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Using event-driven molecular dynamics simulations, we study a three-dimensional one-component system
of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an
attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two
metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of
this potential affect the phase diagram of the system. We find a broad range of potential parameters for which
the system has both a gas-liquid critical pdijtand a liquid-liquid critical pointC,. For the liquid-gas critical
point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the
potential, have the same signs: they are positive for increasing width of the attractive well and negative for
increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas
critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases
as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pres-
sures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively
reproduces the behavior of both critical points within some range of parameters, and gives us insight on the
mechanisms ruling the dependence of the two critical points on the potential's parameters. The soft-core
potential studied here resembles model potentials used for colloids, proteins, and potentials that have been
related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in
some systems where it has not yet been observed.
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I. INTRODUCTION sharp structural transitions between liquid polymorphs of Se,
The discovery and investigation of liquid-liquid phase S’. Bi, P, b, Sn, Sb, A§S<?3,, A.SZS3’ and MgBi, are consistent

transitions in a one-component system is of current interestVith phase diagrams with first-order liquid-liquid phase tran-
since recent experiments for phosphofi2] show a first-  >itions [33,39, analogous to the liquid-liquid phase transi-
order phase transition between two stable liquids in the exiOn seen in rare earth aluminate liquits,37. .
perimentally accessible region of the phase diagram. A These results call for a general interpretation of the basic
liquid-liquid phase transition, ending in a critical point, was Mechanisms underlying the liquid-liquid phase transition.
initially proposed to explain the anomalous behavior offiere we aim to delineate the conditions ruling the accessi-

network-forming liquids such as #® [3-18. In particular, bility of the two liquid phases. A first step in this direction

the density anomaly, consisting in the expansion under isonas taken in Refs[38,39, where we have shown that a

. : specific isotropic soft-core attractive potential, for a one-
baric cooling of these systems, has been related to the poébmponent system, has a phase diagram with LDL-HDL

sible existence of a phase transition between low-density lig, P ; S A : :
Lid (LDL ) and high-Gensity liquidHDL ). Simulation results b gensiy anamaty O oo POITES and with
and experimental studies of water predict a LDL-HDL phase  ere we extend this analysis by varying the parameters of
transition in an experimentally inaccessible region of theyis potential(Fig. 1). We find that, for a wide range of
phase diagrani9,12,15,19,2p Computer simulations of re- parameters, this potential has a phase diagram with a liquid-
alistic models of carbor21], phosphorug22], Si0, [23],  liquid critical point, and we show how the phase diagram
and Si[24,23 strongly suggest the existence of first-orderdepends on the parameters. We develop a modified van der
LDL-HDL phase transitions in these substances. Recentlyvaals equatiofMVDWE) able to describe the behavior of
the step changes of the viscosity of liquid metal, such as Cahe two critical points as a function of the potential param-
have been theoretically interpreted as evidence of liquideters, elucidating a mechanism for the liquid-liquid phase
liquid phase transitionf26]. transition and the conditions under which the liquid-liquid
The presence of the first-order phase transitions in solidsritical point occurs at positive pressure.
and solid-solid critical points, determined experimentally In Sec. Il we introduce the isotropic sof-core potential; in
[27] and with simulationg28-31], have suggested the pos- Sec. lll we describe the two different molecular dynamics
sibility of the existence of liquid-liquid critical points and (MD) techniques we use; in Sec. IV we present our results
polymorphism in the amorphous stdt@?—34. It has been for different combinations of parameters that give rise to a
proposed that systems with solid polymorphism may exhibitiquid-liquid phase transition ending in a liquid-liquid critical
several liquid phases with local structures similar to the locapoint; in Sec. V we construct a modified van der Waals equa-
structures of various crystals. Experimental evidence ofion which can qualitatively reproduce the behavior of the
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TABLE |. Sets of parameters for the generic soft-core potential
(Fig. 1) considered in this papewg/a andw,/a are the soft-core
width and the attractive width, respectively, both in units of the
WR hard-core distance, arldg/U, is the repulsive energy in units of
the attractive energy. Sef—(vi) have samev, and Ug; sets(ii),
B (vii)~(xii) have samevg andUg; sets(xii)—(xvi) have sameavg and
Un Wa.
Sef wgr/a wa/a Ur/Upx
0) 0.4 0.7 2
0 WA (ﬁ)* 0.5 0.7 2
(iii)* 0.6 0.7 2
(iv)* 0.7 0.7 2
U T V) 0.8 0.7 2
(vi) 0.9 0.7 2
‘ ‘ ‘ (vii) 0.5 0.3 2
a b c (viii) 0.5 0.4 2
FIG. 1. The generic soft-core potential with attractive well with (ix) 0.5 0.5 2
parametersv,/a, wg/a, andUgr/U,. We use the parameters listed (X) 0.5 0.6 2
in Table I. (xi)* 0.5 0.8 2
(xii)* 0.5 0.9 2
two critical points; in Sec. VI we discuss the role of potential (xiii ) 0.5 0.9 2.5
parameters in changing the position of the critical points; inxiv)* 0.5 0.9 3
Sec. VIl we summarize our results; in the Appendix we yy, 05 0.9 35
present our simulation results for a simple square well pozxvi) 05 0.9 4

tential.

*The asterisk denotes sets for which critical points are calculated via
two methodgsee Tables Il and I)l
Il. THE ISOTROPIC SOFT-CORE ATTRACTIVE

POTENTIAL three parametersvg/a, wa/a, andUg/U,, wherea and Uy

For attractive potentials with a sufficiently broad interac-have been chosen as units of length and energy, respectively.
tion distance, the phase diagram has a first-order gas-liquiGihough this potential is discontinuous, it is similar to model
transition ending in a gas-liquid critical point, and a first- Potentials for complex fluids, such as colloids, protein solu-
order liquid-solid phase transitio#0]. When the attractive tions, star polymerg44,51-56, and resembles pair poten-
range is small, the liquid phase and the gas-liquid criticafials proposed for watef52], or that have been related to
point are metastable with respect to the solid piade-45.  liquid metals under specific conditiof§7-59.

For a strictly repulsive soft-core potential, simulations  This potential with parametersz/a=1.0,w,/a=0.2, and
show a phase diagram with a first-order gas-solid phase tratdr/Ua=0.5 has a phase diagram with gas-LDL and gas-
sition and a first-order phase transition between two solids ofiDL first-order phase transitions, each ending in a critical
different densities, but with the same structural symmetryPointin the supercooled fluid regig88]. Both liquid phases
ending in a solid-solid critical poirf28—31. Recent theoret- ~are metastable with respect to a single crystal phase and no
ical work has suggested that systems with a broad soft-cordensity anomaly is observgg9). _ _
potential have a fluid-fluid phase transition and liquid In this paper we present systematical MD studies of the
anomalies[46], or give rise to stripe phases in two dimen- Phase diagrams for this potentigtig. 1). By varying the
sions[47]. parameters of the potentialya/a, wg/a, and Ugr/U,, we

We have shown in Ref[38] that the combination of a relate the attractive and repulsive components of the poten-
repulsive soft core with an attractive well is sufficient to give tial to the appearance and stability of the liquid-liquid phase
rise to a phase diagram with two liquid phases. This simpldransition and critical points.
isotropic model potential is similar to those used in the semi-
nal work of Stell and Hemmg®8], who studied a soft-core
potential in one dimensiorilD). Similar potentials were
studied in 2D and 3D showing phase diagrams with a pos- We perform MD simulations oN=850 particles of unit
sible liquid-liquid critical point[49,5Q. massm at constant volumé&/ and constant temperatuiie

The 3D isotropic potential we consid@fig. 1) has a hard interacting via the potential described abaifég. 1). The
core(infinite repulsion at distance, a repulsive soft core of details of the event-driven MD we use are presented in Refs.
width wg and energyJr>0, and an attractive square well of [38,39. We measure temperature in unitsl)f/ kg, wherekg
width w, and energy Y,<0 [38,39. The potential has is Boltzmann constant. We measure time in units of

IIl. MOLECULAR DYNAMICS SIMULATIONS
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aU,}l/zml’2 and record potential energy and pressure every

At=100 time units. To understand the effect of each param 0.3
eter on the phase diagram of our system, we simulate 16 se

of potential parameter@able ). After a preliminary screen-

ing, we choose to study the region of parameter space wher D
the low-density, gas-liquid critical poin€, always has a ME
critical temperature above that of the high-density critical @
point C,. Therefore, while in Refd.38,39 C, is a gas-HDL
critical point, hereC, is a LDL-HDL critical point. As shown

in Refs. [38,39, C, can lie in the supercooled metastable
phase, close to the line of homogeneous nucleation, as i
water or silica[14,19,25. We make certain that all our cal-
culations are performed before the onset of crystallization, a 0.0 |
discussed in Ref.39]. The description of the crystal phases
goes beyond the goal of this work. To optimize our analysis
we use two different MD methods.
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A. Isothermic method FIG. 2. The MDP-p phase diagram for the potential in the inset,

The first method is a straightforward calculation of thewith the parameter sgii) in Table I. The long-dashed lines are the
phase diagram’s state points. For each state point with givefifs of the calculated state pointsircles at constanfT. The iso-
p=N/V and T, we perform typically ten independent simu- therms(from top to bottom are forkgT/U,=1.30, 1.29, 1.28, 1.27,
lations of t=~2x 10° time units. We estimate the error in 1-26, 1.25, and 1.24 at low andkgT/U,=0.62, 0.60, 0.58, 0.57,
pressure measurements from the standard deviation of tHg®>: 0-53, and 0.50 at high The fits are calculated by considering
ten averaged values computed for each independent simul8-2 polync_)m|a| fun_ct|on of bo_ttT andp. Th‘? isotherms show two
tion. The state points along the isotherms are approximate@g'ons with negative slope, i.e., mechanically unstable, delimited
by é two-variable polynomiaP(p,T)=3,. a,.'T* obtained by the spinodal linegsolid bold lineg. Each spinodal line is asso-

» V)~ “ik Akl

; . . . ciated with a first-order phase transition. By using the Maxwell
by the. I.east squared_flt .Of. all t_he ;tate pomts.ln the.\{|cm|ty Ofconstruction, we estimate the coexisting regions associated to each
the critical point. This fitting implies mean field critical ex-

! . spinodal line, delimited by the phase transition lifmld dashed
ponents[60] and may produce incorrect results in the CIOSeIine). The coexisting regions are clearly separated at the considered

vicinity of the critical point. However, this method helps US emperatures. The phase transition line at ois indistinguishable
fit the state points, known with statistical errors, by approXi-from the spinodal line at this scale. The points where the coexisting
mate polynomial isotherms and thus obtain the approximatgnes merge with the spinodal lines are, by definition, the critical
position of the critical point. points C, (at low p) and C, (at high p). No spontaneous crystal

The coexistence curves are calculated using Maxwell'siucleation is observed in the explored region of the phase diagram.
equal area construction and spinodal line is estimated by
locating the maxima and minima of the isotherms. After cal-peraturekgT,/U,=2.0 for several values of density above
culating the state points, isotherms, coexistence curves, arghd below the densities where we expect to ﬁegandpcz.
spinodal lines, we estimate the critical pressure, temperatur@t constant density, the system is slowly cooled down from
and density foiC; andC; (Pc,, Tc, pc;: Pc, Te, @ndpe,, T, to a final temperaturégTe/U,=0.1 during a simulation
respectively as the point where coexistence and spinodatime of 1¢ time units[61].
curves meet, coinciding at their maxima. We apply this The average values dfandP are recorded each 100 time
method to six sets of potential parametés), (iii), (iv), units, which is comparable to the equilibration time of the
(xi), (xii), and(xiv) in Table I|. The results are presented in system forkgT/U,>0.5. As the temperature decreases, the
Figs. 2—7 in the pressure-densify—p) phase diagrams. The equilibration time increases and the method becomes less
estimates of the critical points are presented in Table Il.  reliable. Thus, we use this method to estimate pressure and
potential energy fokgT/U,>0.5.

The error bars of each measurement are of the order of the
nonmonotonic jumps of the isochoresee Fig. 8, insgt The

The isothermic method gives us fairly complete informa-intersection is determined by fitting isochores with smooth
tion about the details of the phase diagrams, but requiregolynomial fits. The best results can be achieved by qua-
much computation to calculate enough state points for accudratic fits in the temperature range including the region of
rate isotherms. Thus, in order to find the positions of criticalpossible isochore crossing extending fromT@, @ 1.5T, so
points for a wide range of potential parameters, we adopt ¢hat the tentative critical temperatufe is inside this inter-
faster but less accurate MD method. For sets of parameteksl.
close to the sets of parameters studied with the isothermic Since at the spinodal lin@P/dp)t=0, two isochores with
method, we estimate the location of the spinodal line bytwo close values of density must intersect in the vicinity of
evaluating the intersections of isochores inffh& plane. We  the spinodal line. By definition, the critical point corresponds
first equilibrate several configurations at a high initial tem-to the maximum temperature on the spinodal. Therefore, the

B. Isochoric method
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FIG. 3. As in Fig. 2, for parameter s¢iii) in Table I. The FIG. 5. As in Fig. 2, for parameter séki) in Table I. The

isotherms in the lows region (from top to bottom are for  isotherms (from top to bottom in the lowp region are for
keT/Up=1.25, 1.24, 1.23, 1.22, 1.20, 1.18, 1.16, and in the high- kgT/U,=1.53, 1.52, 1.515, 1.51, 1.50, 1.48, 1.46, and in the pigh-
region are forkgT/U,=0.72, 0.70, 0.68, 0.65, 0.62, 0.60. Sponta- region are forkgT/U,=0.70, 0.68, 0.66, 0.64, 0.63, 0.62, 0.€%L.
neous crystal nucleation is observed 1ox Tc, andp> pc,. is at negative pressure.

critical pressure and temperature can be evaluated by esstudy using the isothermic method. We apply the isochoric
mating the pressure corresponding to the maximum temperarethod to 16 sets of the potential parameters. The compari-
ture at which isochores intersect. The critical density can beson of the two methodgTables Il and I} shows that the
estimated asp,+p,)/2, wherep; andp, are the densities of resulting estimates of criticd?, T, andp of C; andC, are
the two isochores intersecting at the highest temperatureonsistent.
(Fig. 8). The critical point values estimated with this method
are presented in Table Il

This approximate method is allowed as long as we use it IV. PHASE DIAGRAM RESULTS

to estimate the critical points of potentials with sets of pa- oy results in Figs. 2-7 clearly show that the phase dia-
rameters close to those for which we have done a detailegram strongly depends on the potential parameters. For ex-
ample, phase diagrams in Figs. 2—4 have fluid phégas,
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FIG. 4. As in Fig. 2, for parameter s¢iv) in Table I. The
isotherms (from top to bottom in the lowp region are for FIG. 6. As in Fig. 2, for parameter séxii) in Table I. The
kgT/Ua=1.20, 1.15, 1.10, 1.05, 1.00, and in the hijghegion are  isotherms (from top to bottom in the lowp region are for
for kgT/U,=0.77, 0.75, 0.73, 0.72, 0.70, 0.69. No spontaneouskgT/U,=1.83, 1.82, 1.815, 1.81, 1.80, 1.79, 1.75, 1.70, and in the
crystal nucleation is observed in the explored region of the phashkigh-p region are forkkgT/U,=0.98, 0.96, 0.64, 0.92, 0.9Q, is at
diagram. a negative pressure.
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FIG. 8. Estimation of the critical poin€, by the isochoric
method for the set of potential parametevg/a=0.5, wg/a=0.5,
Ur/Ux=2. Inset:P at constant®p=0.492 for the MD calculation
during the slow cooling described in the text. kgl /U,>0.5 the
errors on the estimate of the state points are of the order of the
nonmonotonic jumps. The interpolating line is a quadratic fit of the

LDL, and HDL) at positive pressures, while for the phasecalculated points, and gives an estimate of the isochora’at
diagrams in Figs. 57, the high-density critical point appears-0.492 forkgT/U,>0.5. Main panel: quadratic fits of isochores for

at negative pressures, i.e., in the region of stretched fluid.

a3p:O.492, 0.435, 0.405, 0.387, and 0.3@dom top to botton.

To investigate how the position of critical points dependsThe critical pointC, is located at the highedt-intersection of two
on the potential parameters, we vary one of the three paranisochoregregion inside the circle The indeterminacy of this inter-

etersw,/a, wg/a, andUg/a at a time, keeping the other two
constant. The behavior df, P, andp for C; andC, (Fig. 9
and Table I\j are presented in the following.

A. Effect of the square-well width wy

By keepingwg/a=0.5 andUr/U,=2.0 constant, we find
(Figs. 9a)—9(c) and 10 that by increasing well widtkw,, Pc,
is almost unaffected, whilec, decreases]c, and Tc, in-
crease,Pc, increases, whiIePc2 decreases. Fow,/a>0.7
the LDL-HDL critical pointC, occurs at negative pressures,
as in Fig. 5. HenceC, lies in the stretched fluid region and,

section gives an estimate of the error on the valuks
=0.53+0.03,P¢,=1.05+0.03, angc,=0.39+0.05.

spontaneous crystallization, becoming difficult to observe.
Thus the liquid-liquid critical point is observable in our MD
simulations only for intermediate values wh/a.

B. Effect of the shoulder width wg

Increasing the width of the repulsive interactiop, while
keepingw,/a=0.7 andUg/U,=2.0 constant, we findFigs.
9(d)-9(f) and 11, that bothoc1 and Pc, decrease,TC1 de-

therefore, it is metastable. In order to have a stable LDL<creases, whildc, increases, and botc andPc, decrease.

HDL critical point, the attractive distanag,/a must be suf-
ficiently narrow, so tha€, occurs at positive pressures. A too
narrow well, however, enhances crystallizatif89,41-45%

Forwg/a< 0.4 the dynamics of the system in the vicinity of
the expected high-density critical temperature become too
slow and the equilibration time becomes too long, with re-

so that the high-density critical point shifts below the line of spect to our simulation time, to measure the equilibrium state

TABLE II. TemperaturesTc, andTc,, pressure$c, and Pc,, and densitiepc, and pc, for the critical
pointsC; and C,, respectively, computed by the isothermic method.

Set keTc,/Ua a®Pc, /Un a’pc, keTc,/Ua a®Pc,/Un a’pc,

(i) 1.30+£0.01 0.04+0.01 0.11+0.02 0.58+0.02 0.15+0.02 0.33+0.02
(iii) 1.24+0.01 0.03+0.01 0.09+0.02 0.69+0.02 0.11+0.02 0.28+0.02
(iv) 1.18+£0.03 0.025+0.003 0.08+0.02 0.75+0.01 0.07+0.01 0.24+0.02
(xi) 1.52+0.01 0.05+0.01 0.11+0.02 0.69+0.01 -0.11+£0.01 0.33+0.02
(xii) 1.82+0.01 0.06+0.02 0.12+0.02 0.96+0.02 -0.21+£0.02 0.32+0.03
(Xiv) 1.59+£0.01 0.043+0.004 0.10+0.02 0.58+0.01 -0.01+£0.01 0.35+0.02
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TABLE Ill. TemperaturesTc, and Tc,, pressure®c, and Pc,, and densitiespcl and Pc, for the critical
points C; and C,, respectively, estimated by cooling the system at congiaigochoric methoyfor the
potential with the set of parameters in Table I.

Set keTc,/Ua a®Pc, /Un a’pc, keTc,/Ua a®Pc,/Up apc,

(0] 1.34+0.02 0.04+0.01 0.13+0.02 0.47+0.01 0.28+0.01 0.42+0.03
(i) 1.32+0.01 0.04+0.02 0.11+0.02 0.62+0.02 0.19+0.02 0.33+0.02
(iii) 1.25+0.01 0.03+0.01 0.09+0.01 0.69+0.02 0.11+0.01 0.29+0.02
(iv) 1.19+£0.01 0.03+0.01 0.08+0.01 0.74+0.01 0.07+0.01 0.26+0.02
v) 1.15+0.02 0.02+0.02 0.07+0.01 0.75+0.01 0.04+0.01 0.22+0.02
(Vi) 1.11+0.02 0.02+0.02 0.07+0.01 0.76+0.01 0.03+0.01 0.20+0.02
(vii) 0.68+0.01 0.02+0.01 0.12+0.01 0.48+0.03 2.22+0.02 0.46+0.06
(viii) 0.82+0.01 0.03+0.01 0.12+0.01 0.52+0.03 1.65+£0.02 0.42+0.03
(ix) 0.96+0.01 0.03+0.02 0.11+0.01 0.53+0.03 1.05+0.03 0.39+0.05
(X) 1.12+0.01 0.04+0.01 0.10+0.01 0.57+0.01 0.58+0.01 0.35+0.02
(xi) 1.54+0.02 0.05+0.02 0.12+0.01 0.70+0.01 -0.09+£0.01 0.33+0.03
(xii) 1.84+0.02 0.06+0.02 0.13+0.01 0.96+0.01 -0.22+0.01 0.31+0.03
(xiii) 1.67+0.01 0.05+0.01 0.11+0.01 0.72+0.01 -0.15+0.01 0.35+0.01
(Xiv) 1.62+£0.02 0.05£0.01 0.09£0.01 0.60+0.01 0.01+0.01 0.37£0.04
(xv) 1.57+£0.01 0.04£0.01 0.09£0.01 0.55+0.01 0.28+0.01 0.35%£0.02
(xvi) 1.54+£0.01 0.04£0.01 0.09£0.01 0.53+0.02 0.60x£0.02 0.35%£0.02

points with sufficient accuracy. Furthermore, as expected fodepending on the density and temperature of the state point
decreasingvg, Tc, approache§ =0 [Fig. 9e)], suggesting and increasing withvg/a, and with a strength of attractiok
that C, disappears fomwg/a=0. At wg/a>1.0 the system that increases withw,/a and decreases witltug/U,. It
spontaneously crystallizes at high density without showing &hould be pointed out that a different modification of the van
second critical poiniC,. Hence, the width of the shoulder der Waals equatiofi2] also gives rise to the high-density
wg/a must be of an intermediate value iGp to be observed critical point. In contrast with our work, Ref62] is particu-
above the lines of spontaneous crystallization and outside therly suitable for density dependent potentials since it as-
region of very slow dynamics, at least for our choicengf  sumes a constant excluded volufBeand a density depen-
andUg. dent attractive termd\(p).
) For a system with a hard core and a soft core, one can
C. Effect of the shoulder h_e'ghtUR ~assume that the effective excluded voluigp,T) changes

For wg/a=0.5 andw,/a=0.9, we increase the repulsive ijth temperature and densif$3]. Indeed, at low densities
energyUg and find[Figs. 99)-%(i) and 13 that for increas-  and low temperatures, particle cannot penetrate into the soft
ing Ug, pc, decreases, whilpc, is almost unaffected, both core soB(p,T)~B, where B,=2m(a+wg)3/3 is the ex-
Tc, andTc, decreasePc, decreases, whil®c, rapidly in-  cluded volume associated with the soft core. In contrast, for
creases. FolJr/U,<2.0 the high-density phase transition high densities and high temperatures, particles easily pen-
occurs at very low negative pressures and the fluid phases aggrate into the soft core and(p,T)=~B,;, where B;
highly metastable. FOUr/U,>4.0 the diffusion in the sys- =27a%/3 is the excluded volume associated with the hard
tem in the vicinity of the high-density critical point becomes core. More specificallyB(p, T) must be an analytical func-
markedly slow, due to the soft core becoming less penetrablgon  of its parameters such thatdB(p,T)/dT<O0,
and assuming the role of an effective hard core. Therefore;g(, T)/9p <0,
an intermediate repulsive energy is needed to obsEpvie
our MD simulations. limB(p,T) =By, (2

T—o

V. MODIFIED VAN DER WAALS EQUATION

and
To rationalize the dependence of the temperature, pres-
sure, and density of the two critical points on the potential’s _ B,, p=1/B,
parameters, we develop a simple mean field theory that gives |T'mOB(PvT) V1o, 1B > 0> 1/B 3
fise to a MVDWE, N pr HB1=P 2
KaT from which it follows thatB(p, T) <1/p for anyp andT>0.
___Pks 2 . . . .
= o = A, (1) Since in any case van der Waals equation can give us only
1-pB(p,T) o . ;
qualitative agreement with reality, we can select any model
which has the same form of the standard van der Waals equéunction B(p, T) which satisfies the above conditions. Never-
tion (see the Appendix but with an excluded volumB(p,T)  theless, it is desirable to seleBfp,T) in such a way that it
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FIG. 9. The behavior of the density, temperature, and pressure of the low-density criticalpoapen circlegand high-density critical
point C, (filled squares for variations of the potential parametgi@—(c) w,, (d)—(f) wg, and(g)—(i) Ug. The other two parameters are
constant: in(ac) wg/a=0.5 andUr/Ux=2, in (d)«f) wa/a=0.7 andUgr/Ux=2, and in(g)—i) wa/a=0.9 andwg/a=0.5. Where not
shown, errors are smaller than the symbol size. Lines are guides for the eye.

will describe the behavior of some physical system for which  ¥(T,P,) = (e7P1B/keT — g P1B2/keT) g Ur/keT 4 g P1B2/ksT,
the analytical solution can be found. One-dimensional sys-

tem of particles with a pair potential 6)
o <B Accordingly V,=dG/dP; and S;=-dG/JT are the volume
' ! and entropy of the one-dimensional system, dng=G
U(r)=1Ur, Bi=<r<B; (4)  -P,v,+TS is the potential energy for the one-dimensional
0, r=B, system. The fraction of the soft coré&,T) penetrated by

the particles id(p, T)=U4(P4,T)/(N;Ug) whereP; must be
provides such a solution. Applying the Takahashi methodletermined as a function ofp from the equation

[50,64, we obtain the Gibbs potential G/ dP(P,,T)=V,;=N;/p. The value f,=f(p,o) is the
fraction of the soft cores penetrated by the particles in the
G = - kgTN;In(WkgT/B;P,), (5) high-temperature limit in which soft cores play no role. It

can be computed assuming a Poisson distribution of interpar-
whereN; is the number of particled] is temperatureP; is  ticle distances:f.,.=1-eB182/(1»~B)_ The probability that
pressure of the one-dimensional system, and the soft core does not reflect the neighboring particle is equal
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TABLE IV. Summary of the effects opc,, Te,s Pes andpcz,
Tc, Pc, from variation of parametens,/a, wg/a, andUg, one at
the time. The symbolg, |, and = represent, respectively, an in-

crease, a decrease, and a small variation of a thermodynamic quai

tity as a consequence of the increase of the potential parameter.

pc, Te, Pc, pc, Te, Pc,
wa/a =~ T T 1 T !
wg/a ! ! ! ! T !
Ur/Ua ! ! ! ~ ! T

to the fraction of these two quantitiééf,,<1. In this case,
the excluded volume is equal By. In the opposite case with
probability 1-f/f,, the excluded volume is equal tB,.
Hence, the effective excluded volume

B(p,T) = f/f.By+ (1 - f/f.)B,, @
where
f (e_PlBl/kBT _ e—PlBZ/kBT) e_UR/kBT
E N V(P T)(1 - eBrB(UpBy) (8)
and P, must be found from the equation
1_keT
p P
- (B,e P1Br/ksT — B, P1Bo/ksT) o UrKeT 4 B, P1B2lkaT
q,(PlvT) )
9
) 0C,w,=0.3
| LDL-HDL (C ®C,w,=0.3
<« - (C) ] C1 WA=0-9
< 1 5 r | | c2 WA=O.9
2
a
(3]
e 1.0 *
a
3
S A
08 Gas-LDL (C,)
"o <o s v v o
0.0 r ]
|
0.1 0.6 11 16 21

Temperature k;T/U,

FIG. 10. The gas-LDL critical pointC,) and LDL-HDL critical
point (C,) in the P-T plane for varying attractive widthv, and
constant wg/a=0.5, Ugr/U,=2.0. Symbols denotew,/a=0.3
(circles), 0.4 (left triangley, 0.5 (diamond$, 0.6 (up triangles, 0.7
(right triangle$, 0.8 (down triangleg and 0.9(squares Open sym-
bols are forC; and filled symbols are fo€,. The arrows denote the
direction of increasingva.

PHYSICAL REVIEW E 69, 061206(2004)

)
0 C, wy/a=0.4
025 | ® C, wy/a=0.4
o C, wy/a=0.9
0.20 | m C,w./a=0.9
2“ LDL-HDL (C,)
& 015 |
©
g
= :
§ 0.10
& * Gas-LDL (C))
0.05 | ** on O
D‘Vq/
0.0
0.4 0.6 0.8 1.0 1.2 1.4

Temperature k,T/U,

FIG. 11. The gas-LDL critical pointC,) and LDL-HDL critical
point (C,) in the P-T plane, for varying shoulder widttvg/a and
constant wa/a=0.7, Ugr/Up=2.0. Symbols denotewg/a=0.4
(circles, 0.5 (up triangle$, 0.6 (diamonds$, 0.7 (left triangleg, 0.8
(down triangley and 0.9(squares Open symbols are fo€; and
filled symbols are forC,. The arrows denote the direction of in-
creasingwg.

Figure 13a) illustrates the behavior d(p,T) for a par-
ticular set of parameters. It is clear tHatp, T) satisfies all
the physical conditions we impose on the effective excluded
volume. The modified van der Waals equatidn has two
critical points: one for low densitp<1/B, and another for
high densityp~ 1/B,, whose positions on the phase diagram

of the dimensionless variablds=kgT/Ug, P=B;P/Ug, and
‘p=B;p depend on the dimensionless parameters of the
MVDWE: B,/B; and A/(UgB,). Figure 13b) shows aP-T
diagram with two critical point€,, C,, for a particular set of
parameters, for which the positions of the critical points are
similar to the positions found in our simulations, i.e.,
Tc2<Tc1-

Now we can relate the parameters of the EL).to the
potential parameters used in our simulations. The parameters
B, andB, are increasing functions of the hard-core diameter
a and the shoulder widttvg, respectively. The parametig
has an identical meaning in MVDWE and in simulations.
The strength of attractioA is an increasing function ofia
and a decreasing function &fg. Indeed, according to the
formula of the second virial coefficient, for our potential,
we have[65]

v, =B, + (1 -eR%")(B, - B,)
2
+ (1 — eYnkeT) ?Tr(a+ Wr+Wa)3-B,|. (10

For largeT, it has the formv,=B-A/kgT+O(T?) with A
=Uva—Ugrvg Wherev, anduvg are positive quantities with
the dimension of a volume depending anwg, andw,, B
=limy_.v,, andA=lim{_.T(B-v,). Hence, in this limit, the
virial - expansion P=kgTp+kgTv,p?+0(p%) =kgTp(1+Bp)
-Ap?+0(p® can be rewritten in the form of the van der

061206-8



LIQUID-LIQUID PHASE TRANSITIONS FOR SOFT. PHYSICAL REVIEW E 69, 061206(2004)

These observations indicate that the behavior of the criti-
06 [ = O C,U U,=2.0 cal points in simulations may also become nonmonotonic in
® c,uu,=20 the range of parameters that we do not explore. For example,
LDL-HDL (C,) O C’ u R/UA=4-0 TCZ(UR) may start to increase for lardéz/U,>4 and small
<« 04 n c; UH/U:=4-0 wg/a< 0.5. Another interesting prediction of the MVDWE is
g v that for largeB,/B;>B(A/B;Ug), where Bi(x) increases
© from B4(0.7)=1 to B4(3.2=1.7, the high-density critical
g 02 r temperature becomes larger than the low-density critical
§ — temperature as in simulations of Re[fS8_,3q, for which the
& woa  © repulsive shouldewg/a=1 was much wider than the attrac-
0.0 ¢ ¢ Gas-LDL (C,) tive wellw,/a=0.2. Also, MVDWE predicts the existence of
! the third, very high-density critical point for lard®/B; and
02 | A large A/B;Ug, which was recently observed in simulations
e L with a wide soft corg66].
0.4 0.9 1.4 1.9

VI. ROLE OF POTENTIAL PARAMETERS
Temperature k;T/U,

In the following we will present the comparison between

FIG. 12. The gas-LDL critical pointC;) and LDL-HDL critical ~ the MD results and MVDWE predictions.
point(C,) in the P-T plane for varying repulsive enerdygr/U, and
constant wa/a=0.9, wg/a=0.5. Symbols denoteUg/U,=2.0

(circles, 2.5 (up triangle$, 3.0 (diamond$, 3.5 (down triangley, A. The low-density critical point

and 4.0(squares Open symbols are fo€; and filled symbols are First we note that at low densities, corresponding to the

for C,. The arrows denote the direction of increaslug critical point C;, and at sufficiently low temperatures, par-
ticles do not penetrate into the repulsive regior;a+wg.

Waals equatioP=kgTp/(1-Bp)—Ap®+0(p?). Therefore, we can assume that, at low enough temperatures

From the equations above we can derive the functionaand densities, the system is interacting via an effective po-
relation forv, and vg in the limit T—o, which arev,  tential given by a simple square well with hard carewg,
=(2m/3)(a+wr+wp)3-B, and vg=B,-B,. By using these an attractive well of relative width,/(a+wg) and attractive
relations it is possible to see that in genekas an increasing energyU,.
function ofw, and a decreasing function tfz. The deriva- Indeed, for increasing width of the attractive weil, pc,
tive dA/owg may have a different sign depending on otherig roughly constan{Fig. 9a)] and Tc, and P, increase
parameters. Although at finit¥ these relations could be [rigs. qb) and 9c)]. This behavior is consistent with the
valid only to the leading order, it is reasonable to assume thgfegictions of the standard van der Waals theory for the gas-
A increases wittw, and decreases withg at anyT. liquid critical point for a square-well potentigsee the Ap-

However, to simplify our qualitative study of the pendiy, that yields Eqs(A7)~A9). This result supports the
MVDWE, we assume the parameteks By, andUg are in- jgea that the effect of the soft core is negligible at low den-
dependent. By varying these parameters one at a time and Ryies. The MVDWE also predicts strong increasePef and

relating B, t0 wg, and A only to w,, we found that the —r \yith the strength of attractiod, which increases with
MVDWE predicts that the derivatives of the low-density €1 g '

e : : wy. For pc, the MVDWE predicts a weak increase, which
critical point valuesTc, Pc_, andpc., with respect to each of ~ A Cr’ 7 ’
P Cp  Cy Pc, P can be observed in Fig(& for largerw,.

B T 50 200 o oyt o e s,
g 2 Rs p ’ decreases and saturaf€sg. Ad)] a_ndTCl and Pcl decrease

this sign is positive forA(w,), which increases attraction. .
These results are consistent with the MD results for the Iow[F'g.S' 4¢) an(_j 4. As a consequence of the above consid-
erations, the increase iz corresponds to a decrease of the

density critical point. For the high-density critical point val- . X - .
ues the MVDWE predicts for some parameters nonmono?ﬁem“’e attractive parameter. Accordmg]ly,;l and PCl dis-

tonic behaviors and we find that there are regions oflay the behavior predicted for the decrease of the attractive
parameters where the critical values as a functiom\oB, width in van der Waals theory for the sqqare—we!l potential
andUg, have the same qualitative behaviors as those found iFEdS:(A8) and(A9)]. Moreover, the behavior gic, is con-

the simulations as a function of,, wg, andUpg, respectively ~ Sistent with Eq(A7), which predictspc, ~1/a°. Indeed, in
(Fig. 14). Specifically, we observe monotonic behaviors ofour case, the hard core is replaced by the effective hard core,
pc,(B2), Te,(A), Te,(By), and Pc (Ug) which qualitatively hencea’pc ~a®/ (a+wg)®, which is a decreasing function of
coincide with the corresponding behaviors in simulationsWgr. The calculations using MVDWE completely confirms
[Figs. 9, 14d), 14(b), 14(e), and 14i)]. We find non- these predictions by showing thﬁ@l,Pcl, andpc1 decrease
monotonic behaviors obCZ(A), pCZ(UR), TCz(UR)’ PCz(A)' with increasingwg [or B,=2m(a+wg)3/3 as in Sec. V.

and Pc,(Bp), which qualitatively coincide with the corre-  For increasing repulsive enerdi, the behaviors opc,
sponding behaviors in simulations in certain range of paramTc,, andPc, are the same as those observed for increasing
eters[Figs. 9, 14a), 14(g), 14(h), 14(c), and 14f)]. Wi [Figs. 9g)—-9(i)]. This can be understood by considering
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FIG. 13. (a) The behavior of the effective excluded volurBép,T) for a one-dimensional system wi,/B,=2 for densitiesB,p
=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 from top to bottom. The thick curve indicates the behatgrf@5=B;/B,. (b) The isochores of
MVDWE for B,/B;=1.4,A/(B,Ug)=2.2 on theP-T plane. An open circle indicates the low-density critical point. A filled circle indicates
the high-density critical point. A dashed line indicates the low-density critical isocBgsg ~0.25. A dot-dashed line indicates the
high-density critical isochorBlpC2z0.70. The thick line indicateB,p~0.71=B;/B,. Note that isochores start to develop density anomaly
below the high-density critical point.

that the increase dfik effectively decreases the penetrability With the decrease of pressure, the density must also de-
of interparticle distances<<a+wg. The soft core becomes crease, so we can conclude tfp@tz must decrease with in-
an effective hard core as described above. In particular, thereasingw,, in agreement with our simulation results.
saturation ofoc , already observed in Fig(@), is now more For increasingwg, Tc, increases and saturates, and both
evident and an analogous behavior is now also seeffgpr Pc, and Pc, decrease with a tendency toward saturation
and Pc,- This result shows that for a high-enough repulsive[Figs. 9d) and gf)], in agreement with predictions of
energy Ur and low-enoughT, the soft-core potential is MVDWE for a wide range of parametef&igs. 14d) and
equivalent to a hard-core potential, for which there is nol4(f)]. This happens because the transition from the LDL to
dependence of the critical point @fk. Again, the MVDWE  the HDL is characterized by the penetration of particles into
agrees with these predictions by showing tfat,Pc, and the repulsive soft cores of their neighbors. Therefore the re-
pe, decrease with increasiridg. pulsive soft-core dlstan(_ze+wR characterizes .the typical dis-
tance between the particles @. Hence the increase iy

reduces the critical densitycz. The behavior of pressure
follows the behavior of density, as in the casewgf while

For increasingv,, the critical point density)c2 decreases, the derivatives of pressure and temperature must have oppo-
the temperatur@c, increases, and the pressitg decreases site signs due to the same arguments as above.
[Figs. 9a)-9(c)]. This finding is in agreement with MVDWE ~ For increasingUg, Pc, increasespc, slowly increases,
predictions for a wide range of parametergFigs. and Tc, decreases[Figs. 99)-i)]. The predictions of
14(@)-14(c)]. The behavior oflc, is consistent with the idea  MVDWE coincide with the behavior oPc, and pc, in a
that the increase of the attractive distance increases the ovetide range of parameteffigs. 14g) and 14i)]. However,
all attractive strength of the potential, allowing more par-the theory apparently predicts an increasfhg with Ug,
ticles to fit within the attractive interaction range. As a con-except for very smallUgB;/A<0.4 and largeB,/B;>1.5
sequence, the system enters the low-energy and high-densiyig. 14h)]. This discrepancy arises from the fact that, al-
fluid phase at a higher temperature, i.&g, increases. though it is physically clear that the attractive strengtis a
Hence, the increase of, increases the average kinetic en- decreasing function oflg, we find the explicit dependence
ergy of particles atC,, favoring the overcoming of the soft- of A onUg only in the limiting casel — o, while for finite T
core shoulder at low pressures, and we can expectRgat we assume them to be independent. Hence, we ignore that an
decreases. Moreover, the increasevafdecreases the num- increase ol decrease# which induces, as shown in Sec.
ber of elastic interparticle collisions at the soft-core distanceV, a decrease iITCZ.
and hence decreases their contribution to the virial expres- The behavior ofPc, is easier to understand. Indeed, the
sion for the pressurg7] (see Eq(11) in Ref.[39]), decreas- pressure at which the repulsive shoulder can be overcome
ing the critical pressur@c,. Note that the behavior &c,in  increases witJg, which is consistent with the increase of
this case is the opposite of the behavior FQrl [Fig. 90)]. Pc, with Ug. This effect is expected to be more evident at

B. The high-density critical point
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FIG. 14. The behavior of the density, temperature, and pressure of the high-density criticaCpdamtvariations of the MVDWE
parameterga)—c) A, (d)«f) B,, and(g)—(i) Ug. The other two parameters are constant(a@p{(c) B,/B;=1.1(0),1.501),2.0(¢),3.0A);
in (d)«f) A/(B4Ug)=0.20),1.00),2.0(¢),3.0(A), in (9)i) B,/B;=1.1(0),1.3*),1.50),2.00¢),3.0(A) Lines are guides for the eye.

high Ui and to saturate for decreasitlg, which is consis- gas-liquid critical pointC,; and a liquid-liquid critical point
tent with our results. The critical densi]%2 increases with  C,, separating HDL and LDL phases. We have investigated,
Ug, for small values ofUg/U,, as a consequence of the with molecular dynamics simulations, how the critical den-
increase ofPc,, and is practically independent &fr when sity, temperature, and pressure of the two critical points vary
the soft core plays the role of an effective hard core, i.e., foRS @ function of the three parameters of the potential, which
large enoughUg/U,. The decrease OT(;Z with the increase are the repulsive energwR/UA in units of the attractive

of Ug is more difficult to explain. Nevertheless, the same€NergyUn, the rep_ulswt_a WldﬂwR_/aln_unlts of the hard core
argument as in the case wf, andwg which predicts that the a, and the affractive widtiw/,/a in units ofa.

derivativesT._ and P._ must have the opposite signs ma Table 1V :and Fig. 9 show our results for theT, andP of
C G PP 9 y C; and C, for varying parameters of the potential. To sum-

apply in this case as well. Finally, we note that increasingnarize, the behavior o, is consistent with that of a system
with Ug and decreasing withvg, the behavior oPc, inthree  jnteracting via an effective square-well potential, with a hard

dimensions is consistent with its behavior in the one-corea+wy, a relative attractive wellv,/(a+wg), and attrac-
dimensional case, for whicRc,/Ua=(Ur/Ua+1)/Wr [68].  tive energyU,. The increase ofz/U, or of wr/a decreases
the effective attractive strength and this effect saturates for
VII. DISCUSSION AND CONCLUSIONS large values olg/U,,
We have studied an isotropic attractive soft-core square This behavior is perfectly predicted by the simple mean
potential in three dimensions that has a phase diagram withfeeld MVDWE. In MVDWE, as in the standard van der
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cluded V?:}:g?Banthh.e strength oftgctr/actldk:jt:jut nov(\;we We thank C. A. Angell, M. C. B. Barbosa, V. V. Brazhkin,
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The MVDWE predictions are consistent also with our re-

sults onC,. In general, this approach rationalizes why the
increase olUg/U, and the decrease @f,/a have the same
qualitative effect on the critical points, since they have the Here we recall the case of a square-well attractive poten-
same effect on the attractive strength. Moreover, it rationaltjal, where the only parameter is the width of the attractive
izes the effect of increasingy via the increase of the ex- well w,/a, since the hard-core distaneeand the attractive
cluded volume, hence the decrease of the critical densitiegnergyU, can be taken as units of distance and energy, re-
This decrease induces a decrease of the critical presBgres spectively. In particular, we show how the gas-liquid critical
and Pc,. as a consequence of the mechanical stability of thepoint densityp., temperaturdl,, and pressur®. depend on
fluid phases. wa/a.

While for the low-density critical poin€,, the decrease ~ Even in this simple case, the phase diagram has no exact
of P, occurs with the decrease f , i.e., their derivatives ~analytical solution and one must rely on various approxima-
with respect to the potential parameters always have thBons and numerical simulation§40,69-73. Using MD
same sign, for the high-density critical poi@} the critical ~ Simulations ofN=850 particles, we verify that the behaviors
pressure and temperatures always have derivatives with opf Pc: Te, andPe, are approximately linear for a wide range
posite signs. This behavior can be understood in terms of th@f Wa/a (Fig. 15, Tables V and jI[40]. The values o&’p
number of elastic collisions with the soft core, which de-decrease for increasinga/a, anda®Pc/U, andkgTe/ Uy in-
creases a3, increases, reducing the virial contribution to cr€ase withwa/a. _ _
the pressure. At the same time, the increasé’cgfreduces Except for density, these results are in agreement with the
the pressureP. necessary to overcome the repulsive soft’/an dgr Waals theorisee, e.g., Re.T[ij). The equation of

2 state in the van der Waals theory is given by
core and enter into the HDL phase.

As a consequence, the high-density critical p@pexists ksTp
at positi in a fini ion i P=—"-Ap? (A1)
positive pressure only in a finite region in the parameter 1-pB T
space. Indeed, when the attraction is too strong,wgl.a is
too large orUg/U, is too small, the pressurec, becomes where B:§a3qr has the meaning of excluded volume per
negative. On the other hand, when the strength of attractioparticle andA is a quantity, with the dimension of the prod-
is too week,C, occurs in the deeply supercooled liquid uct of energy and volume, characterizing the strength of at-
phase, becoming difficult to observe as in the experimental

APPENDIX: SQUARE-WELL FLUID SYSTEM

situation of water or silica14,19,25.

In conclusion, the behavior of both low-density and high- 1144 1
density critical points qualitatively obeys the mean field pre- <
dictions of the modified van der Waals theory based on ef- 121 %

fective excluded volume which varies between the hard-core s
value for high temperature and the soft-core value for low >
temperature and low density. The quantitative theory basec <
on the thermodynamic perturbation approximations or vari-
ous integral equation closurg69] is yet to be developed. *

ap,

One obvious improvement is to replace the first term in RHS . 0.6 T
of Eq. (1) by the Percus-Yevick compressibility equation of 5* o4 |
state for hard spherg30] in which the packing fraction is o’
computed asy=pB(p,T). © oo |
Confirming the results presented in Reff38,39 we do '
not find density anomaly. Our simulations show that density 0 D—’D——D—_—D—_—D—_—D
anomaly is unlikely to exist for the discontinuous double- 0 0.1 0.2 0.3 0.4 05 0.6

step potentials shown in Fig. 1, in contrast to ramp potentials
[49] and a Gaussian soft-core poten{ias].

Our results may be relevant for experiments on systems g 15, |nset: the single square-well potential defined by the
that can be described by an isotropic soft-core attractive pQgel| width w,. Main panel: symbols represent the values of the
tential and have no density anomaly, such as colloids, proteiRgrmalized temperaturg, (circles, the densityp,, (diamonds, and
solutions, or liquid metals. Indeed, our results show that inne pressur®, (squaresof the gas-liquid critical point for different
these systems the possibility of the existence a liquid-liquidsalues of the parametev,. Where not shown, errors are smaller
phase transition will depend on the relative ratio between théhan the symbol size. Lines are the linear fitg P, and p. as
attractive and the repulsive parts. functions ofw,, with the parameters in Table VI.

Well width w,/a
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TABLE V. Density p., temperaturel., and pressur®, for the TABLE VI. Single square-well potential: parameters of the lin-
gas-liquid critical point for a single square-well potential with at- ear fits in Fig. 15 forkgT./Upx=p+qwa/a, and analogous linear
tractive rangewn,, attractive energyJ,, and hard-core distanae expressions foa®P./U, anda®p., for the gas-liquid critical point.
wy/a ape kgTo/Un a’P./Upx kgT/Un a’P/Up a’p
0.1 0.45+0.05 0.48+0.01 0.062+0.005 p 0.29+0.01 0.055+0.002 0.482+0.008
0.2 0.42+0.05 0.67+0.01 0.076+0.005 q 1.91+0.03 0.097+0.006 -0.35+£0.02
0.3 0.34+0.05 0.86+0.01 0.088+0.005
0.4 0.35+0.05 1.04+£0.01 0.094+005
0.5 0.30+0.03 1.24+0.01 0.103+003 keT. = Eé (A5)

(o} i)
0.6 0.28+0.03 1.45+0.01 0.113+003 27B
. . 1A
traction between particles. Therefofecan be related to the P.= 7 g2 (AB)

product ofU, and the volume of the attractive well, which is
proportional tow,a? for smallw,/a.

The position of a critical point must satisfy the equationsH€Nce
P a® ~ const, A7
—| =0, (A2) Pe (A7)
aplt,
kgT, W,
—| =o. (A3) A
ap T,
. 3
For the van der Waals equation of stétel), Eqs.(A2) and aPe _Wa (A9)
(A3) yield the coordinates of the critical point: Ua a’
_1 Ad which predict thakgT./U, anda®P./U, increase withw,/a,
Pc= ’ ( ) . 3 .
3B while p.a®> does not depend on it.
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