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A concept of the surface heat conductivity determining a heat transfer in the Knudsen layer was introduced.
It has the same order with respect to the Knudsen number as the bulk heat transfer and must be taken into
account in practical calculations. Using the Onsager principle the coefficient of the surface heat conductivity
was related to the thermal slip coefficient.
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I. INTRODUCTION

As is known, a heat flux in any medium is determined by
the Fourier law, i.e., the heat flux vector is proportional to a
temperature gradient. However, the heat transfer in a gaseous
medium has two features. First, besides a temperature gradi-
ent the heat flow vector is proportional to a pressure gradient
too. Such a phenomenon is called viscous heat flow and was
discussed in many works, see, e.g., Refs.[1–3]. Second, in
the Knudsen layer there is one more type of heat flux, which
is determined by a stress tensor on a boundary between a gas
and solid surface. Note that the Knudsen layer has the thick-
ness of the order of the molecular mean free path. The exis-
tence of this flux is confirmed in several papers, see, e.g.,
Refs. [4–9], where the viscous slip coefficient was calcu-
lated. All these phenomena have the same order with respect
to the Knudsen number defined as a ratio of the molecular
mean free path to a characteristic size of the gas flow. So, in
practical calculations, all three types of heat flow must be
taken into account even if the Knudsen number is small.

It is quite clear how to calculate the ordinary heat flux
applying the Fourier law. It is not difficult to take into ac-
count the viscous heat flow determined by a pressure gradi-
ent. However, a consideration of the heat flux in the Knudsen
layer represents some difficulties in practical calculations.
The aim of the present paper is threefold. First, a concept of
the surface heat conductivity coefficient is introduced as a
proportionality constant between the surface heat flux and
stress tensor on a solid surface. Second, this coefficient is
calculated using numerical data published previously. Third,
applying the Onsager reciprocity principle[10,11] the coef-
ficient is related to the thermal slip coefficient, which is cal-
culated in many papers, see, e.g., Refs.[12–16]. Such a re-
lation allows us to know the surface heat conductivity
immediately from the data on the thermal slip coefficient.

II. STATEMENT OF THE PROBLEM

A kinetic description of gas flows is based on the velocity
distribution function, which obeys the Boltzmann equation
[17,18]. The Chapman-Enskog solution of this equation im-

plies an expansion of the distribution functionf with respect
to the Knudsen number(Kn) as

f = f s0d + Kn f s1d + Kn2f s2d + ¯ . s1d

In the case of monoatomic gas the distribution function
f = fst ,r ,vd depends on timet, positionr , and molecular ve-
locity v. So, the expansion(1) is valid in the hydrodynamic
limit sKn→0d when the mean free path is sufficiently small
compared with the flow scale.

As a result of the expansion(1) some moments of the
distribution function are presented as an expansion too. For
instance, the heat flux vector defined as

qst,r d =
m

2
E fst,r ,vdV2V dv, V = v − u s2d

reads

q = qs0d + qs1d + qs2d + ¯ , s3d

where

qsid = sKndi m

2
E f sidV2V dv, i = 0,1,2, . . . . s4d

m is the molecular mass of the gas andu is the bulk velocity
of the gas.

The zero order termf s0d of the expansion(1) corresponds
to the local Maxwellian

f s0dst,r ,vd = n st,r dF m

2pkTst,r dG3/2

expF−
mfv − ust,r dg2

2kTst,r d G ,

s5d

wherenst ,r d is the local number density,Tst ,r d is the local
temperature, andk is the Boltzmann constant. Substituting
Eq. (5) into Eq. (4) we obtainqs0d=0, i.e., there is no heat
flux for the zero order approximation.

Solving the Boltzmann equation with the first order term
f s1d and substituting it into Eq.(4) one obtains the Fourier
law

qs1d = − k ¹ T, s6d

where k is the heat conductivity obtained from the Boltz-
mann equation as[17]
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k =
k

3
E sA ·VdSmV2

2kT
−

5

2
D f s0ddv. s7d

The vector functionA =AsVd satisfies the integral equation

nIsAd = f s0dSmV2

2kT
−

5

2
DV , s8d

where the functionI is defined as

IsFd =
1

n2E E E f s0dsv1df s0dsvdfFsvd + Fsv1d

− Fsv8d − Fsv18dgg bdb d« dv1, s9d

F is any function of the molecular velocity,v and v1 are
pre-collision molecular velocities, whilev8 and v18 are the
corresponding post-collision velocities,g= uv−v1u is the rela-
tive velocity, b is the impact parameter, and« is the azi-
muthal angle of the molecular collision plane.

The second approximation termqs2d has a complicated
expression given by Eq.(5.8-32) of Ref. [17]. Since this term
is calculated viaf s2d by Eq. (4) it should be of the order of
Kn2, but paradoxically it can be of the same order asqs1d

with respect to the Knudsen number. For instance, if one
considers a gas flow caused by a pressure gradient, then one
obtains

qs2d =
u4

2

m

%
= P, s10d

wherem is the stress viscosity,r is the mass density of the
gas. Equation(10) follows from the fourth term of Eq.(5.8-
32) of Ref. [17]. The coefficientu4 can be obtained with the
help of Eqs.(5.8-22) and (5.8-32) of Ref. [17] as

u4 =
2m2

15Pm
E sA ·Vd V2f s0d dv. s11d

The coefficientu4 depends on the intermolecular potential,
for instance, for the Maxwellian molecules we have[17]

AsVd =
3m

2kT
SmV2

2kT
−

5

2
DV , u4 = 3. s12d

For other molecular models it is expected it to be not far
from this value.

Since bothk and m are proportional to the molecular
mean free path, the term corresponding to the heat flux due
to a pressure gradientqs2d, i.e., viscous heat transfer, cannot
be neglected in the hydrodynamic limitsKn→0d in compari-
son with the Fourier term, i.e.,qs1d, as was pointed out pre-
viously; see, e.g., Refs.[1–3].

As has been noted above, the total heat flux contains one
more component of the same order as those presented by
Eqs.(6) and(10), namely, the heat flux in the Knudsen layer.
To define it let us introduce the Cartesian coordinates with
the origin fixed at the surface, thex axis directed normally to
the surface into the gas, and they axis being tangential to the
surface. If a gas flows over a solid surface in they direction,

then a heat fluxqysxd appears near the surface, i.e., in the
Knudsen layer. The numerical data on this flux can be found
in Refs.[4–6].

In practice we need to know just the total heat flux
through the Knudsen layer defined as

Qs =E
0

`

qysxd dx. s13d

In accordance with Refs.[4–9] the heat flowqysxd tends to
zero far from the surface so that the integral(13) converges.
Moreover, the heat flowqysxd is proportional to the stress
tensorpxy on the surface. Thus the total heat flux is also
proportional topxy, i.e.,

Qs = − kspxy
= ks m

] uy

] x
, at x = 0. s14d

Here, the relationpxy=−ms]uy/]xd has been used, whereuy

is the tangential velocity of the gas.
Since the Knudsen layer has the mean free path order then

in the hydrodynamic limitsKn!1d the layer thickness is
negligible compared with characteristics sizes of the gas
flow. One of the characteristic sizes is the surface curvature
radius. Thus to calculate the heat flux vectorqysxd the Knud-
sen layer is assumed to be plane, i.e., the surface curvature
can be neglected on the Knudsen layer level. So, Eq.(14) is
a local relation of the surface heat fluxQs to the stress tensor
pxy, which is valid even for a curved surface.

Below, we are going to calculate the surface heat conduc-
tivity ks and to relate it to the thermal slip coefficient.

III. METHOD OF CALCULATION

The heat flow vectorqysxd is calculated together with the
viscous slip coefficient[4–9,16]. We consider a gas flow
over a semi-infinite spacexù0. The gas is maintained at an
equilibrium pressureP0 and at an equilibrium temperature
T0. At the infinity x→` the velocity gradient tends to a
constant value. Under this condition a local heat fluxqysxd is
established over the space, which has only they component
and vanishes far from the surface.

Further, the following dimensionless quantities will be
used:

q̃ =
qy

P0y0ju
, y0 = S2kT0

m
D1/2

, s15d

wherey0 is the most probable molecular velocity andju is
the velocity gradient at the infinity, i.e.,

ju =
,0

v0
lim
x→`

duy

dx
, ,0 =

m v0

P0
. s16d

Note that,0 has the order of the mean free path correspond-
ing to the pressureP0 and temperatureT0. If we introduce
the reduced integral heat flux as
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Q̃s =
1

,0
E

0

`

q̃sxd dx, s17d

then the surface heat conductivity coefficient reads

ks =
m0y0

2

P0
Q̃s. s18d

To calculate the quantityQ̃s the numerical data given in
Table II of Ref. [4] can be used. However, to show the de-
pendence of this quantity on the gas-surface interaction law
we will use the solution obtained in Ref.[9] based on the S
kinetic equation and on the Cercignani-Lampis[19] model of
the gas-surface interaction. This model contains the momen-
tum accommodation coefficientat and the energy accommo-
dation coefficientan.

Since the numerical values of the quantityq̃ were not
reported in Ref.[9] we present these data on Fig. 1 for three
values of the momentum accommodation coefficientat:
0.25, 1, and 2 assuming that the energy accommodation co-
efficient an is fixed and equal to 0.25. The first value ofat
corresponds to a reflection close to the specular law, the sec-
ond value provides the diffuse scattering, and the third value
represents the almost back reflection. One can see that far
from the surface, i.e.,x@,0, the local heat fluxq̃ tends to
zero independently on the accommodation coefficientat,
while near the surface the behavior ofq̃ depends significantly

on at. The numerical values of the integral heat fluxQ̃s cal-
culated by integrating ofq̃ obtained in Ref.[9] are given in

Table I. It can be seen that the surface heat fluxQ̃s increases

by decreasing the accommodation coefficientat.
So, the total heat flux through a gas is given by the three

terms. The first oneqs1d given by Eq.(6) depends on the
temperature distribution in the gas bulk. The second term
given by Eq.(10) is determined by the pressure distribution
in the gas. And the third term is calculated only on the solid
surface by Eq.(14). This heat flow vector is tangential to the
surface and directed along the tangential velocity of the gas.
The surface heat conductivityks is given by Eq.(18) with

the values ofQ̃s given in Table I. It is important that all these
terms have the same order with respect to the Knudsen num-
ber and all of them must be taken into account at any small
Knudsen number.

IV. RELATION TO THE THERMAL SLIP COEFFICEINT

The surface heat conductivity coefficientks introduced
above can be related to the thermal slip coefficientsT, which
determines a tangential velocity of gas near a solid surface
due to a longitudinal temperature gradient, i.e.,

uy = sT
m

%

d ln T

dy
. s19d

A critical review of numerical data on the coefficientsT and
its recommended data can be found in Ref.[16].

To relateks to the thermal slip coefficient we consider the
classical problem of gas flow between two parallel plates
fixed at x= ±a/2, which was solved by many authors, see,
e.g., Refs.[12–16]. The gas flows along the plates due to a
longitudinal pressure gradient, while the temperature is
maintained constant. In the hydrodynamic regimesKn!1d
the total heat flux through a cross section of the channel is
given as

Q =E
−a/2

a/2

qydx = aqy
s2d + 2Qs, s20d

whereqy
s2d is given by Eq.(10), while Qs is determined by

Eq. (14). The factor 2 appeared because of the two surfaces.
In this case the velocity profile due the pressure gradient
reads

uysxd = −
Pn

2ma
FSa

2
D2

− x2G , n =
a

P

dP

dy
. s21d

Using this profile the stress tensor on the plates is calculated
as

pxy
=

1

2
Pn at x = − a/2. s22d

Then with the help of Eqs.(10), (14), and(18) we obtain

Q = Su4

4
− Q̃sDmv0

2n. s23d

Usually, see, e.g., Refs.[15,16], the reduced heat flux is used

QP =
2Q

aP0y0n
=

2

d
Su4

4
− Q̃sD, d =

aP

my0
. s24d

FIG. 1. Local heat flux in the Knudsen layer caused by the
velocity gradient.

TABLE I. Reduced heat fluxQ̃s and thermal slip coefficient vs
at at an=0.25.

at Q̃s sT

0.25 0.2731 0.9536

0.5 0.2327 1.034

1. 0.1626 1.175

1.5 0.0973 1.305

2. 0.03497 1.430
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If we consider the gas flow between the parallel plates
caused by a longitudinal temperature gradient, then using Eq.
(19) we obtain the mass flow rate in the hydrodynamic re-
gime

Ṁ =E
a/2

a/2

%uydx = sTmt, t =
a

T

dT

dy
. s25d

The reduced mass flow rate is defined as

GT =
Ṁy0

aP0t
=

sT

d
. s26d

The quantitiesGT andQP are equal to each other according
to the Onsager relation[10,11], i.e.,

QP = GT, s27d

which is valid for any Knudsen number. Combining Eqs.
(24), (26), and(27) we obtain

Q̃s =
1

2
Su4

2
− sTD . s28d

Some numerical data on the thermal slip coefficientsT
based on the S model and reported in Ref.[8] are presented
in Table I. Taking into account thatu4=3 for the S model one
can verify that the equality(28) is fulfilled within the nu-

merical accuracy. Note that the quantitiesQ̃s and sT were
obtained from two different equations, i.e.Qs corresponds to
the isothermal gas flow over a solid surface, whilesT deter-
mines a gas flow caused by a longitudinal temperature gra-
dient over a solid surface.

According to Refs.[9,16] the thermal slip coefficientsT
varies from 0.75 up to 1.5, where the first value corresponds
to the specular reflection of molecules on surface, while the
second value corresponds to the opposite situation, i.e., back

reflection. Thus the quantityQ̃s varies in the range 0øQ̃s
ø0.375. Note that if the gas-surface interaction is given by
the back reflection the surface heat flux vanishes.

Substituting the expression(28) into Eq. (18) the surface
thermal conductivity can be related to the thermal slip coef-
ficient as

ks =
mv0

2

2P
Su4

2
− sTD . s29d

V. CONCLUSIONS

The concept of the surface heat conductivity determining
the heat flux in the Knudsen layer was introduced. Since the
bulk heat flux and the surface heat flux have the same order
with respect to the Knudsen number, both of them must be
taken into account in practical calculations, i.e., the surface
heat flux cannot be neglected for small Knudsen numbers.

Using the Onsager principle a relation between the sur-
face heat conductivity and the thermal slip coefficient was
obtained. Since there are many reliable results on the thermal
slip coefficient reported in the open literature, see, e.g., Refs.
[9,16], then the surface heat conductivity is automatically
known. Such a relation once again shows that the slip coef-
ficients are so important in the theory of transport phenom-
ena as the viscosity and the thermal conductivity.

On the other hand, Eq.(28) can reduce significantly the
computational efforts to calculate the slip coefficients. Usu-
ally, the viscous and thermal slip coefficients are calculated
separately solving two different kinetic equations, see, e.g.,
the works[4–6,8,9,16]. However, solving one kinetic equa-
tion to calculate the viscous slip coefficient one calculates
also the heat fluxq̃. Integrating it over the Knudsen layer and
using Eq.(28) one immediately calculates the thermal slip
coefficient without solving the other kinetic equation.
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