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We present a self-consistent integral equation theory for a binary liquid in equilibrium with a disordered
medium, based on the formalism of the replica Ornstein-Zernike(ROZ) equations. Specifically, we derive
direct formulas for the chemical potentials and the zero-separation theorems(the latter provide a connection
between the chemical potentials and the fluid cavity distribution functions). Next we solve a modified-Verlet
closure to ROZ equations, which has built-in parameters that can be adjusted to satisfy the zero-separation
theorems. The degree of thermodynamic consistency of the theory is also kept under control. We model the
binary fluid in random pores as a symmetrical binary mixture of nonadditive hard spheres in a disordered
hard-sphere matrix and consider two different values of the nonadditivity parameter and of the quenched
matrix packing fraction, at different mixture concentrations. We compare the theoretical structural properties as
obtained through the present approach with Percus-Yevick and Martinov-Sarkisov integral equation theories,
and assess both structural and thermodynamic properties by performing canonical standard and biased grand
canonical Monte Carlo simulations. Our theory appears superior to the other integral equation schemes here
examined and provides reliable estimates of the chemical potentials. This feature should be useful in studying
the fluid phase behavior of model adsorbates in random pores in general.
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I. INTRODUCTION

Phase changes of liquids inside porous media are of both
scientific and technological interest. Porous materials, such
as activated carbon, silica gels, zeolites, pillared clay and
more recently, aerogels, aminosilicates, aluminophosphate,
carbon nanotubes, Vycor glass, microporous BN, and star-
burst dendrimers have been extensively used in industry for
adsorption, dehumidification, catalysis, gas separation[1],
and gas storage[2,3]. Many of these systems have an amor-
phous structure, that is, they consist of microsized pores that
are irregularly distributed throughout the material. For ex-
ample, aerogels have a cobweblike structure that is made up
of cross interconnecting inorganic/organic colloidal-like par-
ticles or polymeric chains with high porositys75−99%d [4].
When fluids invade the interior of such materials, the con-
finement in narrow dimensions deeply changes thebulk
phase behavior, as has been well documented[5]. Only a few
theoretical studies have looked into binary fluid mixtures in
random pores[6]. The simplest model for these systems,
exhibiting a stable phase separation, is exemplified by the
nonadditive hard sphere mixture(NAHSM).

In this paper we employ both integral equations(IE) of
the replica type[7] and computer simulations in order to
characterize the structure and the thermodynamics of
NAHSM under confinement. The effect of confinement is
assured by the presence of a disordered, rigid matrix of hard
spheres. The study of this basic model should help in under-
standing both the effects of nonadditivity and of porosity on
phase properties in general.

In our approach, we improve the performance of the
replica-Ornstein-Zernike(OZ) integral equations by requir-
ing both conformity to the zero-separation theorems and a
partial thermodynamic consistency. This combined method-
ology has been applied and tested in a number of previous
studies: on pure hard spheres in bulk[8] and in pores[9],
additive [10] and nonadditive[11] hard sphere mixtures in
bulk, Lennard-Jones molecules[12], and diatomic hard
dumbbells[13]. In all cases, close agreement was obtained
between IE and simulation. The essence of such an approach
is the use of the zero separation theorems(ZST) [14], in
addition to the usual thermodynamic consistencies[15]. The
values of correlation functions at zero distance(when two
particles coincide) obey certain exact conditions that tie them
to the thermodynamic properties of the system under study,
such as the chemical potentials and the isothermal compress-
ibility. This is, in a way, similar to the contact value theorem
for hard-core systems[16]. The difference between ZST and
thermodynamic consistencies is in the “local”(specific val-
ues of the correlation functions are required at some dis-
tances) nature of the former versus the “global”(almost ev-
erywhere) nature of the latter. Both types of consistencies
reinforce the “accuracy” of the integral equation formulation
based on the replica OZ equations. For the aforementioned
reason, we specifically develop zero-separation theorems of
model mixtures in random pores, and we adapt them to our
particular model system. Next, we solve a modified-Verlet
closure[17] to the replica OZ equations which has built-in,
adjustable parameters and we tune them so as to satisfy the
zero-separation theorems(ZSEP closure). We refer to the
present implementation of ZSEP as a self-consistent closure
only to the satisfaction of zero-separation theorems; on the
other hand, its degree of thermodynamic consistency is*Corresponding author. Email address: lle@ou.edu
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monitored as well on the basis of the Gibbs-Duhem relation.
We also solve the replica OZ equations under the Percus-
Yevick (PY, [18]) and Martinov-Sarkisov(MS, [19]) integral
equation closures. In order to test the accuracy of the theo-
retical calculations, we have carried out Monte Carlo(MC,
[20]) simulations in three different ensembles: theNVT
[NVT, (standard constant number of particles) 3 (constant
volume) 3 constant temperature)] canonical ensemble, the
grand canonical ensemble[21], and the cavity-biased grand
canonical ensemble[22]. A number of conditions are inves-
tigated, representing different nonadditivitiessD=0.2,0.4d,
matrix porosities sr0=0.18,0.3d, mixture densitiess0.18
ør* ø0.35d, and compositions of the binary mixturesx
=0.1,0.3,0.5d.

In Sec. II, we present the theoretical framework and the
simulation procedures. In Sec. III, we show the results for
the radial distribution functions, the chemical potentials and
a case-study for the liquid-liquid equilibrium. Finally, we
give some concluding remarks and perspectives in Sec. IV.

II. THE MODEL AND THE METHODS

A. Model

We consider a binary mixture of nonadditive hard-sphere
particles:

Vi jsrd = H` r ø si j

0 r . si j
, s1d

wheresi j are the diameters of interaction among speciesi
and j , s12=s1+Ddfss11+s22d /2g.s11=s22 and D is the
nonadditive parameter. The fluid mixture is confined in a
matrix of random, nonoverlapping hard-sphere particles of
diameters0. Throughout the paper we will use the notation
s1=s11 ands2=s22. Within this model for the fluid mixture,
a positive nonadditivity in the cross interaction between the
two species favors homocoordination in comparison to het-
erocoordination. As a consequence of the extra repulsion
from unlike interactions, nonadditive hard-sphere mixtures
are expected to separate, at sufficiently high density, into two
distinct phases. We consider this model because it is the sim-
plest mixture possible to exhibit a thermodynamically stable
liquid-liquid transition. In all the calculations we assume that
the size of the two species is equal to the diameter of the
matrix sphere, i.e.,s11=s22=s0, briefly stated we consider
symmetrical mixtures. Then, we study the effect of increas-
ing nonadditivity from 20%to 40%sD=0.2,0.4d on the
structure and on the thermodynamics of the system.

B. Theory

The formalism of the replica OZ(ROZ) equations was
derived for the first time for pure fluids by Madden-Glandt
and Given-Stell, and recently extended to binary liquids by
Paschinger and Kahl(see Ref.[7] and references therein).
These equations describe the structure of a binary liquid in-
side a disordered medium and are formally derived after a
partial quenching of one of the components and in the lim-
iting case fors=0 of a fully equilibrateds2s+1d-component

system, wheres=s1+s2 is the number of identical copies of
the liquid mixture species(the replicas); thus, within this
formalism, the mixture confined into the rigid matrix is de-
picted as a semiquenched system(partly quenched and partly
annealed). The label 0 indicates the matrix species, 1 and 2
the liquid mixture species, 3 and 4 any replica of 1 and 2,
respectively. In the following, we adopt the matrix notation
of Ref. [7] for the correlation functionshijsrdandcijsrd, and
we suppress the argumentr in order to improve readability;
the replica OZ equations are so written as(“T” denotes the
transpose of a vector and̂ is a convolution):

h00 = c00 + r0c00 ^ h00,

h01 = c01 + h01 ^ r0c00 + r1h11 ^ c01 − r1h12 ^ c01,

h11 = c11 + h01 ^ r0c01
T + r1h11 ^ c11 − r1h12 ^ c12,

h12 = c12 + h01 ^ r0c01
T + r1h12 ^ c11 + r1h12 ^ c12 b− 2r1h12

^ c12, s2d

where

r1 = Sr1 0

0 r2
D, h01 = Sh01

h02
D, c01 = Sc01

c02
D , s3d

h11 = Sh11 h12

h12 h22
D, c11 = Sc11 c12

c12 c22
D ,

h12 = Sh13 h14

h14 h24
D, c12 = Sc13 c14

c14 c24
D . s4d

The total number of the coupled ROZ equations is eight,
though the first one is the bulk OZ equation for the matrix
particles. The ROZ equations are solved under different clo-
sures, namely, the modified-Verlet closure[17]:

Bijsrd = −
zi j

2
gi j

*2S1 − fi j +
fi j

1 + ai jgi j
* D , s5d

where Bijsrdandgi j
* srd are the bridge and the renormalized

indirect correlation functions, respectively; the renormaliza-
tion of the indirect correlation function is achieved by adding
a soft-Weeks Chandler Andersen(WCA) potential[23] to the
gi j function,gi j

* srd=gi jsrd+ 1
2rf ijsrd, wheref ijsrd is the Mayer

factor of the repulsive WCA 6:3 potential. The introduction
of this term circumvents the discontinuities in the bridge
functions when combined with the closure; we slightly modi-
fied the indirect correlation function by setting the pseudot-
emperature in the Mayer factor<104. The twenty-four ad-
justable parameterszi j ,fi j ,andai j (three parameters for each
of the eight ROZ equations) appear to be excessive; then, we
drastically reduce this number by letting them assume “rea-
sonable” values according to the following criteria: we al-
ways setai j =1 and we use two different sets of parameters
for equimolar and asymmetric concentrations, respectively.
The choice to fix the setai j to unity is related to the func-
tional form of the modified Verlet closure(5). In fact, the

PELLICANE et al. PHYSICAL REVIEW E 69, 061202(2004)

061202-2



partial derivative of the bridge function with respect to the
ai j is still a function ofai j , in contrast the two partial deriva-
tives with respect to thezi j andfi j do not depend on
zi j andfi j , respectively.

Thus, independent variations ofzi j andfi j , will affect the
bridge functions in a plain way, and we might expect that
such a linear behavior would be beneficial for speeding up
the numerical search of consistent bridge functions. For the
equimolar concentrations we set:z1=z11

SYM=z22
SYM, z2

=f2=z12
SYM=z14

SYM=f12
SYM=f14

SYM, z3=z10
SYM

=z20
SYM, z4=z33

SYM=z44
SYM, f1=f11

SYM=f22
SYM, f3

=f10
SYM=f20

SYM, f4=f33
SYM=f44

SYM; as far as the asym-
metric concentrations are concerned, we fix the values of the
zi j to the symmetrical concentration ones,zi j =z i j

SYM, and we
allow all the fi j to vary under the constraintf12=f14. We
note that the bridge functions are strongly affected by varia-
tions of thezi j at all distances(and this obviously holds also
at r =0), because this set appears as a multiplying coefficient
to them [see Eq.(5)]; then, the choice to fix thezi j to the
symmetrical counterparts hinges upon the following argu-
ments: we surmise that the variability of the correlation func-
tions nearbyr =0 originates mainly from the total packing
fraction and only slightly from the exact value of the con-
centration. Though we may expect this conjecture to be rea-
sonable for symmetrical species, a different approach would
be desirable when asymmetric species(in size) are present in
the mixture; in fact, in this latter case the height of the cor-
relation functions is likely to vary considerably when con-
centration is different from the equimolar one. In both cases,
we end up with seven parameters to be determined by en-
forcing self-consistency theorems. We adopt zero separation
theorems, which relate the cavity functions values at zero
distance to the proper expression for the chemical potentials.
In a previous paper, one of us reported the formulas of the
chemical potentials for bulk mixtures[11,24]; here we derive
these formulas for the system representing the matrix and the
mutually noninteractings1,s2 copies (replicas) of the fluid
species. We introduce the following short-hand notation:

rkE fi j g = rkE drSln yij − hij +
1

2
hijgi j + hijBij − SijD ,

s6d

wheregi jsrd andSijsrd are, respectively, the indirect correla-
tion functions and the Star functions introduced earlier[24],
andrk is the number density of speciesk. Thus, the monomer
chemical potentials are easily written as(all chemical poten-
tials are configurational quantities, in excess of the ideal
part):

bm0 = r0E f00g + sr1E f01g + sr2E f02g,

bm1 = r0E f10g + r1E f11g + ss1 − 1dr3E f13g + r2E f12g

+ ss2 − 1dr4E f14g,

bm2 = r0E f20g + r2E f22g + ss2 − 1dr4E f24g + r1E f21g

+ ss1 − 1dr3E f23g,

bm3 = r0E f30g + r3E f33g + ss1 − 1dr38E f338g + r4E f34g

+ ss2 − 1dr48E f348g,

bm4 = r0E f40g + r4E f44g + ss2 − 1dr48E f448g + r3E f43g

+ ss1 − 1dr38E f438g, s7d

where 38 and 48 are replicas of 1 and 2 other than 3 and 4,
respectively,b=1/kBT,T is the absolute temperature andkB
is the Boltzmann constant.

Now, the reversible works of insertion ofdimersmade up
from pairs of species1+1,2+2,1+2,1+0,2+0,1+3,2+4
as they merge into zero bond length(at infinite dilution in the
mixture) are the chemical potentials fordimersof the corre-
sponding pairs at coincidencesr =0d (Note: 112 denotes the
dimer species formed from species 1 and species 2):

bm1+1 = r0E f1 + 1,0g + r1E f1 + 1,1g + ss1 − 1dr3E f1

+ 1,3g + r2E f1 + 1,2g + ss2 − 1dr4E f1 + 1,4g

bm2+2 = r0E f2 + 2,0g + r2E f2 + 2,2g + ss2 − 1dr4E f2

+ 2,4g + r1E f2 + 2,1g + ss1 − 1dr3E f2 + 2,3g

bm1+0 = r0E f1 + 0,0g + r1E f1 + 0,1g + ss1 − 1dr3E f1

+ 0,3g + r2E f1 + 0,2g + ss2 − 1dr4E f1 + 0,4g

bm2+0 = r0E f2 + 0,0g + r2E f2 + 0,2g + ss2 − 1dr4E f2

+ 0,4g + r1E f2 + 0,1g + ss1 − 1dr3E f2 + 0,3g

bm1+2 = r0E f1 + 2,0g + r1E f1 + 2,1g + ss1 − 1dr3E f1

+ 2,3g + r2E f1 + 2,2g + ss2 − 1dr4E f1 + 2,4g
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bm1+3 = r0E f1 + 3,0g + r1E f1 + 3,1g + r3E f1 + 3,3g

+ r2E f1 + 3,2g + r4E f1 + 3,4g + ss1 − 2dr38E f1

+ 3,38g + ss2 − 2dr48E f1 + 4,48g

bm2+4 = r0E f2 + 4,0g + r2E f2 + 4,2g + r4E f2 + 4,4g

+ r1E f2 + 4,1g + r3E f2 + 4,3g + ss2 − 2dr48E f2

+ 4,48g + ss1 − 2dr38E f2 + 4,38g. s8d

These formulas are general and are applicable to any type
of interaction pair potential. Now we shall specialize the
above relations to the case of nonadditive hard-sphere mix-
tures in the hard-sphere matrix and we shall also formulate
the zero-separation theorems. For the 11 cavity functions

ln y11s0d = 2bm1 − bm1+1 = bm1. s9d

Thus, we have(upon taking the limits1→0,s2→0:)

ln y11s0d = r0E f10g + r1E f11g − r3E f13g + r2E f12g

− r4E f14g. s10d

In a similar way, we can build up the zero-separation
theorems for the other cavity functions:

ln y22s0d = r0E f20g + r2E f22g − r4E f24g + r1E f21g

− r3E f23g

ln y13s0d = r0E f10g

ln y24s0d = r0E f20g s11d

We note that the coincidence value of the mixture-replica
cavity functions depends only on the matrix-fluid correla-
tions, similarly to the pure case[9]. The case of
ln y10s0d , ln y20s0d ,and lny12s0d is a bit more complicated
and we have to distinguish between different possibilities. In
fact, though the treatment of zero-separation theorems be-
tween the crossed species of the real system is based on an
additive rule similar to Eq.(9), a number of different simpli-
fications between the terms appearing in the chemical poten-
tials (8), depending on the mutual size of particles, may oc-
cur. It is then straightforward to write for the unlike cavity
functions:

ln y12s0d = r0E f20g + r1E f11g + r2E f22g − r2E f24g

− r1E f23g, s1 ù s2

ln y12s0d = r0E f20g + r1E f11g + r2E f22g − r1E f13g

− r2E f14g, s1 ø s2 s12d

while for the particle-matrix cavity functions:

ln y10s0d = r0E f00g − r1E f13g − r2E f14g + r1E f01g

+ r2E f02g, s1 . s0

ln y10s0d = r0E f01g + r1E f11g − r1E f13g + r2E f12g

− r2E f14g, s1 ø s0

ln y20s0d = r0E f00g − r2E f24g − r1E f23g + r2E f02g

+ r1E f01g, s2 . s0

ln y20s0d = r0E f02g + r2E f22g − r2E f24g + r1E f12g

− r1E f23g, s2 ø s0 s13d

Thus, the closure Eq.(5) to the ROZ equations is solved
numerically under the constraint determined by the seven
Eqs.(10)–(13). We also checked the ability of this closure to
guarantee internal thermodynamic consistency. Unfortu-
nately, the virial equation of state for the quenched-annealed
system is not straightforwardly related to structural functions
as for bulk mixtures[25]; in fact for hard-core interactions:

bP = r0S ] bP

] r0
D

VTm1m2

+ o
i

ri −
2P

3 Fr0
2s00

3 lim
s→0

dg00ss00;sd
ds

+ o
i=1,2

ri
2sii

3giissiid + 2 o
i=1,2

r0ris0i
3 g0iss0id

+ 2r1r2s12
3 g12ss12dG , s14d

where the first term is the infinitesimal change of the virial
pressure with respect to the matrix density at constant values
of volume, temperature, and chemical potentials of the two
species, and lim

s→0

fdg00ss00;sd /dsg is the infinitesimal change
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of the matrix-matrix radial distribution function in the repli-
cated system with respect to the number of replicas, in the
limit of the quenched-annealed system. Both quantities
should be evaluated numerically, and in particular the first
one implies the calculation of the product of two numerical
derivatives, as a standard mathematical manipulation of ther-
modynamic derivatives shows:

S ] bP

] r0
D

VTm1m2

= S ] bP

] r0
D

VTN1N2

− o
i=1,2

FS ] bP

] mi
D

VTN1N2

S ] mi

] r0
D

VTN1N2

G .

s15d

Thus, we resort to a different strategy in order to monitor the
thermodynamic consistency of the theory; in particular, we
use the Gibbs-Duhem relation[12],

S ] bP

] r
D

VTNr0

= o
j=1,2

x jF o
i=1,2

riS ] bmi

] r j
D

VTNkÞ jr0

G
= frkBTxTg−1 = 1 − o

i,j=1,2
xix jrc

~

i j
c s0d, s16d

where the chemical potentials of the two species are differ-
entiated numerically in order to obtain the inverse of the
isothermal compressibility andc̃i j

c s0d are the Fourier trans-
forms at zero wave vector of the connected part of the direct
correlation functions, within the ROZ formalism. We recall
that direct correlation functions may be distinguished, on the
basis of a diagrammatical analysis, by a connectedcc and a
blocked partcb, respectively, so thatc=cc+cb [7].

The ROZ equations are also solved under the PY[18]
closure:

cijsrd = bexp−bVij srd − 1cf1 + gi jsrdg s17d

and the MS[19] closure:

cijsrd = exp−bVij srd−1+Î1+0.5gi j srd. s18d

We solve numerically the different closures to the ROZ equa-
tions with a Picard method and adopt a standard mixing pro-
cedure for the direct correlation function in order to ensure
convergence; normally, 1024 grid points with grid interval
0.01s0 are used but we also checked the stability of the
solution with higher grids of 2048, 4096 points for some
thermodynamic state points. Zero-separation theorems and
the thermodynamic constraint(16) are enforced in the frame-

FIG. 1. Radial distribution functions for the mixture atD
=0.2,r0=0.3,x=0.5. Full line, ZSEP; long-dashed line, MS; dotted
line, PY; open circles, NVT Monte Carlo simulation.

FIG. 2. Radial distribution functions for the mixture atD
=0.2,r0=0.1,x=0.5. See FIG. 1 for the meaning of the symbols.

FIG. 3. Radial distribution functions for the mixture atD
=0.2,r0=0.3,x=0.1. See FIG. 1 for the meaning of the symbols.
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work of the modified-Verlet closure(ZSEP) with a tolerance
of 1%. The numerical procedure adopted to fulfill self-
consistency according to Eqs.(10)–(13) turns out to be a
smart one, notwithstanding the apparent difficulty of dealing
with a system of seven equations in seven unknown vari-
ables. In fact, each equation turns out to be a functional
strongly dependent just on the correlation functions with the
same label of the cavity functionyij . Thus, the overall system
is slightly coupled and we can obtain a rapid guess of the
solution by applying simultaneously an indipendent Newton-
Raphson search procedure to each of the seven Eqs.
(10)–(13); to such a purpose, one of the variational param-
eters appearing in the bridge functionsBij [see Eq.(5)] is
used for each zero-separation equation, and the procedure is

iterated a few cycles up to convergence. This approach is
mantained essentially unaltered also when thermodynamic
consistency is imposed according to Eq.(16); in this case,
however, the previous cycle(denoted as ZST cycle) is com-
pleted with a refinement cycle(TC or thermodynamic con-
sistent cycle) on an additional parameter so to satify Eq.
(16). We choosez1 as a variational parameter for the ZST
cycle because we noticed by numerical inspection that Eq.
(16) is particularly sensible to variations of it. The sequence
of independent ZST and TC cycles is then iterated until con-
vergence.

C. Simulation

We have performed Monte Carlo[20] simulations with
three different simulation algorithms: the grand canonical
sT,V,m1,m2d ensemble(GCMC, [21]), the cavity-biased
grand canonical(CB-GCMC, [22]) ensemble and the stan-
dardNVTcanonical ensemble[20]. The GCMC simulation is
used in order to sample different matrix realizations and fluid
mixture particle configurations. Simulations in order to gen-

FIG. 4. Radial distribution functions for the mixture atD
=0.2,r0=0.3,x=0.1. See FIG. 1 for the meaning of the symbols.

FIG. 5. Radial distribution functions for the mixture atD
=0.4,r0=0.3,x=0.5. See FIG. 1 for the meaning of the symbols.

FIG. 6. Radial distribution functions for the mixture atD
=0.4,r0=0.1,x=0.5. See FIG. 1 for the meaning of the symbols.

FIG. 7. Chemical potential vs total mixture density atD
=0.2,r0=0.2,x=0.5. Triangles, grand canonical Monte Carlo simu-
lation; circles, cavity-biased grand canonical Monte Carlo simula-
tion; full line, ZSEP.
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erate matrix realizations at the chosen mean density are per-
formed in the GCMC ensemble as well.Three types of par-
ticles moves(displacement, creation, or destruction of a
particle) were performed randomly with equal probability
inside a cubic box with cubic periodic boundaries; typically,
averages are collected over 30 matrix realizations and for
each realization not less than 20 000–30 000 trial moves per
particle are generated. Matrix realizations are generated by
recording the configuration of the system every 50 000 trial
moves per particle.

We also increase the efficiency of the importance sam-
pling by performing simulations in the CB-GCMC ensemble;
within this method, the acceptance probability of a molecular
configuration is biased so as to favor insertions of new par-
ticles into existing cavities in the box, instead of at randomly
selected points only. In particular, insertion and deletion at-
tempts are accepted with probabilities:

Pi = minS1,VPc
Nsr Nd

exphbm + bfVsr Nd − Vsr N+1dgj
L3sN + 1d D ,

Pd = minS1,NL3exph− bm + bfVsr Nd − Vsr N−1dgj
V Pc

N−1sr N−1d
D ,

s19d

where Pc
Nsr Ndis the configuration-dependent probability of

finding a cavity of diametersc or larger, provided the system
consists ofN particles, andL is the de Broglie thermal wave-
length. We estimatedPc

Nsr Nd by implementing a cavity
search using a finite grid. We always used a box of side
length approximately equal to 13.5s0 and a uniform grid of
1003 points; the grid size is chosen so as to be computation-
ally manageable while generating a negligible error in the
limiting distribution of the Markov chain, since deletions can
occur at any point in the box but insertions are restricted just
to the grid points.

Finally, we performNVT simulations from previously
equilibrated GCMC simulations, in order to evaluate the ra-
dial distribution functions.

III. RESULTS AND DISCUSSION

We begin to assess the structural properties as predicted
by integral equation closures against standardNVT simula-
tions. In Figs. 1 and 2, from the left to right panels, we report

TABLE I. Consistency parameters and percentage thermodynamic inconsistencys%TId for different mixtures at the equimolar concen-
tration. In the top of the tabler0=sN0/Vds0

3,r* =fsN1+N2d /Vgs0
3,x=N1sN1+N2d.

D r0 r* x %TI z1 z2 z3 z4 f1 f3 f4

0.2 0.3 0.31 0.5 1.8 0.6868 1.0111 0.77995 0.8325 0.9553 0.9853 1.1792

0.2 0.3 0.315 0.5 0.5 0.6868 1.0111 0.77995 0.8325 0.9553 0.9848 1.1722

0.2 0.1 0.35 0.5 2.5 0.6726 1.1113 0.8565 1.74695 0.9407 1.0591 2.3981

0.4 0.3 0.18 0.5 2.8 0.5637 1.0687 0.7406 0.7361 0.9198 1.0276 1.2120

0.4 0.1 0.18 0.5 0.7 0.6032 1.6598 1.1328 -0.1468 0.9394 1.5889 0.02915

FIG. 8. Total mixture density vs particle concentration at fixed
chemical potentials.D=0.2. Triangles, grand canonical Monte
Carlo simulation; open circles, cavity-biased grand canonical Monte
Carlo simulation; diamonds, ZSEP; crosses, ZSEP with thermody-
namic consistency.

FIG. 9. Total mixture density versus particle concentration at
fixed chemical potentials.D=0.4. See Fig. 7 for the meaning of the
symbols.
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radial distribution functions for the particle 1-particle 1, par-
ticle 1-particle 2 and particle 1-matrix short-range correla-
tions at a equimolar composition.

It appears that for a moderate nonadditivity and for two
different matrix porosities, ZSEP gives rise to the best per-
formances, quantitatively describing the simulation profiles
for all the correlations. Both PY and MS closures manifest
quantitative inaccuracies, especially at short range, and it is
interesting to note that confinement into a random matrix
induces a moderate worsening of their performances with
respect to the bulk[26]. On the other hand, ZSEP overall
good performances maintain unaltered also at an asymmetric
concentration as high as 10%(see Fig. 3), with a slight shift
up of both the more dilute species like correlations at longer
distances and of the cross correlation at distances close to
contact; however, ZSEP seems to capture the correct phase
and oscillations, in agreement with the other integral equa-
tion schemes here considered. Moreover, as shown in Fig. 4,
also the particle 2-particle 2 and particle 2-matrix correla-
tions are better described by ZSEP.

We also monitor in Fig. 5 the effect of increasing nonad-
ditivity, i.e., increasing the tendency of particles to homoco-
ordination. While ZSEP shows a slight tendency to overesti-
mate and underestimate the like-like and the crossed
correlations at longer distances, respectively, it remains defi-
nitely the most reliable integral equation closure among the

ones here considered. These performances by ZSEP have
been checked also at a lower degree of matrix porosity, as
reported in Fig. 6. We have chosen to plot all the radial
distribution functions in a narrow range(extending to ap-
proximately three matrix diamaters) in order to show evi-
dence on the comparison between ZSEP and the other inte-
gral equation closures considered. All the radial distribution
functions oscillate around 1 when longer distances are visu-
alized, thus confirming that the states explored fall in the
stable region of the thermodynamic plane. The unusual be-
havior shown by the cross structural functions, and in par-
ticular the marked depth of the first coordination shell, is
derived from the spatial correlations due to the presence of
the matrix particles.

After considering structure, we turn our attention to ther-
modynamics and, in particular, to the ability of the theory to
give reliable estimates of the chemical potential, that is a
primary ingredient for the determination of the liquid-liquid
phase separation envelopes.

As it appears in Fig. 7, where the calculations are per-
formed at fixed equimolar concentration, ZSEP is able to
reproduce accurately simulation results up to the mixture
densities close to the region of immiscibility in the phase
diagram, with a discrepancy never exceeding 2–3%.

This result is confirmed by adopting a different strategy
for the assessment in Figs. 8 and 9: we use as initiation for
simulations the theoretical chemical potentials and try to
look at the simulation mean total mixture densities and the
mean particle concentrations in comparison with the theoret-
ical values. Again, at the worst case reported in the upper
panel of Fig. 8, i.e., at the higher matrix density and at the
lower mixture nonadditivity considered in this work, the per-
centage discrepancy with simulation was inferior to 3%. In
the attempt to reduce this error of theory in comparison with
simulation results, we also monitor the effect of imposing the
thermodynamic constraint of Eq.(16) just for the caseD
=0.2,r0=0.3. To this aim, we use as an additional variational
parameter the quantityz1 and it emerges that decreasing the
degree of thermodynamic inconsistency by ZSEP from about
10% to less than 1% brings a slight change in the calculated
chemical potentials(see upper panel of Fig. 8). For this rea-
son, we have not tried to enforce systematically the internal

TABLE II. Consistency parameters and percentage thermodynamic inconsistencys%TUd for different mixtures. See Table I for the
meaning of the symbols.

D r0 r* x %TI f11 f12 f22 f01 f02 f33 f44

0.2 0.3 0.3078 0.34 8.6 0.9566 1.0077 0.9530 0.9931 0.9763 1.0905 1.2428

0.2 0.3 0.3090 0.305 0.8sz1=0.5208d 0.9237 1.0092 0.9530 0.9941 0.9758 1.08446 1.2443

0.2 0.3 0.309–0.31 0.1–0.11 13 0.9560 0.9988 0.9500 1.010 0.9679 0.9922 1.2789

0.2 0.3 0.3095 0.105 0.3sz1=0.1961d 0.7045 1.005 0.9495 1.0087 0.9684 1.0051 1.2776

0.2 0.1 0.35 0.3 6.1 0.9427 1.10045 0.9315 1.1004 1.0352 1.9334 2.7364

0.2 0.1 0.35 0.1 4.7 0.9291 1.07895 0.8929 1.1664 0.9702 1.4872 2.7578

0.4 0.3 0.179 0.335 2.9 0.9223 1.0592 0.9098 1.0584 0.9969 1.1145 1.3092

0.4 0.3 0.178 0.1105 4.8 0.9322 1.0360 0.8957 1.1124 0.9616 0.9833 1.3565

0.4 0.1 0.1795 0.310 2.9 0.95505 1.5906 0.92335 1.7837 1.42965 3.9580 −3.1866

0.4 0.1 0.179 0.104 1.5 0.9710 1.4072 0.8856 2.0898 1.2515 8.5566 −3.7338

FIG. 10. Liquid-liquid phase coexistence boundary in the total
mixture density-particle concentration plane forD=0.2,r0=0.2. Er-
ror bars, grand canonical Monte Carlo simulation; open circles,
ZSEP; full line, curve fitting ZSEP points.
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thermodynamic consistency of Eq.(16) for all the cases con-
sidered in this paper. However, as documented in Tables I
and II, ZSEP is not found to be thermodynamically inconsis-
tent in a significant way, with a percentage discrepancy
s%TId which on the average is of the order of 3–4% and at
the worst cases never exceeds 10–15%.

Finally, we calculate the liquid-liquid coexistence lines
for the worst case(as for the comparison with simulation
data) reported in the upper panel of Fig. 8 and assess ZSEP
predictions with Cavity-Biased Monte Carlo simulations.
Note that our conditions of simulation are similar to those of
Sierra and Duda[6] who, on the other hand, performed simu-
lations in the semigrand canonical ensemble[20]. Theoreti-
cal coexistence lines reported in Fig. 10 are calculated by
equating the chemical potentials of the two species(second
and third equations of Eq.(7), respectively), at different con-
centrations. After performing such a match, we were able to
establish the lower consolute critical point, with an error of
,3%, as compared to the simulation results. This is in con-
formity with the previous observation on the accuracy of the
calculated chemical potentials. As far as a comparison with
the bulk performances of modified Verlet closures is con-
cerned[11], we note that we have not tried to systematically
achieve thermodynamic consistency, as for instance between
the virial and the compressibility equation, or between the
two sides of the Gibbs-Duhem equation; this achievement is
probably at the origin of the even better predictions obtained
for bulk mixtures[11]. However, as far as the virial equation
of state is concerned for the confined system, the possibility
to use Eq.(14) is currently prevented by the absence of an
efficient computational procedure to calculate the derivative
of the matrix-matrix radial distribution function in the repli-
cated system with respect to the number of replicas.

IV. CONCLUSIONS

We have demonstrated that the formalism of replica
Ornstein-Zernike equations, coupled with a flexible closure
satisfying zero-separation theorems, turn out able to satisfac-
torily reproduce the relevant structural and thermodynamic
properties of nonadditive hard sphere mixtures in random
pores. In particular, confinement of the NAHSM inside a
porous matrix determines a worsening of PY and MS predic-
tions of the radial distribution contact values in comparison
to the bulk performances[26], with inaccuracies ranging
from about 10% to nearly 20%. On the other hand, ZSEP
predictions are only slightly affected by increasing of matrix

density fromr0=0.1 tor0=0.3, showing an overall discrep-
ancy in comparison to the simulation never exceeding
2–3%. It is worth noting that we have not extensively con-
strained ZSEP to fulfil also thermodynamic consistency: in
that case, even a better improvement should be expected on
the basis of previous work upon integral equation theories
[8–15]. Though the NAHSM infused into a disordered ma-
trix of hard spheres represent a basic model, our approach,
hinging on the enforcement of the validity of zero-separation
theorems, can be easily generalized in the framework of a
more realistic model of mixtures in random pores.

Microporous and mesoporous materials are widely used
in the industry as active reservoirs for fluids, e.g., in demix-
ing processes. On the other hand, the design of several pro-
cesses involving adsorbates into amorphous materials is
largely empirical at the present time, with little scientific
basis. Thus, a reliable description of liquid-liquid equilibria
from a modellistic point of view, as the one achieved in the
present study, is of fundamental interest.

It is also worthwhile to remark that a computational ap-
proach based on replica-OZ equations is sensibly more ad-
vantageous than simulation: in fact, on a typical workstation,
we verified that the computational load necessary to numeri-
cally solve the theory for the structure is about three orders
of magnitude less than a fully equilibrated simulation(as the
typical one performed in the present study).

Recently, it has been suggested that on increasing the ten-
dency to homo-coordination an highly nonlinear behavior of
the critical demixing density versus the matrix density
should be expected[6]; however, these authors were pre-
vented to verify it accurately because simulation at condi-
tions of high nonadditivity is a time-consuming procedure.
Calculations in order to estabilish this possibility within our
approach are currently in progress.
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