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Heat transfer in the Knudsen layer

Felix SharipoV
Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, Brazil
(Received 4 September 2003; published 1 June P004

A concept of the surface heat conductivity determining a heat transfer in the Knudsen layer was introduced.
It has the same order with respect to the Knudsen number as the bulk heat transfer and must be taken into
account in practical calculations. Using the Onsager principle the coefficient of the surface heat conductivity
was related to the thermal slip coefficient.
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I. INTRODUCTION plies an expansion of the distribution functibmvith respect

As is known, a heat flux in any medium is determined bytO the Knudsen numbeKn) as

the Fourier law, i.e., the heat flux vector is proportional to a fF=fO +Kn fO + KN2f@ + ... (1)
temperature gradient. However, the heat transfer in a gaseous
medium has two features. First, besides a temperature gradin the case of monoatomic gas the distribution function
ent the heat flow vector is proportional to a pressure gradient=f(t,r,v) depends on timé positionr, and molecular ve-
too. Such a phenomenon is called viscous heat flow and wdsecity v. So, the expansio() is valid in the hydrodynamic
discussed in many works, see, e.g., R§fs:3. Second, in limit (Kn—0) when the mean free path is sufficiently small
the Knudsen layer there is one more type of heat flux, whicltompared with the flow scale.
is determined by a stress tensor on a boundary between a gasAs a result of the expansiofl) some moments of the
and solid surface. Note that the Knudsen layer has the thickdistribution function are presented as an expansion too. For
ness of the order of the molecular mean free path. The exisnstance, the heat flux vector defined as
tence of this flux is confirmed in several papers, see, e.g.,
Refs. [4-9], where the viscous slip coefficient was calcu-
lated. All these phenomena have the same order with respect
to the Knudsen number defined as a ratio of the molecular
mean free path to a characteristic size of the gas flow. So, iffads
practical calculations, all three types of heat flow must be
taken into account even if the Knudsen number is small.

It is quite clear how to calculate the ordinary heat flux\yhere
applying the Fourier law. It is not difficult to take into ac-
count the viscous heat flow determined by a pressure gradi- i) _ im (i 2 o
ent. However, a consideration of the heat flux in the Knudsen q¥=(Kn'>] fVVdv, i=0,1,2,.... (4
layer represents some difficulties in practical calculations.
The aim of the present paper is threefold. First, a concept afn is the molecular mass of the gas ané the bulk velocity
the surface heat conductivity coefficient is introduced as af the gas.
proportionality constant between the surface heat flux and The zero order terni(® of the expansioril) corresponds
stress tensor on a solid surface. Second, this coefficient i® the local Maxwellian
calculated using numerical data published previously. Third, 3 )
applying the Onsager reciprocity principl€0,11 the coef- fO®tr v)=n (t r){ m } exp[— miv —u(t,r)] ]
ficient is related to the thermal slip coefficient, which is cal- v " 27kT(t,r) 2KT(t,r) '
culated in many papers, see, e.g., Rgf2-164. Such a re- (5)
lation allows us to know the surface heat conductivity
immediately from the data on the thermal slip coefficient. wheren(t,r) is the local number densit¥(t,r) is the local
temperature, andt is the Boltzmann constant. Substituting
Eq. (5) into Eq. (4) we obtaing®=0, i.e., there is no heat
flux for the zero order approximation.

A kinetic description of gas flows is based on the velocity ~ Solving the Boltzmann equation with the first order term
distribution function, which obeys the Boltzmann equationf¥ and substituting it into Eq¢4) one obtains the Fourier
[17,18. The Chapman-Enskog solution of this equation im-law

q(t,r):gJ ft,r VVA dv, V=v-u ?)

q:q(0)+q(1)+q<2)+ el (3)

Il. STATEMENT OF THE PROBLEM

qW=-«VT, (6)
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The vector functiom@A =A(V) satisfies the integral equation

@)

_ o MV _ §)
ni(A) = f (ZkT 5 Vv, (8)
where the functiod is defined as
1
I(F)=?ffff<°)(V1)f(°)(V)[F(V)+F(Vl)
-F(v") = F(vy)]g bdb de dvy, (9)

F is any function of the molecular velocity, and v, are
pre-collision molecular velocities, while’ andv; are the
corresponding post-collision velocitiegs |v—V,| is the rela-
tive velocity, b is the impact parameter, andis the azi-
muthal angle of the molecular collision plane.

The second approximation tergi? has a complicated
expression given by E@5.8-32 of Ref.[17]. Since this term
is calculated viaf® by Eq. (4) it should be of the order of
Kn?, but paradoxically it can be of the same ordercAs
with respect to the Knudsen number. For instance, if on
considers a gas flow caused by a pressure gradient, then o
obtains

q2=%typ

2 0 (10)

where u is the stress viscosity) is the mass density of the
gas. Equatiori10) follows from the fourth term of E¢(5.8-
32) of Ref.[17]. The coefficientd, can be obtained with the
help of Eqs.(5.8-22 and (5.8-32 of Ref.[17] as

27

G,=—
47 15Pu

J (A -V) V3O dy. (11)

The coefficientd, depends on the intermolecular potential,
for instance, for the Maxwellian molecules we hd\&]

A(V)Zs_ﬂ(mv2 5

2KT

—— -V, 6,=3.
2kT 2) + 0a=3 (12
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then a heat fluxgy(x) appears near the surface, i.e., in the
Knudsen layer. The numerical data on this flux can be found
in Refs.[4-6].

In practice we need to know just the total heat flux
through the Knudsen layer defined as

o- |
0

In accordance with Ref§4—9] the heat flowq,(x) tends to
zero far from the surface so that the integrE8) converges.
Moreover, the heat flowgy(x) is proportional to the stress
tensorll,, on the surface. Thus the total heat flux is also
proportional toll,,, i.e.,

qy(x) dx. (13

Ju

Q=-«dl | at x=0. (14)

xy

Here, the relatiorl,,=-u(du,/9x) has been used, whewg
is the tangential velocity of the gas.

Since the Knudsen layer has the mean free path order then
in the hydrodynamic limit(Kn<1) the layer thickness is
negligible compared with characteristics sizes of the gas

flow. One of the characteristic sizes is the surface curvature

Pftius. Thus to calculate the heat flux vedpix) the Knud-
sen layer is assumed to be plane, i.e., the surface curvature
can be neglected on the Knudsen layer level. So,(E4).is
a local relation of the surface heat fl@ to the stress tensor
IT,,, which is valid even for a curved surface.

Below, we are going to calculate the surface heat conduc-
tivity x5 and to relate it to the thermal slip coefficient.

. METHOD OF CALCULATION

The heat flow vectogy(x) is calculated together with the
viscous slip coefficien{4-9,14. We consider a gas flow
over a semi-infinite space= 0. The gas is maintained at an
equilibrium pressuré?, and at an equilibrium temperature
To. At the infinity x— o the velocity gradient tends to a
constant value. Under this condition a local heat fiyéx) is
established over the space, which has onlyytlemponent
and vanishes far from the surface.

Further, the following dimensionless quantities will be

For other molecular models it is expected it to be not far,geq:

from this value.

Since bothk and u are proportional to the molecular
mean free path, the term corresponding to the heat flux du
to a pressure gradient?, i.e., viscous heat transfer, cannot
be neglected in the hydrodynamic lintikn — 0) in compari-
son with the Fourier term, i.eq”, as was pointed out pre-
viously; see, e.g., Ref$1-3].

2kT,
m

e (15)

EST

where vy is the most probable molecular velocity aggis
the velocity gradient at the infinity, i.e.,

As has been noted above, the total heat flux contains one

more component of the same order as those presented by

Egs.(6) and(10), namely, the heat flux in the Knudsen layer.

60 ) du M Ug
=—lim—, ¢43="—. 16
& ok 07 p (16)

To define it let us introduce the Cartesian coordinates with

the origin fixed at the surface, theaxis directed normally to
the surface into the gas, and thexis being tangential to the
surface. If a gas flows over a solid surface in yheirection,

Note that{y has the order of the mean free path correspond-
ing to the pressur®, and temperaturd,. If we introduce
the reduced integral heat flux as
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by decreasing the accommodation coefficiept

So, the total heat flux through a gas is given by the three
terms. The first ongY given by Eq.(6) depends on the
temperature distribution in the gas bulk. The second term
given by Eq.(10) is determined by the pressure distribution
in the gas. And the third term is calculated only on the solid

surface by Eq(14). This heat flow vector is tangential to the
surface and directed along the tangential velocity of the gas.
The surface heat conductivity, is given by Eq.(18) with

the values of)g given in Table I. It is important that all these
terms have the same order with respect to the Knudsen num-
ber and all of them must be taken into account at any small
Knudsen number.

FIG. 1. Local heat flux in the Knudsen layer caused by the
velocity gradient.
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IV. RELATION TO THE THERMAL SLIP COEFFICEINT

e}

= _ 1= The surface heat conductivity coefficiert introduced
Q=7 q(x) dx, (17) ; . .
oto above can be related to the thermal slip coefficieptwhich
determines a tangential velocity of gas near a solid surface
due to a longitudinal temperature gradient, i.e.,

pdInT
18 =o1— .
18 YT T dy

To calculate the quantithS the numerical data given in A critical review of numerical data on the coefficiemt and
Table Il of Ref.[4] can be used. However, to show the de-its recommended data can be found in R&f].
pendence of this quantity on the gas-surface interaction law TO relatexs to the thermal slip coefficient we consider the
we will use the solution obtained in ReB] based on the S classical problem of gas flow between two parallel plates
kinetic equation and on the Cercignani-Lamii§] model of ~ fixed atx=+a/2, which was solved by many authors, see,
the gas-surface interaction. This model contains the momere-g., Refs[12-16. The gas flows along the plates due to a
tum accommodation coefficient and the energy accommo- longitudinal pressure gradient, while the temperature is
dation coefficienta,. maintained constant. In the hydrodynamic regith@<1)

Since the numerical values of the quanfiywere not the total heat flux through a cross section of the channel is
reported in Ref[9] we present these data on Fig. 1 for threegiven as
values of the momentum accommodation coefficient
0.25, 1, and 2 assuming that the energy accommodation co-
efficient a, is fixed and equal to 0.25. The first value @f

corresponds to a reflection close to the specular law, the sec- @ . . .
ond value provides the diffuse scattering, and the third valuggereqy is given by Eq.(10), while Q; is determined by

then the surface heat conductivity coefficient reads

2
o= Mol
s— S
Po

(19

al2
Q= J qydx =ag)? + 2Q;, (20)
-a/2

represents the almost back reflection. One can see that f '(.14)' The factor 2 appeareq because of the two surfapes.
from the surface, i.ex> €, the local heat flusg tends to n this case the velocity profile due the pressure gradient

zero independently on the accommodation coefficiept reads
while near the surface the behaviorgpiepends significantly

on «. The numerical values of the integral heat fﬁgcal—
culated by integrating dfj obtained in Ref[9] are given in

Table I. It can be seen that the surface heat @xncreases

u(X)‘—ﬂKE)Z—xZ] _adp
W oual\ 2 C TPy

Using this profile the stress tensor on the plates is calculated
a

(21)

TABLE |. Reduced heat quf)s and thermal slip coefficient vs

1
Il ==Py at x=-a/2.

o at a,=0.25. Xy 2 (22
~ Then with the help of Eqg10), (14), and(18) we obtain

at Qs oT
0.25 0.2731 0.9536 Q= (@ - 65>,w§v. (23
0.5 0.2327 1.034 4

1. 0.1626 1.175 Usually, see, e.g., Reffl5,14, the reduced heat flux is used
15 0.0973 1.305

2 2 ~
2. 0.03497 1.430 Qp= Q —(ﬂ‘ - Qs>, 5= 20 (24
aPOU()V 5 4 MU
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If we consider the gas flow between the parallel plates Substituting the expressiq28) into Eq. (18) the surface
caused by a longitudinal temperature gradient, then using Eghermal conductivity can be related to the thermal slip coef-
(19) we obtain the mass flow rate in the hydrodynamic re-ficient as

gime 2
] 29)
M fa/z eu,dx adt (25) a 2P\ 2 T
= S OoTMT, T=Z .
a2 ! Tdy
The reduced mass flow rate is defined as V. CONCLUSIONS
. The concept of the surface heat conductivity determining
_ My o7 (26) the heat flux in the Knudsen layer was introduced. Since the
T aPyr S8 bulk heat flux and the surface heat flux have the same order

- _with respect to the Knudsen number, both of them must be
The quantitiesGr and Qp are equal to each other according taken into account in practical calculations, i.e., the surface
to the Onsager relatiofi0,11, i.e., heat flux cannot be neglected for small Knudsen numbers.
_ Using the Onsager principle a relation between the sur-
p=Gr, (27) face heat conductivity and the thermal slip coefficient was
which is valid for any Knudsen number. Combining Egs.Obtained. Since there are many reliable results on the thermal

(24), (26), and(27) we obtain slip coefficient reported in the open literature, see, e.g., Refs.
[9,16], then the surface heat conductivity is automatically

~ 1(6, known. Such a relation once again shows that the slip coef-

Qs= o\ T (28) ficients are so important in the theory of transport phenom-

ena as the viscosity and the thermal conductivity.

Some numerical data on the thermal slip coefficient On the other hand, Eq28) can reduce significantly the
based on the S model and reported in R&f.are presented computational efforts to calculate the slip coefficients. Usu-
in Table I. Taking into account tha =3 for the S model one  jaly, the viscous and thermal slip coefficients are calculated
can verify that the equality28) is fulfilled within the nu-  separately solving two different kinetic equations, see, e.g.,
merical accuracy. Note that the quantiti®s and oy were  the works[4—6,8,9,16. However, solving one kinetic equa-
obtained from two different equations, i®, corresponds to tion to calculate the viscous slip coefficient one calculates
the isothermal gas flow over a solid surface, whiledeter-  also the heat fluX|. Integrating it over the Knudsen layer and
mines a gas flow caused by a longitudinal temperature graising Eq.(28) one immediately calculates the thermal slip
dient over a solid surface. coefficient without solving the other kinetic equation.

According to Refs]9,16] the thermal slip coefficientr;
varies from 0.75 up to 1.5, where the first value corresponds
to the specular reflection of molecules on surface, while the The author takes this opportunity to thank C. E. Siewert
second value corresponds t<~) the opposite situation, i.~e., bagk, very helpful discussions about thind othey paper.
reflection. Thus the quantit®) varies in the range € Qs Conselho Nacional de Desenvolvimento Cientifico e Tec-
=<0.375. Note that if the gas-surface interaction is given bynoldgico(CNPq, Brazi) is acknowledged for the support of
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