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Replica Ornstein-Zernike self-consistent theory for mixtures in random pores
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We present a self-consistent integral equation theory for a binary liquid in equilibrium with a disordered
medium, based on the formalism of the replica Ornstein-Zer(®Z2) equations. Specifically, we derive
direct formulas for the chemical potentials and the zero-separation thegtigensitter provide a connection
between the chemical potentials and the fluid cavity distribution fundtidfesxt we solve a modified-Verlet
closure to ROZ equations, which has built-in parameters that can be adjusted to satisfy the zero-separation
theorems. The degree of thermodynamic consistency of the theory is also kept under control. We model the
binary fluid in random pores as a symmetrical binary mixture of nonadditive hard spheres in a disordered
hard-sphere matrix and consider two different values of the nonadditivity parameter and of the quenched
matrix packing fraction, at different mixture concentrations. We compare the theoretical structural properties as
obtained through the present approach with Percus-Yevick and Martinov-Sarkisov integral equation theories,
and assess both structural and thermodynamic properties by performing canonical standard and biased grand
canonical Monte Carlo simulations. Our theory appears superior to the other integral equation schemes here
examined and provides reliable estimates of the chemical potentials. This feature should be useful in studying
the fluid phase behavior of model adsorbates in random pores in general.
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I. INTRODUCTION In our approach, we improve the performance of the

Phase changes of liquids inside porous media are of botfgPlica-Omstein-ZemikgOZ) integral equations by requir-
scientific and technological interest. Porous materials, such'9 both conformity to the zero-separation theprems and a
as activated carbon, silica gels, zeolites, pillared clay an@?'tial thermodynamic consistency. This combined method-
more recently, aerogels, aminosilicates, aluminophosphat@!09y has been applied and tested in a number of previous
carbon nanotubes, \cor glass, microporous BN, and stastudies: on pure hard spheres in by and in poreg9],
burst dendrimers have been extensively used in industry fgrdditive [10] and nonadditive[11] hard sphere mixtures in
adsorption, dehumidification, catalysis, gas separafign  PUlk, Lennard-Jones moleculgid2], and diatomic hard
and gas storagg2,3]. Many of these systems have an amor-dumbbells[13]. In_aII cases, close agreement was obtained
phous structure, that is, they consist of microsized pores th&etween IE and simulation. The essence of such an approach
are irregularly distributed throughout the material. For ex-'S th? use of the zero separatlon_theore(_rZS'I') [14], in
ample, aerogels have a cobweblike structure that is made L&pdmon to the usual thermodynamic consisten¢ies. The

of cross interconnecting inorganic/organic colloidal-like par-values of correlation functions at zero distargenen two
ticles or polymeric chains with high porosity’5-99% [4] particles coincidgobey certain exact conditions that tie them

When fluids invade the interior of such materials, the con (o the thermodynamic properties of the system under study,

i fi di : deeplv ch 'such as the chemical potentials and the isothermal compress-
inement in narrow dimensions deeply changes bk i This is, in a way, similar to the contact value theorem

phase behavior, as has been well documefipnly afew 5, fard-core systemd 6]. The difference between ZST and
theoretical studies have looked into binary fluid mixtures INthermodynamic consistencies is in the “locétpecific val-

random poreg6]. The simplest model for these systems, es of the correlation functions are required at some dis-
exhibiting a stable phase separation, is exemplified by th@ances nature of the former versus the “globaklmost ev-
nonadditive hard sphere mixtu(®AHSM). erywher@ nature of the latter. Both types of consistencies
In this paper we employ both integral equatiaitis) of  reinforce the “accuracy” of the integral equation formulation
the replica type[7] and computer simulations in order to pased on the replica OZ equations. For the aforementioned
characterize the structure and the thermodynamics ofeason, we specifically develop zero-separation theorems of
NAHSM under confinement. The effect of confinement iSmode| mixtures in random pores, and we adapt them to our
assured by the presence of a disordered, rigid matrix of harfarticular model system. Next, we solve a modified-Verlet
spheres. The study of this basic model should help in undegjosure[17] to the replica OZ equations which has built-in,
standing both the effects of nonadditivity and of porosity onagdjustable parameters and we tune them so as to satisfy the
phase properties in general. zero-separation theorem{@SEP closurg We refer to the
present implementation of ZSEP as a self-consistent closure
only to the satisfaction of zero-separation theorems; on the
*Corresponding author. Email address: lle@ou.edu other hand, its degree of thermodynamic consistency is
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monitored as well on the basis of the Gibbs-Duhem relationsystem, wheres=s,+s, is the number of identical copies of
We also solve the replica OZ equations under the Percughe liquid mixture speciesthe replicag thus, within this
Yevick (PY, [18]) and Martinov-SarkisoyMS, [19]) integral ~ formalism, the mixture confined into the rigid matrix is de-
equation closures. In order to test the accuracy of the theicted as a semiquenched systgrartly quenched and partly
retical calculations, we have carried out Monte CaNC, annealeg The label 0 indicates the matrix species, 1 and 2
[20]) simulations in three different ensembles: th&/T  the liquid mixture species, 3 and 4 any replica of 1 and 2,
[NVT, (standard constant number of partigles (constant respectively. In the following, we adopt the matrix notation
volume X constant temperatufecanonical ensemble, the of Ref. [7] for the correlation functions;;(r)andc;(r), and
grand canonical ensemb|21], and the cavity-biased grand we suppress the argumentn order to improve readability;
canonical ensemblg22]. A number of conditions are inves- the replica OZ equations are so written(43” denotes the
tigated, representing different nonadditiviti€d=0.2,0.4,  transpose of a vector argl is a convolutio:
matrix porosities (pg=0.18,0.3, mixture densities(0.18
<p'=<0.35, and compositions of the binary mixture hoo= €00+ PoCo0 ® hoo,
=0.1,0.3,0.5

In Sec. I, we present the theoretical framework and the ~ No1= Co1*ho1 ® poCoo+ p1h11 ® Co1 = p1h12 ® Coy,
simulation procedures. In Sec. lll, we show the results for
the radial distribution functions, the chemical potentials and ~ hy;=c;;+hoy ® poChy + p1h11 ® €11 — p1h1, ® Coo,
a case-study for the liquid-liquid equilibrium. Finally, we

iV m ncluding remarks an r tives in N AV T
give some concluding remarks and perspectives in Sec N12=Ci2+ o1 ® peCor + p1N12 ® Cp1+ p1hyn ® C1ob=2phy

® C12, (2)
Il. THE MODEL AND THE METHODS
where
A. Model
We consider a binary mixture of nonadditive hard-sphere - (”1 0 ) Res = <h01> Cor = (001> (3)
; . P1 v No1 » Co1 )
particles: 0 p, hoo Co2
® = gj
V() :{0 . ” : 1 ho = (hll h12> o= <011 C12>
i By hyy/t T ey e/

where o;; are the diameters of interaction among species
and j, .0'?_2:(1+A)[(0'11+0'22)/2].>0'11.:0'22 and A i.S the B h13 hl4 B Ci3 Cua
nonadditive parameter. The fluid mixture is confined in a hio= , C12= (4)
matrix of random, nonoverlapping hard-sphere particles of
diameteroy. Throughout the paper we will use the notation  The total number of the coupled ROZ equations is eight,
o,=04; and o= 05,. Within this model for the fluid mixture, though the first one is the bulk OZ equation for the matrix
a positive nonadditivity in the cross interaction between thearticles. The ROZ equations are solved under different clo-
two species favors homocoordination in comparison to hetsures, namely, the modified-Verlet closuifg]:
erocoordination. As a consequence of the extra repulsion
from unlike interactions, nonadditive hard-sphere mixtures B. (r)——éL 2(1 b+  Hy ) (5)
are expected to separate, at sufficiently high density, into two " Vol 'y” '
distinct phases. We consider this model because it is the sim-
plest mixture possible to exhibit a thermodynamically stablevhere Byj(r)and y;(r) are the bridge and the renormalized
liquid-liquid transition. In all the calculations we assume thatindirect correlation functions, respectively; the renormaliza-
the size of the two Spec|es is equa| to the diameter of théion of the indirect correlation function is achieved by adding
matrix sphere, i.e.gq,=05,= 0y, briefly stated we consider @ soft-Weeks ChandlerAnderseNCA) potential[23] to the
symmetrical mixtures. Then, we study the effect of increas-y; function, ;(r)=1;(r)+ 5pfi;(r), wheref;(r) is the Mayer
ing nonadditivity from 20%to 40%\=0.2,0.4 on the factor of the repulswe WCA 6:3 potential. The introduction
structure and on the thermodynamics of the system. of this term circumvents the discontinuities in the bridge
functions when combined with the closure; we slightly modi-
fied the indirect correlation function by setting the pseudot-
B. Theory emperature in the Mayer facter10*. The twenty-four ad-
The formalism of the replica OZROZ) equations was justable parametets;, ¢;;,anda;; (three parameters for each
derived for the first time for pure fluids by Madden-Glandt of the eight ROZ equationsppear to be excessive; then, we
and Given-Stell, and recently extended to binary liquids bydrastically reduce this number by letting them assume “rea-
Paschinger and Kahlsee Ref.[7] and references thergin sonable” values according to the following criteria: we al-
These equations describe the structure of a binary liquid inways setw;;=1 and we use two different sets of parameters
side a disordered medium and are formally derived after dor equimolar and asymmetric concentrations, respectively.
partial quenching of one of the components and in the lim-The choice to fix the set;; to unity is related to the func-
iting case fors=0 of a fully equilibrated2s+1)-component tional form of the modified Verlet closuré). In fact, the

his oy Cia Cz4
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partial derivative of the bridge function with respect to the
a;; is still a function of;, in contrast the two partial deriva- ~ Bk2= Pof [20] + sz [22] + (s, = 1)P4f [24] + Plf [21]
tives with respect to thefj; and¢; do not depend on
i and ¢;, respectively. B

J Thus,Jindependent variations gf and ¢;;, will affect the & l)p3f 23],
bridge functions in a plain way, and we might expect that
such a linear behavior would be beneficial for speeding up
the .numerical search .of consistent bridge functions. For theﬁ,u3=poj [30] +p3J [33]+ (s, - 1)p3,J [33] +p4J [34]
equimolar concentrations we sef;=¢;,5YM=0,,5", ¢,
= = 1°M= 0,2 M= 1,5 M= S, {3=00°™
=00°™, L=G M=, =S M=, s +(sp- 1)P4'J [34],
= 10" M= o> ™, 4= has® M= 4>V, as far as the asym-
metric concentrations are concerned, we fix the values of the
gij to the symmetrical concentration onégr ¢j; SYM “and we _ ,
allow all the ¢ to vary under the constrainb,,= ¢, We — BHa=Po J [40] + p4 f [44] + (52~ Dpar f [44]+ ps f [43]
note that the bridge functions are strongly affected by varia-
tions of the¢;; at all distancegand this obviously holds also _ ,
atr=0), beca{use this set appears as a multiplying coefficient T Dps’f [43], 0
to them[see Eq.(5)]; then, the choice to fix théj to the
symmetrical counterparts hinges upon the following arguwhere 3 and 4 are replicas of 1 and 2 other than 3 and 4,
ments: we surmise that the variability of the correlation func-respectively3=1/kgT, T is the absolute temperature akgl
tions nearbyr=0 originates mainly from the total packing is the Boltzmann constant.
fraction and only slightly from the exact value of the con-  Now, the reversible works of insertion dfimersmade up
centration. Though we may expect this conjecture to be redrom pairs of specied+1,2+2,1+2,1+0,2+0,1+3,2+4
sonable for symmetrical species, a different approach woul@s they merge into zero bond lengét infinite dilution in the
be desirable when asymmetric spediessize) are presentin  mixture) are the chemical potentials fdimersof the corre-
the mixture; in fact, in this latter case the height of the cor-sponding pairs at coinciden¢e=0) (Note: 1+2 denotes the
relation functions is likely to vary considerably when con- dimer species formed from species 1 and specjes 2
centration is different from the equimolar one. In both cases,
we end up with seven parameters to be determined by en-
forcing self-consistency theorems. We adopt zero separation
theorems, which relate the cavity functions values at zero
distance to the proper expression for the chemical potentials. +1,3]+ pzf [1+1,2]+ (s~ 1)p4f [1+1,4]
In a previous paper, one of us reported the formulas of the
chemical potentials for bulk mixturg41,24; here we derive
these formulas for the system representing the matrix and the
mutually noninteractings,;,s, copies(replicag of the fluid Bioio= pOJ [2+2,0+ pzf [2+2,2]+(s,— 1)p4f [2
species. We introduce the following short-hand notation:

BM1+1=POJ[1"'1,()]"'/31][1+1,1]+(51‘1)P3f[1

- 1 +2,4]+P1f[2+2,1]+(31‘1)P3f[2+2,3]
Pkf ['J]:Pkf dr(ln Yij_hij+§hij'}’ij+hijBij_Sj)'

(6)

ﬁ#1+0:l?0f [1+0=O:|+P1f [1+0,+(s - 1)P3f [1
where y;;(r) andS;(r) are, respectively, the indirect correla-

tion functions and the Star functions introduced ea, f ~ f

andp, is the number density of speciksThus, the monomer +0.3[+p;| [1+0,2+(5,=1)ps | [1+0,4
chemical potentials are easily written @l chemical poten-

tials are configurational quantities, in excess of the ideal

parp: BM2+0:POJ [2*‘010]4'P2J [2+0,2]+(52‘1)P4J [2
ﬁl’«ozpof [OO]"'SPlf[Ol]*‘Ssz [02], +0,4]+p1J [2+0,1]+(51—1)p3j [2+0,3]
,Bﬂlzpof [10]+P1f [11]+(51‘1)ng [13]+P2f [12] ﬂM1+2:POJ [1+2,()]+P1f [1+2,1]+(51‘1)P3f (1
(5= Dpa 134 r2,30%4paf 14234 (5, D[ 11+2,8
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,BM1+3=Pof [1"'3,0:|+P1f [1"'3,1]"'1)3] [1+3,3 In y12(0)=Pof [20]+P1f [11]+P2f [22]_P2f [24]
"’sz[1+3,2]+P4f[1"'3,4]"'(31‘2)173"[[1 ‘Plf[23]a 1= 03

+3,3]+(s5,=2)py | [1+4,4]
p“f In y20) = po f [20] + py f [11]+p2f [22]—p1J [13]

3M2+4:Pof [2+4,0]+sz [2+4,2]+P4J [2+4,4] ‘sz [14], o<y (12

+ le [2+4,1]+ Psf [2+4,3]+ (s, - 2)’)4'] [2 while for the particle-matrix cavity functions:

+4, 4/] + (S1 _ 2)p3’f [2 +4,3/]. (8) In le(O) = Pof [OO] - plf [13] - sz [14] + plf [01]

These formulas are general and are applicable to any type + pzf [02], o,> 0
of interaction pair potential. Now we shall specialize the
above relations to the case of nonadditive hard-sphere mix-

tures in the hard-sphere matrix and we shall also formulate _
the zero-separation theorems. For the 11 cavity functions " Y100 = pOJ [01] +p1f [11] _plf [13]+ PzJ [12]

In'y11(0) = 281 = Bpa+1 = By (9) - sz [14], o< oy
Thus, we hav&upon taking the limits;—0,s,—0:)
In y14(0) = .DOJ [10] + Plf [11]- P3J [13]+ sz [12] In y,0(0) = pof [00] - pzf [24] - plf [23] + sz [02]
—p4J [14]. (10 +plf [01], o,> 0y

In a similar way, we can build up the zero-separation
theorems for the other cavity functions:

0 yad0)=po [ 1021+ s | 1221 o[ 1214 s [ 122

Iny20) = po | 1201+ s [ 1221 pa | 1241+ 1 [ 121)
‘Plf [23], o,<oap (13

sz (23] Thus, the closure Eq5) to the ROZ equations is solved
numerically under the constraint determined by the seven
Eqgs.(10«13). We also checked the ability of this closure to
In y15(0) = pg f [10] guarantee internal thermodynamic consistency. Unfortu-
nately, the virial equation of state for the quenched-annealed
system is not straightforwardly related to structural functions
In y,4(0) = po f [20] (12) as for bulk mixtureq25]; in fact for hard-core interactions:

211 d 'S
502 g o

JdBP
We note that the coincidence value of the mixture-replica BP = po<i>
VTuqpy i ds

cavity functions depends only on the matrix-fluid correla- 7 po
tions, similarly to the pure casg9]. The case of

2 3 3
In y10(0),In y,(0),and Iny;,(0) is a bit more complicated + 2 p{iGi(oi) +2 2 popioGoi( o)

i=1,2 i=1,2
and we have to distinguish between different possibilities. In ' '
fact, though the treatment of zero-separation theorems be- 3
’ : : +2 , 14
tween the crossed species of the real system is based on an PP 2012912(012)] (14)

additive rule similar to Eq(9), a number of different simpli-

fications between the terms appearing in the chemical potenwhere the first term is the infinitesimal change of the virial

tials (8), depending on the mutual size of particles, may ocpressure with respect to the matrix density at constant values

cur. It is then straightforward to write for the unlike cavity of volume, temperature, and chemical potentials of the two

functions: species, and lifigyy(ogo; S)/ds] is the infinitesimal change
s—0
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FIG. 1. Radial distribution functions for the mixture at FIG. 2. Radial distribution functions for the mixture at

=0.2,p0=0.3,x=0.5. Full line, ZSEP; long-dashed line, MS; dotted -0 2 ,/=0.1,4=0.5. See FIG. 1 for the meaning of the symbols.
line, PY; open circles, NVT Monte Carlo simulation.

(1) = 7BV — .
of the matrix-matrix radial distribution function in the repli- Gij(r) =Lexp T = 1L + ¥, (1)] (@7
cated system with respect to the number of replicas, in thand the MS[19] closure:

limit of the quenched-annealed system. Both quantities I
should be evaluated numerically, and in particular the first Cij(r) = exp AV (711050, (18)
one implies the calculation of the product of two numerical
derivatives, as a standard mathematical manipulation of the
modynamic derivatives shows:

We solve numerically the different closures to the ROZ equa-
tions with a Picard method and adopt a standard mixing pro-
cedure for the direct correlation function in order to ensure

(ﬁ,BP) ((9[3P) convergence; normally, 1024 grid points with grid interval
- =|— 0.010, are used but we also checked the stability of the
900 ) \Tugu, N\ IPo VTN, solution with higher grids of 2048, 4096 points for some
[((wp) (Wﬁ) ] thermodynamic state points. Zero-separation theorems and
-> = — . the thermodynamic constrai(it6) are enforced in the frame-
i=1,2| \ M0 /v, V9 Po/ VNN,
(15) 6.5 . 2 4.5
(NVT Monte Carlo 2 T
Thus, we resort to a different strategy in order to monitor the T

thermodynamic consistency of the theory; in particular, we
use the Gibbs-Duhem relatiq.2],

651

55

apBP d B 45 115
N N T I B
P Ivip, =12 stz N\ 9P VTN e N .
i} 85 & =)
- : = 25
=[pkeTxrI ™t =1~ 2 xixjpci(0), (16)
ij=1,2

Ly 1 1".

where the chemical potentials of the two species are dif'fer—z'5
entiated numerically in order to obtain the inverse of the
isothermal compressibility an?fj (0) are the Fourier trans-
forms at zero wave vector of the connected part of the direct
correlation functions, within the ROZ formalism. We recall
that direct correlation functions may be distinguished, on theo.s : 0.5 ‘ 0.5 ‘
. ) X ; 1 2 312 22 32 1 2 3
basis of a diagrammatical analysis, by a connecteand a
blocked partc,, respectively, so that=c.+c [7].
The ROZ equations are also solved under the [BS] FIG. 3. Radial distribution functions for the mixture at
closure: =0.2,0p=0.3,y=0.1. See FIG. 1 for the meaning of the symbols.

1.5
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1/G,

FIG. 4. Radial distribution functions for the mixture &

=0.2,0,=0.3,y=0.1. See FIG. 1 for the meaning of the symbols. FIG. 6. Radial distribution functions for the mixture at
=0.4,p0p=0.1,y=0.5. See FIG. 1 for the meaning of the symbols.

work of the modified-Verlet closur&ZSEP with a tolerance

of 1%. The numerical procedure adopted to fulfill self-iterated a few cycles up to convergence. This approach is
consistency according to Eq&l0)—(13) turns out to be a Mantained essentially unaltered also when thermodynamic
smart one, notwithstanding the apparent difficulty of dealingconsistency is imposed according to Eg6); in this case,
with a system of seven equations in seven unknown varihowever, the previous cyclelenoted as ZST cycjes com-
ables. In fact, each equation turns out to be a functionapleted with a refinement cyclelC or thermodynamic con-
strongly dependent just on the correlation functions with thesistent cyclg on an additional parameter so to satify Eq.
same label of the cavity functioy;. Thus, the overall system (16). We choosez, as a variational parameter for the ZST
is slightly coupled and we can obtain a rapid guess of th&€ycle because we noticed by numerical inspection that Eq.
solution by applying simultaneously an indipendent Newton{(16) is particularly sensible to variations of it. The sequence
Raphson search procedure to each of the seven quf independent ZSTand TC CyCles is then iterated until con-
(10—(13); to such a purpose, one of the variational param-VErgence.

eters appearing in the bridge functioBg [see Eq.(5)] is

used for each zero-separation equation, and the procedure is C. Simulation

We have performed Monte Carl@0] simulations with
b ANV Monte carlo 18 ! three different simulation algorithms: the grand canonical
(T,V, 1,4 ensemble(GCMC, [21]), the cavity-biased
grand canonica{CB-GCMC, [22]) ensemble and the stan-
dardNVT canonical ensembl@0]. The GCMC simulation is
used in order to sample different matrix realizations and fluid
mixture particle configurations. Simulations in order to gen-

35

5L 1
14 15 16 1.7 4

Ril s
: -

45

Bu

25

0.5
0.1 0.15 02 . 025 0.3

p

. . : 0.
1 2 3714 24 341 2 3
1/s, FIG. 7. Chemical potential vs total mixture density At

=0.2,0p=0.2,x=0.5. Triangles, grand canonical Monte Carlo simu-
FIG. 5. Radial distribution functions for the mixture & |lation; circles, cavity-biased grand canonical Monte Carlo simula-
=0.4,p0=0.3,x=0.5. See FIG. 1 for the meaning of the symbols. tion; full line, ZSEP.
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0.36 ; ; ; 0.19
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035 4@ & ﬁ‘ 0.18 | @
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FIG. 8. Total mixture density vs particle concentration at fixed FIG. 9. Total mixture density versus particle concentration at
chemical potentialsA=0.2. Triangles, grand canonical Monte fixed chemical potentialsA=0.4. See Fig. 7 for the meaning of the
Carlo simulation; open circles, cavity-biased grand canonical Montesymbols.

Carlo simulation; diamonds, ZSEP; crosses, ZSEP with thermody-
namic consistency.

Py= min(l AP Bt AV - V(rN‘l)]}>

V PY (Y

erate matrix realizations at the chosen mean density are per- (19

formed in the GCMC ensemble as well.Three types of Palyhere PN(rN)is the configuration-dependent probability of
ticles moves(displacement, creation, or destruction of a

particle were performed randomly with equal probability finding a cavity of diametes. or larger, provided the system

inside a cubic box with cubic periodic boundaries; typically, consists oN particles, and\ is the de Broglie thermal wave-

averages are collected over 30 matrix realizations and folre ngth. W? est|m§te@C.(r ) by implementing a cawty.
arch using a finite grid. We always used a box of side

each realization not less than 20 000—30 000 trial moves p ngth approximately equal to 135 and a uniform grid of

particle are generated. Matrix realizations are generated b 0% points: the arid size is ch o b ati
recording the configuration of the system every 50 000 tria points, the grid siz€ 1S chosen so as o beé computation-
ally manageable while generating a negligible error in the

moves per particle. L AN .2 .
ber p limiting distribution of the Markov chain, since deletions can

We also increase the efficiency of the importance sam . . . ) ;
pling by performing simulations in the CB-GCMC ensemble: 0Ccur at any pointin the box but insertions are restricted just
"to the grid points.

within this method, the acceptance probability of a molecula Finall ; NVT simulati f iousl
configuration is biased so as to favor insertions of new par- .'lf‘; 3{ (;Nggﬁgorm lati simuia |ogs trom [Tre\tno?hsy
ticles into existing cavities in the box, instead of at randomlyequl forate simuiations, In order o evaluate the ra-

selected points only. In particular, insertion and deletion at—dlal distribution functions.

tempts are accepted with probabilities:
IIl. RESULTS AND DISCUSSION

N el We begin to assess the structural properties as predicted
p = min(1 VPN(rN)eXP{ﬁM+ BLIV(rT) = V(r )]}> by integral equation closures against standskiT simula-
' e A3(N+1) ' tions. In Figs. 1 and 2, from the left to right panels, we report

TABLE I. Consistency parameters and percentage thermodynamic inconsig¥émtyfor different mixtures at the equimolar concen-
tration. In the top of the tablpy=(Ng/V)ag,p  =[(N1+Np)/V]as, x=N;(N;+N,).

A Po P X %TI & & {3 4 b1 &3 on

0.2 0.3 0.31 0.5 1.8 0.6868 1.0111 0.77995 0.8325 0.9553 0.9853 1.1792
0.2 0.3 0.315 0.5 0.5 0.6868 1.0111 0.77995 0.8325 0.9553 0.9848 1.1722
0.2 0.1 0.35 0.5 2.5 0.6726 1.1113 0.8565 1.74695 0.9407 1.0591 2.3981
0.4 0.3 0.18 0.5 2.8 0.5637 1.0687 0.7406 0.7361 0.9198 1.0276 1.2120
0.4 0.1 0.18 0.5 0.7 0.6032 1.6598 1.1328 -0.1468 0.9394 1.5889 0.02915
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TABLE Il. Consistency parameters and percentage thermodynamic inconsigg#ddy) for different mixtures. See Table | for the
meaning of the symbols.

A Po P X %T]I d11 b12 $22 do1 do2 a3 baa

0.2 0.3 0.3078 0.34 8.6 0.9566 1.0077 0.9530 0.9931 0.9763 1.0905 1.2428
0.2 0.3 0.3090 0.305 0.&,=0.5208 0.9237 1.0092 0.9530 0.9941 0.9758 1.08446 1.2443
0.2 0.3 0.309-0.31 0.1-0.11 13 0.9560 0.9988 0.9500 1.010 0.9679 0.9922 1.2789
0.2 0.3 0.3095 0.105 0.,=0.1962 0.7045 1.005 0.9495 1.0087 0.9684 1.0051 1.2776
0.2 0.1 0.35 0.3 6.1 0.9427 1.10045 0.9315 1.1004 1.0352 1.9334 2.7364
0.2 0.1 0.35 0.1 4.7 0.9291 1.07895 0.8929 1.1664 0.9702 1.4872 2.7578
0.4 0.3 0.179 0.335 2.9 0.9223 1.0592 0.9098 1.0584 0.9969 1.1145 1.3092
0.4 0.3 0.178 0.1105 4.8 0.9322 1.0360 0.8957 1.1124 0.9616 0.9833 1.3565
0.4 0.1 0.1795 0.310 2.9 0.95505 1.5906 0.92335 1.7837 1.42965 3.9580 -3.1866
0.4 0.1 0.179 0.104 1.5 0.9710 1.4072 0.8856 2.0898 1.2515 8.5566 -3.7338

radial distribution functions for the particle 1-particle 1, par- ones here considered. These performances by ZSEP have
ticle 1-particle 2 and particle 1-matrix short-range correla-been checked also at a lower degree of matrix porosity, as
tions at a equimolar composition. reported in Fig. 6. We have chosen to plot all the radial
It appears that for a moderate nonadditivity and for twodistribution functions in a narrow rangextending to ap-
different matrix porosities, ZSEP gives rise to the best perproximately three matrix diamateren order to show evi-.
formances, quantitatively describing the simulation profilesdence on the comparison between ZSEP and the other inte-
for all the correlations. Both PY and MS closures manifestdral equation closures considered. All the radial distribution
quantitative inaccuracies, especially at short range, and it j&inctions oscillate around 1 when longer distances are visu-
interesting to note that confinement into a random matrip@lized, thus confirming that the states explored fall in the
induces a moderate worsening of their performances witf§table region of the thermodynamic plane. The unusual be-
respect to the bulk26]. On the other hand, ZSEP overall havior shown by the cross structural functions, and in par-
good performances maintain unaltered also at an asymmetrficular the marked depth of the first coordination shell, is
concentration as high as 10¢ee Fig. 3, with a slight shift derived from the spatial correlations due to the presence of
up of both the more dilute species like correlations at longetn® matrix particles. _
distances and of the cross correlation at distances close to After considering structure, we turn our attention to ther-
contact; however, ZSEP seems to capture the correct pha§&dynamics and, in particular, to the ability of the theory to
and oscillations, in agreement with the other integral equad/Ve reliable estimates of the chemical potential, that is a
tion schemes here considered. Moreover, as shown in Fig. £rimary mgred,ent for the determination of the liquid-liquid
also the particle 2-particle 2 and particle 2-matrix correla-P ase separation envelopes. .
tions are better described by ZSEP. As it appears in Fig. 7, where the calculations are per-
We also monitor in Fig. 5 the effect of increasing nonad-formed at fixed equimolar concentration, ZSEP is able to
ditivity, i.e., increasing the tendency of particles to homoco-féProduce accurately simulation results up to the mixture
ordination. While ZSEP shows a slight tendency to overestidensities close to the region of immiscibility in the phase
mate and underestimate the like-like and the crossediagram, with a discrepancy never exceeding 2—3%.
correlations at longer distances, respectively, it remains defi- 1hiS result is confirmed by adopting a different strategy

nitely the most reliable integral equation closure among thdOr the assessment in Figs. 8 and 9: we use as initiation for
simulations the theoretical chemical potentials and try to

look at the simulation mean total mixture densities and the
mean particle concentrations in comparison with the theoret-
ical values. Again, at the worst case reported in the upper
panel of Fig. 8, i.e., at the higher matrix density and at the
lower mixture nonadditivity considered in this work, the per-
centage discrepancy with simulation was inferior to 3%. In
the attempt to reduce this error of theory in comparison with
simulation results, we also monitor the effect of imposing the
thermodynamic constraint of Eq16) just for the caseA

pr M08 =0.2,p,=0.3. To this aim, we use as an additional variational

parameter the quantit§; and it emerges that decreasing the
FIG. 10. Liquid-liquid phase coexistence boundary in the totaldegree of thermodynamic inconsistency by ZSEP from about

0.8 1

mixture density-particle concentration plane for0.2,0,=0.2. Er-  10% to less than 1% brings a slight change in the calculated
ror bars, grand canonical Monte Carlo simulation; open circleschemical potential§¢see upper panel of Fig.8For this rea-
ZSEP; full line, curve fitting ZSEP points. son, we have not tried to enforce systematically the internal
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thermodynamic consistency of Ed.6) for all the cases con- density frompy=0.1 to py=0.3, showing an overall discrep-
sidered in this paper. However, as documented in Tablesdncy in comparison to the simulation never exceeding
and I, ZSEP is not found to be thermodynamically inconsis-2—3%. It is worth noting that we have not extensively con-
tent in a significant way, with a percentage discrepancystrained ZSEP to fulfil also thermodynamic consistency: in
(%TI) which on the average is of the order of 3—4% and atthat case, even a better improvement should be expected on
the worst cases never exceeds 10—15%. the basis of previous work upon integral equation theories
Finally, we calculate the liquid-liquid coexistence lines [8—15. Though the NAHSM infused into a disordered ma-
for the worst casdéas for the comparison with simulation trix of hard spheres represent a basic model, our approach,
datg reported in the upper panel of Fig. 8 and assess ZSERinging on the enforcement of the validity of zero-separation
predictions with Cavity-Biased Monte Carlo simulations. theorems, can be easily generalized in the framework of a
Note that our conditions of simulation are similar to those ofmore realistic model of mixtures in random pores.
Sierra and Dud@6] who, on the other hand, performed simu-  Microporous and mesoporous materials are widely used
lations in the semigrand canonical enseml@@]. Theoreti- in the industry as active reservoirs for fluids, e.g., in demix-
cal coexistence lines reported in Fig. 10 are calculated byng processes. On the other hand, the design of several pro-
equating the chemical potentials of the two spe¢gesond cesses involving adsorbates into amorphous materials is
and third equations of E7), respectively, at different con- largely empirical at the present time, with little scientific
centrations. After performing such a match, we were able tdasis. Thus, a reliable description of liquid-liquid equilibria
establish the lower consolute critical point, with an error offrom a modellistic point of view, as the one achieved in the
~3%, as compared to the simulation results. This is in conpresent study, is of fundamental interest.
formity with the previous observation on the accuracy of the It is also worthwhile to remark that a computational ap-
calculated chemical potentials. As far as a comparison witlproach based on replica-OZ equations is sensibly more ad-
the bulk performances of modified Verlet closures is con-antageous than simulation: in fact, on a typical workstation,
cerned[11], we note that we have not tried to systematicallywe verified that the computational load necessary to numeri-
achieve thermodynamic consistency, as for instance betweeaally solve the theory for the structure is about three orders
the virial and the compressibility equation, or between theof magnitude less than a fully equilibrated simulati@as the
two sides of the Gibbs-Duhem equation; this achievement i¢ypical one performed in the present stidy
probably at the origin of the even better predictions obtained Recently, it has been suggested that on increasing the ten-
for bulk mixtures[11]. However, as far as the virial equation dency to homo-coordination an highly nonlinear behavior of
of state is concerned for the confined system, the possibilityhe critical demixing density versus the matrix density
to use Eq.(14) is currently prevented by the absence of anshould be expectef]; however, these authors were pre-
efficient computational procedure to calculate the derivativevented to verify it accurately because simulation at condi-
of the matrix-matrix radial distribution function in the repli- tions of high nonadditivity is a time-consuming procedure.
cated system with respect to the number of replicas. Calculations in order to estabilish this possibility within our
approach are currently in progress.

IV. CONCLUSIONS
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