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Electrodeposits grown around a point cathode in a flat, horizontal electrochemical cell have fractal form.
When grown in the presence of a perpendicular applied magnetic field, the deposits develop a spiral structure
with chirality which reverses on switching the field direction. These structures are modeled numerically using
biased variants of the diffusion limited aggregation(DLA ) model. The effects of electric and magnetic fields
are modeled successfully by varying the probabilities that a random walker will move in a given direction as
a result of a Coulomb force and the Lorentz force-induced flow of electrolyte past the deposit surface. By
contrast, a numerical model which considers only the effect of the Lorentz force on individual ions, without
reference to the surface of the growing deposit, produces spiral structures with incorrect chirality. The modified
DLA model is related to the differential equations for diffusion, migration, and convection. Length scales in the
problem are understood by associating the step length of the random walker with the diffusion layer thickness,
the lookup radius with the hydrodynamic boundary layer thickness and a point on the numerical deposit with
a nucleation center for growth of a crystallite.
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I. INTRODUCTION

The first reports of metal structures electrodeposited with
random branched geometry date back to 18th century France.
Branched silver structures grown in two-dimensional cells
were reported by La Condamine in 1731[1]. Largely ne-
glected for a century and a half, interest in these objects
resurfaced in the 1980s with the development of fractal ge-
ometry by Mandelbrot[2]. Within this new fractal science,
Witten and Sander[3] developed the diffusion limited aggre-
gation(DLA ) numerical model. This numerically simple, yet
mathematically subtle model, based on the aggregation of
“random walkers,” bears striking resemblance to many struc-
tures found in nature. In particular Matsushita[4] observed
its similarity to two-dimensional branched electrodeposits
grown at low concentrations and low voltages. This discov-
ery provoked newfound interest in these objects[5–7].

A typical experimental setup consists of a ring anode con-
centric about a small cylindrical cathode. Electrolyte consist-
ing of a solution of a metallic salt(e.g., CuSO4 or ZnSO4 in
water) is sandwiched between the electrodes by two flat per-
spex plates separated by,0.2 mm.

Voltage is applied between the electrodes, and metal ions
(e.g., Cu2+, Zn2+) plate from solution to the cathode. The
morphologies of the resultant deposits vary[5,6] depending
on applied voltage and ion concentration. In the very low
voltage, low concentration limit the deposits resemble the
diffusion-limited aggregates modeled by Witten and Sander.
Still at low concentrations, but at higher applied voltages,
deposits become more dense and grow within a clearly de-
fined circular envelope; these are known as dense radial[7]
or dense branched morphologies[8]. At high voltages and
high concentrations, deposits are dendritic and even stringy.
Samples of these morphologies are shown in Fig. 1. A “phase
diagram” of the variation in growth with applied voltage and
ion concentration is presented in Fig. 2.

The effect of an applied magnetic fieldB on the growth of
these deposits was first investigated by Mogiet al. [9–11].

Applying a vertical magnetic field to the deposition of Zn
and Ag in a flat horizontal cell, he found that both DLA and
dendritic structures develop with a chiral form. In very high
fields up toB=8 T, the deposits become smaller and denser.
Hinds et al. [12–14] enhanced this work with a thorough
investigation of Cu deposition in both vertical and horizontal
cells, with magnetic fields applied both in and out of the
plane of growth in each case. We have recently completed an
extensive study of the effects of magnetic field and gravity
on the growth of zinc fractal electrodeposits in both concen-
tric and parallel electrode cells[15].

Figure 3 demonstrates the effect of applying a magnetic
field perpendicular to the plane of growth of a zinc deposit in
a two-dimensional horizontal cell. The chirality of the de-
posit reverses according to whether the field is applied ver-
tically upwards or downwards. The uniform magnetic field

FIG. 1. Typical zinc electrodeposits grown in flat horizontal
cells; (a)DLA; (b) dense radial;(c) dendritic.

PHYSICAL REVIEW E 69, 061404(2004)

1539-3755/2004/69(6)/061404(10)/$22.50 ©2004 The American Physical Society69 061404-1



of B=0.35 T used here was provided by a large Halbach
cylinder permanent magnet assembly[16].

Our purpose, in this paper, is to detail a numerical ap-
proach to modeling these systems in the low concentration
regime. One numerical model has been proposed by Mi-
zuseki et al. [17,18] to introduce the affect of an applied
magnetic field. We outline the logic behind this model, but
show that it disagrees fundamentally with the experimental
result. We proceed to present an alternative magnetic field
model, which produces morphologies consistent with experi-
ment. First, we establish the relation between the DLA model
and the differential equations for electrochemical mass trans-
port.

II. NUMERICAL SIMULATION

The most basic version of the DLA model, as originally
proposed by Witten and Sander[3], serves as a suitable
model for this electrochemical system in the very low volt-
age, low concentration regime where diffusion of ions
through a diffusion layer is the limiting factor determining
growth.

At equilibrium, in two dimensions, the diffusion equation

] c

] t
= D¹2c s1d

reduces to a Laplace equation

¹2c =
]2c

] x2 +
]2c

] y2 = 0, s2d

where c is the molar concentration of an ionic species in
solution andD is its diffusion constant. In discrete form, we
can write this equation as

H fcsxi+1,yjd − csxi,yjdg − fcsxi,yjd − csxi−1,yjdg
D2 J

+ H fcsxi,yj+1d − csxi,yjdg − fcsxi,yjd − csxi,yj−1dg
D2 J = 0

s3d

in order to find a solution for the concentrationcsxi ,yjd at a
point sxi ,yjd on a finite square grid with equal separation
Dx=Dy=D between neighboring sites. This Laplace equation
thus has discrete solution in two dimensions

csxi,yjd =
csxi+1,yjd + csxi−1,yjd + sxi,yj−1d + csxi,yj+1d

4

s4d

relating the concentration at sitesxi ,yjd on a finite grid to the
concentrations at neighboring sites. This finite difference so-
lution to the Laplace equation has, however, the same form
as the probabilityPsxi ,yjd equation[19]

Psxi,yjd =
Psxi+1,yjd + Psxi−1,yjd + Psxi,yj+1d + Psxi,yj−1d

4

s5d

for the movement of a random walker to a sitesxi ,yjd, which
depends on the probabilities that it previously occupied one
of the four neighboring sites. This similarity between the
discrete solution of the diffusion equation and the motion of
a random walker marks its usefulness in modeling diffusion-
limited systems.

In the model, the electrochemical cell is represented by a
two-dimensional square lattice, with the central cathode
identified by an occupied site at the center of the grid. A
particle (random walker) enters the grid. It moves about the
grid with equal probability 1/4 of moving up, down, left or
right at each step in accordance with Eqs.(4) and (5). It
continues to move in this way until it reaches a site adjacent
to the occupied site, at which point it sticks.(If it walks off
the grid, it is discarded and a new particle is introduced at a
random point on the edge.) Another particle is then intro-
duced, and moves until it sticks to an occupied neighbour
and so on. In this way, patterns of the kind shown in Fig. 4(a)

FIG. 2. Overview of the morphology of zinc electrodeposits
grown in a flat horizontal cell as a function of electrolyte concen-
tration co and applied voltageV.

FIG. 3. Zinc electrodeposits grown from 0.1 M ZnSO4 at 10 V
in a flat horizontal cell in the presence of a 0.35 T magnetic field
applied(a) vertically upwards, and(b) vertically downwards.

FIG. 4. (a) A basic DLA fractal; (b) Electric field model with
Edepsddepd=C/ddep, C=0.5 and Ecen=0.05; (c) Multiple particle
simulation with a concentration represented byfc=0.2.
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develop which resemble the low voltage, low concentration
DLA electrodeposits of Fig. 1(a).

Monitoring the variation of current with applied voltage
during the growth of two-dimensional electrodeposits[15],
however, the diffusion-limited, low voltage plateau seen in
three-dimensional growth is not reproduced. Rather a linear
I-V curve is observed at Zn2+ concentrations as low as
0.01 M This indicates that growth may not be strictly diffu-
sion limited even at low voltages and concentrations. As
there is no supporting electrolyte present in the experimental
cell to screen the metal ions from the applied electric field,
the migration of ions through this electric field may be a
dominant mass transfer mechanism. We thus introduce the
effect of an applied electric field into our numerical model.

A. Electric field

Positively charged metal ions from the solution are drawn
along electric field lines, perpendicular to the cathode surface
according to the equation

] c

] t
= D¹2c − = smcEd, s6d

whereE is the electric field andm the ion mobility. At equi-
librium this reduces to

D¹2c − mE · = c − mc = ·E = 0. s7d

We can also state that, in a medium with free charges,

¹2F = − = ·E = −
Fszccc − zacad

««o
= − r, s8d

wherezc and za are the charges on the cations and anions,
respectively, which in turn have molar concentrationscc and
ca, and the potentialF satisfiesE=−=F ·«o is the vacuum
permittivity, « the dielectric constant of water, andF is the
Faraday constant. An externally applied electric field related
to a charge distribution outside the medium is, within a uni-
form solution, described by the Laplace equation

¹2F = 0. s9d

It would appear then, that within an ideally neutral solu-
tion satisfying the electroneutrality condition

o
i

zici = 0 s10d

over all speciesi, the charge densityr would be strictly zero
and the internal electric potential would also satisfy
Laplace’s equation. In practice, however, owing to the enor-
mous value ofF /««0 (1.431014 Vm/mol for a relative di-
electric constant of 78), even slight deviations from electro-
neutrality may result in significant local electric fields. A
corollary of this effect, however, is that any appreciable
separation of charge would require prohibitively large elec-
tric forces, and is therefore a local or relatively minor effect.
Nonetheless, although electroneutrality is commonly as-
sumed in electrochemistry, it is incorrect to infer that
Laplace’s equation is necessarily satisfied by the electric po-
tential in a given electrolyte[20].

What we assume here, however, is one of two things.
Either local deviations from strict electroneutrality result in
(a) fluctuations in the electric field which are randomly dis-
tributed and oriented across the cell or(b) slight gradients
which are radial across the cell and directed towards the
cathode resulting in a radial electric field. In the former case,
the random nature of the effect of the electric field fluctua-
tions is modeled by the random movement of the walker
detailed above. In the latter case, as the net effect at local
level is in the same radial direction as an externally applied
electric field, it is modeled as additional to the external field
and also satisfying Eq.(9).

We therefore proceed with the approximation of an exter-
nally applied electric field satisfying Laplace’s equation so
that Eq.(7) is simply given by

D¹2c − mE · ¹ c = 0 s11d

⇒DF ]2c

] x2 +
]2c

] y2G − mFEx
] c

] x
+ Ey

] c

] y
G = 0. s12d

Using the dimensionless variablesc̄=c/co where co is the
bulk concentration;x̄=x/a and ȳ=y/a, wherea is the lattice

spacing between adjacent grid points;Ēx=sma/DdEx and

Ēy=sma/DdEy; we can rewrite Eq.(12) in dimensionless
form

]2c̄

] x̄2 +
]2c̄

] ȳ2 = Ēx
] c̄

] x̄
+ Ēy

] c̄

] ȳ
. s13d

Solving this in discrete form for the concentration at grid
point sx̄i , ȳjd relative to the concentrations at its nearest
neighbours we find that

c̄sx̄i,ȳjd = c̄sx̄i+1,ȳjdF1

4
−

Ēx

8
G + c̄sx̄i−1,ȳjdF1

4
+

Ēx

8
G

+ c̄sx̄i,ȳj+1dF1

4
−

Ēy

8
G + c̄sx̄i,ȳj−1dF1

4
+

Ēy

8
G .

s14d

Our numerical convention defines anglesu anticlockwise

from the y axis so thatĒx=−Ē sin u and Ēy=Ē cosu. We
thus rewrite Eq.(14) as

c̄sx̄i,ȳjd = c̄sx̄i+1,ȳjdF1

4
+

Ē

8
sin uG

+ c̄sx̄i−1,ȳjdF1

4
−

Ē

8
sin uG

+ c̄sx̄i,ȳj+1dF1

4
−

Ē

8
cosuG

+ c̄sx̄i,ȳj−1dF1

4
+

Ē

8
cosuG . s15d

As with Eqs.(4) and (5), we implement this numerically in
terms of the probabilities for movement between neighboring
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sites. In this case, the effect of the electric field is to increase
the probability that the particle will move directly towards
the nearest occupied site on the surface of the deposit. This is
achieved by scanning within a lookup radiusRlook about the
moving particle for occupied sites[21]. In these simulations
Rlook=10 lattice spacings. The angleudep to the nearest de-
tected occupied site is calculated as shown in Fig. 5 and the
probabilities for movement up, down, left or right at the next
step are varied in geometric proportion toudep, according to

Up:1
4 + Edepsddepdcosudep s16ad

Down:14 − Edepsddepdcosudep, s16bd

Left: 1
4 + Edepsddepd sin udep, s16cd

Right:14 − Edepsddepdsin udep, s16dd

where we use the approximationEdepsddepd=C/ddep. C is a
constant andddep is the distance from the particle to the
nearest occupied site.(If there is more than one “nearest”
occupied site, then the probabilities of movement towards
each are individually varied.)

It is, however, computationally expensive to scan the en-
tire grid relative to the moving particle, especially when it is
far from the deposit. We note, however, that the structure
grows within a broadly circular envelope. Far from the de-
posit therefore, the electric field lines essentially emanate
from the centre of the grid. We thus simplify the calculation
by saying that at a distance from the furthest point of growth
of the deposit, the applied voltage can be modeled simply as
a drift towards center. At each step, the angleucen (Fig. 6)
from the particle to center is calculated. The probability that
the particle will move towards the center of the deposit is
thus increased by varying the probability that it will move
up, down, left or right at the next step in geometric propor-
tion to ucen according to

Up:1
4 + Ecen cosucen, s17ad

Down:14 − Ecen cosucen, s17bd

Left: 1
4 + Ecen sin ucen, s17cd

Right:14 − Ecen sin ucen, s17dd

whereEcen is a constant indicating the strength of the applied
electric field. Migration in an electric field is thus modeled
through a combination of(a) a drift towards center while the
moving particle is far from the deposit and(b) an increased
probability of movement towards the surface when the par-
ticle is close to the deposit.(Erlebacheret al. [22] also use a
separate treatment of regions close to and far from the de-
posit.) The resultant fractals, as shown in Fig. 4(b), are more
dense and grow within a clearly defined circular envelope.
This is equivalent to the dense radial electrodeposits of Fig.
1(b).

B. Concentration

The basic DLA model also assumes that only one particle
is moving at a given time. This is not, however, the case even
at low concentrations. We therefore introduce finite concen-
trations by allowing multiple particles to move and stick si-
multaneously. We maintain a constant concentration as the
deposit grows by defining a given fractionfc of the sites
within an annulus of thicknessNrel about the maximum ra-
dius of growthrmax, which serve as starting points for ran-
dom walkers. Thus as the deposit grows, the number of par-
ticles nmovers moving in the system is constantly increasing
according to

nmovers~ 2pfcNrelrmax. s18d

No two moving particles can occupy the same site simulta-
neously, and as one particle sticks, a new particle is intro-
duced within the starting annulus.

FIG. 5. Sites within a lookup radiusRlook of the particle are
checked for occupation. The angleudep(measured counterclockwise
from they axis) to the nearest occupied site is then calculated.

FIG. 6. At each step, the angleucen (measured counterclockwise
from they axis) between the particle and the initial central seed site
is calculated.
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The effect of this is simply to make the deposits some-
what more dense with slightly thicker branches as shown in
Fig. 4(c). Multiparticle diffusion has been extensively stud-
ied by Voss[23].

C. Magnetic field

We begin by outlining the magnetic field model used by
Mizuseki et al. [17,18] and ourselves[24] which results in
chiral deposits, but which actually spiral in directionsoppo-
site to the experimental observation. We then present an al-
ternative, more physical, magnetic field model[21] which
yields results consistent with experiment.

1. First magnetic field model

The first magnetic field model considers that a particle
with chargeq moving with velocityv in a magnetic fieldB
will tend to be deflected by the Lorentz forceqv3B. It is
not useful to define a velocityv for a purely random walk. In
this system, however, the particle experiences a drift velocity
due the applied voltage of Sec. II A, which is superimposed

on its random movement. Numerically, the “velocity” of a
particle is determined by considering its trajectory over the
previousN steps(hereN=6). The average angleuvel through
which it has moved overN steps is calculated as shown in
Fig. 7. Assuming that the particle would continue along this
trajectory in the absence of an applied magnetic field, we
introduce a magnetic field by varying the probabilities for
movement at the next step so that it will tend to be deflected
by an angleamagn from the direction defined byuvel accord-
ing to

Up:1
4 + vBvel cossuvel ± amagnd, s19ad

Down:14 − vBvel cossuvel ± amagnd, s19bd

Left: 1
4 + vBvel sinsuvel ± amagnd, s19cd

Right:14 − vBvel sinsuvel ± amagnd, s19dd

whereBvel and amagn indicate the strength of the magnetic
field. The ‘±’ of Eq. (19) is ‘+’ when the magnetic field is
applied vertically downwards to the horizontal cell and ‘−’
when applied vertically upwards.

This model produces chiral results as shown in Fig. 8. The
direction of the chirality is, however, opposite in direction to
the experimental result of Fig. 3. We must therefore recon-
sider the physical content of the model.

2. Second magnetic field model

Consider first the example of free electrons with chargeq
in a conducting material. They have a certain random motion
due to frequent collisions with atoms of the material. An
applied electric field imposes a certain drift velocityvd on
their movement in addition to their random motion. An ap-
plied magnetic field(in the Hall effect, for example) exerts a
Lorentz forceqvd3B on each electron. The current density
in the conducting material is given byj =nqvd wheren is the
number of electrons, and the Lorentz forcej 3B on j is ef-

FIG. 7. The angleuvel through which the particle has moved
over the previousN steps is calculated relative to the “up” direction.
An applied field will tend to make it deviate from this course by an
angle amagn. Here amagn has a negative value, indicating that the
magnetic field is applied vertically upwards.

FIG. 8. The first magnetic field model yields spiral patterns but with the wrong chirality for the magnetic field applied(a) vertically
upwards to the horizontal cell and(b) vertically downwards.
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fectively just the sum of the forces on individual electrons.
The net effect of the Lorentz force is to cause the current to
flow in a different direction.

This example differs from the present scenario, however,
in that the current is now flowing though a liquid rather than
a solid. Each metal ion in the electrolyte is surrounded by a
hydration sphere of associated water molecules. Thus the
effect of the Lorentz force in changing the path of the ions,
which transfer momentum to water molecules beyond the
first hydration layer, is to induce a flow of the electrolyte in
the cell. The surface of the deposit provides a solid boundary
for this flow. The ions in the electrolyte therefore flow past
the surface of the deposit.

We thus propose an alternative magnetic field model
based not solely on the interaction between the magnetic
field and individual ions in solution, but between ions in the
Lorentz force-induced flow and the surface of the deposit.

Our solution must therefore be based upon a solution of
the convective diffusion equation

] c

] t
= D¹2c − = · scvd s20d

wherev is the velocity of fluid flow. Taken together with the
continuity equation

= ·v = 0, s21d

at equilibrium Eq.(20) reduces to

DF ]2c

] x2 +
]2c

] y2G = vx
] c

] x
+ vy

] c

] y
. s22d

Using the dimensionless variablesc̄=c/co, whereco is the
bulk concentration;x̄=x/a and ȳ=y/a, wherea is the lattice
spacing between adjacent grid points;v̄x=sa/Ddvx and v̄y

=sa/Ddvy; we can rewrite Eq.(22) in dimensionless form

]2c̄

] x̄2 +
]2c̄

] ȳ2 = v̄x
] c̄

] x̄
+ v̄y

] c̄

] ȳ
. s23d

As in Sec. II A, casting Eq.(23) in finite terms yields the
concentration at grid pointsx̄i , ȳjd relative to the concentra-
tions at its nearest neighbors

c̄sx̄i,ȳjd = c̄sx̄i+1,ȳjdF1

4
−

v̄x

8
G + c̄sx̄i−1,ȳjdF1

4
+

v̄x

8
G

+ c̄sx̄i,ȳj+1dF1

4
−

v̄y

8
G + c̄sx̄i,ȳj−1dF1

4
+

v̄y

8
G .

s24d

Remembering that angles are defined anticlockwise from the
y axis so thatv̄x=−v̄ sin u and v̄y= v̄ cosu, we rewrite Eq.
(24) as

c̄sx̄i,ȳjd = c̄sx̄i+1,ȳjdF1

4
+

v̄
8

sin uG + c̄sx̄i−1,ȳjdF1

4
−

v̄
8

sin uG
+ c̄sx̄i,ȳj+1dF1

4
−

v̄
8

cosuG
+ c̄sx̄i,ȳj−1dF1

4
+

v̄
8

cosuG . s25d

Note that Eq.(25) has the same form as Eq.(15), with v̄
replacingĒ.

Now the current density at each point on the surface is
perpendicular to the surface at that point, and the Lorentz
force acts at right angles to bothj andB. A flow of electro-
lyte is therefore established which, close to the deposit, is
confined to flow parallel to the solid surface. We therefore
introduce the effect of an applied magnetic field by increas-
ing the probability that, close to the deposit, the particle will
move perpendicular to the line joining the walker to the near-
est point on the surface. We find the nearest point on the
surface by scanning within a lookup radiusRlook of the par-
ticle, as in Sec. II A, and then increase the probability that
the particle will move at a tangent to this point(Fig. 9)
according to

Up:1
4 + v flowsBdcossudep± p/2d, s26ad

Down:14 − v flowsBdcossudep± p/2d, s26bd

Left: 1
4 + v flowsBdsinsudep± p/2d, s26cd

Right:14 − v flowsBdsinsudep± p/2d, s26dd

wherev flowsBd is a multiplicative factor representing the ve-
locity of the flow set up by the magnetic field.[Note that in
both magnetic field models, the magnetic field term is added
to the electric field terms of Eqs.(16) and(17).] The “±” of
Eq. (26) is ‘+’ when the magnetic field is applied vertically

FIG. 9. The nearest occupied site is found by again scanning
within a lookup radiusRlook about the particle. Flow due to the
magnetic field is parallel to the plate, i.e., at an anglesudep±p /2d
depending on the field direction. Here the angle issudep−p /2d mod-
eling a magnetic field applied vertically upwards.
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downwards to the horizontal cell and “–” when applied ver-
tically upwards.

This model yields chiral results as shown in Fig. 10. In
this case, the chirality agrees with the experimental result of
Fig. 3.

III. DISCUSSION

Both models introduce the magnetic field in terms of the
effect of the Lorentz force on moving charges. The first,
however, models the effect of the Lorentz force on each in-
dividual ion, without consideration for its interaction with
the rest of the system. It ignores the fact that(a) the ion is
surrounded by water molecules which are associated with
that ion by hydrogen bonding;(b) that the magnetic field
does not just act on each ion in isolation, but that the net
effect of the Lorentz force on the current density towards the
deposit is to set up a flow of electrolyte in the cell, and(c)
that the surface of the growing deposit marks a boundary for
this flow. The flow is parallel to the surface. The role of the
surface in convective flow is similarly neglected by Nagatani
et al. [25].

An applied magnetic field deflects ions in the same direc-
tion in both models. The key failure of the original model,
however, is that it neglects to detect in advance the presence
of the deposit surface, so that when new particles stick they
tend tobackupfrom occupied sites as indicated in Fig. 11.
This results in branches which spiral backwards from exist-
ing growth. Our new model, on the other hand, recognizes
that ions flow along the surface, eventually sticking some-
where on the other side of an existing branch as illustrated in
Fig. 12. This is clearly the more accurate model for the ex-
perimental system. Recent observations on the chirality of
deposits produced in a rotating cell[26,27] confirm this
mechanism. A further factor favoring downstream growth
may be the concentration depletion effect discussed by Bar-
key et al. [8].

We must also consider what precisely is being represented
by an occupied site in a numerical deposit. A typical experi-
mental electrodeposit contains,1020 atoms, while a typical
numerical structure consists of,105 occupied sites. These
electrodeposits are fractal in nature, and as such are self-
similar over several orders of magnitude; nonetheless, this
discrepancy indicates that an occupied site on the numerical

FIG. 10. The improved magnetic field model produces spiral patterns which agree with the experimental result,v flowsBd=0.3 for the
magnetic field applied(a) vertically upwards to the horizontal cell and(b) vertically downwards.

FIG. 11. The incorrect magnetic field model.(a) An applied
magnetic field deflects an ion(open circle) in the direction indicated
by the dashed arrow. When the ion reaches the surface of the cath-
ode it stops(shaded circle). (b) Over a number of iterations, this
results in particlesbacking-upfrom existing growth.

FIG. 12. The new magnetic field model.(a) An applied mag-
netic field deflects an ion(open circle) in the direction indicated by
the dashed arrow. This results in a flow of electrolyte in this direc-
tion. The fluid is, however, confined to flow parallel to the solid
surface of the electrode as shown by the solid arrow. Ions are swept
along the surface until eventually they stick.(b) Over a number of
iterations, this results in particlesstretching forwardfrom existing
growth.
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grid cannot simply represent the reduction of a single metal
ion. Recent electron microscope investigations[15] confirm
the fractal nature of zinc electrodeposits,25 mm in diam-
eter, down to the micron scale. On this scale, however, the
fundamental building blocks of the structure are observed to
be elementary crystallites,1 mm in length, each containing
,1010 atoms. A deposit is composed of,1010 crystallites.

Given this observation, we consider our model in the con-
text of the work of Fleuryet al. [28–30] and Chazalviel[31].
Chazalviel provides a theoretical demonstration that, al-
though the bulk solution remains electrically neutral, a space
charge region develops in the immediate vicinity of the cath-
ode. In this anion-poor region(with thickness typically of
order a micron at realistic concentrations in the range
10−6–1 M ) an electric fieldE* develops which is much
stronger than that in the bulk. Nucleation of a crystallite by
reduction of a cation is most probable in this higher field. A
growth phase follows nucleation, and cations continue to be
reduced at this point. As the crystallite grows, however, it
stretches out into the solution more quickly than the anions
can recede. The electric field thus drops, and so too does the
likelihood of another nucleation event at that point. The av-
erage velocity of growth of the front of the deposit is thus
equal to the recession speed of the anions. Fleury shows
experimentally that branched electrodeposits develop from
such oscillatory nucleation and growth processes. In this
context, we consider that an occupied site on our numerical
deposit represents not the point of reduction of a single cat-
ion, but a point of nucleation and subsequent growth of a
micron-sized crystallite.

In Sec. II A we argued that deviations from strict electro-
neutrality may be modeled as either randomly oriented local
fluctuations in the electric field, or a net radial field term
which we approximate as an additional external field. In the
former case, the fluctuations simply result in a random bias,
which is efficiently modeled through the basic random
movement of the walker across the lattice. In the latter case,
the net internal radial field is absorbed into our term for the
externally applied electric field.

We recognize, however, that within the space charge re-
gion [31], the electroneutrality approximation breaks down
entirely andzccc@zaca, so that Eq.(8)

¹2F = − = ·E = −
Fszccc − zacad

««o
= − r

relates to a potentialF which satisfies the Poisson equation

¹2F = − r s27d

and Eq.(15) no longer holds; that is, the concentration pro-
file cannot be simplified on a grid in terms of neighboring
concentrations and probabilities which sum to one. We as-
sert, however, that an occupied numerical site represents a
point on the edge of the typically micron-sized space charge
layer where the local fieldE* is strong enough to initiate
nucleation of an individual crystallite. The subsequent
growth process as described by Fleury[30] is not considered
here.

We also note that it is possible to interpret our result in the
context of the electrokinetic effect proposed by Olivieret al.
[32,33] to explain the mechanism for the effect of an applied
magnetic field on an electrochemical system. In their model,
a nonelectrostatic electric field is establishedparallel to an
electrode surface as a result of the interaction between the
current density plating to the surface and a perpendicular
applied magnetic field. This electric field, by electro-
osmosis, induces a flow of electrolyte parallel to the surface
in the uncompensated solution beyond the outer Helmholtz
plane. Olivieret al.contend that this effect alone is sufficient
to account for magnetic field effects on electrodeposition. We
note, in this context, that the key component of our numeri-
cal model is simply the flow of electrolyte parallel to the
electrode surface, induced by the magnetic field. Bulk flow
of the electrolyte in the cell is not explicit numerically. By
considering this flow only in the immediate vicinity of the
surface it is possible to reproduce the experimentally deter-
mined morphologies. As such, the magnetically activated
electrokinetic effect falls under the umbrella of our numeri-
cal model as a possible explanation for the mechanism be-
hind the magnetic field effect.

Finally, we return to the question of length scale. The
various length scales in the problem are summarized in Fig.
13. What is the physical sense of the step size of the walker?
In the final step as the walker attaches to the deposit surface,
the step size must relate to the distance over which the con-
centration of freely diffusing ions passes fromco to zero.
This is the thickness of the diffusion layer, over which there
is a concentration gradient of the metal cations, which is
,100 mm for typical current densities[34] in these cells. An

FIG. 13. Length scales in the problem are summarized on a
logarithmic scale. Measured from the cathode surface, the Outer
Helmholtz Plane is at,1 nm [35]; the space charge layer ends at
,1 mm; the diffusion layer has thickness,100 mm; and the hy-
drodynamic boundary layer has thickness,1 mm. The latter two
are associated with the walker step-size and lookup radius respec-
tively. The length of elementary crystallites in zinc fractal elec-
trodeposits is,1 mm.
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8003800 grid size therefore corresponds to approximately
838 cm2, roughly the dimension of the electrochemical cell,
and significantly larger than the size of the deposit. Further-
more, the hydrodynamic boundary layer is typically of order
ten times the thickness of the diffusion layer[34] and so is
established over approximately ten numerical lattice spac-
ings. In our simulation, magnetic field effects were consid-
ered within a lookup radiusRlook of ten lattice spacings from
the deposit surface. The hydrodynamic boundary layer estab-
lished in the presence of convective flow, which in this case
is induced by an applied magnetic field, is thus associated
with the thickness of the lookup radius and lies comfortably
within the resolution limit of the simulation.

IV. CONCLUSIONS

We have adapted the basic diffusion-limited-aggregation
model for the growth of fractal electrodeposits to include the
effects of finite concentration, migration in an electric field,
and magnetic field-induced convection. In each case we
show how the adapted DLA model is related to the underly-
ing differential equations. We have corrected an earlier mag-
netic field model which generates spiral structures, but with a
chirality oppositeto the experimental observation. The prin-
cipal failure of this model lies in its neglect of the fact that
the ions are in solution in water, and that a force exerted on
the ions therefore results in flow of the electrolyte by mo-

mentum transfer beyond the hydration sphere immediately
associated with each ion. The alternative magnetic field
model presented here considers this magnetic field-induced
convective flow and the fact that it is confined to pass paral-
lel to the surface of the growing deposit. This model also
yields spiral deposits, but this time with the correct chirality.

The DLA model can be adapted to take account of electric
and magnetic fields, provided the electrolyte remains ap-
proximately charge neutral, and deviations from neutrality
can be modeled by electric fields which are either local and
randomly oriented or external and radially symmetric. When
this is not the case, as within the narrow space charge region
near the cathode surface, the Laplace equation for the electric
potential must be replaced by a Poisson equation and the
DLA approximation breaks down.

We also argue that an occupied site in a numerical deposit
does not represent the reduction of a single metal cation. It
marks instead the point, at the edge of the space charge layer
immediately surrounding the cathode, of nucleation and
growth of a micron-sized crystallite containing,1010 atoms.
The step length of the random walker is identified with the
diffusion layer thickness and the lookup radius identified
with the hydrodynamic boundary layer thickness.
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