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Chirality of electrodeposits grown in a magnetic field
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Electrodeposits grown around a point cathode in a flat, horizontal electrochemical cell have fractal form.
When grown in the presence of a perpendicular applied magnetic field, the deposits develop a spiral structure
with chirality which reverses on switching the field direction. These structures are modeled numerically using
biased variants of the diffusion limited aggregati@LA) model. The effects of electric and magnetic fields
are modeled successfully by varying the probabilities that a random walker will move in a given direction as
a result of a Coulomb force and the Lorentz force-induced flow of electrolyte past the deposit surface. By
contrast, a numerical model which considers only the effect of the Lorentz force on individual ions, without
reference to the surface of the growing deposit, produces spiral structures with incorrect chirality. The modified
DLA model is related to the differential equations for diffusion, migration, and convection. Length scales in the
problem are understood by associating the step length of the random walker with the diffusion layer thickness,
the lookup radius with the hydrodynamic boundary layer thickness and a point on the numerical deposit with
a nucleation center for growth of a crystallite.
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I. INTRODUCTION Applying a vertical magnetic field to the deposition of Zn

The first reports of metal structures electrodeposited witif"d Ag in a flat horizontal cell, he found that both DLA and
random branched geometry date back to 18th century Francg@éndritic structures develop with a chiral form. In very high
Branched silver structures grown in two-dimensional cellsfields up toB=8 T, the deposits become smaller and denser.
were reported by La Condamine in 173]]_] Large|y ne- Hinds et al. [12—14 enhanced this work with a thOfOUgh
glected for a century and a half, interest in these object§vestigation of Cu deposition in both vertical and horizontal
resurfaced in the 1980s with the development of fractal gecells, with magnetic fields applied both in and out of the
ometry by Mandelbrof2]. Within this new fractal science, plane of growth in each case. We have recently completed an
Witten and Sandéi3] developed the diffusion limited aggre- extensive study of the effects of magnetic field and gravity
gation(DLA) numerical model. This numerically simple, yet on the growth of zinc fractal electrodeposits in both concen-
mathematically subtle model, based on the aggregation dfic and parallel electrode cel[45].

“random walkers,” bears striking resemblance to many struc- Figure 3 demonstrates the effect of applying a magnetic
tures found in nature. In particular Matsushjitg observed field perpendicular to the plane of growth of a zinc deposit in
its similarity to two-dimensional branched electrodepositsa two-dimensional horizontal cell. The chirality of the de-
grown at low concentrations and low voltages. This discov{osit reverses according to whether the field is applied ver-
ery provoked newfound interest in these objgéts7). tically upwards or downwards. The uniform magnetic field

A typical experimental setup consists of a ring anode con-
centric about a small cylindrical cathode. Electrolyte consist-
ing of a solution of a metallic sale.g., CuSQor ZnSQ in
water is sandwiched between the electrodes by two flat per-
spex plates separated by0.2 mm.

\oltage is applied between the electrodes, and metal ions
(e.g., C@*, Zn?*) plate from solution to the cathode. The
morphologies of the resultant deposits v@by6] depending
on applied voltage and ion concentration. In the very low L iomm,
voltage, low concentration limit the deposits resemble the
diffusion-limited aggregates modeled by Witten and Sander.

Still at low concentrations, but at higher applied voltages,
deposits become more dense and grow within a clearly de-
fined circular envelope; these are known as dense rédial

or dense branched morphologiggd. At high voltages and
high concentrations, deposits are dendritic and even stringy.
Samples of these morphologies are shown in Fig. 1. A “phase
diagram” of the variation in growth with applied voltage and 10 mm

ion concentration is presented in Fig. 2.

The effect of an applied magnetic fieklon the growth of FIG. 1. Typical zinc electrodeposits grown in flat horizontal
these deposits was first investigated by Megial. [9-11]. cells; (8)DLA; (b) dense radial(c) dendritic.

(a)
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FIG. 2. Overview of the morphology of zinc electrodeposits can write this equation as

grown in a flat horizontal cell as a function of electrolyte concen-

trationc, and applied voltagd. [c(Xir1,Y)) — (X, Y] = [c(X,Y)) = C(Xi—l!yj)]}
AZ
of B=0.35 T used here was provided by a large Halbach
cylinder permanent magnet assempl]. + { [e(,Yj+0) — €0, y] — [e(x,y)) = C(thj—l)]} -0
Our purpose, in this paper, is to detail a numerical ap- A?

proach to modeling these systems in the low concentration (3)
regime. One numerical model has been proposed by Mi- _ . _

zusekiet al. [17,18 to introduce the affect of an applied in order to find a solution for the concentratiofx;,y;) at a
magnetic field. We outline the logic behind this model, butPoint (x;,y;) on a finite square grid with equal separation
show that it disagrees fundamentally with the experimentaRx=Ay=A between neighboring sites. This Laplace equation
result. We proceed to present an alternative magnetic fielthus has discrete solution in two dimensions

model, which produces morphologies consistent with experi- COanY) + 1Y) + 6.V _g) + CO6Y-aa)

ment. First, we establish the relation between the DLAmodel  ¢(x,y;) = i+1,] i-1,Y] b Yj-1 i Yj+1

and the differential equations for electrochemical mass trans- 4
port. (4)
relating the concentration at sit& ,y;) on a finite grid to the
Il. NUMERICAL SIMULATION concentrations at neighboring sites. This finite difference so-

) ) o lution to the Laplace equation has, however, the same form
The most basic version of the DLA model, as originally 55 the probabilityP(x;,y;) equation[19]

proposed by Witten and Sand§B], serves as a suitable

model for this electrochemical system in the very low volt- _ P(Xis1,Y)) + P(Xi_1,Y)) + P(X,Yj+1) + P(X,Yj-1)
age, low concentration regime where diffusion of ions P = 4

through a diffusion layer is the limiting factor determining

growth. (5

At equilibrium, in two dimensions, the diffusion equation for the movement of a random walker to a jixE‘yJ), which
depends on the probabilities that it previously occupied one
ic_ ., of the four neighboring sites. This similarity between the
gt DV’ (D) discrete solution of the diffusion equation and the motion of
a random walker marks its usefulness in modeling diffusion-
limited systems.

In the model, the electrochemical cell is represented by a
two-dimensional square lattice, with the central cathode
identified by an occupied site at the center of the grid. A
particle (random walker enters the grid. It moves about the
grid with equal probability 1/4 of moving up, down, left or
right at each step in accordance with E¢$) and (5). It
- | continues to move in this way until it reaches a site adjacent

(b) to the occupied site, at which point it stick#f it walks off
the grid, it is discarded and a new particle is introduced at a

FIG. 3. Zinc electrodeposits grown from 0.1 M Zng& 10V random point on the edgeAnother particle is then intro-
in a flat horizontal cell in the presence of a 0.35 T magnetic fieldduced, and moves until it sticks to an occupied neighbour
applied(a) vertically upwards, andgb) vertically downwards. and so on. In this way, patterns of the kind shown in Fig) 4

reduces to a Laplace equation
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develop which resemble the low voltage, low concentration What we assume here, however, is one of two things.
DLA electrodeposits of Fig. (h). Either local deviations from strict electroneutrality result in
Monitoring the variation of current with applied voltage (@) fluctuations in the electric field which are randomly dis-
during the growth of two-dimensional electrodepogits], tributed and oriented across the cell @) slight gradients
however, the diffusion-limited, low voltage plateau seen inwhich are radial across the cell and directed towards the
three-dimensional growth is not reproduced. Rather a lineatathode resulting in a radial electric field. In the former case,
I-V curve is observed at Zh concentrations as low as the random nature of the effect of the electric field fluctua-
0.01 M This indicates that growth may not be strictly diffu- tions is modeled by the random movement of the walker
sion limited even at low voltages and concentrations. Adetailed above. In the latter case, as the net effect at local
there is no supporting electrolyte present in the experimentdével is in the same radial direction as an externally applied
cell to screen the metal ions from the applied electric fieldelectric field, it is modeled as additional to the external field
the migration of ions through this electric field may be aand also satisfying Eq9).
dominant mass transfer mechanism. We thus introduce the We therefore proceed with the approximation of an exter-
effect of an applied electric field into our numerical model. nally applied electric field satisfying Laplace’s equation so
that Eq.(7) is simply given by

A. Electric field DV2-puE-Vc=0 (12)
Positively charged metal ions from the solution are drawn
along electric field lines, perpendicular to the cathode surface [ &c (92(;} {E Jc E ac} 0 12
i i —+— |- —+E,— | =0.

according to the equation a2 o] TH Bax By (12)

9c_ DV2c— V (ucE), (6) Using the dimensionless variables-c/c, wherec, is the

at bulk concentrationx=x/a andy=y/a, wherea is the lattice

whereE is the electric field angk the ion mobility. At equi-  SPacing between adjacent grid point,=(ua/D)E, and
librium this reduces to E,=(ua/D)E,; we can rewrite Eq(12) in dimensionless

DV%c- uE - Vc- ucV -E=0. 7y form
We can also state that, in a medium with free charges, §+ E:_Xa—iJ,_&—i (13)
e Iy Yax  Yay
2 _ __F(zLe—zca) _ o , _
Ve=-V -Ez-——"———=-p, (8)  Solving this in discrete form for the concentration at grid
(0]

point (x,y;) relative to the concentrations at its nearest
wherez, andz, are the charges on the cations and anionsneighbours we find that
respectively, which in turn have molar concentraticpsnd
C, and the potentiad satisfiesE=-V & ¢, is the vacuum

. 1 E 1 E
permittivity, & the dielectric constant of water, arfidis the c06,y;) _aﬁlyj)[z - g} +ax_i—1’WL_1 * g]
Faraday constant. An externally applied electric field related

to a charge distribution outside the medium is, within a uni- - 1 Ex - 1 Ex
form solution, described by the Laplace equation +0(X,Yj+1)| 5~ M CB7EY Bkl B
4 8 4 8
V20 =0. 9 (19
It would appear then, that within an ideally neutral solu-Our numerical convention defines anglésanticlockwise
tion satisfying the electroneutrality condition from they axis so thatE,=-E sin 6 and E,=E cos 6. We
2 2620 (10) thus rewrite Eq(14) as
: _
_ 1
over all species, the charge density would be strictly zero cx,y;) =¢c Xi+1’71)[z +5 sin ‘9}
and the internal electric potential would also satisfy - o
Laplace’s equation. In practice, however, owing to the enor- |11 E .
mous value ofF/seq (1.4% 10 Vm/mol for a relative di- +c(Xi-1,Y) 2 gsnd
electric constant of 78 even slight deviations from electro- - .
neutrality may result in significant local electric fields. A - 1 E
corollary of this effect, however, is that any appreciable +0(X,Yj+1) ) cos o
separation of charge would require prohibitively large elec- - .
tric forces, and is therefore a local or relatively minor effect. o 1 E
Nonetheless, although electroneutrality is commonly as- +a;i’y]—l) Z* 3 cosd|. (15

sumed in electrochemistry, it is incorrect to infer that
Laplace’s equation is necessarily satisfied by the electric poAs with Egs.(4) and(5), we implement this numerically in
tential in a given electrolyt§20]. terms of the probabilities for movement between neighboring
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FIG. 5. Sites within a lookup radiuRg of the particle are
checked for occupation. The angdlg,,(measured counterclockwise Down

from they axis) to the nearest occupied site is then calculated.

FIG. 6. At each step, the anglg.,(measured counterclockwise
sites. In this case, the effect of the electric field is to increaséom they axis) between the particle and the initial central seed site
the probability that the particle will move directly towards is calculated.
the nearest occupied site on the surface of the deposit. This is

achieved by scanning within a lookup radigg, about the Down: —E. cosd (17b)

moving particle for occupied sitg®1]. In these simulations 4 een cem

Riook=10 lattice spacings. The anglge, to the nearest de- 1 _

tected occupied site is calculated as shown in Fig. 5 and the Left:3 + EcenSiN Ocen (179

probabilities for movement up, down, left or right at the next

step are varied in geometric proportiondg,, according to Right:2 — Een Sin feen (17d)
Up:3 + Ededdaep COS fep (168 whereE,,is a constant indicating the strength of the applied

electric field. Migration in an electric field is thus modeled
Down:% ~ Ededdgep) COS Ouep (16b) through a combination af) a drift towards center while the

moving particle is far from the deposit arid) an increased
probability of movement towards the surface when the par-

A ; s .

Left:7 + Egedduep) SIN Oyep (160 ticle is close to the depositErlebacheret al.[22] also use a
separate treatment of regions close to and far from the de-

Right:2 - EdedaepSin Guep (16d)  Posit) The resultant fractals, as shown in Figby are more

dense and grow within a clearly defined circular envelope.
where we use the approximatidfyeddgep) =C/dgep, C is @ This is equivalent to the dense radial electrodeposits of Fig.
constant anddgep, is the distance from the particle to the 1(b).
nearest occupied sitélf there is more than one “nearest”
occupied site, then the probabilities of movement towards B. Concentration

each are individually variey. ) .
It is, however, computationally expensive to scan the en- The basic DLA model also assumes that only one particle

tire grid relative to the moving particle, especially when it is S Moving at a given time. This is not, however, the case even
far from the deposit. We note, however, that the structurét IQW concentra_tlons. We therefpre introduce finite concen-
grows within a broadly circular envelope. Far from the de-trations by allowing m_ultlple particles to move and.stlck Si-
posit therefore, the electric field lines essentially emanatdNultaneously. We maintain a constant concentration as the
from the centre of the grid. We thus simplify the calculation 9€POSit grows by defining a given fractidy of the sites

by saying that at a distance from the furthest point of growthithin an annulus of thicknesi about the maximum ra-

of the deposit, the applied voltage can be modeled simply adius of growthrys, which serve as starting points for ran-

a drift towards center. At each step, the anglg, (Fig. 6) dpm walkers. Thgs as the deposit grows, the nur_nber of_par—
from the particle to center is calculated. The probability thatic!€S Nmaers MOViNg in the system is constantly increasing
the particle will move towards the center of the deposit is2ccording to
thus increased by varying the probability that it will move

up, down, left or right at the next step in geometric propor- Mmavers * 27T cNrei max (18)
tion to 6., according to No two moving particles can occupy the same site simulta-
1 neously, and as one particle sticks, a new patrticle is intro-
Up:3 + Ecen COS Ocen, (178 duced within the starting annulus.
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Up on its random movement. Numerically, the “velocity” of a
particle is determined by considering its trajectory over the
previousN steps(hereN=6). The average angle,, through
which it has moved oveN steps is calculated as shown in

(O, — 0 ) Fig. 7. Assuming that the particle would continue along this

el Smagn trajectory in the absence of an applied magnetic field, we

Right introduce a magnetic field by varying the probabilities for

movement at the next step so that it will tend to be deflected

by an angleay,ag, from the direction defined by, accord-

ing to

Up:% +UBg COY 0,0+ amagr)r (19a

FIG. 7. The angled,q through which the particle has moved
over the previoud steps is calculated relative to the “up” direction.
An applied field will tend to make it deviate from this course by an

angle amagn Here amagn has a negative value, indicating that the Left:2 + yB.. sin(.. + 19¢
magnetic field is applied vertically upwards. 4% UByer SIN(Ghei £ Amagn (190

Down:;ll —UBye COH b,¢ % amagn » (19b)

The effect of this is simply to make the deposits some- Right:z = vB,ei SIN(fye1 % Aagn (190
what more dense with slightly thicker branches as shown in
Fig. 4(c). Multiparticle diffusion has been extensively stud- where B¢ and a4y indicate the strength of the magnetic
ied by Voss[23]. field. The ‘t’ of Eq. (19) is ‘+' when the magnetic field is
applied vertically downwards to the horizontal cell and ‘-’
when applied vertically upwards.

This model produces chiral results as shown in Fig. 8. The
We begin by outlining the magnetic field model used bydirection of the chirality is, however, opposite in direction to
Mizuseki et al. [17,18 and ourselve$24] which results in  the experimental result of Fig. 3. We must therefore recon-

chiral deposits, but which actually spiral in directiomgpo-  sider the physical content of the model.

site to the experimental observation. We then present an al-

ternative, more physical, magnetic field modgll] which 2. Second magnetic field model

yields results consistent with experiment.

C. Magnetic field

Consider first the example of free electrons with chayge
in a conducting material. They have a certain random motion
due to frequent collisions with atoms of the material. An

The first magnetic field model considers that a particleapplied electric field imposes a certain drift velocity on
with chargeq moving with velocityv in a magnetic fieldB their movement in addition to their random motion. An ap-
will tend to be deflected by the Lorentz forge X B. It is  plied magnetic fieldin the Hall effect, for exampleexerts a
not useful to define a velocity for a purely random walk. In  Lorentz forcequqyX B on each electron. The current density
this system, however, the particle experiences a drift velocityn the conducting material is given g nquvy wheren is the
due the applied voltage of Sec. Il A, which is superimposechumber of electrons, and the Lorentz fojceB onj is ef-

1. First magnetic field model

400 T T T 400 T T T
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FIG. 8. The first magnetic field model yields spiral patterns but with the wrong chirality for the magnetic field gpliettically
upwards to the horizontal cell arit) vertically downwards.
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fectively just the sum of the forces on individual electrons. Up
The net effect of the Lorentz force is to cause the current to (©
flow in a different direction.

This example differs from the present scenario, however,
in that the current is now flowing though a liquid rather than
a solid. Each metal ion in the electrolyte is surrounded by a
hydration sphere of associated water molecules. Thus the
effect of the Lorentz force in changing the path of the ions,
which transfer momentum to water molecules beyond the
first hydration layer, is to induce a flow of the electrolyte in
the cell. The surface of the deposit provides a solid boundary @
for this flow. The ions in the electrolyte therefore flow past
the surface of the deposit. Down

We thus propose an alternative magnetic field model ) o ) ,
based not solely on the interaction between the magnetic /G- 9- The nearest occupied site is found by again scanning
field and individual ions in solution, but between ions in thew'th'n a lO.Okup radiusRo about the _partlcle. Flow due to the
Lorentz force-induced flow and the surface of the deposit. magnetic field is parallel to the plate, i.e., at an an@ig,g* m/2)

. : epending on the field direction. Here the angl&ig,— 7/2) mod-
Our SOIUt.'on ”."“St. thereforg be based upon a solution 0gling a magnetic field applied vertically upwards.
the convective diffusion equation

—1t/2)

; dep

Right
Left §

_ |1 v |1 v
Jdc .\ ) = a . — — qj : X —_ — = q
_t = szc— \vJ -(Cv) (20) af.,y,) C X|+11y1)|:4 + 8 sin 0j| +C Xl—lay1)|:4 8 sin 0i|
FTRT)| 2 - coso
whereuw is the velocity of fluid flow. Taken together with the c0%,¥j+2) 4 g o
continuity equation 1 T
+Txi,7j_1)[— +2 cos 0} . (25
V. .v=0, (21) 4 8

o Note that Eq.(25) has the same form as E(L5), with v
at equilibrium Eq.(20) reduces to p—

replacingE.
Now the current density at each point on the surface is
D[ﬁJrﬁ} . ﬂﬂ} Jdc 22) perpendicular to the surface at that point, and the Lorentz
ax?  gy? ox Yoy’ force acts at right angles to botrandB. A flow of electro-

lyte is therefore established which, close to the deposit, is
confined to flow parallel to the solid surface. We therefore
introduce the effect of an applied magnetic field by increas-
ing the probability that, close to the deposit, the particle will
move perpendicular to the line joining the walker to the near-
est point on the surface. We find the nearest point on the
_ _ surface by scanning within a lookup radiRg,, of the par-
Fc Fc__dc _dc ticle, as in Sec. Il A, and then increase the probability that

c
X ﬁ_vxa_7+ Uya_T 23 the particle will move at a tangent to this poi(fig. 9
according to

Using the dimensionless variables-c/c,, wherec, is the
bulk concentrationx=x/a andy=y/a, wherea is the lattice
spacing between adjacent grid points=(a/D)v, and v,
=(a/D)vy; we can rewrite Eq(22) in dimensionless form

As in Sec. Il A, casting Eq(23) in finite terms yields the 1

concentration at grid poirfi;,y;) relative to the concentra- Up:g + Usiow(B)COSL Ogep £ 71/2), (269
tions at its nearest neighbors
DOWN:; — Ugi(B)COS Ogept 7/2), (26b)
e 1] 1
ey =6 X”l’w{ 478 ] T Xi‘l'yj)L "8 } Left:2 + v you(B)Sin(Bept 7/2), (260
_Jr5] o J175 1

*ebaYsd| ;=g [ YY)l S g - RIght:3 = vrion(B)SIN( gept 7/2), (260)

(24) whereuvy,,(B) is a multiplicative factor representing the ve-
locity of the flow set up by the magnetic fieltNote that in
Remembering that angles are defined anticlockwise from thboth magnetic field models, the magnetic field term is added

y axis so tha,=-v sin § andv,=v cos 6, we rewrite Eq. to the electric field terms of Eq$16) and(17).] The “+” of
(2% as Eq. (26) is ‘+’ when the magnetic field is applied vertically
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FIG. 10. The improved magnetic field model produces spiral patterns which agree with the experimentalgg8it=0.3 for the
magnetic field applieda) vertically upwards to the horizontal cell arid) vertically downwards.

downwards to the horizontal cell and “~” when applied ver-  An applied magnetic field deflects ions in the same direc-
tically upwards. tion in both models. The key failure of the original model,
This model yields chiral results as shown in Fig. 10. Inhowever, is that it neglects to detect in advance the presence
this case, the chirality agrees with the experimental result off the deposit surface, so that when new particles stick they
Fig. 3. tend tobackupfrom occupied sites as indicated in Fig. 11.
This results in branches which spiral backwards from exist-
ing growth. Our new model, on the other hand, recognizes
Ill. DISCUSSION that ions flow along the surface, eventually sticking some-
Both models introduce the magnetic field in terms of thewhere on the other side of an existing branch as illustrated in
effect of the Lorentz force on moving charges. The first, F'g: 12. This is clearly the more accurate model for.thg ex
however, models the effect of the Lorentz force on each Inperlmental system. Recent observations on the chirality of
dividual ion, without consideration for its interaction with deposits produced in a rotating cgR6,27 confirm this
the rest of the system. It ignores the fact thatthe ion is mechanism. A further factor favoring downstream growth
surrounded by water molecules which are associated witf'aY Pe the concentration depletion effect discussed by Bar-
that ion by hydrogen bondingb) that the magnetic field KeY et al-[8]- , o
does not just act on each ion in isolation, but that the ne We must ?ISO c_:on_S|der WhatpreC|ser IS being _represent_ed
effect of the Lorentz force on the current density towards th y an occupied site ina ”“r_“e”cag deposit. A_typlcal experi-
deposit is to set up a flow of electrolyte in the cell, gyl mental_ electradeposit cor)tamsloz atoms, Wh'l.e a typical
that the surface of the growing deposit marks a boundary fopumerlcal structure consists of 10> occupied sites. These
this flow. The flow is parallel to the surface. The role of the €/€ctrodeposits are fractal in nature, and as such are self-

surface in convective flow is similarly neglected by Nagatanls'm'Iar over several orders of magnitude; nonetheless, this
discrepancy indicates that an occupied site on the numerical

et al. [25].
(& C
X \ (a) % (b) T
H H
(a) X (b) \ 0 0
H H B E
o o
D — 0 O
II; E 4 880800
QTO &b
QOO ;
] OO 181
O‘:‘ FIG. 12. The new magnetic field modeh) An applied mag-

ion

FIG. 11. The incorrect magnetic field mode¢h) An applied
magnetic field deflects an iqopen circlg in the direction indicated

netic field deflects an iofopen circlg in the direction indicated by
the dashed arrow. This results in a flow of electrolyte in this direc-

tion. The fluid is, however, confined to flow parallel to the solid
surface of the electrode as shown by the solid arrow. lons are swept

by the dashed arrow. When the ion reaches the surface of the cathlong the surface until eventually they sti¢k) Over a number of

ode it stops(shaded circlg (b) Over a number of iterations, this

results in particledacking-upfrom existing growth.

growth.
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grid cannot simply represent the reduction of a single metal Hydrodynamic

ion. Recent electron microscope investigatiphs] confirm Outer Space Boundaty
. P 9 Helmholtz Charge Diffusion Layer  Fractal

>R Hies R~ . B S o)

Distance from the electrode (m)

the fractal nature of zinc electrodeposit®5 mm in diam- _  Plne Layer Layer | Elec];rc;c_leposit
eter, down to the micron scale. On this scale, however, th¢ ! : : €
fundamental building blocks of the structure are observed tg |
be elementary crystallites1 um in length, each containing :
~10'" atoms. A deposit is composed of10'° crystallites. |
Given this observation, we consider our model in the con- :
text of the work of Fleunet al.[28—3(0 and Chazalvie[31]. |
Chazalviel provides a theoretical demonstration that, al- :
though the bulk solution remains electrically neutral, a space I
charge region develops in the immediate vicinity of the cath- |
ode. In this anion-poor regiofwith thickness typically of :
order a micron at realistic concentrations in the range | . I
10%-1 M ) an electric fieldE" develops which is much G O B I P G O
stronger than that in the bulk. Nucleation of a crystallite by A T
reduction of a cation is most probable in this higher field. A Crystallite Walker Lookup
growth phase follows nucleation, and cations continue to be Size Step-size Radius
reduced at this point. As the crystallite grows, however, it
stretches out into the solution more quickly than the anions
can recede. The electric field thus drops, and so too does the FiG. 13. Length scales in the problem are summarized on a
likelihood of another nucleation event at that point. The av-ogarithmic scale. Measured from the cathode surface, the Outer
erage velocity of growth of the front of the deposit is thusHelmholtz Plane is at-1 nm [35]; the space charge layer ends at
equal to the recession speed of the anions. Fleury shows1 um; the diffusion layer has thickness100 um; and the hy-
experimentally that branched electrodeposits develop fromrodynamic boundary layer has thicknesé¢ mm. The latter two
such oscillatory nucleation and growth processes. In thigre associated with the walker step-size and lookup radius respec-
context, we consider that an occupied site on our numericdlvely. The length of elementary crystallites in zinc fractal elec-
deposit represents not the point of reduction of a single catirodeposits is~1 um.
m?érgﬁfsge%o?r;;;mltjglea'uon and subsequent growth of a We also note that it !s p(_)ssibleto interpret our rgs.ult in the
: L . context of the electrokinetic effect proposed by Olivé¢ral.
In Sec. Il A we argued that deviations from strict electro- 32,33 to explain the mechanism for the effect of an applied
neutrality may be modeled as either randomly oriented local,netic field on an electrochemical system. In their model
fluctuations in the electric field, or a net radial field term 5 onelectrostatic electric field is establishgatallel to an
which we approximate as an additional external field. In thegjectrode surface as a result of the interaction between the
former case, the fluctuations simply result in a random biasgyrrent density plating to the surface and a perpendicular
which is efficiently modeled through. the basic randomapp“ed magnetic field. This electric field, by electro-
movement of the walker across the lattice. In the latter casgysmosis, induces a flow of electrolyte parallel to the surface
the net internal radial field is absorbed into our term for thejy the uncompensated solution beyond the outer Helmholtz
externally applied electric field. plane. Olivieret al. contend that this effect alone is sufficient
We recognize, however, that within the space charge reg account for magnetic field effects on electrodeposition. We
gion [31], the electroneutrality approximation breaks downnpgte in this context, that the key component of our numeri-

entirely andz.c.> z,C,, O that Eq(8) cal model is simply the flow of electrolyte parallel to the
electrode surface, induced by the magnetic field. Bulk flow
2 — _ _ F(zeCc—zCd) _ of the electrolyte in the cell is not explicit numerically. By
V‘d=-V -E= =-p o d . ) X C
€&, considering this flow only in the immediate vicinity of the

surface it is possible to reproduce the experimentally deter-
relates to a potentiab which satisfies the Poisson equation mined morphologies. As such, the magnetically activated

electrokinetic effect falls under the umbrella of our numeri-

Vb =-p (27) cal model as a possible explanation for the mechanism be-

hind the magnetic field effect.
and Eq.(15) no longer holds; that is, the concentration pro-  Finally, we return to the question of length scale. The
file cannot be simplified on a grid in terms of neighboring various length scales in the problem are summarized in Fig.
concentrations and probabilities which sum to one. We asi3. What is the physical sense of the step size of the walker?
sert, however, that an occupied numerical site representsla the final step as the walker attaches to the deposit surface,
point on the edge of the typically micron-sized space chargéhe step size must relate to the distance over which the con-
layer where the local fiel& is strong enough to initiate centration of freely diffusing ions passes fratp to zero.
nucleation of an individual crystallite. The subsequentThis is the thickness of the diffusion layer, over which there
growth process as described by Fle{8§] is not considered is a concentration gradient of the metal cations, which is
here. ~100 um for typical current densitie84] in these cells. An
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800X 800 grid size therefore corresponds to approximatelynentum transfer beyond the hydration sphere immediately
8 8 cnt, roughly the dimension of the electrochemical cell, associated with each ion. The alternative magnetic field
and significantly larger than the size of the deposit. Furthermodel presented here considers this magnetic field-induced
more, the hydrodynamic boundary layer is typically of orderconvective flow and the fact that it is confined to pass paral-
ten times the thickness of the diffusion lay@4] and so is lel to the surface of the growing deposit. This model also
established over approximately ten numerical lattice spacyields spiral deposits, but this time with the correct chirality.
ings. In our simulation, magnetic field effects were consid- The DLA model can be adapted to take account of electric
ered within a lookup radiuR,,. Of ten lattice spacings from and magnetic fields, provided the electrolyte remains ap-
the deposit surface. The hydrodynamic boundary layer estalproximately charge neutral, and deviations from neutrality
lished in the presence of convective flow, which in this casecan be modeled by electric fields which are either local and
is induced by an applied magnetic field, is thus associatedandomly oriented or external and radially symmetric. When
with the thickness of the lookup radius and lies comfortablythis is not the case, as within the narrow space charge region
within the resolution limit of the simulation. near the cathode surface, the Laplace equation for the electric
potential must be replaced by a Poisson equation and the
DLA approximation breaks down.
IV. CONCLUSIONS We also argue that an occupied site in a numerical deposit
rx‘joes not represent the reduction of a single metal cation. It

We have adapted the basic diffusion-limited-aggregatio ks i dth . he ed fh h |
model for the growth of fractal electrodeposits to include the™arks instead the point, at the edge of the space charge layer

effects of finite concentration, migration in an electric field, immediately surrounding the cathode, of nucéeatlon and
and magnetic field-induced convection. In each case w rowth of a micron-sized crystallite containirgl0'® atoms.

show how the adapted DLA model is related to the underly- _he s_tep length O_f the random walker is ident_ified_ With_ t_he
ing differential equations. We have corrected an earlier mag(-j'_ffUSIOn layer thlckn_ess and the Iookup radius identified
netic field model which generates spiral structures, but with 4/t the hydrodynamic boundary layer thickness.

c_hirality_ oppositet_o the exp_erimental observation. The prin- ACKNOWLEDGMENT
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