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Using event-driven molecular dynamics simulations, we study a three-dimensional one-component system
of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an
attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two
metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of
this potential affect the phase diagram of the system. We find a broad range of potential parameters for which
the system has both a gas-liquid critical pointC1 and a liquid-liquid critical pointC2. For the liquid-gas critical
point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the
potential, have the same signs: they are positive for increasing width of the attractive well and negative for
increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas
critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases
as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pres-
sures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively
reproduces the behavior of both critical points within some range of parameters, and gives us insight on the
mechanisms ruling the dependence of the two critical points on the potential’s parameters. The soft-core
potential studied here resembles model potentials used for colloids, proteins, and potentials that have been
related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in
some systems where it has not yet been observed.
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I. INTRODUCTION

The discovery and investigation of liquid-liquid phase
transitions in a one-component system is of current interest,
since recent experiments for phosphorus[1,2] show a first-
order phase transition between two stable liquids in the ex-
perimentally accessible region of the phase diagram. A
liquid-liquid phase transition, ending in a critical point, was
initially proposed to explain the anomalous behavior of
network-forming liquids such as H2O [3–18]. In particular,
the density anomaly, consisting in the expansion under iso-
baric cooling of these systems, has been related to the pos-
sible existence of a phase transition between low-density liq-
uid (LDL ) and high-density liquid(HDL). Simulation results
and experimental studies of water predict a LDL-HDL phase
transition in an experimentally inaccessible region of the
phase diagram[9,12,15,19,20]. Computer simulations of re-
alistic models of carbon[21], phosphorus[22], SiO2 [23],
and Si [24,25] strongly suggest the existence of first-order
LDL-HDL phase transitions in these substances. Recently
the step changes of the viscosity of liquid metal, such as Co,
have been theoretically interpreted as evidence of liquid-
liquid phase transitions[26].

The presence of the first-order phase transitions in solids
and solid-solid critical points, determined experimentally
[27] and with simulations[28–31], have suggested the pos-
sibility of the existence of liquid-liquid critical points and
polymorphism in the amorphous state[32–34]. It has been
proposed that systems with solid polymorphism may exhibit
several liquid phases with local structures similar to the local
structures of various crystals. Experimental evidence of

sharp structural transitions between liquid polymorphs of Se,
S, Bi, P, I2, Sn, Sb, As2Se3, As2S3, and Mg3Bi2 are consistent
with phase diagrams with first-order liquid-liquid phase tran-
sitions [33,35], analogous to the liquid-liquid phase transi-
tion seen in rare earth aluminate liquids[36,37].

These results call for a general interpretation of the basic
mechanisms underlying the liquid-liquid phase transition.
Here we aim to delineate the conditions ruling the accessi-
bility of the two liquid phases. A first step in this direction
was taken in Refs.[38,39], where we have shown that a
specific isotropic soft-core attractive potential, for a one-
component system, has a phase diagram with LDL-HDL
phase transition, with two fluid-fluid critical points and with
no density anomaly.

Here we extend this analysis by varying the parameters of
this potential (Fig. 1). We find that, for a wide range of
parameters, this potential has a phase diagram with a liquid-
liquid critical point, and we show how the phase diagram
depends on the parameters. We develop a modified van der
Waals equation(MVDWE) able to describe the behavior of
the two critical points as a function of the potential param-
eters, elucidating a mechanism for the liquid-liquid phase
transition and the conditions under which the liquid-liquid
critical point occurs at positive pressure.

In Sec. II we introduce the isotropic sof-core potential; in
Sec. III we describe the two different molecular dynamics
(MD) techniques we use; in Sec. IV we present our results
for different combinations of parameters that give rise to a
liquid-liquid phase transition ending in a liquid-liquid critical
point; in Sec. V we construct a modified van der Waals equa-
tion which can qualitatively reproduce the behavior of the
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two critical points; in Sec. VI we discuss the role of potential
parameters in changing the position of the critical points; in
Sec. VII we summarize our results; in the Appendix we
present our simulation results for a simple square well po-
tential.

II. THE ISOTROPIC SOFT-CORE ATTRACTIVE
POTENTIAL

For attractive potentials with a sufficiently broad interac-
tion distance, the phase diagram has a first-order gas-liquid
transition ending in a gas-liquid critical point, and a first-
order liquid-solid phase transition[40]. When the attractive
range is small, the liquid phase and the gas-liquid critical
point are metastable with respect to the solid phase[41–45].

For a strictly repulsive soft-core potential, simulations
show a phase diagram with a first-order gas-solid phase tran-
sition and a first-order phase transition between two solids of
different densities, but with the same structural symmetry,
ending in a solid-solid critical point[28–31]. Recent theoret-
ical work has suggested that systems with a broad soft-core
potential have a fluid-fluid phase transition and liquid
anomalies[46], or give rise to stripe phases in two dimen-
sions[47].

We have shown in Ref.[38] that the combination of a
repulsive soft core with an attractive well is sufficient to give
rise to a phase diagram with two liquid phases. This simple
isotropic model potential is similar to those used in the semi-
nal work of Stell and Hemmer[48], who studied a soft-core
potential in one dimension(1D). Similar potentials were
studied in 2D and 3D showing phase diagrams with a pos-
sible liquid-liquid critical point[49,50].

The 3D isotropic potential we consider(Fig. 1) has a hard
core(infinite repulsion) at distancea, a repulsive soft core of
width wR and energyUR.0, and an attractive square well of
width wA and energy −UA,0 [38,39]. The potential has

three parameters:wR/a, wA/a, andUR/UA, wherea andUA
have been chosen as units of length and energy, respectively.
Though this potential is discontinuous, it is similar to model
potentials for complex fluids, such as colloids, protein solu-
tions, star polymers[44,51–56], and resembles pair poten-
tials proposed for water[52], or that have been related to
liquid metals under specific conditions[57–59].

This potential with parameterswR/a=1.0,wA/a=0.2, and
UR/UA=0.5 has a phase diagram with gas-LDL and gas-
HDL first-order phase transitions, each ending in a critical
point in the supercooled fluid region[38]. Both liquid phases
are metastable with respect to a single crystal phase and no
density anomaly is observed[39].

In this paper we present systematical MD studies of the
phase diagrams for this potential(Fig. 1). By varying the
parameters of the potential,wA/a, wR/a, and UR/UA, we
relate the attractive and repulsive components of the poten-
tial to the appearance and stability of the liquid-liquid phase
transition and critical points.

III. MOLECULAR DYNAMICS SIMULATIONS

We perform MD simulations ofN=850 particles of unit
massm at constant volumeV and constant temperatureT,
interacting via the potential described above(Fig. 1). The
details of the event-driven MD we use are presented in Refs.
[38,39]. We measure temperature in units ofUA/kB, wherekB
is Boltzmann constant. We measure time in units of

TABLE I. Sets of parameters for the generic soft-core potential
(Fig. 1) considered in this paper:wR/a andwA/a are the soft-core
width and the attractive width, respectively, both in units of the
hard-core distance, andUR/UA is the repulsive energy in units of
the attractive energy. Sets(i)–(vi) have samewA andUR; sets(ii ),
(vii )–(xii ) have samewR andUR; sets(xii )–(xvi) have samewR and
wA.

Seta wR/a wA/a UR/UA

(i) 0.4 0.7 2

sii d* 0.5 0.7 2

siii d* 0.6 0.7 2

sivd* 0.7 0.7 2

(v) 0.8 0.7 2

(vi) 0.9 0.7 2

(vii ) 0.5 0.3 2

(viii ) 0.5 0.4 2

(ix) 0.5 0.5 2

(x) 0.5 0.6 2

sxid* 0.5 0.8 2

sxii d* 0.5 0.9 2

(xiii ) 0.5 0.9 2.5

sxivd* 0.5 0.9 3

(xv) 0.5 0.9 3.5

(xvi) 0.5 0.9 4

aThe asterisk denotes sets for which critical points are calculated via
two methods(see Tables II and III).

FIG. 1. The generic soft-core potential with attractive well with
parameterswA/a, wR/a, andUR/UA. We use the parameters listed
in Table I.
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aUA
−1/2m1/2 and record potential energy and pressure every

Dt=100 time units. To understand the effect of each param-
eter on the phase diagram of our system, we simulate 16 sets
of potential parameters(Table I). After a preliminary screen-
ing, we choose to study the region of parameter space where
the low-density, gas-liquid critical pointC1 always has a
critical temperature above that of the high-density critical
point C2. Therefore, while in Refs.[38,39] C2 is a gas-HDL
critical point, hereC2 is a LDL-HDL critical point. As shown
in Refs. [38,39], C2 can lie in the supercooled metastable
phase, close to the line of homogeneous nucleation, as in
water or silica[14,19,25]. We make certain that all our cal-
culations are performed before the onset of crystallization, as
discussed in Ref.[39]. The description of the crystal phases
goes beyond the goal of this work. To optimize our analysis
we use two different MD methods.

A. Isothermic method

The first method is a straightforward calculation of the
phase diagram’s state points. For each state point with given
r=N/V and T, we perform typically ten independent simu-
lations of t<23103 time units. We estimate the error in
pressure measurements from the standard deviation of the
ten averaged values computed for each independent simula-
tion. The state points along the isotherms are approximated
by a two-variable polynomialPsr ,Td=oik aikriTk obtained
by the least squared fit of all the state points in the vicinity of
the critical point. This fitting implies mean field critical ex-
ponents[60] and may produce incorrect results in the close
vicinity of the critical point. However, this method helps us
fit the state points, known with statistical errors, by approxi-
mate polynomial isotherms and thus obtain the approximate
position of the critical point.

The coexistence curves are calculated using Maxwell’s
equal area construction and spinodal line is estimated by
locating the maxima and minima of the isotherms. After cal-
culating the state points, isotherms, coexistence curves, and
spinodal lines, we estimate the critical pressure, temperature,
and density forC1 andC2 (PC1

, TC1
, rC1

, PC2
, TC2

, andrC2
,

respectively) as the point where coexistence and spinodal
curves meet, coinciding at their maxima. We apply this
method to six sets of potential parameters[(ii ), (iii ), (iv),
(xi), (xii ), and(xiv) in Table I]. The results are presented in
Figs. 2–7 in the pressure-densitysP−rd phase diagrams. The
estimates of the critical points are presented in Table II.

B. Isochoric method

The isothermic method gives us fairly complete informa-
tion about the details of the phase diagrams, but requires
much computation to calculate enough state points for accu-
rate isotherms. Thus, in order to find the positions of critical
points for a wide range of potential parameters, we adopt a
faster but less accurate MD method. For sets of parameters
close to the sets of parameters studied with the isothermic
method, we estimate the location of the spinodal line by
evaluating the intersections of isochores in theP-T plane. We
first equilibrate several configurations at a high initial tem-

peraturekBTI /UA=2.0 for several values of density above
and below the densities where we expect to findrC1

andrC2
.

At constant density, the system is slowly cooled down from
TI to a final temperaturekBTF /UA=0.1 during a simulation
time of 104 time units[61].

The average values ofT andP are recorded each 100 time
units, which is comparable to the equilibration time of the
system forkBT/UA.0.5. As the temperature decreases, the
equilibration time increases and the method becomes less
reliable. Thus, we use this method to estimate pressure and
potential energy forkBT/UA.0.5.

The error bars of each measurement are of the order of the
nonmonotonic jumps of the isochores(see Fig. 8, inset). The
intersection is determined by fitting isochores with smooth
polynomial fits. The best results can be achieved by qua-
dratic fits in the temperature range including the region of
possible isochore crossing extending from 0.9TC to 1.5TC, so
that the tentative critical temperatureTC is inside this inter-
val.

Since at the spinodal lines]P/]rdT=0, two isochores with
two close values of density must intersect in the vicinity of
the spinodal line. By definition, the critical point corresponds
to the maximum temperature on the spinodal. Therefore, the

FIG. 2. The MDP-r phase diagram for the potential in the inset,
with the parameter set(ii ) in Table I. The long-dashed lines are the
fits of the calculated state points(circles) at constantT. The iso-
therms(from top to bottom) are forkBT/UA=1.30, 1.29, 1.28, 1.27,
1.26, 1.25, and 1.24 at lowr and kBT/UA=0.62, 0.60, 0.58, 0.57,
0.55, 0.53, and 0.50 at highr. The fits are calculated by considering
P a polynomial function of bothT andr. The isotherms show two
regions with negative slope, i.e., mechanically unstable, delimited
by the spinodal lines(solid bold lines). Each spinodal line is asso-
ciated with a first-order phase transition. By using the Maxwell
construction, we estimate the coexisting regions associated to each
spinodal line, delimited by the phase transition line(bold dashed
line). The coexisting regions are clearly separated at the considered
temperatures. The phase transition line at lowr is indistinguishable
from the spinodal line at this scale. The points where the coexisting
lines merge with the spinodal lines are, by definition, the critical
points C1 (at low r) and C2 (at high r). No spontaneous crystal
nucleation is observed in the explored region of the phase diagram.
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critical pressure and temperature can be evaluated by esti-
mating the pressure corresponding to the maximum tempera-
ture at which isochores intersect. The critical density can be
estimated assr1+r2d /2, wherer1 andr2 are the densities of
the two isochores intersecting at the highest temperature
(Fig. 8). The critical point values estimated with this method
are presented in Table III.

This approximate method is allowed as long as we use it
to estimate the critical points of potentials with sets of pa-
rameters close to those for which we have done a detailed

study using the isothermic method. We apply the isochoric
method to 16 sets of the potential parameters. The compari-
son of the two methods(Tables II and III) shows that the
resulting estimates of criticalP, T, andr of C1 and C2 are
consistent.

IV. PHASE DIAGRAM RESULTS

Our results in Figs. 2–7 clearly show that the phase dia-
gram strongly depends on the potential parameters. For ex-
ample, phase diagrams in Figs. 2–4 have fluid phases(gas,

FIG. 3. As in Fig. 2, for parameter set(iii ) in Table I. The
isotherms in the low-r region (from top to bottom) are for
kBT/UA=1.25, 1.24, 1.23, 1.22, 1.20, 1.18, 1.16, and in the high-r
region are forkBT/UA=0.72, 0.70, 0.68, 0.65, 0.62, 0.60. Sponta-
neous crystal nucleation is observed forT,TC2

andr.rC2
.

FIG. 4. As in Fig. 2, for parameter set(iv) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT/UA=1.20, 1.15, 1.10, 1.05, 1.00, and in the high-r region are
for kBT/UA=0.77, 0.75, 0.73, 0.72, 0.70, 0.69. No spontaneous
crystal nucleation is observed in the explored region of the phase
diagram.

FIG. 5. As in Fig. 2, for parameter set(xi) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT/UA=1.53, 1.52, 1.515, 1.51, 1.50, 1.48, 1.46, and in the high-r
region are forkBT/UA=0.70, 0.68, 0.66, 0.64, 0.63, 0.62, 0.61.C2

is at negative pressure.

FIG. 6. As in Fig. 2, for parameter set(xii ) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT/UA=1.83, 1.82, 1.815, 1.81, 1.80, 1.79, 1.75, 1.70, and in the
high-r region are forkBT/UA=0.98, 0.96, 0.64, 0.92, 0.90.C2 is at
a negative pressure.
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LDL, and HDL) at positive pressures, while for the phase
diagrams in Figs. 5–7, the high-density critical point appears
at negative pressures, i.e., in the region of stretched fluid.

To investigate how the position of critical points depends
on the potential parameters, we vary one of the three param-
eterswA/a, wR/a, andUR/a at a time, keeping the other two
constant. The behavior ofT, P, andr for C1 andC2 (Fig. 9
and Table IV) are presented in the following.

A. Effect of the square-well width wA

By keepingwR/a=0.5 andUR/UA=2.0 constant, we find
(Figs. 9(a)–9(c) and 10) that by increasing well widthwA, rC1
is almost unaffected, whilerC2

decreases,TC1
and TC2

in-
crease,PC1

increases, whilePC2
decreases. ForwA/a.0.7

the LDL-HDL critical point C2 occurs at negative pressures,
as in Fig. 5. Hence,C2 lies in the stretched fluid region and,
therefore, it is metastable. In order to have a stable LDL-
HDL critical point, the attractive distancewA/a must be suf-
ficiently narrow, so thatC2 occurs at positive pressures. A too
narrow well, however, enhances crystallization[39,41–45]
so that the high-density critical point shifts below the line of

spontaneous crystallization, becoming difficult to observe.
Thus the liquid-liquid critical point is observable in our MD
simulations only for intermediate values ofwA/a.

B. Effect of the shoulder width wR

Increasing the width of the repulsive interactionwR, while
keepingwA/a=0.7 andUR/UA=2.0 constant, we find(Figs.
9(d)–9(f) and 11, that bothrC1

and rC2
decrease,TC1

de-
creases, whileTC2

increases, and bothPC1
andPC2

decrease.
For wR/a,0.4 the dynamics of the system in the vicinity of
the expected high-density critical temperature become too
slow and the equilibration time becomes too long, with re-
spect to our simulation time, to measure the equilibrium state

TABLE II. TemperaturesTC1
andTC2

, pressuresPC1
and PC2

, and densitiesrC1
andrC2

for the critical
pointsC1 andC2, respectively, computed by the isothermic method.

Set kBTC1
/UA a3PC1

/UA a3rC1
kBTC2

/UA a3PC2
/UA a3rC2

(ii ) 1.30±0.01 0.04±0.01 0.11±0.02 0.58±0.02 0.15±0.02 0.33±0.02

(iii ) 1.24±0.01 0.03±0.01 0.09±0.02 0.69±0.02 0.11±0.02 0.28±0.02

(iv) 1.18±0.03 0.025±0.003 0.08±0.02 0.75±0.01 0.07±0.01 0.24±0.02

(xi) 1.52±0.01 0.05±0.01 0.11±0.02 0.69±0.01 −0.11±0.01 0.33±0.02

(xii ) 1.82±0.01 0.06±0.02 0.12±0.02 0.96±0.02 −0.21±0.02 0.32±0.03

(xiv) 1.59±0.01 0.043±0.004 0.10±0.02 0.58±0.01 −0.01±0.01 0.35±0.02

FIG. 7. As in Fig. 2, for parameter set(xiv) in Table I. The
isotherms (from top to bottom) in the low-r region are for
kBT/UA=1.65, 1.62, 1.60, 1.58, 1.55, 1.50, 1.45, and in the high-r
region are forkBT/UA=0.60, 0.59, 0.58, 0.57, 0.56, 0.54.C2 is at
negative pressures.

FIG. 8. Estimation of the critical pointC2 by the isochoric
method for the set of potential parameterswA/a=0.5, wR/a=0.5,
UR/UA=2. Inset:P at constanta3r=0.492 for the MD calculation
during the slow cooling described in the text. ForkBT/UA.0.5 the
errors on the estimate of the state points are of the order of the
nonmonotonic jumps. The interpolating line is a quadratic fit of the
calculated points, and gives an estimate of the isochore ata3r
=0.492 forkBT/UA.0.5. Main panel: quadratic fits of isochores for
a3r=0.492, 0.435, 0.405, 0.387, and 0.361(from top to bottom).
The critical pointC2 is located at the highest-T intersection of two
isochores(region inside the circle). The indeterminacy of this inter-
section gives an estimate of the error on the valuesTC2
=0.53±0.03,PC2

=1.05±0.03, andrC2
=0.39±0.05.
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points with sufficient accuracy. Furthermore, as expected for
decreasingwR, TC2

approachesT=0 [Fig. 9(e)], suggesting
that C2 disappears forwR/a=0. At wR/a.1.0 the system
spontaneously crystallizes at high density without showing a
second critical pointC2. Hence, the width of the shoulder
wR/a must be of an intermediate value forC2 to be observed
above the lines of spontaneous crystallization and outside the
region of very slow dynamics, at least for our choice ofwA
andUR.

C. Effect of the shoulder heightUR

For wR/a=0.5 andwA/a=0.9, we increase the repulsive
energyUR and find[Figs. 9(g)–9(i) and 12] that for increas-
ing UR, rC1

decreases, whilerC2
is almost unaffected, both

TC1
and TC2

decrease,PC1
decreases, whilePC2

rapidly in-
creases. ForUR/UA,2.0 the high-density phase transition
occurs at very low negative pressures and the fluid phases are
highly metastable. ForUR/UA.4.0 the diffusion in the sys-
tem in the vicinity of the high-density critical point becomes
markedly slow, due to the soft core becoming less penetrable
and assuming the role of an effective hard core. Therefore,
an intermediate repulsive energy is needed to observeC2 in
our MD simulations.

V. MODIFIED VAN DER WAALS EQUATION

To rationalize the dependence of the temperature, pres-
sure, and density of the two critical points on the potential’s
parameters, we develop a simple mean field theory that gives
rise to a MVDWE,

P =
rkBT

1 − rBsr,Td
− Ar2, s1d

which has the same form of the standard van der Waals equa-
tion (see the Appendix), but with an excluded volumeBsr ,Td

depending on the density and temperature of the state point
and increasing withwR/a, and with a strength of attractionA
that increases withwA/a and decreases withUR/UA. It
should be pointed out that a different modification of the van
der Waals equation[62] also gives rise to the high-density
critical point. In contrast with our work, Ref.[62] is particu-
larly suitable for density dependent potentials since it as-
sumes a constant excluded volumeB and a density depen-
dent attractive termAsrd.

For a system with a hard core and a soft core, one can
assume that the effective excluded volumeBsr ,Td changes
with temperature and density[63]. Indeed, at low densities
and low temperatures, particle cannot penetrate into the soft
core so Bsr ,Td<B2 where B2=2psa+wRd3/3 is the ex-
cluded volume associated with the soft core. In contrast, for
high densities and high temperatures, particles easily pen-
etrate into the soft core andBsr ,Td<B1, where B1

=2pa3/3 is the excluded volume associated with the hard
core. More specifically,Bsr ,Td must be an analytical func-
tion of its parameters such that]Bsr ,Td /]T,0,
]Bsr ,Td /]r,0,

lim
T→`

Bsr,Td = B1, s2d

and

lim
T→0

Bsr,Td = HB2, r ø 1/B2

1/r, 1/B1 . r . 1/B2,
s3d

from which it follows thatBsr ,Td,1/r for anyr andT.0.
Since in any case van der Waals equation can give us only

qualitative agreement with reality, we can select any model
functionBsr ,Td which satisfies the above conditions. Never-
theless, it is desirable to selectBsr ,Td in such a way that it

TABLE III. TemperaturesTC1
andTC2

, pressuresPC1
andPC2

, and densitiesrC1
andrC2

for the critical
points C1 and C2, respectively, estimated by cooling the system at constantr (isochoric method) for the
potential with the set of parameters in Table I.

Set kBTC1
/UA a3PC1

/UA a3rC1
kBTC2

/UA a3PC2
/UA a3rC2

(i) 1.34±0.02 0.04±0.01 0.13±0.02 0.47±0.01 0.28±0.01 0.42±0.03

(ii ) 1.32±0.01 0.04±0.02 0.11±0.02 0.62±0.02 0.19±0.02 0.33±0.02

(iii ) 1.25±0.01 0.03±0.01 0.09±0.01 0.69±0.02 0.11±0.01 0.29±0.02

(iv) 1.19±0.01 0.03±0.01 0.08±0.01 0.74±0.01 0.07±0.01 0.26±0.02

(v) 1.15±0.02 0.02±0.02 0.07±0.01 0.75±0.01 0.04±0.01 0.22±0.02

(vi) 1.11±0.02 0.02±0.02 0.07±0.01 0.76±0.01 0.03±0.01 0.20±0.02

(vii ) 0.68±0.01 0.02±0.01 0.12±0.01 0.48±0.03 2.22±0.02 0.46±0.06

(viii ) 0.82±0.01 0.03±0.01 0.12±0.01 0.52±0.03 1.65±0.02 0.42±0.03

(ix) 0.96±0.01 0.03±0.02 0.11±0.01 0.53±0.03 1.05±0.03 0.39±0.05

(x) 1.12±0.01 0.04±0.01 0.10±0.01 0.57±0.01 0.58±0.01 0.35±0.02

(xi) 1.54±0.02 0.05±0.02 0.12±0.01 0.70±0.01 −0.09±0.01 0.33±0.03

(xii ) 1.84±0.02 0.06±0.02 0.13±0.01 0.96±0.01 −0.22±0.01 0.31±0.03

(xiii ) 1.67±0.01 0.05±0.01 0.11±0.01 0.72±0.01 −0.15±0.01 0.35±0.01

(xiv) 1.62±0.02 0.05±0.01 0.09±0.01 0.60±0.01 0.01±0.01 0.37±0.04

(xv) 1.57±0.01 0.04±0.01 0.09±0.01 0.55±0.01 0.28±0.01 0.35±0.02

(xvi) 1.54±0.01 0.04±0.01 0.09±0.01 0.53±0.02 0.60±0.02 0.35±0.02
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will describe the behavior of some physical system for which
the analytical solution can be found. One-dimensional sys-
tem of particles with a pair potential

Usrd = 5`, r , B1

UR, B1 ø r , B2

0, r ù B2

s4d

provides such a solution. Applying the Takahashi method
[50,64], we obtain the Gibbs potential

G = − kBTN1lnsCkBT/B1P1d, s5d

whereN1 is the number of particles,T is temperature,P1 is
pressure of the one-dimensional system, and

CsT,P1d = se−P1B1/kBT − e−P1B2/kBTde−UR/kBT + e−P1B2/kBT.

s6d

Accordingly V1=]G/]P1 and S1=−]G/]T are the volume
and entropy of the one-dimensional system, andU1=G
−P1V1+TS1 is the potential energy for the one-dimensional
system. The fraction of the soft coresfsr ,Td penetrated by
the particles isfsr ,Td=U1sP1,Td / sN1URd whereP1 must be
determined as a function ofr from the equation
]G/]P1sP1,Td=V1;N1/r. The value f`; fsr ,`d is the
fraction of the soft cores penetrated by the particles in the
high-temperature limit in which soft cores play no role. It
can be computed assuming a Poisson distribution of interpar-
ticle distances:f`=1−esB1−B2d/s1/r−B1d. The probability that
the soft core does not reflect the neighboring particle is equal

FIG. 9. The behavior of the density, temperature, and pressure of the low-density critical pointC1 (open circles) and high-density critical
point C2 (filled squares) for variations of the potential parameters(a)–(c) wA, (d)–(f) wR, and (g)–(i) UR. The other two parameters are
constant: in(a)–(c) wR/a=0.5 andUR/UA=2, in (d)–(f) wA/a=0.7 andUR/UA=2, and in(g)–(i) wA/a=0.9 andwR/a=0.5. Where not
shown, errors are smaller than the symbol size. Lines are guides for the eye.
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to the fraction of these two quantitiesf / f`,1. In this case,
the excluded volume is equal toB1. In the opposite case with
probability 1−f / f`, the excluded volume is equal toB2.
Hence, the effective excluded volume

Bsr,Td = f/f`B1 + s1 − f/f`dB2, s7d

where

f

f`

=
se−P1B1/kBT − e−P1B2/kBTde−UR/kBT

CsP1,Tds1 − esB1−B2d/s1/r−B1dd
, s8d

andP1 must be found from the equation

1

r
=

kBT

P1

+
sB1e

−P1B1/kBT − B2e
−P1B2/kBTde−UR/kBT + B2e

−P1B2/kBT

CsP1,Td
.

s9d

Figure 13(a) illustrates the behavior ofBsr ,Td for a par-
ticular set of parameters. It is clear thatBsr ,Td satisfies all
the physical conditions we impose on the effective excluded
volume. The modified van der Waals equation(1) has two
critical points: one for low densityr!1/B2 and another for
high densityr<1/B2, whose positions on the phase diagram

of the dimensionless variablesT̃=kBT/UR, P̃=B1P/UR, and
r̃=B1r depend on the dimensionless parameters of the
MVDWE: B2/B1 and A/ sURB1d. Figure 13(b) shows aP-T
diagram with two critical pointsC1, C2, for a particular set of
parameters, for which the positions of the critical points are
similar to the positions found in our simulations, i.e.,
TC2

,TC1
.

Now we can relate the parameters of the Eq.(1) to the
potential parameters used in our simulations. The parameters
B1 andB2 are increasing functions of the hard-core diameter
a and the shoulder widthwR, respectively. The parameterUR
has an identical meaning in MVDWE and in simulations.
The strength of attractionA is an increasing function ofwA
and a decreasing function ofUR. Indeed, according to the
formula of the second virial coefficientv2 for our potential,
we have[65]

v2 = B1 + s1 − e−UR/kBTdsB2 − B1d

+ s1 − eUA/kBTdF2p

3
sa + wR + wAd3 − B2G . s10d

For largeT, it has the formv2=B−A/kBT+OsT−2d with A
=UAvA−URvR wherevA and vR are positive quantities with
the dimension of a volume depending ona, wR, andwA, B
=limT→`v2, andA=limT→`TsB−v2d. Hence, in this limit, the
virial expansion P=kBTr+kBTv2r2+Osr3d=kBTrs1+Brd
−Ar2+Osr3d can be rewritten in the form of the van der

TABLE IV. Summary of the effects onrC1
, TC1

, PC1
, andrC2

,
TC2

, PC2
, from variation of parameterswA/a, wR/a, andUR, one at

the time. The symbols↑, ↓, and < represent, respectively, an in-
crease, a decrease, and a small variation of a thermodynamic quan-
tity as a consequence of the increase of the potential parameter.

rC1
TC1

PC1
rC2

TC2
PC2

wA/a < ↑ ↑ ↓ ↑ ↓
wR/a ↓ ↓ ↓ ↓ ↑ ↓
UR/UA ↓ ↓ ↓ < ↓ ↑

FIG. 10. The gas-LDL critical point(C1) and LDL-HDL critical
point (C2) in the P−T plane for varying attractive widthwA and
constant wR/a=0.5, UR/UA=2.0. Symbols denotewA/a=0.3
(circles), 0.4 (left triangles), 0.5 (diamonds), 0.6 (up triangles), 0.7
(right triangles), 0.8 (down triangles), and 0.9(squares). Open sym-
bols are forC1 and filled symbols are forC2. The arrows denote the
direction of increasingwA.

FIG. 11. The gas-LDL critical pointsC1d and LDL-HDL critical
point sC2d in the P-T plane, for varying shoulder widthwR/a and
constant wA/a=0.7, UR/UA=2.0. Symbols denotewR/a=0.4
(circles), 0.5 (up triangles), 0.6 (diamonds), 0.7 (left triangles), 0.8
(down triangles), and 0.9(squares). Open symbols are forC1 and
filled symbols are forC2. The arrows denote the direction of in-
creasingwR.
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Waals equationP=kBTr / s1−Brd−Ar2+Osr3d.
From the equations above we can derive the functional

relation for vA and vR in the limit T→`, which are vA
=s2p /3dsa+wR+wAd3−B2 and vR=B2−B1. By using these
relations it is possible to see that in generalA is an increasing
function of wA and a decreasing function ofUR. The deriva-
tive ]A/]wR may have a different sign depending on other
parameters. Although at finiteT these relations could be
valid only to the leading order, it is reasonable to assume that
A increases withwA and decreases withUR at anyT.

However, to simplify our qualitative study of the
MVDWE, we assume the parametersA, B2, andUR are in-
dependent. By varying these parameters one at a time and by
relating B2 to wR, and A only to wA, we found that the
MVDWE predicts that the derivatives of the low-density
critical point valuesTC1

, PC1
, andrC1

, with respect to each of
the parameters of MVDWE, have the same sign and this sign
is negative forB2swRd andUR, which increase repulsion, and
this sign is positive forAswAd, which increases attraction.
These results are consistent with the MD results for the low-
density critical point. For the high-density critical point val-
ues the MVDWE predicts for some parameters nonmono-
tonic behaviors and we find that there are regions of
parameters where the critical values as a function ofA, B,
andUR have the same qualitative behaviors as those found in
the simulations as a function ofwA, wR, andUR, respectively
(Fig. 14). Specifically, we observe monotonic behaviors of
rC2

sB2d, TC2
sAd, TC2

sB2d, and PC2
sURd which qualitatively

coincide with the corresponding behaviors in simulations
[Figs. 9, 14(d), 14(b), 14(e), and 14(i)]. We find non-
monotonic behaviors ofrC2

sAd, rC2
sURd, TC2

sURd, PC2
sAd,

and PC2
sB2d, which qualitatively coincide with the corre-

sponding behaviors in simulations in certain range of param-
eters[Figs. 9, 14(a), 14(g), 14(h), 14(c), and 14(f)].

These observations indicate that the behavior of the criti-
cal points in simulations may also become nonmonotonic in
the range of parameters that we do not explore. For example,
TC2

sURd may start to increase for largeUR/UA.4 and small
wR/a,0.5. Another interesting prediction of the MVDWE is
that for largeB2/B1.BTsA/B1URd, where BTsxd increases
from BTs0.7d=1 to BTs3.2d=1.7, the high-density critical
temperature becomes larger than the low-density critical
temperature as in simulations of Refs.[38,39], for which the
repulsive shoulderwR/a=1 was much wider than the attrac-
tive well wA/a=0.2. Also, MVDWE predicts the existence of
the third, very high-density critical point for largeB2/B1 and
large A/B1UR, which was recently observed in simulations
with a wide soft core[66].

VI. ROLE OF POTENTIAL PARAMETERS

In the following we will present the comparison between
the MD results and MVDWE predictions.

A. The low-density critical point

First we note that at low densities, corresponding to the
critical point C1, and at sufficiently low temperatures, par-
ticles do not penetrate into the repulsive region,r ,a+wR.
Therefore, we can assume that, at low enough temperatures
and densities, the system is interacting via an effective po-
tential given by a simple square well with hard corea+wR,
an attractive well of relative widthwA/ sa+wRd and attractive
energyUA.

Indeed, for increasing width of the attractive wellwA, rC1
is roughly constant[Fig. 9(a)] and TC1

and PC1
increase

[Figs. 9(b) and 9(c)]. This behavior is consistent with the
predictions of the standard van der Waals theory for the gas-
liquid critical point for a square-well potential(see the Ap-
pendix), that yields Eqs.(A7)–(A9). This result supports the
idea that the effect of the soft core is negligible at low den-
sities. The MVDWE also predicts strong increase ofPC1

and
TC1

with the strength of attractionA, which increases with
wA. For rC1

, the MVDWE predicts a weak increase, which
can be observed in Fig. 9(a) for largerwA.

For increasing width of the repulsive shoulderwR, rC1
decreases and saturates[Fig. 9(d)] andTC1

andPC1
decrease

[Figs. 9(e) and 9(f)]. As a consequence of the above consid-
erations, the increase ofwR corresponds to a decrease of the
effective attractive parameter. Accordingly,TC1

andPC1
dis-

play the behavior predicted for the decrease of the attractive
width in van der Waals theory for the square-well potential
[Eqs.(A8) and (A9)]. Moreover, the behavior ofrC1

is con-
sistent with Eq.(A7), which predictsrC1

,1/a3. Indeed, in
our case, the hard core is replaced by the effective hard core,
hencea3rC1

,a3/ sa+wRd3, which is a decreasing function of
wR. The calculations using MVDWE completely confirms
these predictions by showing thatTC1

,PC1
, andrC1

decrease
with increasingwR [or B2=2psa+wRd3/3 as in Sec. V.]

For increasing repulsive energyUR, the behaviors ofrC1
,

TC1
, and PC1

are the same as those observed for increasing
wR [Figs. 9(g)–9(i)]. This can be understood by considering

FIG. 12. The gas-LDL critical pointsC1d and LDL-HDL critical
point sC2d in theP-T plane for varying repulsive energyUR/UA and
constant wA/a=0.9, wR/a=0.5. Symbols denoteUR/UA=2.0
(circles), 2.5 (up triangles), 3.0 (diamonds), 3.5 (down triangles),
and 4.0(squares). Open symbols are forC1 and filled symbols are
for C2. The arrows denote the direction of increasingUR.
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that the increase ofUR effectively decreases the penetrability
of interparticle distancesr ,a+wR. The soft core becomes
an effective hard core as described above. In particular, the
saturation ofrC1

, already observed in Fig. 9(d), is now more
evident and an analogous behavior is now also seen forTC1
and PC1

. This result shows that for a high-enough repulsive
energy UR and low-enoughT, the soft-core potential is
equivalent to a hard-core potential, for which there is no
dependence of the critical point onUR. Again, the MVDWE
agrees with these predictions by showing thatTC1

,PC1
, and

rC1
decrease with increasingUR.

B. The high-density critical point

For increasingwA, the critical point densityrC2
decreases,

the temperatureTC2
increases, and the pressurePC2

decreases
[Figs. 9(a)–9(c)]. This finding is in agreement with MVDWE
predictions for a wide range of parameters.[Figs.
14(a)–14(c)]. The behavior ofTC2

is consistent with the idea
that the increase of the attractive distance increases the over-
all attractive strength of the potential, allowing more par-
ticles to fit within the attractive interaction range. As a con-
sequence, the system enters the low-energy and high-density
fluid phase at a higher temperature, i.e.,TC2

increases.
Hence, the increase ofwA increases the average kinetic en-
ergy of particles atC2, favoring the overcoming of the soft-
core shoulder at low pressures, and we can expect thatPC2
decreases. Moreover, the increase ofwA decreases the num-
ber of elastic interparticle collisions at the soft-core distance,
and hence decreases their contribution to the virial expres-
sion for the pressure[67] (see Eq.(11) in Ref. [39]), decreas-
ing the critical pressurePC2

. Note that the behavior ofPC2
in

this case is the opposite of the behavior forPC1
[Fig. 9(c)].

With the decrease of pressure, the density must also de-
crease, so we can conclude thatrC2

must decrease with in-
creasingwA, in agreement with our simulation results.

For increasingwR, TC2
increases and saturates, and both

PC2
and rC2

decrease with a tendency toward saturation
[Figs. 9(d) and 9(f)], in agreement with predictions of
MVDWE for a wide range of parameters[Figs. 14(d) and
14(f)]. This happens because the transition from the LDL to
the HDL is characterized by the penetration of particles into
the repulsive soft cores of their neighbors. Therefore the re-
pulsive soft-core distancea+wR characterizes the typical dis-
tance between the particles atC2. Hence the increase ofwR
reduces the critical densityrC2

. The behavior of pressure
follows the behavior of density, as in the case ofwA, while
the derivatives of pressure and temperature must have oppo-
site signs due to the same arguments as above.

For increasingUR, PC2
increases,rC2

slowly increases,
and TC2

decreases[Figs. 9(g)–9(i)]. The predictions of
MVDWE coincide with the behavior ofPC2

and rC2
in a

wide range of parameters[Figs. 14(g) and 14(i)]. However,
the theory apparently predicts an increasingTC2

with UR,
except for very smallURB1/A,0.4 and largeB2/B1.1.5
[Fig. 14(h)]. This discrepancy arises from the fact that, al-
though it is physically clear that the attractive strengthA is a
decreasing function ofUR, we find the explicit dependence
of A on UR only in the limiting caseT→`, while for finiteT
we assume them to be independent. Hence, we ignore that an
increase ofUR decreasesA which induces, as shown in Sec.
V, a decrease inTC2

.
The behavior ofPC2

is easier to understand. Indeed, the
pressure at which the repulsive shoulder can be overcome
increases withUR, which is consistent with the increase of
PC2

with UR. This effect is expected to be more evident at

FIG. 13. (a) The behavior of the effective excluded volumeBsr ,Td for a one-dimensional system withB2/B1=2 for densitiesB1r
=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 from top to bottom. The thick curve indicates the behavior forB1r=0.5=B1/B2. (b) The isochores of
MVDWE for B2/B1=1.4, A/ sB1URd=2.2 on theP-T plane. An open circle indicates the low-density critical point. A filled circle indicates
the high-density critical point. A dashed line indicates the low-density critical isochoreB1rC1

<0.25. A dot-dashed line indicates the
high-density critical isochoreB1rC2

<0.70. The thick line indicatesB1r<0.71=B1/B2. Note that isochores start to develop density anomaly
below the high-density critical point.
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high UR and to saturate for decreasingUR, which is consis-
tent with our results. The critical densityrC2

increases with
UR, for small values ofUR/UA, as a consequence of the
increase ofPC2

, and is practically independent ofUR when
the soft core plays the role of an effective hard core, i.e., for
large enoughUR/UA. The decrease ofTC2

with the increase
of UR is more difficult to explain. Nevertheless, the same
argument as in the case ofwA andwR which predicts that the
derivativesTC2

and PC2
must have the opposite signs may

apply in this case as well. Finally, we note that increasing
with UR and decreasing withwR, the behavior ofPC2

in three
dimensions is consistent with its behavior in the one-
dimensional case, for whichPC2

/UA=sUR/UA+1d /wR [68].

VII. DISCUSSION AND CONCLUSIONS

We have studied an isotropic attractive soft-core square
potential in three dimensions that has a phase diagram with a

gas-liquid critical pointC1 and a liquid-liquid critical point
C2, separating HDL and LDL phases. We have investigated,
with molecular dynamics simulations, how the critical den-
sity, temperature, and pressure of the two critical points vary
as a function of the three parameters of the potential, which
are the repulsive energyUR/UA in units of the attractive
energyUA, the repulsive widthwR/a in units of the hard core
a, and the attractive widthwA/a in units of a.

Table IV and Fig. 9 show our results for ther, T, andP of
C1 andC2 for varying parameters of the potential. To sum-
marize, the behavior ofC1 is consistent with that of a system
interacting via an effective square-well potential, with a hard
corea+wR, a relative attractive wellwA/ sa+wRd, and attrac-
tive energyUA. The increase ofUR/UA or of wR/a decreases
the effective attractive strength and this effect saturates for
large values ofUR/UA.

This behavior is perfectly predicted by the simple mean
field MVDWE. In MVDWE, as in the standard van der

FIG. 14. The behavior of the density, temperature, and pressure of the high-density critical pointC2 for variations of the MVDWE
parameters(a)–(c) A, (d)–(f) B2, and(g)–(i) UR. The other two parameters are constant: in(a)–(c) B2/B1=1.1ssd ,1.5shd ,2.0sLd ,3.0snd;
in (d)–(f) A/ sB1URd=0.2ssd ,1.0shd ,2.0sLd ,3.0snd, in (g)–(i) B2/B1=1.1ssd ,1.3s* d ,1.5shd ,2.0sLd ,3.0snd Lines are guides for the eye.
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Waals equation, the relevant physical parameters are the ex-
cluded volumeB and the strength of attractionA, but now we
assume thatB=Bsr ,Td increases withwR/a and depends on
the state point, whileA increases withwA/a and decreases
with UR/UA.

The MVDWE predictions are consistent also with our re-
sults onC2. In general, this approach rationalizes why the
increase ofUR/UA and the decrease ofwA/a have the same
qualitative effect on the critical points, since they have the
same effect on the attractive strength. Moreover, it rational-
izes the effect of increasingwR via the increase of the ex-
cluded volume, hence the decrease of the critical densities.
This decrease induces a decrease of the critical pressuresPC1
andPC2

, as a consequence of the mechanical stability of the
fluid phases.

While for the low-density critical pointC1, the decrease
of PC1

occurs with the decrease ofTC1
, i.e., their derivatives

with respect to the potential parameters always have the
same sign, for the high-density critical pointC2 the critical
pressure and temperatures always have derivatives with op-
posite signs. This behavior can be understood in terms of the
number of elastic collisions with the soft core, which de-
creases asTC2

increases, reducing the virial contribution to
the pressure. At the same time, the increase ofTC2

reduces
the pressurePC2

necessary to overcome the repulsive soft
core and enter into the HDL phase.

As a consequence, the high-density critical pointC2 exists
at positive pressure only in a finite region in the parameter
space. Indeed, when the attraction is too strong, i.e.,wA/a is
too large orUR/UA is too small, the pressurePC2

becomes
negative. On the other hand, when the strength of attraction
is too week,C2 occurs in the deeply supercooled liquid
phase, becoming difficult to observe as in the experimental
situation of water or silica[14,19,25].

In conclusion, the behavior of both low-density and high-
density critical points qualitatively obeys the mean field pre-
dictions of the modified van der Waals theory based on ef-
fective excluded volume which varies between the hard-core
value for high temperature and the soft-core value for low
temperature and low density. The quantitative theory based
on the thermodynamic perturbation approximations or vari-
ous integral equation closures[69] is yet to be developed.
One obvious improvement is to replace the first term in RHS
of Eq. (1) by the Percus-Yevick compressibility equation of
state for hard spheres[70] in which the packing fraction is
computed ash=rBsr ,Td.

Confirming the results presented in Refs.[38,39] we do
not find density anomaly. Our simulations show that density
anomaly is unlikely to exist for the discontinuous double-
step potentials shown in Fig. 1, in contrast to ramp potentials
[49] and a Gaussian soft-core potential[53].

Our results may be relevant for experiments on systems
that can be described by an isotropic soft-core attractive po-
tential and have no density anomaly, such as colloids, protein
solutions, or liquid metals. Indeed, our results show that in
these systems the possibility of the existence a liquid-liquid
phase transition will depend on the relative ratio between the
attractive and the repulsive parts.
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APPENDIX: SQUARE-WELL FLUID SYSTEM

Here we recall the case of a square-well attractive poten-
tial, where the only parameter is the width of the attractive
well wA/a, since the hard-core distancea and the attractive
energyUA can be taken as units of distance and energy, re-
spectively. In particular, we show how the gas-liquid critical
point densityrc, temperatureTc, and pressurePc depend on
wA/a.

Even in this simple case, the phase diagram has no exact
analytical solution and one must rely on various approxima-
tions and numerical simulations[40,69–73]. Using MD
simulations ofN=850 particles, we verify that the behaviors
of rc, Tc, andPc, are approximately linear for a wide range
of wA/a (Fig. 15, Tables V and VI) [40]. The values ofa3rc
decrease for increasingwA/a, anda3Pc/UA andkBTc/UA in-
crease withwA/a.

Except for density, these results are in agreement with the
van der Waals theory(see, e.g., Ref.[65]). The equation of
state in the van der Waals theory is given by

P =
kBTr

1 − rB
− Ar2, sA1d

where B= 2
3a3p has the meaning of excluded volume per

particle andA is a quantity, with the dimension of the prod-
uct of energy and volume, characterizing the strength of at-

FIG. 15. Inset: the single square-well potential defined by the
well width wA. Main panel: symbols represent the values of the
normalized temperatureTc (circles), the densityrc (diamonds), and
the pressurePc (squares) of the gas-liquid critical point for different
values of the parameterwA. Where not shown, errors are smaller
than the symbol size. Lines are the linear fitsTc, Pc, and rc as
functions ofwA, with the parameters in Table VI.
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traction between particles. Therefore,A can be related to the
product ofUA and the volume of the attractive well, which is
proportional towAa2 for small wA/a.

The position of a critical point must satisfy the equations

U ] P

] r
U

Tc

= 0, sA2d

U ]2P

] r2U
Tc

= 0. sA3d

For the van der Waals equation of state(A1), Eqs.(A2) and
(A3) yield the coordinates of the critical point:

rc =
1

3B
, sA4d

kBTc =
8

27

A

B
, sA5d

Pc =
1

27

A

B2 . sA6d

Hence

rca
3 , const, sA7d

kBTc

UA
,

wa

a
, sA8d

a3Pc

UA
,

wa

a
, sA9d

which predict thatkBTc/UA anda3Pc/UA increase withwA/a,
while rca

3 does not depend on it.
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