure func-
tion S(k) between lattices of sized® and N3, whereN, N’
=64,128,256. Note that the lattice size is increased 8 and 64
times from the original 64size. Finite size effects would be
present if(Ay NS were larger than the error derived from
the differences and the averages. Nonetheless we found
(Ann'S to be larger than the errqR7% larger on average
for N=128 andN’=256), the fact that it strongly decreased
o oo o o005 o0z 000 with N (i.e., (A128 2569 =~ 0.38A4,1269) provides the confi-

(b) ¢ dence necessary to assert that finite size effects are not sig-

nificant in theN=128 simulations we are about to report.

_ FIG._ 9. Frequency power spectra of the structure function forMoreover, as we shall see immediately, since the structures
simulation runs 06, 07, 09, and 16f. Table Ill) at wave number 4 responding to a 64attice exhibit the same morphologies
0.589. Paneib) is a blowup of panela) for long periods of oscil- 55 g the 12Band 256 cases, the qualitative features of the
lation. Error bars were neither considered for the Fourier analySi?ormer are the same as those for the asymptotic limit
nor plotted herQ.AII quantities are reported in lattice units, ans N— s This also extends to the oscillation of the structure
the inverse period. function: the equivalent of Fig. 8 for the 128nd 256 cases
(not shown exhibits similar features, albeit including more
wave numbers for whiclS(k) grows.

Itis known that, in an initially homogeneous 1:1 oil-water  Figure 12 displays three viewpoints of the isosurfatce
mixture, the arrest of phase segregation experienced througt0.40 for the same composition of fluid mixture 09 as simu-
the addition of sufficient amphiphile can lead to the forma-lated on a 128 lattice. We show the restriction to a 33
tion of a thermodynamically stable bicontinuous spongesubdomain, all at time stef=15 000, together with the oil-
phaseg[11,13,2Q. In Fig. 11 we show the late-time morpholo- water interface. Whereas on %64or smalley lattices the
gies for fluid compositions 06, 07, and 08. They are disdiquid-crystalline structure uniformly pervades the simulation
played as theg(x)=0.37 isosurface, corresponding to a cell, on 128 (and largey lattices there are some imperfec-
water-in-oil, “rodlike” scenario, where water is a minority tions present resulting in ordered subdomains with slightly
phase and oil is in excegshe order parameter ranges asvarying orientations between which there exist domain
-0.69< ¢$=<0.68 over the lattice at that time sliceThe boundaries. These boundaries can be considered as defects in
structure suggested by minority-phase isosurfaces and thhe structure, the presence of which is a characteristic feature
structure of the interfacpp(x)=0] for fluid composition 06  of liquid crystals. A time scale for the dynamics of some of
resembles that of a microemulsion, for which structural disthese defects for our simulated gyroi@gsmulation run 09
order is the predominant feature. Fluid composition 08, bycan be roughly estimated from Fig. 10: we observe for that
contrast, shows an evident resemblance to minority-phagegarticular slice that the topological genus of the interface
images seen in transmission electron microtomography afhanges in an interval ranging between 500 and 1000 time
the gyroid ‘G” cubic phase52]. The morphology is an in- steps. State-of-the-art visualization proved key in the analy-
terweaving, chirally symmetric, threefold coordinated, bi-sis of results, and virtual reality technologies can enhance its
continuous lattice. Fluid mixture 07 seems to be a crossoveysefulness by increasing interactivity with the data.
conatusstructure, sharing a substantial amount of disorder Small-angle x-ray scatteringSAXS) techniques have
with the presence of threefold coordinated “unit cells”; thebeen widely used in the determination of the nanostructure of
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fluid mesophasefl4,52,54,5% SAXS spectra, or their nu-
merically computed versiongs6], give peak patterns for
these mesophases that are used as fingerprints in determining
unknown structures. However, the lattice resolution of our
simulations is insufficient to detect multiple peak fingerprints
in plots of the spherically averaged structure function. In-
stead, its unaveraged counter@@t) shows complete agree-
ment of ratios of reciprocal vector moduli with those ob-
served in diffraction patterns of the gyroid, as we display in
Fig. 13 for fluid composition 0954]. In addition, visual
inspection of the unit cell of the oil-water interface un-
equivocally identifies it with that of the gyroid. The size of
such a unit cell as seen in optical textures allows us to asso-
ciate a length scale to the lattice for a particular experimental
realization. For the system reported by Hajahilal. [54], the
lattice would need to be 291 nm in side length with a reso-
lution of 2.3 nm per lattice unit.

Although previous simulation papers on amphiphilic mix-
tures using free-energy-based Langevin diffusion equations
have reported the reproduction of structures resembling the
gyroid [31,32, none of them have studied its features or
dynamics, or incontestably demonstrated its gyroid morphol-
ogy. Furthermore, in one of these papers we observe that the
fluid mesostructure is not stationafg1l], whereas by eye-
balling the whole simulation cell in anoth¢B2] one be-
comes aware that the structure has a morphology which is
reminiscent of the molten gyroid we describe here.

In our simulations we observe that, at late times, the gy-
roid is much closer to stationarity than the sponge me-
sophase: for equal time slices in their evolution, temporal
changes of the mesostructure over a period of 1000 time
steps are considerable for the sporigey., simulation run
06) whereas for the gyroide.g., simulation run 0Pthey
appear as slight interfacial rearrangements and undulations,
reminiscent of breathing modes, keeping the variation in the
position of each unit cell small compared to the lattice size
N. This late-time(ca. 30 000 time stepstructural dynamics
is characterized in our simulations by the fact that the topo-
logical genus igstatistically preserved for the gyroid; for
the sponge, it is not. This can be understood as structural
stabilization by rigidity in the gyroid, and a flowing, glassy
dynamics for the sponge. Such a distinctive behavior for the
sponge may have a bearing on its density fluctuations and
render them different to those occurring in a topology-
conserving dynamics. It is therefore not surprising ttat
we found the oscillation modes for the spon@émulation
run 06 to be at least one order of magnitude more intense
than those for the different gyroids we simulatsdnulation

FIG. 10. Slices of the surfactant density in*38ibsets of a 178
lattice, for composition 09cf. Table ). Panelga), (b), and(c) are

snapshots a=14 000,t=14 600, and=15 000 time steps, respec- ¢ g 09 and 10, cf. Fig)9and (b) recent experimental
tively, which are times for which the structure is close to equilibra-

tion. We only show regions where surfactant density is the highes?tUdleS' using dynamic light scattering gnd various relaxa_tlon
(0.31=p%<0.35), in gray and white, where lighter shading denotesmethOdS[Sn’ do not report on fluctuations for the gyroid

a higher value. We can see that the surfactant mainly concentrat@g]’ _Whereas they_do for the sponge meSOphase' .
around the oil-water interfackp(x)=0], whose intersection with It is accepted wisdonfi59], and a working hypothesis in
the slice is depicted as open undulating or closed lines. Also, ther@any simulation studieg25,60,61, that periodically modu-
are ordered, crystalline regions along with smaller regions Iacking{ated phases may arise in fluid mixtures whenever a repulsive
long-range order and evolving in time. Finalp,is nonuniform on ~ ong-range interaction competes with an attractive short-
the interface(as regions with lighter shading shawfavoring the ~ range one for a configuration that minimizes the interfacial
formation of “surfactant bridges” between adjacent portions of theHamiltonian, possibly also in the presence of a thermal, en-
interface; this leads to Marangoni effects which account for thetropic contribution. Little is said about whether nonlocality is
observed oscillatory behavior. All quantities are in lattice units.  not only a sufficient but also a necessary condition, or
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FIG. 11. Equilibrium minority-phase-order parameter isosurfage9=0.37 (in lattice unit, taken at time step=30 000, at which
-0.69=< ¢=<0.68 over the whole lattice. Snapstia} corresponds to simulation run 06, snapsfimtto simulation run 07, and snapsho}
to simulation run 08, cf. Table I. Shown are £@<48 slabs of a 6%lattice. Note that increasing surfactant concentration leads to an
increased ordering in the mesostructure: simulation run 06 exhibits spongelike features, whereas simulation run 08 is a liquid-crystalline
cubic gyroid mesophase. Snapsfiotis a crossover state in this lyotropic transition—a “molten gyroid.”

whether the nonlocality of the relevant model needs to behat the model is able to simulate liquid-crystalline, cubic
imposedab initio or is rather an effective emergent feature mesophases, such as the gyroid in binary immiscible fluid
picked up by the order-parameter autocorrelation functionmixtures with an amphiphile, and the primitivé®™ in bi-
The LB model we employ in this paper only incorporatesnary, amphiphile-solvent mixture$24], whose density-
local interactions in its mesodynamics; this feature allows itsdensity correlations are markedly nonlocal, and in the forma-
algorithm to be easily parallelized and achieve exceptionallyion of which hydrodynamic interactions play a vital role.
good performanc§40]. Nonetheless, we have demonstratedNonlocality, in our case, is an emergent property of a local
model.

It is worthwhile pointing out that Prinsegt al. [23], using
a DPD model and basing their claims on Monte Carlo studies
of equilibrium cubic phases by Larsd62], suggested that
cubic phases could be engineered to appear if their bead-rod
model were elaborated beyond dimers. If fact, Groot and
Madden'’s (inconclusive finding of a gyroidlike structure
with a DPD model for bead-spring chain copolymépq]
might be considered to support such an assertion. Part of the
importance of our simulations, as well as those of Nekovee
and Coveney[24], is to refute such conjectures, by demon-
strating that cubic mesophases arise in very simple, minimal-
ist, athermal, and hydrodynamically correct fluid models,
with a locally interacting vector order parameter and repro-
ducing universal behavior.

VIl. SUMMARY AND CONCLUSIONS

Our simulations furnish the first quantitative account of
phase-segregation kinetics and mesophase self-assembly in
amphiphilic fluids with a three-dimensional model based on
the Boltzmann transport equation. The method is hydrody-
namically correct, athermal, and models the amphiphilic spe-
cies as bipolar, pointlike particles experiencing short-range

FIG. 12. Isosurfaces of the order parameter at time step interactions with mean fields created by the surrounding bi-
=15000 in a highly ordered 83subdomain on a 128attice for  nary immiscible(“oil-water”) and amphiphilic medium.
fluid composition 09. Panelga), (b), and (c) display the ¢(x) We studied the phase-segregation pathway in a homoge
=0.40(in lattice unity minority-phase isosurface viewed as axono- neous oil-water-surfactant mixture at compositlori.:x, re-
metric projections along thél 0 0), (111), and (110 directions,  spectively, where & x<1.3 is the surfactant-to-watéor to
respectively. Paneld) shows the interface of the same lattice sub- oil) mass fraction. We observed segregation slowdown in the
domain along directior(111), where black and white have been average size of oil-water domains with increasingnd the
used to distinguish one immiscible fluid phase from the other.  reproduction of known crossovers, namely, from algebraic to
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FIG. 13. Temporal evolution dfk,,k,) slices of the structure functioB(k) for fluid composition 09, viewed along th&0 0) direction.
Panelga) and(b) show slices at time step=500, wherek,/(277/N)=0 for (a) andk,/ (27/N)=+14 for (b). Similarly, panelqc) and(d) are
slices at time step=15 000 fork,/(277/N)=0, £14, respectivelyN=128 is the lateral lattice size. Shading denote intens8re$, 50, and
100, where lighter grays up to white mean higher intensities. The spherical shell structareuial (b) indicates the presence of a sponge
(microemulsion phase, which becomes anisotropic at later tinjesand (d). The superposition of slice®) and(d), namely, the ratio of
peaks’ positions oEkZS(k), is in full agreement with SAXS experimental data for the gyroid mesophase. All quantities are in lattice units.

logarithmic to stretched exponential functions. This confirmswith surfactant dynamics onto and at the oil-water interfaces
the usefulness of our method in apprehending the fundameri19]. The late-time structures at these regimes(ayalisor-
tal phenomenology of amphiphilic fluid mixtures; the pres-dered nonstationary sponge mesophases if the initial am-
ence of transients in these crossovers is gratifying given thejphiphile concentration is lower than a threshold regiopr
experimental observation. In order to rule out an increase invell-defined liquid-crystalline cubic gyroid mesophases of
total density ax is increased as a factor contributing to the pinned domain sizes with defects if this initial concentration
slowdown along with the reduction in surface tension, futureis higher than such a threshold. We also found thresholds in
work should investigate domain growth at constant total denthe surfactant coupling strengthg,d and|g,d, for a sponge-
Sity. to-gyroid transition. In the transition region we observed a
The stretched exponential functional form occurring atcrossover structure sharing the structural features of both the
domain growth-arrested regimes can be ascribed to the accgyroid and sponge. We also found that, for the number of
mulation of a large number of relaxation modes associatetime steps simulated, both sponge and gyroid exhibit un-
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damped oscillations at all length scales. For some lengtinesophases prove that, contrary to what has been previously
scales, the temporal trend of their Fourier amplitudes is telaimed[59-61], surfactant-surfactant interactions need not
slowly die out; for others, it increases. be long ranged in order for periodically modulated, long-
We found that extremely slow domain growth can be mis-range ordered structures to self-assemble. In addition, our
taken for genuine arrested growth if attention is not paid tdindings rebut the suggesti¢@3] that cubic mesophases can
minute length scales. Truly segregation-halted regimes exee simulated only when the amphiphile is modeled with a
hibit oscillations in average domain size, which can be seehigh degree of molecular specificity.
at sufficiently late times. These oscillations are caused partly The simulation of the sponge and gyroid phases, and their
by Marangoni flows generated by inhomogeneities in the surcomplex oscillatory dynamics, confirms the richness of our
factant adsorbed on the oil-water interface, and partly by anodel's parameter space. Our lattice-Boltzmann model pro-
surfactant dynamics dictated by competing mechanisms/ides a kinetically and hydrodynamically correct, bottom-up,
namely, surfactant attraction towards the interface andnesoscale description of the generic behavior of amphiphilic
surfactant-surfactant interactions. Because our model dodkiids, which is also extremely computationally efficient on
not presuppose that all the surfactant is adsorbed on the imrassively parallel platforms. Future extensions of this work
terface, as Langevin approaches based on the adiabatic dpeclude the search for regimes leading to equilibrium me-
proximation do[25,28,59, surfactant-surfactant interactions sophases of more varied symmetries, the study of shear-
are not limited to repulsion. Hence, in regimes of large surinduced symmetry transitions, and large-scale studies of de-
factant concentration, and especially in those for which refect dynamics in liquid-crystalline phases. In fact, the
gions of the(oil-waten interface can be sufficiently close to TeraGyroid project, a successful Grid-based transatlantic en-
each other, surfactant is not constrained to dwell on the indeavor employing more than 6000 processors and 17 tera-
terface; rather, it is reasonable to propose the existence of dlops at six supercomputing facilitig$3], has its scientific
adsorption-desorption dynamics driving surfactant towardsaison d’étre based on the results we report in this paper.
and away from it. Our results showing th@j an increase in  TeraGyroid proves the value of computational steering tools
losd excites higher frequencieg) an increase ifg,d damp-  [53] in mapping new parameter space regions of our model.
ens most frequencies, afg) there appear surfactant currents
bridging adjacent interfacial regions confirm this proposal.
Our method is not only the first lattice-Boltzmann model  This work was supported by the UK EPSRC under Grant
to deal with segregation kinetics in three-dimensional amNo. GR/M56234 and RealityGrid Grant No. GR/R67699
phiphilic fluid mixtures, but the first complex fluid model to which provided access to SGI Origin2000 and SGI Ori-
unequivocally reproduce the gyroid cubic mesophase, usingin3800 supercomputers at Computer Services for Academic
a high level of abstraction in modeling the amphiphile. TheResearciCSAR), Manchester Computing Consortium, UK.
truly mesoscopic, particulate nature of the surfactant in thidVe also thank the Higher Education Funding Council for
model accounts for the complex, dynamical behavior obEngland (HEFCE for our on-site 16-node SGI Onyx2
served, even in a noiseless scenario such as ours. It is ngtaphical supercomputer. We thank Dr. Rafael Delgado Bus-
surprising that Ginzburg-Landau-based Langevin modelgalioni for enlightening discussions and Dr. Keir Novik for
which treat surfactant implicitly through a scalar parametettechnical assistance. N.G.-S. also wishes to thank Professor
modifying the free energy are only able to exhibit oscilla- David Jou, Professor José Casas-Vazquez, and Dr. Juan Ca-
tions which decay rapidly in time and whose frequency specmacho at the Universitat Autbnoma de Barcelona, Spain, for
trum has but one peak. Our simulations of liquid-crystallinetheir support.
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