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The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is
considered. The diffusion constant is calculated approximately within a perturbation theory in the potential
strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double
expansion in the inverse temperaty@and the particle density. The one-loop diagrams in this expansion can
be summed exactly and we show that this result is exact in the limit of @raaild p3 constants. The one-loop
result can also be resummed using a semiphenomenological renormalization group method which has proved
useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts
the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms
of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results
are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential
recently used to model the interaction between coiled polymers.
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[. INTRODUCTION gible. The Langevin equation thus represents a coarse
grained image of the system and the effective parameters and
Transport properties of deeply cooled liquids may changénteractions used in the Langevin approach require micro-
by several orders of magnitude when one reduces the tenscopic derivation. The Langevin approach also naturally de-
perature[1]. Indeed, a liquid undergoing a deep quench bescribes the dynamics of colloids in soluti¢ry, the Brown-
low its melting transition may stay in a metastable superian noise is induced by the solvent and the effective
cooled state. In this state, the relaxation time is much largeinteraction between particles is composed of a pairwise di-
than the experimental time scale, and the system is alway®ct interaction between the colloids plus additional hydro-
out of equilibrium. Experiments suggest that in “fragile” dynamic interactions induced via the solvent.
glass formers, there is a temperatdigat which the relax- We consider the interacting set of Langevin equations for
ation time diverges. Even if the mere existence of a diverparticles X; interacting via a pairwise potentiad(X;-X;)
gence of the relaxation time at finite temperature is still depending only on the distance between the particles at tem-
controversial, the experimental data can be often fitted by thperatureT in D dimensions:
so-called Vogel-Fulcher-Tammann law~exd A/(T-Ty)].
Since such a glassy behavior has been observed in a wide dx; .
range of materials, there have been huge efforts dedicated to dt )‘2 ‘QX?V(Xi — X)) @)
computing the transport properties in supercooled liquids. .
Among them, the mode coupling theo(MCT) [2—-4] ap-  The units of time are chosen such that the white noise field
pears to give results and predictions which fit remarkably,]ia has the correlation function
well with data for many different systenj§]. However, de-
spite its successes, the derivation of MCT either from the <77ia(t)77jﬂ(t,)>:2’(5ij Pt -t), 2)
Mori-Zwanzig formalism[4] or from fluctuating hydrody-
namics[6] remains quite obscure, and systematic improvewhere the angled brackets indicate averaging over the ther-
ments seem difficult to implement and control. Hence, withmal noise. The ternk is thus the bare diffusion constant of
the aim of understanding better the structure of the dynamthe particles in the absence of interactions. The fluctuation
ics, alternative methods of computing transport properties oflissipation theorem or Einstein relation implies thatx
systems of many interacting particles such as supercooledl/T. This system of equations can be used to describe a
liquids are worth examining. In this paper, we will develop acolloidal system of interacting particles suspended in solu-
method to compute the long time self-diffusion constanttion when hydrodynamic interactions are neglected. The ne-
which allows systematic double perturbative expansions, iglecting of hydrodynamic interactions is justified where the
the strength of the interaction and in the density of particlesdirect two body interactiofV is of much longer range than
The approach is based on the Langevin dynamiciNfpar-  the hydrodynamic interactions. A commonly cited example is
ticles with two-body interactions, though this approach maycharged colloids in a solution when the Debye length is very
be generalized easily to three-body interactions. Such Matarge with respect to the particle sizes.
kovian Langevin dynamics can be invoked in liquids over The effective macroscopic diffusion constatt of par-
length and time scales where inertial effects become neglitcle i is defined by

1539-3755/2004/68)/06111111)/$22.50 69 061111-1 ©2004 The American Physical Society



D. S. DEAN AND A. LEFEVRE PHYSICAL REVIEW E69, 061111(2004)

: 2 —
!m(xi (1)) = 2Dkt. (3 %:KV2P+)\V PV &), @

It is the aim of this paper to develop a technique for thewhereV is the gradient operator oR®™ where D is the
calculation ofx,. There are two basic routes to calculate ~ Spatial dimension antl the number of particles. The poten-
The first is based on the direct calculation of the diffusiontial ¢ in this formalism is given by

constant[8—19. The second is based on the calculation of _ 0 0 0

the modification of the response to a small external force on POwXa, -2 X = ol + X3 XX, Xt X)),

a given particle due to the interaction with the other particles, 5)
the so-called relaxation effect; the resulting valuexgfis

; . . : e > where
then determined from the Einstein or fluctuation dissipation
relation[20-23. One approach to studying the dynamics of bo(X1,Xa, ... Xp) = 2 V(X = X;). (6)
a tracer particle is to write an effective one particle Langevin i<ij .

equation with a non-Markovian memory kernel, derived via .
projection operator techniqué8—13,16,17,23,19 This ker-  From here on we shall denote by the veciprwithout a
nel must then be computed by invoking approximation OrpaDrh'ltche index, the global position vectox,xz, ... . Xy) in
closure schemes such as mode coupling-like approximatioris = and by the vectok the corresponding Fourier vector
[15,16, cluster expansiongl3], or weak coupling expan- (Ki,Kz,....ky). If one defines

sions [8,17,18. Other approaches are based on closure o

schemes for the Smoluchowski equat[®r11,21,22, which |3(k,s) :j dtf dx exp(-st—ik -X)P(x,t), (7)
normally involve closing the hierarchy of equations for the 0 RON

joint probability density functions by replacing, for instance, ~

the three body joint probability density function by its corre- it is straightforward to show tha®(k,s) obeys

sponding Kirkwood superposition approximation. Both tech-

niques can be handled to produce results which are exact Bk, = 3 - ;‘ f quDk .qg(q)ﬁ(k -q,9).
first order in the particle density [12—14,20,2B kk“+s  kk®+s)pon (2m)
The paper is organized as follows. In Sec. Il we develop ®)

the diagrammatic perturbation theory for the calculation of

the self-diffusion constant. In Sec. Il the one-loop analysisWe note that because of our choice of coordinates relative to
and its renormalization group resummation are developethe initial conditions,P(x,0)=8(x) and also

and the physical consequences of their predictions are dis- _ _

cussed. In Sec. IV a brief comparison of the results of vari- () = expliq - x?) do(q). (9)

ous calculational schemes and numerical simulations is Pr'&3ne has also that

sented for the case of a soft potential. The bulk of the

discussion of the physics is to be found in Secs. Ill and IV ~ _ (N-1)D7
and in the Conclusion. $o(q) = (2m) Po(a), (10)
with
IIl. DIAGRAMMATIC EXPANSION Yola) = 2 V(g agi+a) IT sy (12)
i<j kedij}

Here we use a technique based on a perturbative weak . _— . :
coupling expansion of the Smoluchowski or Fokker-PlanckUSing these definitions one obtains the equation

equation for theN particles in interaction. The form of this _ A dq _
perturbation expansion is identical to that used to calculate PKk,s)=—5—-—5 f 5K - qvo(Q)

the effective diffusion constant of a particle in a random kKot Kk +s)pon (2m)

potential. We denote byP(xq,X,, ... Xy,t) the probability xexpiq -x(o))ﬁ(k—q,s). (12)

density function for the particle displacements from their
original positions at=0 at timet, that is to say the density of Equation(12) can be solved iteratively leading to the expan-
{Xi()=X;(0); 1si<N}. We take initial conditionsX;(0)  sion which is represented in Fig. 1. We note here that this
=xi(°) where the<i(°) are independently and uniformly distrib- weak coupling expansion as it stands only makes sense for
uted throughout the volumé of the system. In principle one potentials which are bounded &¢x) is treated as a small
could take other initial conditions for thnq(o), notably one perturbation. However the series can be resummed to obtain
could take their equilibrium distribution. However, if the sys- physical results for unboundéguch as hard coygotentials.

tem is ergodic then the resulting behavior of the diffusionin addition the behavior of soft potentials is of direct physi-
effective constant should be independent of this distributioncal interest as they provide coarse grained descriptions of
The disorder induced by the random initial conditions showscoiled polymerg25], star polymerq26], and micelle§27]

the link with diffusion in a random potential. The forward in solvents.

Fokker-Planck or generalized Smoluchowski equationFor Momentum is conserved at each vertex and the Feynman
is rules are the following:
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FIG. 2. Diagrammatic expansion @(k,s) (shown as a line
with a closed circlg obtained after averaging over initial particle
positions in the diagrammatic expansion shown in Fig. 1.

FIG. 1. Diagrammatic expansion f@i"r(k,s).
The form of the perturbation expansion shown in Fig. 2

Each solid line (horizonta) corresponds to the bare ShOws that one can write(k,s) as
Green'’s function corresponding to the system of particles in

1
the absence of interactions G(k,s) = + D(k,s). 16
(k.s) kk?+s (kkZ+s)? (k.s) (16
Go(k,s) = 21 (13 The termD(k,s) can clearly be expressed in terms of one-
xk“+s particle-irreducible diagrams. Diagrams which are one-

particle-reducible are those containing a bare Green’s func-
tion having a pure momentuknflowing through one of their
bare Green’s functions and can thus be factorized. The bare
k. i (0 Green'’s function connecting two one-patrticle-irreducible dia-
M- Quio(@)explia - x), (149 grams is therefore 1kk?+s). If we denote the one-particle-
wherek is the ingoing momenturfrom the lefy andq is the irreducible diagram contribution &s(k ,s) then
momentum flowing into the vertical wavy line. 5
Each momentung flowing into a wavy line is integrated Gk,9) = 1, 3ks  2ksT 17)
over RPN with the measurelq/(2)P. " kk?+s  (kk?+9)?  (kk?+9)® '
We see that the ingoing and outgoing momentum on each, . .
. . S which sums to give
of the generated diagrams is not conserved. This is because
the spatial translational invariance of the system is not ex- 1
plicit. To study a spatially translational invariant system we G(k,s) = e S(K9its (18)
average over the initial position® throughout the volume K (k.5 +s
VN, We shall take uniform initial conditions although any We now note that by the conservation of probability
initial conditions which have the property of spatial transla-G(0,s)=1/s and we thus expect that for smé,
tional invariance should give the same asymptdtte time

wherek is the momentum in that line.
Each vertexvertical wavy ling carries a factor

properties forG(k,s):@(k,s))o. Here the angled brackets G(k,8) = — i , (19)
with the 0 subscript indicate the average over the initial po- kk®=KE(s) +s
sition vectorx® and is defined by where3/(k,s) =k2E(s). In the limit of small|k| ands there-
1 fore
(Po=1x dx@Ax). (15) L
v G(k,s) = (20)

. o i . ) [k-E)]k?+s’
In the limit of largeV this integration multiplies each dia-
gram by a factor of2mNP5(2,q,)/VN where theg, are all The effective diffusion constant for the particles is ex-
the momenta flowing into the upward wavy lines in eachtracted using the fact that
diagram at each vertex This momentum conservation en- .
sures that the momentum flowing into each diagram is the ZDKet:!E?C([Xi(t) _Xi(o)]2>' (21)
same as that flowing out and indicates the invariance by
translation in space of the system averaged over its initiavhere the angled brackets on the right-hand side above indi-
conditions. After taking this average over the diagrams incate the average over the thermal noise and over the initial
Fig. 1 we obtain the diagrammatic expansion @k,s).  conditions. We also have that
The Feynman rules are as before but with the following

modifications: G(k,s) = fc dt exp(- st exp(—i ki - [Xi(t) = x{© ) .
Each diagram carries an overall factor(@tr)N-9P/ VN, (k.9 0 P=sh ; DX =
There are onlyn—1 independent momenta for each dia- (22)

gram ofn vertices by momentum conservation. Each of these
momenta is integrated with the measdg (2m)P as before.  For smalls in Laplace space we have
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f ’ dt exp(— st([X;(t) - x91%) = f dt exp(— st)2D k.t
0 0

2Dk,
= 23
2 (23
and therefore, from Eo[22) for smalls,
2Dk,
— =~ G(k,s 24
= aEl kaz()k:0 (24
Now using Eq.(20) we obtain
ko= k—E(0). (25)

The calculation of k. can therefore be evaluated from

G(k,0). We may express the terf&(0) as an expansion in
the number of vertices in the diagram, we write

E(0)=X E,, (26)
where
E,= lim 2 k,0), (27)
Kl—-0k?%

whereX (k) is the sum of one-particle-irreducible diagrams

with v vertices. From Fig. 2 we may write

1 1
G(k,0)=m+(KT2)ZE D,(k,0), (29)

whereD,(k,0) is the sum over all terms with vertices and

not just the one-particle-irreducible ones. The one-particle-

irreducible components ob,(k,0), >,(k,0), must be ex-
tracted fromD,(k,0). The termsD (k,0) have the behavior
D,(k,0)=~F k? for small|k|. It is straightforward to verify

that the ternf, is zero. This means therefore that there is no

contribution toO(\) in the asymptotic single particle diffu-
sion constank,.. Examining Fig. 2 we find that

2.7)D(N-2) k.
D,(k,0) = L)\zf quzq)%(Q)l//o( Q).
A RDN q)

PHYSICAL REVIEW E69, 061111(2004)

self-diffusion constant of particle 1 which is also the self-
diffusion constant of any given particle. Hence for the pur-
poses of the calculation &f, we can restrict ourselves to the
casek=(k4,0,0,...,0. In this case, the only choices of the
particle indices giving a nonzero diagram arek=1 and]j

=| due to the scalar produkt g on the first vertex. There are
thusN-1 identical nonzero diagrams with two vertices. For
notational simplicity in the following we will writek =k,

e RP. All the choices are equivalent to choosigg=gq, q,
=—q andq,=0 forr >2 where agaim € RP. In the resulting
integral there are repeated delta functions for the taras
and also a doublé(q; +q;). We use the relation fon e RP,

&(a) = 8(q) (30

(2 )D
The result forD,(k) is thus

Np dg k-q(2q9-k)-q~

DZ(k 0) k Juo (27T)D (k q)2+ 2

V(@)?. (32)

The above diagram is also clearly one-particle-irreducible
and hencd-,=E, thus giving

1\%p dg - xzpf )
E,= ZKDLD (2mP () 22D dxV4(x). (33

The diagram givindD;(k,0) has the value
(27T)D(N_3)

3
KW )\JRDqudp

k-gqkk-aq)-(@+p)k+p)-p
(k =q)*(k +p)?
X (@) o(P) (= a4 = P). (34)

To simplify the counting of diagrams with nonzero momen-
tum let us consider the general expansiomg(i,) - - - ¥o(dn)

in a diagram withn vertices. From Eq(11) a given term on
expanding then-fold sum over pairs has the form

Ay A ().

Any diagram where the momentugy flowing into the ver-
texv is zero is due to the presence of the scalar product with

D;(k,0) = -

(35

The potential term in the integrand may be expressed usin§, at each vertex in the Feynman rules. The momentum

(k
(29
Eq.(11) as
Yo(0) o~ ) :gl kE. V(a)V(= q &(a; + ) (g + a)
x 11 o) 11 . (30

refi,j} se{kI}

One must keep in mind that only terms with nonzegrean
contribute (one can imagine an additional terns in the

denominator for smak which is taken to zero at the end of

the calculatiop The only terms in Eq(30) which have non-
zero momentum are those where the gaij)=(k,l). In ad-
dition, the computation is simplified if one assunkes 0 for
r>1. Clearly the coefficient oki in kk?-3(k,0) is the

flowing into the vertexv in the above decomposition over
pairs is(0,0,---g;---—q;---0,0) i.e., it hasq; at the particle
positioni and —g; at the particle position in the total mo-
mentum vector. This is shown diagrammatically in Fig. 3.
Each horizontal line corresponds to a vertex and the hori-
zontal coordinates are given by the poifits j,). Each line
must have a nonzero momentum, tlgjs# 0. However, the
sum of the momenta down each column must also be zero.
Hence each coordinatg must appear on at least two lines in
order to give a diagram which is nonzero. In Fig. 4 one
example of the equivalent nonzero diagram contribution to
E, is shown. The three types of diagrams which give nonzero
contributions td~; are shown in Fig. 5. The diagrams of type
1 have a multiplicity oN-1 and have the same particle pair
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q, | -q,
q; | —q,

Chiqn# i-'51:]:)_(1 "

FIG. 3. Diagrammatic representation of the vertex momentum
present in one term of the pair development of a produaf.

on each line. For the diagrams of type 2 and 3 there(ldre
-1)(N-2) diagrams of the precise form shown in the dia-
gram. This is because there &e 1 choices for the first pair
(1,2 andN-2 choices of the paif2,3) (that is to say the
particle number 8shown on the second line. The choice of
the last(third) pair is not free by momentum conservation.
Due to the presence of a delta functiéf,qg;) for each
column which is automatically satisfied when all theare
zero, each empty column carries a factoMdt27)P. Hence
a diagram withk empty columns has a factpy/(2)P]%. In
diagrams of type 1k=N-2 and in diagrams of type 2 and 3,
k=N-3.

The contribution of diagrams of type 1 (k,0) is thus

0 \° P dg dp
Dy'(k,0)= w20 (2m)P (27T)D
k-qgl(2g-k) - (p+q)]l(k +2p) -p]
[(k=a)?+q?[(k + p)*+p?]
xV(Q)V(p)V(p +0), (36)
which gives
\°p dg dp
1 — _
F3'= 2DKJ¥DQWP(2)DV®»Kme+q) o
(p-q)
x(l— Z%; ). (37)

The contribution from diagrams of type 2 and 3 is

ko

q —-q

PHYSICAL REVIEW E 69, 061111(2004)

ko

FIG. 5. Diagrams in the pair development contributingBg

(top, type one; middle, type 2; and bottom, type 3

3)\3[)2
4D K?

FP=-"—" (39

dq
fRD (2 )DV(q)3

ese diagrams contributing t6; are also one-particle-

irreducible and hence t®(\%) we obtain

P\

2D K2

Ke_4

f (27f>(qﬁ

p)\gf dg dp
2DK w20 (2m)P (2m)P
(p-q) dg

2 3p2)\3f ,
1- Y,
><< p2q2 >+ rD (2 m)° (@

V(QV(p)V(q +p)

(39

q —-q

FIG. 4. Diagram in the pair development contributinggo

4D«3
Hence the ratiok./ x is expressed as a perturbation expan-
sion in 1/T. Notice here that there are more lines than rows
in the diagrams of the pair development, which means that a
finite number of diagrams contribute to any given order of
the 1/T expansion, whereas an infinite number of diagrams
must be summed in order to compute any order in ghe
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P -P
I -r
-p-r p+r

FIG. 6. Example of a diagram with disconnected loops in the

pair development. Here thg loop is disconnected from thg,r)
loop.

PHYSICAL REVIEW E69, 061111(2004)

_ 1
a2=— oD+1py DI2’

K(D) + DK(D + 2))

a _i<i
137 op |\ 3p2 (2m)P

3
aps= ,
7 4D(6m)°"2

13 yD-1
K(D) = f dx 5
0 1+x

(43

Clearly this 17T expansion is valid only at very high tem-
perature. It can be improved in several manners. One could
compute higher orders in this expansion, which should give
better agreement with the simulations, but, however, the ex-
pansion will inevitably break down at lovi. Alternatively,

one could try to sum infinite subseries in order to build ap-

_expansion.A_giagram WiE'll lines andm nonempty columns  proximate nonperturbative schemes. As mentioned above
is of orderp™(\/x)"=p™ ", thus a systematic double ex- one approach is to try and resum the diagrams to obtain
pansion inp and 8 may be performed. We note that in Eq. results exact for alj8 to orderp. Here we shall concentrate

(39) the leading order term i which is of orderp® recov-  on another resummation involving only one-loop diagrams.
ers the weak coupling approximation. It is clear that the

weak coupling approximation is not valid at low densities if
the temperature is too low. The calculationQfto first order
in p involves summing all the diagrams which have just two
columns occupied. These diagrams, which are all one-
particle-irreducible, can be resummed via an integral equa- Here we will focus on the class of one-loop diagrams.
tion [24] and one can show that the resulting expression fol hese diagrams are those which involve only one momen-
ke iS the same as that given by the relaxation method applieBm integral. In this case, there are two dots on each occu-
to the effective two-body problem as expounded28]. pied line or row and these diagrams are all one-particle-
Consider a diagram with vertices and |t3ﬂ0 pair expan- irreducible. In addition from the discussion in the preViOUS
sion. If the firsty’ vertices do not contain more than one- section, these diagrams are the dominant ones in the limit
particle-index in common with the—v’ remaining vertices WherepB=c (with ¢ a constantand p— , or equivalently

IIl. ONE-LOOP ANALYSIS

A. Simple one-loop contribution

then the momentum flowing between the verteandv +1 is
zero(or k if the column in common is the first onand thus
the diagram is zerqor one particle reducib)e In other

wherepB=c and 8— 0. The dimensionless form afwould
in fact be c’:prg’,Be, wherer, is the characteristic length
scale of the potential and its energy. As before, we write

words, all diagrams with disconnected loops such as the oné=k1 € R. The interesting point about this limit is that the
shown in Fig. 6 have a zero value or are one-particle{high temperaturestatics of the model can also be evaluated

reducible and thus give no contribution Q.
As an example, we consider potentials of the form

€ r2
V(r)= Wexp(— 2_fo> , (40)

[28], only chain diagrams in the virial expansion are retained
in this limit. In electrolytic systems the Debye-Huckel ap-
proximation is recovered on the retention of only chain dia-
grams[29] and hence it is interesting that one can have a
theory of k. for electrolyte systems which is compatible with
the Debye-Huickel approximation which has proved so useful

which has been recently proposed to model the effective inin the study of their static properties.

teraction between coiled polymdi®5] at weak dilution. The
Fourier transform oW/(r) is then given by

2,2
V(q) = erg’exp<— %)

> (41)

With this interaction potential and setting=r,=1 we find
from Eq. (39)
FIP = a,pPT Y, (42)

where the first nonzere,,'s are

The typical one-loop diagrams can be reduced to the stair-
caselike diagrams shown in Fig. 7 by relabeling the particles.
We note here that as we are summing an infinite number of
diagrams one must be careful not to include the same particle
twice in the same diagram as this will make the diagram
two-loop. Hence for a finite system one cannot have a one-
loop diagram with more thaN vertices as it will include at
least one particl¢other than the tracer particld)] at least
three times, meaning that the diagram can have at least two
independent momenta flowing through it. In this case the
counting of the one-loop diagrams withvertices wheren is
of order N will be different. We have, however, taken the
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ko hence the above formula is valid for al=2. Performing the
sum we find the one-loop contributions to be

Kéone—loop —k=- E b(l’l)
n

p)\zf dg ~ .,
=2 v
Dk J o (2m)P @

1 1 1
X -= . (47

~ 2 ~
1+ &V(q) 1+ &V(q)
K 2K

The above may be conveniently rewritten in terms cof

=p\/k,
FIG. 7. Example of a staircase diagram contributing to the one- Kéone"oop = K[l + i(g(c) - 2g(9>)] (48)
loop expansion. pD 2
limit N— oo already and hence this does not cause us any — +ﬁ( _ (E))
problems in the region where the power series giving the K[l cD 90 -2 2 ' (49

one-loop result is convergent.

In constructing a one-loop diagram at any level one mustVhere
insert two points, one of which must coincide with one of the d C~\~/( )
two unpaired(in the vertical direction points above. The g(c):f _qD_:q (50)
leftmost point of the new pair can either be paired with the o (2m)7 1 +cV(q)
rightmost of the two unpaired points above or it can be . . . .
paired with the leftmost of the two unpaired points above,From the previous discussions the corrections to(Eg). are
this gives a crossing. Clearly the first crossing must be bacRf the form
to the first column. Each diagram thus hmasrossings where Ko = Kéone-loop + B2s,(c) + Biss(0) - -+ . (51)
p e[1,n—1]. If there is only one crossing then it must occur
at level n corresponding to a staircase diagram with one In the particular case of the potential given by £40),
crossing at the last line. Up to particle relabeling there iswe find that inD dimensions

only one such diagram and its contribution is Jo- = ¢ exp- u)uP2 )
2n-3p" (= \)" dg ~ - D l+cexp-u)
ba(m) = 2n-lp gt RD (ZW)DV(q)n' “44 (2mPPT 2 i "
If n>2 andp>1 then the first crossing must occur at the In the caseD=2, we obtain
level n; e [2,n-1]. At the leveln;+1 the next two points p 5
can either cross or not cross just until the lemekhere the KLONe-100D — —[In(l +pB) -2 In(l + p—)] .
diagram most close. There are this'2" topologically dis- 4arp 2
tinct diagrams with the same first crossing poinnat It is (53

easy to see that these diagrams depend only on the positi
n, of the first crossingi.e., the second occurrence of the
particle 1) and are given by

?—Powever, this expression becomes negative wBes large,
although this is outside the range where the approximation
involved here is valid. We also see thatis a nonmonotonic
ng—2p " H(=\)" dg ~ function of p, having a minimum value at some valggbut
on2p 0l 0 (ZW)DV(Q) . (49 increasing up tox again on takingp very large, _thls is a
: consequence of the use of a soft potential, at high densities

Hence, taking into account all the multiplicities, the con-the particles all overlap but the energy change in moving to
tribution of all the diagrams witm> 2 lines is overlap with one particle rather than another is zero. The
effective potential seen by the particles is almost flat and

bZ(nll n) =

! I hence there is only a small effect on the particle diffusion.
b(n) =by(n) + X 2™ hy(ny,n)
n=2
1 -9l pn—l(_ A" dq ~ B. One-loop renormalization group
— n
D KL LD (ZW)DV(Q) ' (46) We have seen in the preceding section that the one-loop

calculation ofk, predicts that the diffusion constant can van-
At n=2 the above agrees with the result of E§3), and ish at finite temperature. The same calculation predicts a van-
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ishing diffusion constant for the problem of diffusion in a di(One-loop( A)

Gaussian random potential with short range correlations. T

This transition can be shown to be absent in finite dimen-

sions via exact results in one and two dimensions, numerical _ pA(A)? AD‘lv(A)Z

simulations, and general arguments based on the fact that the B DK(A)(ZW)DSD‘l

system has a finite correlation length. In order to go beyond

the simple one-loop contribution, one can look at how the X 1 1 1 (56)
effect of the interactions on the diffusion constant propagates 14+ P82 )\(A)Y/(A) 2 1+ —p)\(A)T/(A) |

from short to large length scales. This can be achieved by the k(A) 2k(A)

renormalization-group method. This approach has been

proven to be very accurate in the calculation of the effectivevhereSy_; is the area of the unit sphere BP. Inserting Eq.
diffusivity in random media and removes the fictitious van-(55) into Eq.(56) one gets

ishing of . predicted by simple perturbation theory. Indeed,

in dimension three the one-loop renormalization-group di©ne 1P (A) - _ pA(A) S5 APIV(A)2
analysis provides a very good quantitative approximation of dA DT(2m)P -t
the effective diffusivity of a particle in a Gaussian random 1 1 1
potential[30—34, and the exact result in dimensions one and X -Z .
two [35]. We therefore apply the same technique to the prob- PT 2. pg
. ) ; ] - 1+=V(A) 1+-—=V(A)
lem of interacting particles studied here. The potenidk T 2T
decomposed into long and short scale components, (57)

Integrating outA down fromoe to O and using the initial
b-(x) = d—qND:ﬁ(q)exp(iq -X) conditions[ k() ,\(®)]=(x,\), we find the final expression
(2m) ’

lol<A for the effective diffusion constant is simply
(one-loop
iclone-oon RG — exp( Xe - 1) . (58)
dg -~ . K
¢>(X) = (2 ND d’(Q)equ 'X)a (54) |
lo|>A 1T Now looking atK(eO”e' P given in Eq.(47), the value of the

self-diffusion constant given by the self-similarity ansatz

whereA is a running cutoff. One then integrates out the high!e2ds t0 several comments.

; : : The temperature-density dependencexpfk is of the
momentum component-. perturbatively to find an effective . .
theory on length scales greater tham1One then makes a oM h(p/T)/T. Hence the phase diagram in i, p) plane

self-similarity ansatz which means only keeping interaction®2Ptained from it consists of regions separated by straight

that were in the original problem and hence the only paramlin€s crossing at the poirt0, 0). However, the Langevin ap-

eters which change are and A (as well as the potential Proach studied here is in most physical situations a coarse
which just has the higher Fourier modes remgve@ne 9rained approach, in which case the potentiahas to be
therefore has a running diffusion constadt\) and a run-  'eplaced by an effective potential(x)=Ver(x,c,p) which
ning coupling to the gradient field(A). The effective diffu- depends on the temperature and possibly the density. In this
sion constant is then given by.=«(0). The flows of these Case, the phase diagram will be more complicated.
couplings can be computed from the one-loop diagrams. In If the Fourier transformV(q) of the potential has an ab-
addition it can be shown by general argumei35] that solute minimum ohegative valuat some nonzero valug,

then the diffusion constant goes to zero when the tempera-

ture reached” =—p[V(q")1] from above. Keeping the den-

% = f =T, (55) sity fixed loweringT amounts to increasing The integral
cV
| o - 1= [ g (59
that is to say that the Einstein relation or fluctuation dissipa- 1+cV(q)

tion relation is satisfied by the renormalized theory at each

step of the renormalization. This renormalization is onlydiverges at=c'=p/T", and nearc” the denominator of the
valid for the low-momentum component of the remainingintegrandl behaves as

drift Vé. and a possible improvement to the calculation here . . e

would be to functionally renormalize the field_, which {1+(c - 60)[V(Q) +V,qq(q) 5972]}

amounts to introducing new interactions generated by the =[- M) + V o @) 85721, (60)
renormalization procedurghis approach has been applied to '

diffusion in an incompressible quenched Gaussian velocityvhere we have assumed thatis twice differentiable about
field [36]). Using the one-loop diagrams calculated in theq’, i.e., the minimum is not a cusp. In this case the relaxation
previous section we find the flow equation farA) is time diverges afl" as
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A 1.1
VT-T

1=

However, one could conceive thdtis an effective potential
coming from a coarse grained approach to a microscopic
model and that it may thus have a dependence am T. £ 09 |
Alternatively one might argue that diagrams of lower order
in p dress the effective interaction leading to an additignal

or T dependence /. The assumption of an effectivé 0.8 |

dependence oX will modify the way in which the diffusion = (d)

constant vanishes. We note here that the idea of an effective

T dependence of the effective interaction arises in the ran- 07, 25 5 75
dom phase approximatiof29] where the bare two particle A

interactionV(r) is replaced by Fc(r), wherec(r) is the
direct correlation function. In this scenario, if we kegp
fixed, the denominator of the integrahchow behaves as

FIG. 8. Microscopic diffusion constant as a function of the in-
teraction from different approximation schenjés), (b), (c)], com-
pared to the one measured in Monte Carlo simulations: exjpan-

{1+(c" - 8)[V(T',C) —Vc(q*,c*)5c+VCC(q*,c*)502/2 sion from Egs.(42) and (43) (a), one-loop renormalization-group
© a e ' .. ' (b), one-loop renormalization-group + first two-loops diagrén
+V4q(0,C)8972+V 4l ,c)scaqlt and Monte Carlo simulation&).

~[&clc’ —c'V(q,c)dc- V(g ,c)scsql.  (62)

By definition we have tha¥/ .(q",c’) <0 as the minimum of
V(q,c) arrives at —1¢ from above. Hence in this case the
relaxation time diverges as

freezing transition when the free energy of the ordered crys-
tal phase is lower than that of the free energy of the liquid
phase described by the terms in the chain resummed virial
A expansion. The analysis above thus may apply to a super-
T~ eX'{T—T‘)’ (63)  cooled liquid and the temperatufé is the limit of the ther-
modynamic stability of the liquid phase. There has been
which is the Vogel-Fulcher-Tammann law. From the abovesome experimental evidence of a diverging correlation length
analysis we see that if the dependenc®¥(@f,c) oncis weak at the Vogel-Fulcher-Tammann temperatufé from the
near(q ,c’) then one would expect to see a crossover bestudy of the dielectric susceptibility of supercooled liquids
tween the behavior of between Eq(61) for [T-T'|<1,to  [37], though these results seem at odds with earlier numeri-
the behavior Eq(63) when|T-T'|<1. The two scenarios cal studieg38,39 studying this question.
above correspond to the behavior of the so-called fragile
glasses. In the scenario where the denominator of the inte-
grand | does not diverge then the diffusion constant only
vanishes aT=0 and it is possible that such cases correspondV. COMPARISON WITH MONTE CARLO SIMULATIONS
to strong glasses; however, generally the precise behavior of
e @ST goes to zero will depend on the form ¥f an ex- In order to test the accuracy of the different schemes ex-
ample of which can be seen from E§3) resummed in the  pjained above, we have carried out Monte Carlo simulations
renormalization-group approximation. 6f =0 then the be- ot particles interacting via the potentiéd0) in two dimen-
havior is different and depends on the spatial dimenslon = gjqng Here we have fixed the density at the vala®.5, and
Finally as mentioned in the previous section on the one-loog,e nymper of particles a1=10 000. We have evaluated the
2§pﬁlgif]'°n’ [?\lreusely aL=T one expects thake depends macroscopic diffusion constant by using E8). The result is
plicitly on IN. . . T shown in Fig. 8 and compared to the evaluation from Egs.
In the corresponding static approximatigag] it was (42) and (43), for values of the interaction in the range
shown that the structure function is given by [0,7.5 '
1 From Fig. 8 we see that th@ expansion is valid only at
Q= ﬁ (64) very small 8, however, the one-loop renormalization-group
cV(@) (RG) result is much more near the simulated values of the
although the authors ¢28] expressSin terms of the Mayer diffusion constant over quite a broad range. We expect that a
function of the potentiaV/, the result is the same at the order RG analysis including more interactions, for example, in-
of accuracy of the calculation. We see that the conditiorcluding functional renormalization of the interactiow,
above for a dynamic transition, defined by the vanishing ofwould provide better agreement. The two-loop diagrams in-
Ke, CoiNcides in the same approximation scheme by the apelude the one indicated as type 1 in Fig. 5. The effect of the
pearance of a diverging correlation length and a second ordeddition of this diagram to the one-loop RG calculation is
phase transition. However, as pointed ou{28] this appar-  plotted in Fig. 8 as well. The other diagrams of the two-loop
ent second order transition may be preceded by a first ordesxpansion are at least of ordét. Hence the good agreement
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observed indicates that the two-loop calculation which in-calculation predicts a divergence of the relaxation tifoe
cludes additional interactions will improve the approxima-vanishing of the self-diffusion constgnat some positive
tion to the diffusion constant. We note that the value of thetemperature. However, we have seen that when such a dy-
density used herg@=0.5 is not very small, and the reason- namic transition occurs it is accompanied by a diverging cor-
ably good agreement obtained is a hint that the RG calcularelation length in the statics when one uses equivalent ap-
tion catches th@ dependence of the diffusion constant in the proximations in the statics and dynamics. The possible forms
case of soft or bounded potentials. of the divergence of the relaxation time have been discussed
and it has been argued that the Vogel-Fulcher-Tammann law
emerges under relatively weak additional assumptions to the
basic calculation carried out here. The two-loop calculation
should provide a better quantitative approximation for the

We have developed a perturbative expansion of the selfdiffusion constant, but it would also indicate the form or
diffusion constant of Langevin interacting particles. The ex-robustness of the divergence of the relaxation time as higher-
pansion is a weak coupling expansion which is suitable fotoop contributions are taken into account, this calculation is
soft or bounded interaction potentials. The perturbation exin progress. Various other resummation methods may be de-
pansion can be seen to be a double expansighandp, and  veloped on the systematic perturbation expansion expounded
we have shown how it can be dealt with diagrammatically.here, as we have mentioned earlier the series may be re-
As an example of a partial resummation of this expansion, aummed at ordep to recover existing low density results,
one-loop renormalization group analysis has been carried owne may use self-consistent perturbation theory and also ex-
and tested on a simple form of the interaction and compareglore renormalization-group schemes based on calculating
to numerical simulations. It was found that this calculationthe effect of integrating out the effect of a small density of
gives considerably better agreement than the straight expaother particles rather than the Fourier modes of the interac-
sion to O(B%). In addition, in some cases the one-loop RGtion potential.

V. CONCLUSION
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