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In this paper we show how the method of Zakharov transformations may be used to analyze the stationary
solutions of the Smoluchowski aggregation equation with a source term for arbitrary homogeneous coagulation
kernel. The resulting power-law mass distributions are of Kolmogorov type in the sense that they carry a
constant flux of mass from small masses to large. They are valid for masses much larger than the characteristic
mass of the source. We derive a “locality criterion,” expressed in terms of the asymptotic properties of the
kernel, that must be satisfied in order for the Kolmogorov spectrum to be an admissible solution. Whether a
given kernel leads to a gelation transition or not can be determined by computing the mass capacity of the
Kolmogorov spectrum. As an example, we compute the exact stationary state for the family of kernels,
Kzsm1,m2d=sm1m2dz/2 which includes both gelling and nongelling cases, reproducing the known solution in
the casez=0. Surprisingly, the Kolmogorov constant is the same for all kernels in this family.
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I. INTRODUCTION

Smoluchowski’s coagulation equation provides a mean
field description of a variety of aggregation phenomena
[1–4]. The physical picture to bear in mind is one of a sus-
pension of particles of varying masses that are moving
around ind-dimensional space due to some transport mecha-
nism. When two particles come into contact they stick to-
gether with some probability to form a new particle whose
mass is the sum of the masses of the two constituent par-
ticles. Aggregation is irreversible in the sense that large ag-
gregates are not permitted to break up into smaller ones. If it
is assumed that there are no spatial correlations between ag-
gregates then the concentration of particles of massm,
csm,td, obeys the Smoluchowski kinetic equation:
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The kernelKsm1,m2,md and the constantl control the rate

at which particles of massesm1 and m2 react to create par-
ticles of massm=m1+m2. The dsm−m0d term provides a
source of particles of massm0 such that the total rate of mass
input is given byJ0 which we take to be constant in time.
Jfcg represents the mass flux which is functionally dependent
on the entire spectrum,csm,td. Thus thedsm−Md term pro-
vides a sink by removing particles from the system whose
masses exceedM.

The kernel must be symmetric in its first two arguments,
Ksm1,m2,md=Ksm2,m1,md, if it is to describe a physical
aggregation process. Owing to the presence of the delta func-
tions, the kernel is effectively a function of two arguments
rather than three and is usually written asKsm1,m2d. We
include the explicit dependence on the third argument only
for notational convenience. After writingKsm1,m2,md
=Ksm1,m2d, some simple manipulations reduce Eq.(1) to
the more “standard” form often considered in the literature:

] csm,td
] t

=
l

2
E

0

`

dm1dm2Ksm1,m2dcsm1,tdcsm2,td

3fdsm− m1 − m2d − dsm− m1d − dsm− m2dg

+
J0

m0
dsm− m0d −

Jfcg
M

dsm− Md. s2d

Note that the addition of the aforementioned source and sink
terms allow a time independent steady state to be reached in
the limit of large time. This is the main subject of this paper.
We shall be concerned with the situation wherem0→0 and
M→`, bearing in mind that the presence of a sink at infinity
may be required even at finite times in the case of the so-
called “gelling” kernels. As mentioned already, we only con-
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sider here sources for which the total flux of mass into the
system,J0, is constant. In the turbulence literature the inter-
val of masses for whichm0!m!M is called aninertial
range. The stationary states considered in this paper are valid
in this range.

The details of the transport mechanism and sticking prob-
ability are assumed to be built into the kernel,Ksm1,m2d, of
the Smoluchowski equation. Different kernels arise in differ-
ent physical contexts and determine how the solution of the
equation should be interpreted physically. We refer to Refs.
[3,4] for a short list of commonly considered kernels and
their physical and/or mathematical contexts.

Most of the kernels of physical interest are homogeneous
functions of their arguments. We shall denote the degree of
homogeneity of the kernel byz. That is,

Kshm1,hm2,hmd = hzKsm1,m2,md. s3d

This homogeneity need not be uniformly weighted between
the two arguments. Following Ref.[3], we introduce expo-
nentsm andn to take into account this fact:

Ksm1,m2,md , m1
mm2

n for m2 @ m1. s4d

The exponentsm and n satisfy m+n=z. Let us consider a
couple of simple examples to clarify our notation. The kernel
Ksm1,m2d=lsm1

1+e+m2
1+ed has z=1+e, m=0 and n=1+e

whereas the kernelKsm1,m2d=lsm1
1/3+m2

1/3dsm1
−1/3+m2

−1/3d
hasl=0, m=−1/3 andn=1/3.These basic properties of the
kernel are all we shall require for what follows.

In this paper, we study the steady state behavior ofcsmd
whenm0!m!M. In Sec. II, using dimensional analysis, we
derive the large mass dependence ofcsmd. It is also shown
that the power law spectrum corresponds to a constant flux
of mass in mass space. In Sec. III, we show that the Smolu-
chowski equation is mathematically very similar to the ki-
netic equation for three-wave turbulence. Using Zakharov
transformations from three-wave turbulence, we rederive the
mass spectrum as well as compute the amplitude also known
as the Kolmogorov constant. The characteristic mass of the
source,m0, does not appear in the dimensional argument. In
Sec. IV, we find the conditions under which this assertion is
correct when we address the question of the locality of the
mass cascade. In Sec. V, we discuss the notion of mass ca-
pacity of the Kolmogorov spectrum and show how it distin-
guishes between gelling and nongelling kernels. In Sec. VI,
we explicitly compute the Kolmogorov spectrum for a one-
parameter family of kernels given byKzsm1,m2d=sm1m2dz/2.
We find that the value of the Kolmogorov constant is the
same for all models in this family. Finally, we end with a
summary in Sec. VII.

II. DIMENSIONAL DERIVATION
OF THE STATIONARY SPECTRUM

Before proceeding into detailed analysis of the stationary
states of model Eq.(1) let us first describe intuitively what
we mean by a Kolmogorov solution by employing a simple
scaling argument. We shall use the simplified form Eq.(2)
for brevity. The stationary energy distribution of forced hy-

drodynamic turbulence is described by the famous Kolmog-
orov 5/3 spectrum(for instance, see Ref.[5]). This spec-
trum, postulated from dimensional considerations, carries a
constant flux of energy from large scales to small by means
of vortex-vortex interactions. The analogous cascade for the
Smoluchowski equation is a cascade of mass from small par-
ticles to large mediated by the coagulation of aggregates. The
Kolmogorov spectrum for aggregation carries a constant flux
of mass.

The physical dimensions of the various quantities appear-
ing in Eq. (2) are as follows:fcg=M−1 L−d, fJg=M L−d T−1

and flg=M−z Ld T−1. If we now take the combinationc
,Jglamb, simple dimensional analysis requires that we
chooseg=1/2, a=−1/2, and b=−sz+3d /2. Dimensional
considerations therefore lead us to a spectrum of the form

csmd ,ÎJ0

l
m−sz+3d/2. s5d

The characteristic mass of the source,m0, does not appear
in our dimensional argument on the basis that we expect this
solution to be valid for masses much greater thanm0. We
find the conditions under which this assertion is correct in
Sec. IV when we address the question of the locality of the
mass cascade.

The exponent Eq.(5) is not new. It appeared in early work
by Hendriks, Ernst, and Ziff[6] as the scaling of the post-gel
stage of gelling systems. Their work makes an implicit con-
nection between this scaling and the fact that there is a mass
flux out of the system in the post-gel stage. It was then de-
rived explicitly for the Smoluchowski equation with source
term by Hayakawa[7] for a particular family of kernels but
without making any connection with the physical role played
by the mass flux.

That the spectrum Eq.(5) corresponds to a constant flux
of mass in mass space is easily seen from the following
scaling argument. We express the local conservation of mass
by means of the continuity equation

] mcsm,td
] t

= −
] Jsm,td

] m
, s6d

where

] Jsm,td
] m

= −
ml

2
E

0

`

dm1dm2hKsm1,m2dcsm1,tdcsm2,td

3fdsm− m1 − m2d − dsm− m1d − dsm− m2dgj.

s7d

We now assume a stationary spectrum,csmd=Cm−x. By in-
troducing new variables,m1=mm1, m2=mm2 and using the
scaling properties of the kernel we deduce that

] J

] m
~ m2+z−2x s8d

with the constant of proportionality being given by the inte-
gral expression which remains after scaling out them depen-
dence of the right-hand side of Eq.(7). Thus
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Jsmd ~ m3+z−2x. s9d

It is clear from Eq.(6) that in order to have a stationary state,
J must be independent ofm which determines the exponent
of the Kolmogorov spectrum as

xK =
3 + z

2
. s10d

Of course we cannot determine the Kolmogorov constantC
from such a scaling argument. In addition the validity of our
scaling argument depends on the convergence of the various
integral expressions which have been hidden behind propor-
tionality signs.

In this paper we address these shortcomings by computing
the exact stationary solutions of Eq.(2) using the method of
Zakharov transformations borrowed from the theory of wave
turbulence. We obtain the exponentxK expected from scaling
considerations and the value of the Kolmogorov constantC.
An answer is obtained for arbitrary homogeneous kernels.
However, the analysis involves the exchange of orders of
integration on the right-hand side of Eq.(2). It is thus nec-
essary to checka posteriori that the right-hand side is con-
vergent on the prospective spectrum in order that it be an
admissible solution. This check leads to a “locality crite-
rion,” namely

m − n + 1 . 0, s11d

which must be satisfied by the kernel in order that the Kol-
mogorov spectrum be realizable.

III. ZAKHAROV TRANSFORMATION
FOR SMOLUCHOWSKI EQUATION

To find the stationary solutions of Eq.(1) in the situation
m@m0, J0=const, we must solve

0 =
l

2
E

0

`

dm1dm2 Ksm1,m2,mdcsm1dcsm2ddsm− m1 − m2d

−
l

2
E

0

`

dm1dm2 Ksm1,m,m2dcsmdcsm1ddsm2 − m− m1d

−
l

2
E

0

`

dm1dm2 Ksm,m2,m1dcsmdcsm2ddsm1 − m2 − md.

s12d

Structurally this equation is very similar to the kinetic equa-
tion for wave turbulence with a three-wave interaction. For
an introduction to the theory of wave turbulence see Ref.[8].
A useful trick for finding the stationary power law solutions
of such equations was devised by Zakharov[9,10] in the late
1960s and is easily applied here. Restricting ourselves to
power law solutions of the formcsmd=Cm−x, we apply the
following changes of variables:

sm1,m2d → Smm18

m28
,
m2

m28
D , s13d

sm1,m2d → Sm2

m18
,
mm28

m18
D s14d

to the second and third integrals in Eq.(12), respectively.
Dropping the primes on the transformed variables and using
the homogeneity and symmetry properties of the kernel we
obtain the equation

0 =
lC2

2
E

0

`

dm1dm2fKsm1,m2,mdsm1m2d−xm2−z−2x

3 sm2x−z−2 − m1
2x−z−2 − m2

2x−z−2ddsm− m1 − m2dg.

s15d

It is immediately evident that the integrand is identically zero
for 2x−z−2=1 from which we get the same Kolmogorov
exponent,

xK =
3 + z

2
, s16d

obtained in Sec. I by a scaling argument. The value of the
Kolmogorov constant can be determined by considering the
local mass flux defined from Eqs.(6) and (7). Restricting
ourselves to spectra of the formcsmd=Cm−x, the Zakharov
transformation allows us to write Eq.(7) in the form

] Jsm,td
] m

= −
lmC2

2
E

0

`

dm1dm2Ksm1,m2,mdsm1m2d−xm2−z−2x

3sm2x−z−2 − m1
2x−z−2 − m2

2x−z−2ddsm− m1 − m2d

= lC2m2+z−2xIsxd,

where

Isxd = −
1

2
E

0

`

dm1dm2fKsm1,m2,1dsm1m2d−x

3 s1 − m1
2x−z−2 − m2

2x−z−2dds1 − m1 − m2dg. s17d

From this we deduce that the flux is given by

Jsmd =
lC2Isxd

3 + z − 2x
m3+z−2x. s18d

In the steady state,x=xK=s3+zd /2 and the flux must be a
constant equal toJ0. Thus we have

J0 = lim
x→xK

lC2Isxd
3 + z − 2x

m3+z−2x. s19d

We know thatIsxKd=0 so we must apply l’Hopital’s rule to
evaluate the limit to arrive at

J0 =
l

2
C2U dI

dx
U

xK

, s20d

and hence
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C =Î2J0

l
U dI

dx
U

xK

−1

. s21d

The Kolmogorov solution is therefore

csmd = C m−xK, s22d

with C given by Eq.(21) andxK given by Eq.(16).

IV. LOCALITY OF THE MASS CASCADE

In the analysis of the preceding section we have freely
split the integrand on the right-hand side of Eq.(1) and ex-
changed orders of integration to derive the Kolmogorov
spectrum. In order to justify these manipulations we must
demonstratea posteriorithat the original collision integral is
convergent on the Kolmogorov spectrum. We do this in this
section.

The support of the integrand on the right-hand side of Eq.
(1) is shown in Fig. 1. Since the kernel and the mass distri-
butions which we study are scale invariant the only possible
sources of divergences are at infinity and at the two points
s0,md and sm,0d where the contour of integration intersects
the axes. Let us now study carefully the behavior of the
integrand near these points for power law mass distributions.

The behavior at infinity is easy. Asm2→` along the
lower contour the integrand looks like

Ksm,m2,m+ m2dcsmdcsm2d , mm−xm2
n−x. s23d

The integral is therefore convergent asm2→` if

n − x , − 1 ⇒ x . n + 1. s24d

The same criterion is obtained along the upper contour. The
convergence near zero requires a little care. Nearm1=0 the
integrand looks like

csm1dfKsm1,m− m1,mdcsm− m1d − Ksm1,m,m+ m1dcsmdg

=csm1dFm1S ]

] j
fKsm1,j,mdcsjdgU

j=m

− csmd
]

] j
fKsm1,m,jdgU

j=m

+ osm1
2d , m1

1−x+m.

Note the cancellation of the leading order terms in the Taylor
expansion on the second line above. The corresponding inte-
gral is convergent asm1→0 for

m + 1 −x . − 1 ⇒ x , m + 2. s25d

The same criterion is obtained if we look nearm2=0. We
conclude from Eqs.(24) and (25) that a power law mass
distribution Cm−x yields a convergent collision integral ifx
lies in the intervalfn+1,m+2g. The existence of such an
interval of convergence puts a constraint on the asymptotic
behavior of the kernel, namely

m − n + 1 . 0. s26d

We now must address the question of when the Kolmogorov
spectrum derived in Sec. III lies in this interval of conver-
gence. The answer is surprisingly simple. Remembering that
m+n=z, it is immediately evident from Eq.(16) that the
Kolmogorov spectrum lies midway between the two con-
straints Eqs.(24) and (25). Thereforeif an interval of con-
vergence exists for a given kernel, the corresponding Kol-
mogorov spectrum is an admissible stationary solution of Eq.
(1) and it lies at the midpoint of the interval of convergence.

We call Eq. (26) a locality criterion since systems for
which it is satisfied can be characterized in the stationary
state by a local mass fluxJ0. When the spectrum is local, the
details of how we take the limitsm0→0 andM→` to pro-
duce a large inertial range are inconsequential since all inte-
grals converge. If Eq.(26) is not satisfied then presumably
the final stationary state depends on the details of the source/
sink and is therefore nonuniversal.

We note that the kernelm1
1+e+m2

1+e, mentioned in the in-
troduction, is marginal in the sense that it violates the local-
ity criterion for any finitee. It has been shown[11] that this
kernel undergoes instantaneous gelation so perhaps there is
some connection between this phenomenon and the concept
of locality. In addition, the generalized sum kernel,
Ksm1,m2d=m1

−m+m2
−m, which violates the locality condition

for mù1, was studied extensively by Krapivsky and co-
workers [12,13]. They found that in this case, the system
does not reach a steady state but rather continues to evolve
very slowly on a logarithmic time scale for all time.

In closing this section it should be noted that a rigorous
understanding of the conditions under which the stationary
state depends only on the local flux is one of the missing
pieces in the theory of hydrodynamic turbulence.

V. FINITE AND INFINITE CAPACITY CASES—
GELLING AND NONGELLING KERNELS

It was found in the 1960s[14] that the solution of Eq.(2)
for certain kernels violates mass conservation within a finite
time t* . When this violation occurs, limm→`Psmd becomes
finite. In the late 1970s it was found that meaningful solu-
tions exist post-t* and the violation of mass conservation was
given a physical interpretation in terms of what is now
termed a “gelation transition”[15–17]. Gelation occurs when
there is a finite flow of mass to an infinite mass cluster
(“gel” ). As a consequence, the total mass of the normal

FIG. 1. Support of the integrand of Eq.(1).
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(“sol” ) particles is no longer conserved. In order to avoid
inconsistencies, the gel particles must be considered as those
clusters whose mass diverges as the size of a finite system is
taken to infinity. It is now well known[3] that the solutions
of Eq. (2) undergo gelation for kernels havingz.1.

The gelation criterion,z.1, can be given a very simple
physical interpretation by examining the mass capacity of the
Kolmogorov spectrum. If we continue to add mass to the
system at a constant rateJ0 then we know that the final
steady state is given by the Kolmogorov spectrum Eq.(22).
When the total mass contained in this solution is finite then
mass conservation must be violated at some time since the
total mass supplied to the system grows linearly in time. The
total mass capacity of the Kolmogorov spectrum is finite
when

E
m0

`

dm m C m−s3+z/2d , `.

This integral in convergent at its upper limit when 1−s3
+zd /2,−1 or z.1. Thus gelation can be seen as a kind of
safety valve which allows mass to flow out of the system
when the Kolmogorov spectrum is incapable of absorbing all
of the mass supplied to the system. Conversely, one would
expect intuitively that infinite capacity systems should not
exhibit gelation.

VI. EXAMPLE: THE FAMILY OF KERNELS,
Kz„m1,m2,m…=„m1m2…

z/2

In this section we explicitly evaluate the Kolmogorov
constant C for the family of kernels, Kzsm1,m2,md
=sm1m2dz/2. These kernels havem=n=z /2 so that the corre-
sponding Kolmogorov spectrum always satisfies the locality
criterion, Eq.(26). The family includes both gelling and non-
gelling kernels. In general, to computeC we need to evaluate
the following integral atx=s3+zd /2:

dI

dx
=

1

2
E

0

1

dm1Ksm1,1 −m1,1dhfm1s1 − m1dg−x

3f− 2m1
2x−z−2 ln m1 − 2s1 − m1d2x−z−2 ln s1 − m1d

− ln fm1s1 − m1dgf1 − m1
2x−z−2 − s1 − m1d2x−z−2ggj.

s27d

This is obtained from Eq.(17) by integrating outm2 and
differentiating with respect tox. When we setKsm1,m2,1d
=sm1m2dz/2 andx=s3+zd /2 in this expression we find, rather
surprisingly, that all dependence onz cancels out and we are
left with

U dI

dx
U

s3+zd/2
= −E

0

1

dm1
m1ln m1 + s1 − m1dlns1 − m1d

m1
3/2s1 − m1d3/2

= 4psMathematicad. s28d

Hence the Kolmogorov solution for all kernels in this family
is

csmd =Î J0

2pl
m−s3+zd/2. s29d

To close, we note that we can check our answer indepen-
dently for at least one case. For the constant kernel with zero
initial concentration, an exact solution of Eq.(2) has been
known for some time. The details can be found in Ref.[18].
This solution is

cmstd = o
k=1

`

ckstddsm− km0d s30d

with

ckstd =
m0p 2

l2J0t
3 o

j=−`

j=`

s2j + 1d2F1 +
s2j + 1d2m0p 2

2lJ0t
2 G−k−1

.

s31d

The t→` limit of this expression can be calculated by re-
placing the sum by an integral in the limit of larget. This
integral can be expressed in terms of gamma functions. One
finds

lim
t→`

ckstd =Î J0

2plm0

GSk −
1

2
D

Gsk + 1d

,Î J0

2plm0
k−3/2 for k @ 1.

Settingm0=1, we recover the result of our earlier computa-
tion of the Kolmogorov spectrum form@1.

The constantC has also been computed[12,13] for the
generalized sum kernel,

Ksm1,m2d = m1
−z + m2

−z. s32d

We computed the integral(27) for this kernel usingMATH-

EMATICA and found the Kolmogorov constant to be

C =ÎJ0s1 − z2dcos
pz

2

4lp
s33d

as found in Refs.[12,13] using completely different meth-
ods.

VII. CONCLUSION

To summarize, we have shown how the notion of a mass
cascade analogous to the Kolmogorov energy cascade of hy-
drodynamic turbulence is relevant to understanding the sta-
tionary state of the Smoluchowski equation with constant
mass production term. Furthermore, we have shown how the
exact stationary spectrum may be computed using the
method of Zakharov transformations and given some criteria
for assessing the physical validity of this solution. We have
not made any attempt to address the important question of
the validity of the Smoluchowski equation itself in describ-
ing the statistics of particular aggregation models. The mean
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field assumption leading to Eq.(1) can be violated in several
ways as discussed in Ref.[18]. Of particular relevance to
lattice aggregation models is the case where fluctuations
dominate the statistics and invalidate the mean field Smolu-
chowski equation[19,20]. In a future publication[21] we
shall address this issue for the particular case of constant
kernel stochastic aggregation where the presence of fluctua-
tions leads to a renormalization of the constantl. The tech-
niques developed in this paper will allow us to find the renor-
malized Kolmogorov spectrum as the stationary solution of a
modified Smoluchowski equation.

Note added. We have found that V. M. Kontorovich has
recently applied the Zakharov transformation to aggregation
problems[22] for a class of kernels arising from the study of
galactic mergers in astrophysics.
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