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By means of a three-dimensional amphiphilic lattice-Boltzmann model with short-range interactions for the
description of ternary amphiphilic fluids, we study how the phase separation kinetics of a symmetric binary
immiscible fluid is altered by the presence of the amphiphilic species. We find that a gradual increase in
amphiphile concentration slows down domain growth, initially from algebraic to logarithmic temporal depen-
dence, and, at higher concentrations, from logarithmic to stretched-exponential form. In growth-arrested
stretched-exponential regimes, at late times we observe the self-assembly of sponge mesophases and gyroid
liquid-crystalline cubic mesophases, hence confirming that(a) amphiphile-amphiphile interactions need not be
long-ranged in order for periodically modulated structures to arise in a dynamics of competing interactions, and
(b) a chemically specific model of the amphiphile is not required for the self-assembly of cubic mesophases,
contradicting claims in the literature. We also observe a structural order-disorder transition between sponge and
gyroid phases driven by amphiphile concentration alone or, independently, by the amphiphile-amphiphile and
the amphiphile-binary fluid coupling parameters. For the growth-arrested mesophases, we also observe tem-
poral oscillations in the structure function at all length scales; most of the wave numbers show slow decay, and
long-term stationarity or growth for the others. We ascribe this behavior to a combination of complex am-
phiphile dynamics leading to Marangoni flows.
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I. INTRODUCTION

The termamphiphilic fluidis broadly used to denote mul-
tiphase fluids in which at least one species is of a surfactant
nature. A surfactant molecule(from surface active agent,
which we shall also refer to as an amphiphile) contains a
polar headgroup attached to a hydrocarbon tail which, dis-
persed in a binary immiscible fluid mixture, such as oil and
water, is driven towards and adsorbed at the interface be-
tween the two fluids. The selective chemical affinity between
each part of the surfactant molecule and the components of
the binary mixture is the mechanism responsible for such a
taxis [1]. Not only are amphiphilic fluids important in physi-
cal chemistry, structural biology, soft matter physics, and
materials science from a fundamental perspective, but their
applications are also widespread. Detergents and mammalian
respiration are two common examples in which surfactants
are present. Living cell membranes are complex macromo-
lecular assemblies comprised in large part of self-assembled
phospholipids, of an amphiphilic nature[2]. Sponge me-
sophases are formed as a result of an amphiphile dispersion
or melt at an appropriate composition, and enjoy numerous
applications in medical research as well as the pharmaceuti-
cal, cosmetic, food, and agrochemical and petrochemical in-
dustries [3,4]. Liquid-crystalline bicontinuous cubic me-
sophases of monoglycerides and the lipid extract from

archaebacteriumSulfolobus solfataricushave been found at
physiological conditions in cell organelles and physiological
transient processes such as membrane budding, cell perme-
ation, and the digestion of fats[5]. Amphiphilic cubic me-
sophases can also be synthesised for important applications
in membrane protein crystallization, controlled drug release,
and biosensors[6,7]. These phases are termedmesophases
not only because their intrinsic internal length scales range
between those characteristic of molecular and hydrodynamic
(or macroscopic) realms, but also their mechanical properties
are halfway between those found in a liquid and a solid
[1,2,8].

Amphiphiles have the property of lowering the interfacial
tension in a binary immiscible, say oil-water, fluid[8]. Given
the bipolar nature of their molecular structure, amphiphile
adsorption at the oil-water interface is a process which is
energetically favored relative to their entropically beneficial
dispersion in the bulk. This effectively reduces the pressure
tensor at the interface, making the immiscible species more
alike. As more interfacial surface is created, so more am-
phiphile dispersed in the bulk can be accommodated at it.

The effect of adding surfactant above a critical concentra-
tion to an oil-water mixture undergoing phase separation is
to slow down the demixing process, which, with the addition
of sufficient amphiphile, can be totally arrested. Langevin,
molecular dynamics, and lattice-gas simulations have shown
that, as the concentration of dispersed surfactant increases,
the temporal growth law of the average size of the immis-
cible oil-water domains, of the power-law formta in the
surfactantless case[9,10], is seen to cross over to a slower,
logarithmic growth of the formsln tdu, wherea and u are
fitting parameters andt is the time[11–13]. Emertonet al.
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showed that increasing the surfactant concentration even fur-
ther leads to growth well described by the stretched expo-
nential A−B exps−CtDd, where A, B, C, and D are fitting
parameters, including halted segregation at sufficiently late
times [13]. Depending on temperature, pressure, and fluid
composition in such a stretched exponential regime, the am-
phiphile can self-assemble and force the oil-water mixture
into a wealth of equilibrium structures. The self-assembling
process is dictated by the competing attraction-repulsion
mechanisms present among the species. Lamellae and hex-
agonally packed cylinders are examples of these mesophases,
also referred to asLa and H, respectively, with continuous
translational symmetry along one or two directions. Other
examples are the spongesL3d mesophase and the micellar
(Q223 or Pm3n, andQ227 or Fd3m), primitive (“P”, Q229, or
Im3m), diamond (“D”, “ F”, Q224, or Pn3m), and gyroid

(“G”, Q230, or Ia3̄d) cubic mesophases, all of which lack
continuous translational symmetry[14]. Among all the afore-
mentioned phases, only the sponge mesophase is devoid of
long-range order and so cannot be classified as a liquid crys-
tal: it is rather characterized by glassy features.

A sponge mesophase formed by the amphiphilic stabiliza-
tion of a phase-segregating binary fluid mixture is called a
microemulsion. Since we shall be dealing with oil and water
in equal proportions, we shall be concerned with bicontinu-
ous microemulsions. A bicontinuous microemulsion is a
structure consisting of two percolating, interpenetrating oil
and water phases separated by a monolayer of surfactant
molecules adsorbed at the interface. Oil and water are isotro-
pically mixed, and ordering is short range. Sponge phases
formed by the dispersion of amphiphile in a single-phase
solvent differ from microemulsions in that it is a surfactant
bilayer which underlies the structure, and the regions it di-
vides are occupied by the same fluid component. A gyroid
phase is also a bicontinuous, interpenetrating structure; how-
ever, ordering is evidently long range, whence its classifica-
tion as a liquid crystal. In the gyroid, the locus where most of
the surfactant resides is a triply periodic minimal surface
(TPMS) whose unit cell is of cubic symmetry. The surface
has zero mean curvature, no two points on it are connected
by a straight segment, and no reflexion symmetries are
present. Isosurfaces of the gyroid phase for which oil and
water are not at equal composition(minority phases) form
mutually percolating, threefold coordinated, regular lattices.
Other examples of triply periodic surfaces of zero mean cur-
vature arise in theP andD mesophases, the minority-phase
isosurfaces of which exhibit coordination numbers of six and
four, respectively.

The purpose of the present paper is to report on a theo-
retical study of the segregation kinetics in ternary am-
phiphilic fluids and the self-assembly of the sponge and gy-
roid mesophases. By progressively adding surfactant to an
initially homogeneous immiscible oil-water mixture on the
way to achieving arrested domain growth, we shall give an
account of how the segregation kinetics of the fluid domains
is affected by the addition of surfactant, and study the fea-
tures of the associated mesophases that are formed. The me-
sophases corresponding to such late time, arrested growth
regimes are sponges which turn into gyroids as we increase

the surfactant concentration. We shall also see that these
phases exhibit temporal oscillations in the size of the oil-
water domains, which we ascribe to Marangoni flows.

II. OVERVIEW OF MODELING AND SIMULATION OF
AMPHIPHILIC FLUID SELF-ASSEMBLY

Various methods have been used to date to model and
simulate ternary amphiphilic mixtures and to study their
phase-segregation kinetics and the formation of microemul-
sions and liquid-crystalline phases. We briefly review them
in this section.

Kawakatsuet al.studied segregation kinetics employing a
two-dimensional hybrid model with thermal noise but with-
out hydrodynamics, combining a continuum, Langevin diffu-
sion equation for the oil-water dynamics and Newtonian dy-
namics with dissipation for bipolar particles modeling the
surfactant[11]. They used a free energy in the form of a
f4-Ginzburg-Landau expansion[15] plus terms modeling the
surfactant-interface and surfactant-surfactant interactions.
They found the average domain size of symmetric binary
immiscible fluids with amphiphile to grow with time more
slowly thant1/3, the latter expected for binary alloys in two
and three dimensions. Laradjiet al., instead of modeling the
amphiphile as a particulate species, regarded it as a continu-
ous density coupled to the oil-water order parameter in a
f4-Ginzburg-Landau free energy[12]. In their work, they
studied several cases of two-dimensional Langevin diffusion
equations, one of which being the so-called ModelD [16].
Model D incorporates noise, a conserved order parameter,
and surfactant density, but excludes hydrodynamics. Laradji
et al. not only found logarithmic growth for the behavior of
the average domain size with time, but also observed a slow-
down from it for higher surfactant concentrations and dy-
namical scaling for the structure function at intermediate
times. Yao and Laradji, using a modified Lifshitz-Slyozov
nucleation theory for continuum fields in two and three di-
mensions, studied how the Ostwald ripening dynamics of an
asymmetric mixture of oil and water is altered by the pres-
ence of a surfactant species[17]. They found results similar
to those of Laradjiet al. [12].

The segregation kinetics of amphiphilic fluids have also
been studied with fully particulate methods such as classical
molecular dynamics and, more recently, hydrodynamic lat-
tice gases. Using a minimalist molecular dynamics model in
two dimensions, Laradjiet al. [18] found a crossover scaling
function similar to previous Langevin[11] and Lifshitz-
Slyozov models[17], yet with a different algebraic exponent,
and a slowing down from the algebraic growth laws for bi-
nary mixtures. Using two-dimensional hydrodynamic lattice-
gas models for symmetric[13] and asymmetric mixtures
[19], the group of Coveney found that surfactant induces a
crossover to a logarithmic slow growth, and, with sufficient
surfactant, full arrest of domain growth which is well de-
scribed by a stretched exponential function. The group found
similar results with a three-dimensional hydrodynamic
lattice-gas model[20].

Particulate methods have also been used to tackle me-
sophase self-assembly. Using classical molecular dynamics
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methods, Marrinket al. simulated evolution of a surfactant
bilayer, initially set up on the morphology of a “D” TPMS, to
study both the surfactant packing structure and how close
such a bilayer would remain to the TPMS after relaxation
[6]. They, however, did not address self-assembly dynamics:
time scales required for that are orders of magnitude above
those reachable with atomistic techniques on present-day
cutting-edge supercomputers. In dissipative particle dynam-
ics (DPD) approaches, a Langevin dynamics with momen-
tum conservation is solved to model ill-defined, mesoscopic
dissipative particles interacting via repulsive, soft potentials;
hydrodynamics is emergent and the amphiphile is repre-
sented by dissipative particles bound together by rods or
springs[21–23]. The DPD simulations of Groot and Madden
of copolymer melts[21] showed that melts of symmetric
amphiphile led to lamellar phases, whereas a gyroidlike
structure appeared only for asymmetric amphiphile as a tran-
sient phase, precursor to a hexagonally packed tubular phase.
Nekovee and Coveney, using the lattice-Boltzmann model
we employ in this work, were able to reproduce the “P”
mesophase in a binary amphiphilic mixture of surfactant and
solvent[24].

Many of the simulation studies on the formation kinetics
of microemulsion and liquid-crystalline mesophases have
made use of stochastic Langevin diffusion methods, in which
mass currents are driven by chemical potential gradients
computed from free energies of the ubiquitous
f4-Ginzburg-Landau expansion form. These models treat the
amphiphile only implicitly through the functional depen-
dence of the surface tension parameter with the amphiphile
density [25–29]. In cases in which the amphiphile is a co-
polymer, however, the free energy is often derived from
polymer models which aim at accounting for the am-
phiphile’s molecular structure with a certain degree of speci-
ficity [30–32]. The validity of these Flory-Huggins-type ap-
proaches rests on being able to derive the free energy from a
microscopic model, which not only might entail considerable
difficulty but does require the segregation to be a quasistatic,
local equilibrium process. Under general far from equilib-
rium conditions, such as occurs in the sudden-quench sce-
nario so often employed in the literature, equilibrium ther-
modynamic potentials are known not to adequately describe
the process. Besides, free-energy-based methods also require
surfactant adsorption and relaxation on the interface to be
much faster than interface motion, a so-calledadiabatic ap-
proximation. Free-energy approaches are frequently repre-
sented as paradigms of thermodynamically consistent meso-
scopic methods; some of them also pursue chemical
specificity in elaborate empirical exercises amounting to
little more than parameter fitting of polymer models. The
philosophy behind them, nonetheless, is the use of macro-
scopic, local equilibrium information to specify a stochastic,
and hence mesoscopic, nonequilibrium dynamics. None of
these methods offers a dynamics satisfying detailed balance,
let alone anH theorem(Lyapunov function) guaranteeing
irreversible evolution towards the equilibrium state described
by the prescribed free energy. As a consequence, the “ther-
modynamic consistency” of these methods remains on shaky
grounds.

The fact that some free-energy approaches[31,32] focus
on the specific molecular structure of the amphiphile raises

the question of what use particulate methods, such as is the
one we report in this paper, have in the simulation of am-
phiphilic fluid systems. Our method, by reducing the descrip-
tion of the amphiphilic molecule to its minimal possible
expression—a point dipole,—retains the minimum number
of degrees of freedom necessary to model interfacial adsorp-
tion and micellization, and, additionally, in a hydrodynami-
cally consistent framework which does not require processes
to be quasistatic. With these basic properties at our disposal,
we want to fully exploit our model’s capabilities to deter-
mine the nonequilibrium amphiphilic dynamics and the equi-
librium fluid structures arising from it. The minimalistic
bottom-up approach is in line with the fact that, far enough
from criticality, distinct molecular structures and micro-
scopic dynamics can produce similar macroscopic
behavior—this is universality emerging from microscopic
complexity [33]. In addition, particulate methods are much
more suitable than conventional continuum fluid dynamics
methods[34] for the simulation of interface dynamics. Such
dynamics is an emergent property of the underlying interpar-
ticle interactions among the immiscible species; a set of con-
tinuum partial differential equations describing the locus of
the interface is, rather, its macroscopic manifestation, and its
solution a much more laborious endeavor.A fortiori, model-
ing surfactant adsorption and self-assembly in an explicit
fashion via particulate methods provides a more realistic pic-
ture of the microscopics than doing so at the continuum,
macroscopic limit described by free-energy approaches.

Lattice-Boltzmann(LB) methods were originally devel-
oped as a means of reducing the computational cost associ-
ated with lattice-gas automation(LGA) algorithms[35]. LB
methods evolve a single-particle distribution function via a
discretized Boltzmann equation, usually in the linearized,
relaxation-time(BGK) approximation. Such a single-particle
distribution, at a particular time slice and spatial position on
the lattice, is an average over the LGA velocity space for a
statistically large number of different microscopic realiza-
tions (initial conditions). The fact that much of the phenom-
enology of binary immiscible and ternary amphiphilic fluids
occurs for small spatiotemporal gradients permits us to take
the mean-field(or molecular chaos) approximation, and the
Boltzmann-Grad limit in which such an approximation
holds, as heuristically appropriate for the modeling of their
universal properties. Heuristics come into play in that tun-
able parameters are introduced in LB models in order to
reproduce desired quantities of dense and/or complex fluids,
such as surface tension, viscosity, and thermal conductivity
(for required values of Reynolds and Prandtl numbers), stress
tensors(for required viscous or viscoelastic behavior), and
equations of state(for liquid-gas and phase-segregating tran-
sitions). It is worth noting that the increasing popularity of
LB methods in recent years is primarily based on pragmatic
considerations associated with their simplicity and algorith-
mic efficiency.

This paper presents the first quantitative account of am-
phiphilic phase-segregation dynamics using a three-
dimensional model based on the Boltzmann transport equa-
tion. It describes the spontaneous self-assembly of the gyroid
liquid-crystalline cubic mesophase and an order-disorder
transition between the latter and the sponge mesophase, of
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glassy features. The remainder of the paper is structured as
follows. In Sec. III we describe the model. In Sec. IV we
look at how the segregation kinetics of the fluid domains is
affected by the addition of surfactant. Section V studies the
temporal oscillations of the average domain size and the
structure function, which are only observed for segregation-
halted regimes. In Sec. VI we characterize the morphology
of the mesophases corresponding to those regimes via direct-
and Fourier-space imaging, and identify the sponge↔gyroid
structural transition. Finally, we provide conclusions in Sec.
VII.

III. A LATTICE-BOLTZMANN MODEL FOR TERNARY
AMPHIPHLIC FLUIDS

The amphiphilic lattice-Boltzmann model we employ in
this paper is derived from that originally proposed by Chen
et al. [36,37]. The method can be regarded as a fully meso-
scopic, bottom-up approach, which does not require the ex-
istence of a thermodynamic potential describing phase tran-
sitions. In fact, the method is athermal in the sense that, for
algorithmic efficiency reasons, the microdynamics is devised
ex professoto conserve velocity moments of the distribution
function only up to first order; this simplification is valid
wherever fluctuations are negligible, e.g., away from critical-
ity. This is, for example, the case of deep quenches into the
spinodal region of the fluid’s phase diagram, which is our
case in this paper. As opposed to top-down LB methods,
based on the imposition of a free-energy functional[38,39],
the global dynamics arise as an emergent property of the
interactions between mesoscopic levels of description, in
agreement with a complexity paradigm[33]. Oil-water seg-
regation is achieved via interspecies forces which modify the
fluid’s macroscopic velocity. The dynamics in the bulk of
each binary immiscible species(e.g., oil and water) can be
derived from a Boltzmann equation with a forcing term. An
amphiphilic molecule is modeled as a continuously orient-
able massive point dipole subjected to thermal noise and
relaxing towards an equilibrium that minimizes its interac-
tion energy with mean fields generated by its nearest neigh-
bors on the lattice. The densities of surfactant, oil, and water
evolve via coupled lattice-BGK equations. This is a mean-
field approach which exhibits Galilean invariance and repro-
duces correct hydrodynamics. We have also shown, in a pre-
vious paper which serves as a reference benchmark for this
study [9], that the model reproduces the dynamical scaling
hypothesis during the phase segregation experienced by bi-
nary immiscible(oil-water) fluids. Its algorithmic simplicity
allows it to achieve extremely high performance on mas-
sively parallel computers[40], and substantially reduces the
domain of numerical instability present in free-energy-based
LB methods[9]. Because anH theorem is lacking in essen-
tially all multiphase lattice-Boltzmann models hitherto pro-
posed[41], we consider it artificial to try to enforce a pre-
scribed thermodynamic equilibrium in these schemes; a
method which is algorithmically simpler, fully mesoscopic,
mean-field and bottom-up is of greater fundamental interest.

A. Binary immiscible fluids

The core of our model is a lattice-BGK equation govern-
ing the evolution of the mass density distributionmank

asx ,td

of componenta in an interacting fluid mixture at positionx,
instantt, and for discrete molecular velocityck, on a regular
lattice and in discrete time. Here,ma is the particle mass
which we set to unity for convenience, and the single-
particle distribution nk

asx ,td obeys the lattice-BGK
relaxation-streaming mechanism:

nk
asx + ck,t + 1d − nk

asx,td = Vk
a, s1d

where the collision term has two contributions accounting
for the kinetics of noninteracting(ideal) plus interacting
(nonideal) multicomponent species, respectively:

Vk
asx,td ; Vk

s0dasx,td + o
ā

o
l

Lkl
aānl

ā, s2d

the sums extending over all available species and directions,
and

Vk
s0dasx,td ; −

nk
asx,td − nk

aseqdsx,td
ta . s3d

Here, the time increment and lattice spacing are both unity,x
is a node of such a lattice,a=r ,b [e.g. oil srd or watersbd],
andck is one of the 24s;Nvecd discrete velocity vectors plus
one null velocity of the projected face centered hypercubic
D4Q25 lattice we use to guarantee isotropy in the macro-
scopic equations that the model reproduces for a bulk,
single-phase fluid[42]. The parameterta defines a velocity-
independent relaxation rate towards equilibrium for compo-
nenta; Lkl

aā can be regarded as a matrix element of a cross-
collision operatorL which is a function of bothta and the
accelerationaa, the latter being experienced by a fluid ele-
ment due to its neighbors, as will be defined later. The func-
tion nk

aseqdsx ,td in Eq. (3) is the discretization of a third-order
expansion in Mach number of a local Maxwellian[9], repre-
senting the local equilibrium state of theath component,

nk
aseqdsx,td = vkn

asx,tdF1 +
1

cs
2ck ·u +

1

2cs
4sck ·ud2 −

1

2cs
2u2

+
1

6cs
6sck ·ud3 −

1

2cs
4u2sck ·udG , s4d

where vk are the coefficients resulting from the velocity
space discretization, andcs is the speed of sound, both of
which are determined by the choice of the lattice. For the
projected D4Q25 lattice we use, the speed of sound iscs
=1/Î3, vk=1/3 for the speedck=0, and 1/36 for speeds
ck=1 andÎ2. In Eq.(4), u=usx ,td is the macroscopic veloc-
ity of the mixture, through which the collision term couples
the different molecular velocitiesck. This is becauseu is a
function of the components’ macroscopic velocities, defined
asnasx ,tdua;oknk

asx ,tdck.
A judicious choice of the coefficients in the expansion of

the equilibrium distribution Eq.(4), allows for mass and mo-
mentum to be(nonlocally) conserved for the noninteracting,
ideal gas mixture case, i.e.,
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o
k

Vk
s0da = 0, o

a

mao
k

ckVk
s0da = 0. s5d

It can be shown that in the limit of creeping flows to second
order, i.e.,u2<0, the expression for the fluid mixture’s mac-
roscopic velocityu required for momentum conservation in
the absence of interactions, as a function ofua, simplifies to
that obtained for a second-order expansion of the equilibrium
distribution, namelyu;oasraua /tad /oasra /tad, which we
have incorporated in our implementation.

The form of the collision term(2) derives from adding an
incrementDua to the fluid mixture’s macroscopic velocityu
which enters in the equilibrium distribution(4), i.e., Vk

asud
;Vk

s0dasu+Duad whereDua;aata andaa;Fa /ra. Here

Fa,csx,td ; − casx,tdo
ā

gaāo
x8

cāsx8,tdsx8 − xd s6d

is the mean-field force density felt by phasea at sitex and
time t due to its surroundings;gaā is a coupling matrix con-
trolling the interfacial tension between the fluid species, in-
terface adsorption/desorption properties of the surfactant
molecules, and the surfactant-surfactant interaction;ca is an
effective masswhich serves as a functional parameter and
can have a variety of forms for modeling various types of
fluids. We only allow nearest-neighbor interactions,x8;x
+ck, and choosecasx ,td;1−expf−nasx ,tdg, where na

;ok nk
a. This choice forc has also been made by Shan and

Chen to model liquid-gas phase transitions[43] although, as
we shall see, our motivation here is different.

B. Amphiphilic fluids

The incorporation of a third, amphiphilic species not only
requires the inclusion of an extra label(“s” ) for the super-
script denoting the species in Eq.(1), but also a modification
of the cross-collision operatorL since amphiphiles interact
with fluid elements and between themselves. In addition, the
physics of amphiphilic molecules, namely, self-assembly and
adsorption to immiscible fluid interfaces, cannot be modeled
without introducing a new type of body force: in Sec. III A
ordinary bulk fluid species are thought of as pointlike par-
ticles given that their interactions depend on their relative
distances alone. For surfactant molecules, however, their ori-
entations are important too[36], and a dipole is the simplest
configuration to mimic their essential character. In short, we
must extend the scalar lattice-BGK model hitherto described
into a vector model.

Each surfactant molecule is represented by an average
dipole vectordsx ,td at each site and time step, whose orien-
tation is allowed to vary continuously. The average is taken
over nearest neighbors before advection, according to the
propagation equation

nssx,t + 1ddsx,t + 1d = o
k

ñk
ssx − ck,tdd̃sx − ck,td, s7d

where the tildes denote postcollisional values, as defined by
Eq. (1) for theL;0 sgaā;0d case if we replace the leftmost
summand withñk

asx ,td. For the sake of simplicity and com-
putational efficiency, the model does not assign microscopic

velocitiesck to single-dipole vectors but to site-averaged sur-
factant densities instead, as can be seen, for example on the
right-hand side of Eq.(7).

Dipole relaxation is governed by the BGK process

d̃sx,td = dsx,td −
1

tsfdsx,td − deqsx,tdg, s8d

where ts is a new parameter controlling the relaxation to-
wards the local equilibriumdeqsx ,td, which is understood as
the average orientation with respect to the Gibbs measure,
i.e.,

deqsx,td ; d0

E d2V e−bHV̂sx,tdV̂

E d2V e−bHV̂sx,td
, s9d

whered2V is an element of solid angle whose director is the

unit vectorV̂ representing the dipole orientation, andb is an
inverse temperaturelike parameter. The modulus of the left-
hand side of Eq.(9) ranges between 0 and the scale valued0,
chosen to be unity for convenience. That, along withtsù1,
guarantees the magnitude of the dipole vector to be less than
d0 at all times. Equation(9) favors surfactant orientations

which minimize theenergy HV̂;−V̂ ·hsx ,td, wherehsx ,td is
the sum of the mean fields created by surrounding bulk fluid
and surfactant, namely,

hcsx,td ; o
a

qao
k

nasx + ck,tdck, s10d

hssx,td ; o
k
Fnk

ssx,tddsx,td + o
lÞ0

nssx + cl,tdul ·dsx + cl,tdG
s11d

allowing for nearest-neighbor interactions only. The first
equation is a discrete approximation to the color gradient for
the immiscible species, whereqa=0, ±1 is the color charge
of speciesa. The second equation is a dipole vector density,
where summation overk performs local dipole averaging,
summation overl includes all nearest-neighbor contributions,
and the second-rank tensorul ; I −Dclcl /c

2, wherec is the
modulus ofcl and D is the spatial dimension, picks up de-
sired orientations from nearest-neighbor dipoles. Finally, Eq.
(9) can be integrated analytically in three dimensions to give

deq=d0fcothsbhd−1/bhgĥ, where h is the magnitude ofh

and ĥ its unit vector.
The new interactions that modify the interspecies colli-

sion operatorL are the force on an immiscible fluid element
from other fluid elements and amphiphiles,Fa;gbrF

a,c

+gbsF
a,s, whereFa,c is that in Eq.(6), and the force on an

amphiphilic molecule from neighboring fluid elements and
amphiphiles,Fs;gbsF

s,c+gssF
s,s. In these expressions,gbr,

gbs, andgssare coupling scalar parameters, and the analytical
expressions for each force term, derived in Ref.[36], are

Fa,s ; − 2gasc
asx,tdo

kÞ0
d̃sx + cl,tdul · cssx + cl,td, s12d
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Fs,c; 2cssx,tdd̃sx + cl,td ·o
a

gaso
kÞ0

ukc
asx + ck,td,

s13d

Fs,s; −
4D

c2 gssc
ssx,tdo

k

hd̃sx + ck,td · uk · d̃sx,tdck

+ fd̃sx + ck,tdd̃sx,td + d̃sx,tdd̃sx + ck,tdg ·ckj

3cssx + ck,td. s14d

Equations(12)–(14) were derived considering only nearest-
neighbor interactions, modeling each dipole as a dumbbell of
oppositely color-charged particles displaced ±d /2 from the
dipole’s center of mass locationx, and carrying out Taylor
expansions of the force(6) to leading order ind aboutx as
well as those at the neighboring sites[36]. Also, Eq.(13) is
the reaction to force(12), and Taylor expansions in the ratio
of ucku to the length scale that the color gradient sets can be
used to further simplify the expressions. Finally, additional
coupling parametersgaā have been introduced, wheregss
should be chosen negative to model attraction between two
amphiphile heads or tails, and repulsion between a head and
a tail.

C. Selection of the parameters for the simulations

The model is implemented as a parallel code inFOR-

TRAN90 making use of the message passing interface parallel
paradigm[44] and spatial domain decomposition, and incor-
porating wrap-around, periodical boundary conditions in all
three dimensions. It was executed on 16 to 64 processors on
SGI Origin2000 and Origin3800 parallel platforms. The form
c;1
−expf−nsx ,tdg for the effective mass in the force in Eq.(6)
was heuristically chosen so as to broaden the region of nu-
merical stability in parameter space: numerical instabilities
can arise as the result of high values of forces and speeds,
and are more likely to occur in our model when surfactant
interactions are included than for binary immiscible fluids
[9,45].

Preliminary studies allowed us to determine the values of
the model’s various parameters for which an initially thor-
ough mixture of two immiscible fluid phases plus a dispersed
amphiphilic species produced a segregated mixture with ar-
rested domain growth[45]. Those values were the surfactant
thermal parameterb=10.0, all particle masses and relaxation
times set to 1.0, and coupling constantsgbr=0.08, gbs
=−0.006, andgss=−0.003.[Massesma enter in the descrip-
tion throughrasx ,td;okm

ank
asx ,td.] We simulated the be-

havior of a ternary mixture by varying the coupling constants
around the values mentioned above, and for initial surfactant
particle densities ranging in the interval 0.00øns0dsø0.90.
The lattice sites and directions were initially populated with
flatly distributed mass densities, 0ørk

asx ,0dømans0da /Nvec,
wherens0da is the particle density of phasea, andk numbers
each of theNvec=24 velocity vectors. We determined that
settingns0da.0.6 for both species guaranteed immiscibility.
In all the simulations we present here we set oil:water mass

fractions to 1:1, specifically atns0da=0.7 for a=r ,b.
It is experimentally known that the addition of amphiphile

into an immiscible fluid mixture reduces the interfacial ten-
sion, as has also been reported for various lattice-gas models
in two and three dimensions[13,20]. To confirm that our
model reproduces this important property, we ran simulations
on a 4343128 lattice of a planar interface with surfactant
adsorbed onto it and whose initial density was varied be-
tween simulation runs. The surface tension was calculated
with the line integral along the normal to the interface[46],

s =E
−`

+`

fPzzszd − Pxxszdgdz, s15d

where, for the pressure tensorP;hPijj, we used the expres-
sion [9]

Psxd = o
a

o
k

rk
asxdckck +

1

4o
a,ā

gaāo
x8

fcasxdcāsx8d

+ cāsxdcasx8dgsx − x8dsx − x8d. s16d

We restrict ourselves in this study to nearest-neighbor inter-
actions,x8;x+ck, and transversal symmetry allows the sec-
ond summand within the integrand in Eq.(15), which in
general is1

2sPxx+Pyyd, to be simplified as shown. Equation
(16) contains a kinetic(first) term, the momentum flux, due
to the free streaming of particles corresponding to an ideal
gas contribution, plus a potential or virial(second) term due
to the interparticle momentum transfer derived from the
force (6) [47,48].

Figure 1 shows the surface tensions plotted against ini-

FIG. 1. Surface tension dependence on the surfactant concentra-
tion (mass fraction, cf. Table I) as measured at a planar interface
making use of Eq.(15). A lattice of size 4343128 was allowed to
evolve up to time step 25 000, and pressure tensor components were
measured every 1000 time steps. The surface tension tends to grow
with time and reaches a horizontal asymptote; at that time step the
surface tension only differs in 16 % from that at the previous mea-
surement. Interpolation serves as a reference to the eye. Coupling
constants used weregbr=0.08, gbs=−0.006, andgss=−0.003. Oil
and water densities used werens0dR=ns0dB=0.7. All quantities are
reported in lattice units.
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tial surfactant density, and details on parameters and densi-
ties used are included in the caption. Notice that in the re-
gime the binary fluid is in, and for the values of surfactant
density we use, the surface tension decreases linearly with
surfactant concentration. It is entirely possible that there may
be departures from linearity were we to increase the surfac-
tant concentration beyond that shown in Fig. 1 because of
interfacial saturation with surfactant, as observed in two- and
three-dimensional lattice-gas studies[13,20].

IV. DOMAIN GROWTH KINETICS

We ran simulations starting with a homogeneous mixture
of oil and water particle mixture to which surfactant was
randomly added across on the lattice. Lattice sizes employed
were 643 and 1283 to assess finite size effects. Each lattice
site was populated with a density uniformly distributed in the
range zero up to the values summarized in Table I.

The average size of the oil-water domains is a natural
measure of the degree of segregation within the mixture. We
define it as the inverse first moment of the spherically aver-
aged oil-water structure function,Lstd;2p /k1std, where
k1std;okkSsk,td /okSsk,td. The spherically averaged oil-
water structure functionSsk,td is ok̂ Ssk ,td /ok̂ 1, where the
Ssk ,td is the oil-water structure function,

Ssk,td ;
§

V
ufk8stdu2, s17d

and ok̂ denotes summation over the set of wave vectors
contained in the spherical shelln− 1

2 ø sV1/3sk/2pdøn
+ 1/2, for integern. Equation(17) is the Fourier transform
of the spatial autocorrelation function for the oil-water order
parameterf;rr−rb, whereV is the lattice volume,§ is the
volume of the lattice unit cell, andfk8std is the Fourier trans-
form of the fluctuations of the order parameter,f. Our
choice of the structure function, rather than alternative mea-
sures of domain size such as the autocorrelation function,
was made on the basis that it is directly proportional to x-ray
or neutron scattering intensities, hence facilitating direct
comparison with empirical data[49].

In Fig. 2 we plot the temporal evolution of the average
domain sizeL for the surfactant concentrations of Table I.
The amount of surfactant needed to slow down the kinetics
of the binary immiscible oil-water mixture(simulation run

01) is seen to be relatively low. We now need to find the
growth laws that best fit these data. Previous simulation stud-
ies, for 1:1 oil-water fluid mixtures with or without surfac-
tant [9,13,20,37], have found algebraic, logarithmically slow
and stretched exponential behaviors, given as

a1st − b1dc1, s18d

a2sln tdc2, s19d

a3 − b3 expf− c3st − d3de3g, s20d

to be those characterizing the temporal growth of the average
domain size,Lstd, of an oil-water mixture without surfactant,
Eq. (18) [9], and when surfactant is added above a minimum
threshold concentration, Eq.(19), and at a sufficiently high
amphiphile concentration, Eq.(20), the latter being a regime
for which arrested growth is reached at late times. The coef-
ficientsai andbi si =1,2,3d are fitting parameters. While we
shall take these functional forms as suggested choices, we
would also like to find out how closely they in fact fit our
data.

Linearity in thest ,Ld data cloud on a log-log plot would
permit us to ascertain whether or not the data follow Eq.
(18), regardless of the zero-time offset valueb1 since this is
a horizontal displacement. To find out which data may be
better fit by Eq.(19), we would requiresln t ,Ld pairs of data
in a search for linearity on a log-log plot. This method, how-
ever, is not likely to be of much help given the small differ-

TABLE I. Surfactant densities employed in the study of the
algebraic-to-logarithmic and logarithmic-to-stretched exponential
transitions. The mass fractionxs is the ratio ofns0ds to ns0db=ns0dr

=0.7, and the rest of the parameters used weregbr=0.08,
gbs=−0.006,gss=−0.003, masses and relaxation times set to 1.0,
andb=10.0. The lattice used was sized 643 for all simulation runs
except 01, for which it was 1283 in order to avoid finite size effects
entering at aboutL<25.

Simulation run 01 02 03 04 05 06 07 08

ns0ds 0.0 0.15 0.22 0.30 0.35 0.40 0.60 0.90

xs 0.0 0.21 0.31 0.43 0.50 0.57 0.86 1.3

FIG. 2. Temporal evolution of the average fluid-fluid domain
size for surfactant concentrations 0.0, 0.15, 0.22, 0.30, 0.35, 0.40,
0.60, and 0.90 for curves from top to bottom and corresponding to
simulation runs 01, 02, 03, 04, 05, 06, 07, and 08, respectively(cf.
Table I). Measurements have been taken every 25 time steps, and
the plots include error bars, which represent the uncertainty(one
standard error) transmitted from the standard error of the structure
function spherical average. We used a lattice of size 1283 for simu-
lation run 01 and 643 for the remaining curves, since finite size
effects start to creep in for domain sizes larger thanL<30. All
quantities are reported in lattice units. Note that the surfactant-
containing fluids lack the zero-growth, linear transient found for
simulation run 01[11].
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ence between plots of the logarithm of a data series and plots
of the logarithm of such logarithmic data, as we shall see. We
therefore prefer to adopt the criterion of considering candi-
dates for the model of Eq.(18) from the log-log linearity
method, while resorting to both visual inspection and a
search for a reduced chi-squared statisticsx2/ndfd close to
1.0 in order to identify a slower growth such as that of Eq.
(19) (ndf is the number of degrees of freedom). Finally, Eq.
(20) possesses a distinctive horizontal asymptote which best
fits data whose domain growth at late times is fully arrested.

From the linearity of curves in Fig. 3 we can infer that
simulation runs 01 and 02(Table I) are good candidates for
the growth model of Eq.(18). Figure 3, however, leads to the
same conclusion, as expected given the small difference be-
tween these two plots. We then resort to looking at the
x2/ndf statistic in assessing how well Eqs.(18) and (19) fit
simulation runs 01, 02, and 03, see Table II. The binary
immiscible fluid simulation run 01, with no surfactant
present, exhibits an exponent consistent with the system be-
ing in a crossover between the known diffusivest1/3d and
viscous hydrodynamicst1.0d regimes, already reported for bi-
nary immiscible fluids simulated with the lattice-BGK model
we employ in this paper[9]. Simulation run 02 has the pe-
culiarity that Eq.(18) holds (poorly) only during an initial
transient, and Eq.(19) takes over to give a very good fit at
later times,t.1100. This transient is due to the time re-
quired by the surfactant to adsorb onto the interface and af-
fect the binary immiscible interfacial dynamics. Finally,
simulation run 03 is best fit by Eq.(19), although the high
x2/ndf value indicates that the data contain more detail than
the model does. In addition, from Fig. 3(b), this mixture
segregates at a slower speed than that given by Eq.(19), yet
it does not reach total arrest, at least up to 7200 time steps.
Rather, total arrest is seen at higher surfactant concentra-
tions, as in runs 06 and 07(see Fig. 6). We conclude that
simulation run 03 represents a fluid which is in a transition
regime between the logarithmic and the stretched exponen-
tial behaviors. A similar behavior was previously observed
by others using lattice-gas methods in two[13] and three
dimensions[20], and lattice-Boltzmann methods in two di-
mensions[37]. Emerton et al., using a two-dimensional
lattice-gas model, reported the divergence of the coefficients
of Eq. (20) in an attempt to fit data for which total growth
arrest had not been achieved[13]. The fits to our data, which
include error bars, also produced the same divergences. Their
fluid mixtures as well as ours, we conclude, were, rather, in a
transitional regime well described by a growth law slower
than Eq.(19) which still allowed for domain growth. It is,
however, possible that growth arrest could be achieved at
later times; this prearrest regime would then be a long-lived
transient.

We now look at wave numbers of the spherically averaged
structure functionSskd other than the first moment, already
provided byLstd. Figure 4 shows the spherically averaged
structure function for simulation run 06 at several time steps.
The temporal evolution of the curves resembles the segrega-
tion kinetics for binary immiscible fluid mixtures, except that
domain growth arrest for late times makes them tend to su-
perimpose. Note that a hump appears at these times, indicat-

ing the formation of structures, statistically weak, of size
close to half the lattice side length. Inspection offsxd snap-
shots suggests the spurious presence of elongated domains of
such sizes which are extended rather than folded. At the late
times we examined, these elongations tend to vanish or fold.
Still in Fig. 4, it is worth noting that for all length scales
above a threshold(aboutk,0.9), curve superposition is not
sharp. This is a consequence of the fact that for the fluid
composition of simulation run 06, and those of higher sur-

FIG. 3. Panel(a) shows the time evolution of the average do-
main size for simulation runs 01, 02, and 03, see Fig. 2. The log-log
scale helps to visually detect behaviors following Eq.(18)—in this
case, that of the uppermost curve. The straight line above it serves
as a guide to the eye only and its slope is given byc1 in Table II.
Panel(b) shows the evolution of the average domain size with the
logarithm of the time step for simulation runs 01, 02, and 03, on a
log-log scale. This is useful to discriminate growth between that of
Eqs. (18) and (19); see Table II for the fitting parameters. The
straight solid line shown indicates a good fit to Eq.(19) for
t.1100sln t<7d. For t,1100, the curve is better fit by Eq.(18),
albeit still quite poorly. Measurements have been taken every 25
time steps, and the plot includes error bars representing the uncer-
tainty (one standard deviation) of the spherical averaged structure
function. We use a 1283 lattice for simulation run 01 and a 643

lattice for the remainder. All quantities are reported in lattice units.
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factant concentrations, there are small temporal oscillations
in Sskd. All these mixtures have in common that they have
achieved total growth arrest—in fact,Lstd decreases in time
for simulation run 08, as we shall see later on and discuss in
more detail. Oscillations in the structure function and a hump
at low wave numbers have been reported previously in a
hydrodynamic Langevin model of sponge phase dynamics,
using field-theoretic methods[28]. However, this approach
did not consider the amphiphile concentration explicitly but,
rather, embedded it into a Ginzburg-Landau free energy
through the surface tension, in a scenario where amphiphile
relaxation is assumed to be fast compared to that of the oil-
water order parameter.

In Figs. 5(a) and 5(b) we show the spherically averaged
structure function at time step 7200 of the mixtures in Table

I, for the larger and smaller length scales, respectively. As the
initial density of surfactant is increased in a series of replica
initially homogeneous water-oil-surfactant fluid mixtures, as
indicated by Table I, it is expected that the oil-water structure
function peaks will move to higher wave numbers, decrease
in intensity, and broaden[4,8,50]. This is indeed what we
observe in Fig. 5(a). Note that at smaller length scales, Fig.
5(b), the exponential decay of the structure function that oc-
curs for simulation run 01 does not hold for the ternary am-
phiphilic mixtures. This can be explained by the contribution
of small micellar structures that form in the bulk of each
immiscible phase, more likely to take place for mixtures of
higher surfactant concentration. Indeed, in Fig. 5(b), the lat-
ter exhibit the most manifest deviations.

TABLE II. Fits of the average domain size growth with time to
the models of Eqs.(18) and(19) for simulation runs corresponding
to surfactant mass fractions 0.0, 0.21, and 0.31, from top to bottom,
respectively, as detailed in Table I. Lattice sizes used were 1283 for
simulation run 01 and 643 for the rest. Poor fits are indicated as
blank fields. Simulation run 02 shows two behaviors in its temporal
evolution, Eq.(18) for t,1100 and Eq.(19) for t.1100. Note the
very good value of thex2/ndf statistic for the latter. The poor value
of the statistic for simulation run 03 indicates that Eq.(19) is insuf-
ficient and a more detailed model is required, albeit not Eq.(20).

Simulation run c1 x2/ndf c2 x2/ndf

01 0.896±0.007 0.18

02 0.644±0.004 7.5 3.850±0.010 0.92

03 2.649±0.022 39

FIG. 4. Spherically averaged structure functions for the oil-
water order parameter simulation run 06(cf. Table III). According
to how close to asymptotic behavior the distribution of domain sizes
appears to be, we have classified simulation times for this simula-
tion run in three groups: early times(time steps 25, 50, 75, 125,
150, 175, and 300 in the plot), intermediate times(time steps
roughly from 800 to 1700), and late times(time steps 1800, 2300,
2800, 3300, 3800, 4300, 4800, 6000, 10 000, 14 000, 18 000,
22 000, 26 000, and 30 000 in the plot). Error bars represent the
standard error of the shell average. Lattice size is 643. All quantities
are reported in lattice units.

FIG. 5. Log-linear plots of the spherically averaged structure
functions at time step 7200 for increasing surfactant concentrations
indicated by the numerical labeling on each curve, corresponding to
simulation runs 01, 02, 03, 04, 05, 06, 07, and 08, respectively, cf.
Table I. For large wavelengths, panel(a), we can see how the peaks
move to higher wave numbers, decrease in height, and broaden.
Note that for short wavelengths, panel(b), the only straight tail is
for curvens0ds=0.0, whose slope is −4.46310−4. Error bars repre-
sent one standard error of the shell averageSskd. Lattice size is 1283

for simulation run 01 and 643 for the others. All quantities are
reported in lattice units.
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V. SELF-SUSTAINED OSCILLATIONS

Arrest of domain growth occurs for high surfactant den-
sity only, cf. Fig. 2, as expected. Further inspection, how-
ever, shows that not only are there small temporal oscilla-
tions of the average domain size, as we mentioned at the end
of the last section, but also that they do not die out during the
simulation window. Similarly to what was previously re-
ported using a bottom-up lattice-Boltzmann method in two
dimensions akin to the one employed here[37], the ampli-
tude of the oscillations is very small compared to the average
domain size, and smaller than previous lattice-gas simula-
tions in two and three dimensions[13,20]. The fact that, in
lattice-gas methods, these oscillations persist after ensemble
averaging is consistent with their occurrence in lattice-
Boltzmann approaches, since the latter are effectively
ensemble-averaged versions of the former. Since the systems
we simulate are dissipative and isolated(there is no mass or
momentum exchange with external sources), oscillations,
however, are expected to die out at sufficiently late times.

Motivated by the observation of oscillating average do-
main sizes, we performed additional simulation runs in order
to check the role of the coupling constantsgss andgbs in the
reproduction of such oscillations, our hypothesis being that
both an increased surfactant-surfactant interaction and an in-
creased tendency for surfactant to adsorb on the interface
might be expected to have an influence on their frequency
and amplitude. In Table III we summarize the parameters
used in the new simulation runs(09 and 10) along with those
of previous oscillating fluid mixtures.

Figure 6 shows the temporal oscillations in the average
domain size for the mixtures of Table III, and Fig. 7 shows
their structure functions at time step 17 000. All these mix-
tures exhibit domain growth arrest; interestingly, Fig. 6
shows that the average domain size shrinks in time for some
of them (mixtures 08 and 09). In addition, we uncover the
role that the coupling constantsgss andgbs have in the oscil-
lations: while increasingugssu seems to enhance their fre-
quency, an increase inugbsu drastically dampens them and
reduces their amplitude. However damped the oscillations of
simulation run 10 may seem, zooming into smaller scales
reveals the existence of minute oscillations(less than 0.10
lattice sites in amplitude), which is not the case for simula-
tion runs 01 through to 05.(Note that the length scales re-
ported in Fig. 6 are lattice averages; an amplitude being less

than one lattice site hence remains physically meaningful.)
Oscillations are, therefore, the signature of all growth-halted
regimes.

The structure function plots of Fig. 7 provide further in-
sight into the role of coupling constantsgss and gbs in the
oscillation dynamics. Note that mixture 08 produces a peak
of intensity similar to that of mixture 07, a feature already
seen at much earlier times[see Fig. 5(a)]. This peak height
similarity could have been ascribed to a transient, such as
turned out to be the case for the difference in peak intensities
between mixtures 06 and 07; however, it persisted in time.
Mixture 09 also shows a peak intensity similar to that of

TABLE III. Parameters employed in studying domain size os-
cillations, whose onset occurs for surfactant mass fractions
xsù0.57; the remaining parameters of the model are stated in the
caption of Table I, also for the additional runs 09 and 10, in lattice
units.

Simulation run ns0ds xs gss gbs

06 0.40 0.57 −0.0030 −0.006

07 0.60 0.86 −0.0030 −0.006

08 0.90 1.3 −0.0030 −0.006

09 0.60 0.86 −0.0045 −0.006

10 0.60 0.86 −0.0030 −0.009

FIG. 6. Temporal evolution of the average domain size for simu-
lation runs 06, 07, 09, 10, and 08, as seen from top to bottom att
=10 000 (cf. Table III). Measurements have been taken every 25
time steps; error bars are included and represent the uncertainty
(“one sigma”) transmitted from the standard error of the spherically
averaged structure function.Caveat lector:an oscillation in the av-
erage domain size is genuinely representative of oscillations in the
domain sizes only if error bars are smaller than the oscillation am-
plitude. Lattice size is 643. All quantities are reported in lattice
units.

FIG. 7. Structure functions at late time step 17 000 for simula-
tion runs 06, 07, 09, 10, and 08(cf. Table III). Error bars represent
the standard error of the shell averageSskd. Lattice size is 643. All
quantities are reported in lattice units.
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mixture 07. Peak intensities bear a direct relation to the
steepness of oil-water domain walls and, hence, to their sur-
face tension. The fact that increasing the surfactant concen-
tration (in mixture 08 compared to mixture 07) does not
reduce the surface tension denotes that the interface is close
to its saturation limit with respect to surfactant adsorption. If
enough surfactant is dispersed in the bulk, a process of dif-
fusion towards and adsorption onto the interface could con-
tinue to occur, much slower compared to the initial adsorp-
tion leading to growth arrest, which could explain the slow
domain size reduction. In the cases of simulation runs 08 and
09, close to interface saturation, surfactant concentration in
the bulk is high. An amphiphilic mixture being close to the
saturation limit implies that the value of its surface tension is
the lowest among all amphiphilic mixtures sharing the same
composition, relaxation times and coupling constantsgaā.
Surface tension may be further reduced only by allowing
more surfactant molecules onto the interface, which can be
done by increasingugbsu. This is exactly what we observe in
Fig. 7 for fluid composition 10.

As we saw in Fig. 4, small oscillations in the average
domain size indicate that the structure function varies in time
back and forth between distributions of sizes which are close
to each other. The first moment of such distributions, as stud-
ied in Fig. 6, may not be representative of the dynamics at
other length scales, as we shall see immediately. In Fig. 8 we
show the temporal evolution ofSskd for mixture 09 for a
range of wavelengths. Note three characteristic features of
theSskd curves: they all oscillate, decrease fork,0.785 and
k.1.08, and increase or remain stationary in the long time
average fork<0.884 andk<0.982. This behavior corre-
sponds to the sharpening of the distributionSskd with time.
Modes with k.1.28 sL,4.91d decay fast enough
[Sskd,0.1 for t<1000] for them to be negligible in terms of
their contribution to the fluid mesostructure. Other decreas-
ing modes take much longerst.30 000d to vanish.

Our study of the oscillations would be incomplete without
looking at frequency power spectra. The time series we ana-
lyze correspond toSsk=0.589d of fluids 06, 07, 09 and 10;
this choice is made on the basis that this wave number ap-
prehends characteristic features of each data set. From each
time series we subtracted its longest waves(i.e., its enve-
lope), computed as the averages1/ldot8Ssk,t8d, l being a
lag large enough so as to decouple high-frequency from low-
frequency waves(l=5000 time steps), the sum extending
over the intervalt−l /2ø t8ø t−l /2. The Fourier transform
of the resulting time series we take as the definition of
Ssk,vd, cf. Fig. 9. Note therein two high peaks for simulation
run 06, and a collection of weak peaks(which we define as
those whose heights are less than 5% the height of the largest
peak) occurring for higher frequencies. An increase in sur-
factant density(simulation run 07) causes the number of ex-
cited high-frequency modes to grow slightly, yet they also
decrease in intensity. Simulation run 09, which differs from
mixture 07 in having an increasedugssu, very clearly exhibits
a substantial increment in the number of excited high-
frequency modes. Finally, the spectrum for mixture 10 cor-
roborates the quenching effect on fluctuations caused by in-
creasingugbsu.

The term Marangoni instability describes a convective
flow caused wherever an inhomogeneous temperature or
mass distribution locally alters the interfacial tension[51].
By visualizing the oil-water interface for mixtures 06 to 10
we observed that the density of adsorbed surfactant is not
evenly distributed on it; hence the conditions are set for the
appearance of Marangoni instabilities. Figure 10 displays the
late-time evolution of a subdomain of a fluid of the same
composition as simulation run 09 but simulated on a larger
s1283d lattice. We display the surfactant density on a slice
through the midplane of the subdomain, along with the locus
of the oil-water interface depicted as an isosurface cropped
close to the plane. Surfactant inhomogeneities on the inter-
face are evident from these images, as well as the existence
of a slow, creeping flow. Distinctive features include the
regularity of the order parameter(which we shall study in
detail shortly), the existence of high surfactant density necks
bridging adjacent portions of the interface, and local regions
where regularity is absent, reminiscent of the defects in crys-
talline materials, which possess their own larger-scale dy-
namics.

FIG. 8. Temporal dependence of the structure function for simu-
lation run 09, cf. Table III. Panels(a) and (b) show the short and
long wavelengths, respectively. Measurements have been taken ev-
ery 25 time steps; error bars have been included. Lattice size is 643.
All quantities are reported in lattice units.
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VI. THE SPONGE AND GYROID MESOPHASES

It is known that, in an initially homogeneous 1:1 oil-water
mixture, the arrest of phase segregation experienced through
the addition of sufficient amphiphile can lead to the forma-
tion of a thermodynamically stable bicontinuous sponge
phase[11,13,20]. In Fig. 11 we show the late-time morpholo-
gies for fluid compositions 06, 07, and 08. They are dis-
played as thefsxd=0.37 isosurface, corresponding to a
water-in-oil, “rodlike” scenario, where water is a minority
phase and oil is in excess(the order parameter ranges as
−0.69øfø0.68 over the lattice at that time slice). The
structure suggested by minority-phase isosurfaces and the
structure of the interface[fsxd=0] for fluid composition 06
resembles that of a microemulsion, for which structural dis-
order is the predominant feature. Fluid composition 08, by
contrast, shows an evident resemblance to minority-phase
images seen in transmission electron microtomography of
the gyroid “G” cubic phase[52]. The morphology is an in-
terweaving, chirally symmetric, threefold coordinated, bi-
continuous lattice. Fluid mixture 07 seems to be a crossover,
conatusstructure, sharing a substantial amount of disorder
with the presence of threefold coordinated “unit cells”; the

latter can be seen as vestigial in fluid system 06. Fluid sys-
tems 09 and 10 show that this sponge↔gyroid structural
order-disorder transition not only occurs via an increase in
surfactant concentration(a lyotropic transition), but in the
interaction strength between surfactant with itself and with
the interface. We leave for further work a systematic inves-
tigation of thehns0ds,gbs,gss,gbrj parameter space in mapping
out the equilibrium mesostructures’ phase diagram. In this
endeavor, recently developedcompusteeringtools [53] may
prove valuable in optimizing expensive simulation time: they
allow the user to postprocess and visualize the compute job’s
output at run time with negligible turn-around times, and
eventually temporarily stop execution in order to modify
simulation parameters which are fed back into the algorithm
on immediate restart.

Finite size effects can play an important role in the stabi-
lization of fluidic structures such as these, given that we are
using periodic boundary conditions. With this in mind, and
using the same parameters as for mixture 09, we computed
the wave-number-averaged differencekDN,N8Sl for each time
step of evolution of the spherically averaged structure func-
tion Sskd between lattices of sizesN3 andN83, whereN,N8
=64,128,256. Note that the lattice size is increased 8 and 64
times from the original 643 size. Finite size effects would be
present ifkDN,N8Sl were larger than the error derived from
the differences and the averages. Nonetheless we found
kDN,N8Sl to be larger than the error(27% larger on average
for N=128 andN8=256), the fact that it strongly decreased
with N (i.e., kD128,256Sl<0.38kD64,128Sl) provides the confi-
dence necessary to assert that finite size effects are not sig-
nificant in theN=128 simulations we are about to report.
Moreover, as we shall see immediately, since the structures
corresponding to a 643 lattice exhibit the same morphologies
as do the 1283 and 2563 cases, the qualitative features of the
former are the same as those for the asymptotic limit
N→`. This also extends to the oscillation of the structure
function: the equivalent of Fig. 8 for the 1283 and 2563 cases
(not shown) exhibits similar features, albeit including more
wave numbers for whichSskd grows.

Figure 12 displays three viewpoints of the isosurfacef
=0.40 for the same composition of fluid mixture 09 as simu-
lated on a 1283 lattice. We show the restriction to a 333

subdomain, all at time stept=15 000, together with the oil-
water interface. Whereas on 643 (or smaller) lattices the
liquid-crystalline structure uniformly pervades the simulation
cell, on 1283 (and larger) lattices there are some imperfec-
tions present resulting in ordered subdomains with slightly
varying orientations between which there exist domain
boundaries. These boundaries can be considered as defects in
the structure, the presence of which is a characteristic feature
of liquid crystals. A time scale for the dynamics of some of
these defects for our simulated gyroids(simulation run 09)
can be roughly estimated from Fig. 10: we observe for that
particular slice that the topological genus of the interface
changes in an interval ranging between 500 and 1000 time
steps. State-of-the-art visualization proved key in the analy-
sis of results, and virtual reality technologies can enhance its
usefulness by increasing interactivity with the data.

Small-angle x-ray scattering(SAXS) techniques have
been widely used in the determination of the nanostructure of

FIG. 9. Frequency power spectra of the structure function for
simulation runs 06, 07, 09, and 10(cf. Table III) at wave number
0.589. Panel(b) is a blowup of panel(a) for long periods of oscil-
lation. Error bars were neither considered for the Fourier analysis
nor plotted here. All quantities are reported in lattice units, andv is
the inverse period.
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fluid mesophases[14,52,54,55]. SAXS spectra, or their nu-
merically computed versions[56], give peak patterns for
these mesophases that are used as fingerprints in determining
unknown structures. However, the lattice resolution of our
simulations is insufficient to detect multiple peak fingerprints
in plots of the spherically averaged structure function. In-
stead, its unaveraged counterpartSsxd shows complete agree-
ment of ratios of reciprocal vector moduli with those ob-
served in diffraction patterns of the gyroid, as we display in
Fig. 13 for fluid composition 09[54]. In addition, visual
inspection of the unit cell of the oil-water interface un-
equivocally identifies it with that of the gyroid. The size of
such a unit cell as seen in optical textures allows us to asso-
ciate a length scale to the lattice for a particular experimental
realization. For the system reported by Hajduket al. [54], the
lattice would need to be 291 nm in side length with a reso-
lution of 2.3 nm per lattice unit.

Although previous simulation papers on amphiphilic mix-
tures using free-energy-based Langevin diffusion equations
have reported the reproduction of structures resembling the
gyroid [31,32], none of them have studied its features or
dynamics, or incontestably demonstrated its gyroid morphol-
ogy. Furthermore, in one of these papers we observe that the
fluid mesostructure is not stationary[31], whereas by eye-
balling the whole simulation cell in another[32] one be-
comes aware that the structure has a morphology which is
reminiscent of the molten gyroid we describe here.

In our simulations we observe that, at late times, the gy-
roid is much closer to stationarity than the sponge me-
sophase: for equal time slices in their evolution, temporal
changes of the mesostructure over a period of 1000 time
steps are considerable for the sponge(e.g., simulation run
06) whereas for the gyroid(e.g., simulation run 09) they
appear as slight interfacial rearrangements and undulations,
reminiscent of breathing modes, keeping the variation in the
position of each unit cell small compared to the lattice size
N. This late-time(ca. 30 000 time steps) structural dynamics
is characterized in our simulations by the fact that the topo-
logical genus is(statistically) preserved for the gyroid; for
the sponge, it is not. This can be understood as structural
stabilization by rigidity in the gyroid, and a flowing, glassy
dynamics for the sponge. Such a distinctive behavior for the
sponge may have a bearing on its density fluctuations and
render them different to those occurring in a topology-
conserving dynamics. It is therefore not surprising that(a)
we found the oscillation modes for the sponge(simulation
run 06) to be at least one order of magnitude more intense
than those for the different gyroids we simulated(simulation
runs 08, 09, and 10, cf. Fig. 9), and(b) recent experimental
studies, using dynamic light scattering and various relaxation
methods[57], do not report on fluctuations for the gyroid
[58], whereas they do for the sponge mesophase.

It is accepted wisdom[59], and a working hypothesis in
many simulation studies[25,60,61], that periodically modu-
lated phases may arise in fluid mixtures whenever a repulsive
long-range interaction competes with an attractive short-
range one for a configuration that minimizes the interfacial
Hamiltonian, possibly also in the presence of a thermal, en-
tropic contribution. Little is said about whether nonlocality is
not only a sufficient but also a necessary condition, or

FIG. 10. Slices of the surfactant density in 333 subsets of a 1283

lattice, for composition 09(cf. Table I). Panels(a), (b), and(c) are
snapshots att=14 000,t=14 600, andt=15 000 time steps, respec-
tively, which are times for which the structure is close to equilibra-
tion. We only show regions where surfactant density is the highest
s0.31ørsø0.35d, in gray and white, where lighter shading denotes
a higher value. We can see that the surfactant mainly concentrates
around the oil-water interfaceffsxd=0g, whose intersection with
the slice is depicted as open undulating or closed lines. Also, there
are ordered, crystalline regions along with smaller regions lacking
long-range order and evolving in time. Finally,rs is nonuniform on
the interface(as regions with lighter shading show), favoring the
formation of “surfactant bridges” between adjacent portions of the
interface; this leads to Marangoni effects which account for the
observed oscillatory behavior. All quantities are in lattice units.
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whether the nonlocality of the relevant model needs to be
imposedab initio or is rather an effective emergent feature
picked up by the order-parameter autocorrelation function.
The LB model we employ in this paper only incorporates
local interactions in its mesodynamics; this feature allows its
algorithm to be easily parallelized and achieve exceptionally
good performance[40]. Nonetheless, we have demonstrated

that the model is able to simulate liquid-crystalline, cubic
mesophases, such as the gyroid in binary immiscible fluid
mixtures with an amphiphile, and the primitive “P” in bi-
nary, amphiphile-solvent mixtures[24], whose density-
density correlations are markedly nonlocal, and in the forma-
tion of which hydrodynamic interactions play a vital role.
Nonlocality, in our case, is an emergent property of a local
model.

It is worthwhile pointing out that Prinsenet al. [23], using
a DPD model and basing their claims on Monte Carlo studies
of equilibrium cubic phases by Larson[62], suggested that
cubic phases could be engineered to appear if their bead-rod
model were elaborated beyond dimers. If fact, Groot and
Madden’s (inconclusive) finding of a gyroidlike structure
with a DPD model for bead-spring chain copolymers[21]
might be considered to support such an assertion. Part of the
importance of our simulations, as well as those of Nekovee
and Coveney[24], is to refute such conjectures, by demon-
strating that cubic mesophases arise in very simple, minimal-
ist, athermal, and hydrodynamically correct fluid models,
with a locally interacting vector order parameter and repro-
ducing universal behavior.

VII. SUMMARY AND CONCLUSIONS

Our simulations furnish the first quantitative account of
phase-segregation kinetics and mesophase self-assembly in
amphiphilic fluids with a three-dimensional model based on
the Boltzmann transport equation. The method is hydrody-
namically correct, athermal, and models the amphiphilic spe-
cies as bipolar, pointlike particles experiencing short-range
interactions with mean fields created by the surrounding bi-
nary immiscible(“oil-water”) and amphiphilic medium.

We studied the phase-segregation pathway in a homoge-
neous oil-water-surfactant mixture at composition1:1:x, re-
spectively, where 0øxø1.3 is the surfactant-to-water(or to
oil) mass fraction. We observed segregation slowdown in the
average size of oil-water domains with increasingx, and the
reproduction of known crossovers, namely, from algebraic to

FIG. 11. Equilibrium minority-phase-order parameter isosurfacesfsxd=0.37 (in lattice units), taken at time stept=30 000, at which
−0.69øfø0.68 over the whole lattice. Snapshot(a) corresponds to simulation run 06, snapshot(b) to simulation run 07, and snapshot(c)
to simulation run 08, cf. Table I. Shown are 16øzø48 slabs of a 643 lattice. Note that increasing surfactant concentration leads to an
increased ordering in the mesostructure: simulation run 06 exhibits spongelike features, whereas simulation run 08 is a liquid-crystalline
cubic gyroid mesophase. Snapshot(b) is a crossover state in this lyotropic transition—a “molten gyroid.”

FIG. 12. Isosurfaces of the order parameter at time stept
=15 000 in a highly ordered 333 subdomain on a 1283 lattice for
fluid composition 09. Panels(a), (b), and (c) display the fsxd
=0.40(in lattice units) minority-phase isosurface viewed as axono-

metric projections along thes1 0 0d, s11̄1̄d, and (110) directions,
respectively. Panel(d) shows the interface of the same lattice sub-

domain along directions11̄1̄d, where black and white have been
used to distinguish one immiscible fluid phase from the other.
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logarithmic to stretched exponential functions. This confirms
the usefulness of our method in apprehending the fundamen-
tal phenomenology of amphiphilic fluid mixtures; the pres-
ence of transients in these crossovers is gratifying given their
experimental observation. In order to rule out an increase in
total density asx is increased as a factor contributing to the
slowdown along with the reduction in surface tension, future
work should investigate domain growth at constant total den-
sity.

The stretched exponential functional form occurring at
domain growth-arrested regimes can be ascribed to the accu-
mulation of a large number of relaxation modes associated

with surfactant dynamics onto and at the oil-water interfaces
[19]. The late-time structures at these regimes are(a) disor-
dered nonstationary sponge mesophases if the initial am-
phiphile concentration is lower than a threshold region or(b)
well-defined liquid-crystalline cubic gyroid mesophases of
pinned domain sizes with defects if this initial concentration
is higher than such a threshold. We also found thresholds in
the surfactant coupling strengths,ugssu andugbsu, for a sponge-
to-gyroid transition. In the transition region we observed a
crossover structure sharing the structural features of both the
gyroid and sponge. We also found that, for the number of
time steps simulated, both sponge and gyroid exhibit un-

FIG. 13. Temporal evolution ofskx,kyd slices of the structure functionSskd for fluid composition 09, viewed along thes1̄0 0d direction.
Panels(a) and(b) show slices at time stept=500, wherekz/ s2p /Nd=0 for (a) andkz/ s2p /Nd= ±14 for (b). Similarly, panels(c) and(d) are
slices at time stept=15 000 forkz/ s2p /Nd=0, ±14, respectively;N=128 is the lateral lattice size. Shading denote intensitiesS=1,50, and
100, where lighter grays up to white mean higher intensities. The spherical shell structure in(a) and(b) indicates the presence of a sponge
(microemulsion) phase, which becomes anisotropic at later times,(c) and (d). The superposition of slices(c) and (d), namely, the ratio of
peaks’ positions ofokz

Sskd, is in full agreement with SAXS experimental data for the gyroid mesophase. All quantities are in lattice units.
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damped oscillations at all length scales. For some length
scales, the temporal trend of their Fourier amplitudes is to
slowly die out; for others, it increases.

We found that extremely slow domain growth can be mis-
taken for genuine arrested growth if attention is not paid to
minute length scales. Truly segregation-halted regimes ex-
hibit oscillations in average domain size, which can be seen
at sufficiently late times. These oscillations are caused partly
by Marangoni flows generated by inhomogeneities in the sur-
factant adsorbed on the oil-water interface, and partly by a
surfactant dynamics dictated by competing mechanisms,
namely, surfactant attraction towards the interface and
surfactant-surfactant interactions. Because our model does
not presuppose that all the surfactant is adsorbed on the in-
terface, as Langevin approaches based on the adiabatic ap-
proximation do[25,28,59], surfactant-surfactant interactions
are not limited to repulsion. Hence, in regimes of large sur-
factant concentration, and especially in those for which re-
gions of the(oil-water) interface can be sufficiently close to
each other, surfactant is not constrained to dwell on the in-
terface; rather, it is reasonable to propose the existence of an
adsorption-desorption dynamics driving surfactant towards
and away from it. Our results showing that(a) an increase in
ugssu excites higher frequencies,(b) an increase inugbsu damp-
ens most frequencies, and(c) there appear surfactant currents
bridging adjacent interfacial regions confirm this proposal.

Our method is not only the first lattice-Boltzmann model
to deal with segregation kinetics in three-dimensional am-
phiphilic fluid mixtures, but the first complex fluid model to
unequivocally reproduce the gyroid cubic mesophase, using
a high level of abstraction in modeling the amphiphile. The
truly mesoscopic, particulate nature of the surfactant in this
model accounts for the complex, dynamical behavior ob-
served, even in a noiseless scenario such as ours. It is not
surprising that Ginzburg-Landau-based Langevin models
which treat surfactant implicitly through a scalar parameter
modifying the free energy are only able to exhibit oscilla-
tions which decay rapidly in time and whose frequency spec-
trum has but one peak. Our simulations of liquid-crystalline

mesophases prove that, contrary to what has been previously
claimed [59–61], surfactant-surfactant interactions need not
be long ranged in order for periodically modulated, long-
range ordered structures to self-assemble. In addition, our
findings rebut the suggestion[23] that cubic mesophases can
be simulated only when the amphiphile is modeled with a
high degree of molecular specificity.

The simulation of the sponge and gyroid phases, and their
complex oscillatory dynamics, confirms the richness of our
model’s parameter space. Our lattice-Boltzmann model pro-
vides a kinetically and hydrodynamically correct, bottom-up,
mesoscale description of the generic behavior of amphiphilic
fluids, which is also extremely computationally efficient on
massively parallel platforms. Future extensions of this work
include the search for regimes leading to equilibrium me-
sophases of more varied symmetries, the study of shear-
induced symmetry transitions, and large-scale studies of de-
fect dynamics in liquid-crystalline phases. In fact, the
TeraGyroid project, a successful Grid-based transatlantic en-
deavor employing more than 6000 processors and 17 tera-
flops at six supercomputing facilities[63], has its scientific
raison d’être based on the results we report in this paper.
TeraGyroid proves the value of computational steering tools
[53] in mapping new parameter space regions of our model.
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