PHYSICAL REVIEW E 69, 061105(2004

Ornstein-Zernike equation and Percus-Yevick theory for molecular crystals
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We derive the Ornstein-Zernike equation for molecular crystals of axially symmetric particles and apply the
Percus-Yevick approximation. The one-particle orientational distribution fungii®Q) has a nontrivial
dependence on the orientatié)) in contrast to a liquid, and is needed as an input. Despite some differences,
the Ornstein-Zernike equation for molecular crystals has a similar structure as for liquids. We solve both
equations numerically for hard ellipsoids of revolution on a simple cubic lattice. Compared to molecular
liquids, the orientational correlators in direct and reciprocal space exhibit less structure. However, depending
on the lengths andb of the rotation axis and the perpendicular axes of the ellipsoids, respectively, different
behavior is found. For oblate and prolate ellipsoids with 0.35 (in units of the lattice constaptdamped
oscillations in distinct directions of direct space occur for some of the orientational correlators. They manifest
themselves in some of the correlators in reciprocal space as a maximum at the Brillouin zone edge, accompa-
nied by a maximum at the zone center for other correlators. The oscillations indicate alternating orientational
fluctuations, while the maxima at the zone center originate from ferrorotational fluctuationa=Fb6 and
b=0.35, the oscillations are weaker, leading to no marked maxima at the Brillouin zone edgez Bdr and
b=0.35, no oscillations occur any longer. For many of the orientational correlators in reciprocal space, an
increase ofa at fixed b or vice versa leads to a divergence at the zone cegwdl, consistent with the
formation of ferrorotational long-range fluctuations, and for some oblate and prolate systenis<yiith a
simultaneous tendency to divergence of few other correlators at the zone edge is observed. Comparison of the
orientational correlators with those from Monte Carlo simulations shows satisfactory agreement. From these
simulations we also obtain a phase boundary inaf®eplane for order-disorder transitions.

DOI: 10.1103/PhysReVvE.69.061105 PACS nuni)er64.10:+h, 61.43-j, 64.70.Kb

[. INTRODUCTION lecular version of that theory to a liquid of hard ellipsoids of
revolution with aspect ratiX, has allowed the location of a

The experimental, numerical, and analytical study ofshase houndary in the-X, plane, at which a transition to a
structural properties of simple liquids is a well establishednematic phase takes plapé.

discipline of condensed matter physics. In the center of such npych less analytical work exists for molecular crystals
investigations is the static structure fact8(g). There are [5 6. These are crystalline materials with, e.g., a molecule at
powerful integral equations allowing an approximate calcu-each lattice site. One of the main interest concerns phase
lation of S(g) [1]. The starting point is the Ornstein-Zernike transitions of the translational and rotational degrees of free-
(OZ) equation, relating the total correlation functiofm) and  dom (see, e.g., the review Ref7]). These transitions are
the direct correlation functiore(q). An additional closure influenced by the translation-rotation couplif&). But phase
relation, such as the Percus-Yevi@kY) approximation, then transitions also exist if the crystal is assumed to be rigid.

allows to determinéa(q), from which S(q) follows from This has been shown a long time ago by use of the mean-
field approximation(see, e.g., Refs9-11]). Most of this
S(g) =1 +ph(q) (1) work is devoted to real molecules like GHCD,, etc. If the

size of the molecules is much larger than the lattice constant,
wherep is the number density of the liquid. Application of there will be strong steric.hindranqe. In an idealized way, one
the PY approximation to a liquid of hard spheres yields good"@ réplace the soft pair potentials by hard body interac-
agreement with the exact result for intermediate values of tions. This will be done in the present paper. We will con-

[1]. However, the crystallization of hard spheres cannot b(:Ig.ider hard ellipsoids of revolution with their centers at the
deécribed by,PY the)c/)ry P attice sites of a simple cubic lattice with lattice constant

. . .__equal to one. The lengths of the rotation axis and the perpen-
. The extension of the OZ equation and the PY_ approxXimay;cjar axes of the ellipsoids aseandb, respectively. This is
tion (or other closure relationsto molecular liquids is

straightforward[1,2] and has been applied extensivedge, an athermal system for which the free energy is given by

. e F=-TS i.e., a phase transition can only be induced by the
e.g., Refs.[3,4]). As for simple liquids, PY theory usually entropyS. SimiIZr to hard spheresee, e*g., Ref(12]) wg

_does hot _y|eld an _o_rder-d|sorder phase transition. Thereforeexpect a phase transition to an orientationally ordered phase
it was quite surprizing that a recent application of the MO~ due to entropic effects. That such an ordered phase may oc-
cur can be intuitively understood as follows. If for given
the lengtha is large enough, i.e., the volume fraction is large
*Electronic address: mricker@uni-mainz.de enough, an orientationallgisorderedphase is characterized
"Electronic address: rschill@uni-mainz.de by many ellipsoids in contact with each other. Accordingly,
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the free volume of the ellipsoids, i.e., the average solid anglé¢ice site has the position,, the difference between two sites

an ellipsoid can rotate freely, is small. However, if the ellip- is the vectorx,, =X, —X,. We assume the lattice to be rigid

soids areorderedthey may be less blocked in certain orien- with lattice constant equal to one. At each lattice site we fix

tational directions, thereby gaining free volume. Since thea rigid molecule, not necessarily with its center of mass.

entropy is proportional to the logarithm of the free volume, it Restricting to linear molecules, the orientation of the mol-

will be larger for the ordered phase, leading to a lower freeecule at siten is given byQ,= (¢, 6,,). The third Euler angle

energyF. From this argument we expect a phase transition tgy,, is irrelevant for our purposes. Extension of our theoretical

an orientationally ordered phase at a critical lengitb). approach below to arbitrary molecules is straightforward.
Besides phase transitions, the study of the orientationalhe interaction energW({Q},}) is assumed to be pairwise

structure of molecules on a rigid lattice is of interest, too.and the classical Hamiltonian is given by

Changing temperature will influence the steric hindrance be- N

tween the molecules. The same happens for hard ellipsoids 1.

when changing andb. Analogous to simple and molecular HAQn ) = Z 5'1 17HQ) 1+ VHQLD, (2

liquids, one can quantify such static orientational properties i

by the one-particle orientational distribution function wherel, andI((,), respectively, are the angular momentum

pY(Q) [6,8,13-1F and by the orientational correlation func- and the tensor of inertia of the molecule at sitie the space

tion G, (Q,Q’) of molecules at sites andn’, where the fixed frame. Since we will investigate static quantities only,

orientation{) can be characterized, e.g., by the Euler angleshe kinetic part oH({Q.},{l,,}) does not matter.

(¢, 0,x) or, for axially symmetric particles, by, 6). Then In order to describe the orientational degrees of freedom,

the following questions arise: How to compyi€)(Q) and,  we introduce the microscopic one-particle dengity(}) at

above all, the correlation functio@,(,Q’) by an analyti- lattice siten and its associated fluctuatiaip,({2) defined by

cal method? Does the result fG,({2,{)’) allows to locate

a phase boundary where a transition to an orientationally pn(Q) = 8Q[Qy), (33

ordered phase occurs? To provide answers to these questions

is the main motivation of our contribution 3pn(€2) = pa(2) = {pn(€2)), (3b)
There already exist theoretical approaches to these ques, N -1 , ,

tions. For examéle, discretizing thepapngular degrees of ?ree\{vhere AQIQ)=(sin 6)°* 8(6-6) 8¢~ ¢'). () denotes

dom, the orientational correlators and finally the neutronc"’lnonlcal averaging with respect k({(y}, {l,}). Note that

scattering cross section were calculated by use of a cIusté’Pe .Q“ dependence OP“ a}nd .5’)” IS sqpprgssgd. The one-
expansion[16] and by a mean-field type of approximation particle orientational distribution function is given by
[17]. The cr_itical diffus_e scattering _Was_described by an Oz pP(Q) = (py (), (4)
approximation (mean-field approximation of the corre-
sponding susceptibility18,19. In the present paper we will which isn independent due to the lattice translational invari-
provide answers to the questions above by following quite @nce ofH({Q,},{l.}), and the two-particle distribution is de-
different strategyWe will extend the powerful methods for fined as
calculating the static correlation functions for simple and @ , , )
molecular liquids to molecular crystals. To be more specific, P (1, Q) ={pr(D)pr (")) (n#1n'). (5)
we will derive the OZ equation for molecular crystals and
will use the PY approximation as a closure condition.

Our paper is organized as follows. In Sec. Il we will in-
troduce the model and the basic physical quantities such as f pP()d=1, (6)
the one-particle distribution functiopi?(Q2) and the orienta- &
tional correlation functionG,,(2,Q’). The analytical ap-
proach of calculating?n/(Q,Q’_) or its t.ransformSW(q) _ f pﬁ?r(ﬂ,ﬂ’)dQ:p(D(Q’) (n#n), (7a)
from the OZ equation in combination with the PY approxi- &
mation is described in Sec. lll. Results from PY theory for
hard ellipsoids of revolution on a simple cubic lattice will be
shown in Sec. IV and compared with those from Monte f p2(Q,0)dQ =pP(Q) (n#n’). (7b)
Carlo (MC) simulations. This section also presents a short &
discussion of the phase transition for the ellipsoids from aRynere the integrations are done o\& the surface of the
orientationally disordered to an ordered phase. The final Se?,rnit spherep®(Q)) is similarly obtained fronpfi),(ﬂ,ﬂ’) as

V contains a discussion of the results and some conclusions. tal field is deduced f th . tenfighl
We add three appendixes, including extensive technical m%e crysta (l|)e IS deduced from the pair po engai-11.
owever, p'(Q) is not only determined from the crystal

nipulations needed in Secs. Ill and IV. .
P field but also from th€(),{)’)-dependent part of the poten-
tial.
It is important to realize that in contrast to isotropic mo-
We consider a three-dimensional periodic lattice with lecular liquids the one-particle distribution functigit(Q)
lattice sites and periodic boundary conditions. If tite lat-  depends o). Here a comment is in order. In caselwdrd

Making use of Eqs(3), it follows that

II. DISTRIBUTION AND CORRELATION FUNCTIONS
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K

gl

nn’

(2,0 = (1= 8 [ (Q2,Q1) = pP ()P (Q)].
(10b)

Due to the propertiegs) and (7) of the particle distribution

functions,G,(Q,Q") andG>,(Q,Q’) fulfill for all nn’,

nn’

Lz Gnn/(Q,Q’)dQ:LZ Gn(Q,0)dQ =0, (118

f G‘nsn),(n,n’)dnzf G®,(0,0)d0’ =0.

FIG. 1. MC results fop™(Q) for hard ellipsoids of revolution =2 &

with a=3.6, b=0.24 (left), a=1.2, b=0.88 (middle), anda=0.56, (11b)
b=1.1(right) on a simple cubic lattice. Orientations &h obtained

from MC runs are projected along the fourfold lattice direction.  For the lattice system, the pair and total correlation func-
Parts ofK occur along the twofold, threefold and fourfold lattice iONS@ny (2,€2") andhy, (Q2,Q') are introduced in the same
directions, depending approximately on whethe#b)/2 exceeds manner as for a liquidl,2],

the site-site spacing along one of these directions. Some circles

i (2) '
approximating the edges of the partskofare shown as an aid for 9 (Q,Q) = P (2,27) (n#n') (12)
the eye. e P<l)(Q)P(l)(Q,) ,

body potentialghere may exist region@enoted byz) on& o (Q,Q) =0, (2,Q)=1 (n#n’). (13
in which the hard particles overlap such th#t(Q) and

(2

Py (€2,Q) vanish. Accordingly, these distribution functions In contrast to Eq(11), itis in general

are nonzero on the complemdftof K, only. An illustration
is given in Fig. 1. The restriction d2 to allowed regions has
led the authors of Ref§16] and[17] even to approximate
the components ok by afinite number of discrete orienta-
tions. The vanishing 0p(Q) and pfn),(Q,Q’) onK intro-  The same is true fog,,(2,Q’). But, due to Eqs(6), (7),
duces some technical problerfsee below. But fortunately  (12), and(13),
one can prove that the equations derived doft potentials
can be used to calculate the orientational correlators for hard f pV()h,(Q,0)d0=0 (n#n’), (153
body interactiong20], what will be done here. This is plau- &
sible, since approximating a hard potential by a sequence of
soft potentials becoming harder and harder, one expects that
the corresponding orientational correlators converge to those f han (2,2)pP(Q)dQ" =0 (n#n’). (15b)
for the hard potential. g

Next, we introduce the orientational density-density cor-|y the asymptotic limit of large particle separations,
relation functionG,/((2,€)"). It describes the correlation of 4 () ') andh,,(Q,Q’) in the disordered phase behave

Lz hnn,(Q,Q’)olsh&o,fSz o (Q,2)dQ" #0  (n#1n').

(14

the fluctuations op,(Q2) at lattice sitesh andn’, like
Gy (€1,) = (3p() 5p (). (® m Gon (2,07 =1, (16
By use of Eqs(3)—(5) we get ; Iirln h,v(2,Q7) =0, (17)
G (2,97) = 8,y p () 8(0]Q) = PP () p (D) independent of the direction of,,. This follows due to

limp|epin(Q,07) — pP(Q)p®(Q), which is in full

agreement with the behavior of a liquid system.

© o The reader should note that it is the definitidk2) and

Gnn,(Q,Q’):Gnsn,((),Q’)+Gnn,(Q,Q’) consists of a self- (13) of g,,(Q,Q’) and h,,(Q,Q’), respectively, which

+ (1= )P (0, Q). (9)

part and a distinct part, which are explicitly causes problems in case of hard potentials, because the de-
nominator in Eq(12) vanishes for orientations witf or ()’
(9 Nz s oW " (1) AT, in the sterically forbidden regioK [see discussion in para-
G (2.0 = 8 [p V@ AQIQ) - pH(@pH@N], T o
(10a Making use of Eqs(10), (12), and(13) and introducing
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D(Q,Q) = 47 pP(Q)5QIQ") - pP(Q)p P ()]

(18)
we can rewriteGEZ{(Q,Q'), a=s,d, as follows:
1
G (2,.0) = =5,y D), (193
GE](:;,(Q,Q') =(1=68,7)p Q) (Q,0)pD(Q).
(19b)

As for molecular liquids[2] (see also, e.g., Refs.

PHYSICAL REVIEW E69, 061105(2004

pendix A. These properties will be useful in the following.

[ll. ORNSTEIN-ZERNIKE EQUATION AND PERCUS-
YEVICK APPROXIMATION

Similarly to simple and molecular liquids, we will intro-
duce the direct correlation functian,, (2,Q'), which is re-
lated toh,,({2,€)") by the OZ equation. Sinag,(Q,Q’) is
determined by the inverse functions 65:2,(9,0’) and
G (Q,0Q), one has to be careful because of relatigi,
which imply that a constant functioif{)) =const is an eigen-
function of Gfr:,(Q,Q') and G,,(Q,Q’) with eigenvalue

[3,4,21,22) we will expand all orientation-dependent func- zero. Therefore, these inverses do not exist on the one-

tions with respect to spherical harmoni¥g({2), A=(Im).

lConsequently, we have for any function§()) and
F.v(Q,Q) their \ transforms and the corresponding inverse

transformations,

f, =il Js? f(Q)Y,(Q)dQ, (203

f(Q) =2 (—)'fy Ya(Q), (20b)
A
Fowo =i Lz Lz Fow (Q,Q)Y,(Q)Y,(Q)dQ dQ’,

(219
For(2,2) =2 (=) Foy o Ya(Q)Y, . (Q).

A

(21b

The purely imaginary prefactors in Eg0) and (21) are

taken in agreement with Rejf21].

dimensional subspace of constant functions. This feature is
typical for molecular crystals.

However, the problem of inverting tH&),)’)-dependent
correlators can easily be solved by taking theitransform-
ing equation(21g. In addition, it is convenient to use the
Fourier transformed quantities. Hence we will investigate
matricesG(q) and G®(q) with elements

1 . 1
Gy (q) = N<5P>\(Q)5PM(Q)> = ZTS\)«(Q), (23

1
GS{/(Q) = ZTDM\'. (24)

which are zero fol=0 and/orl’=0 because of Eq(ll).
However,h,,.(q), gx/(q) in generalthe same is true for the
direct correlation function matrix elements, (q) intro-
duced in Eq.(33)] do not vanish forl=0 and/orl’=0. In
order to avoid confusion it is convenient to use

Fao=F.,, (=11'=1). (25

If the first row and column of vanish, its physical content

Finally, we can use the lattice Fourier transform due to thdS in F°, only. SinceG and G*¥=1/4 D are of this form,
lattice translational invariance. It is restricted to the first Bril- inversion has to be done with respectG6 andD°.

louin zone(BZ) of volumeVg;. For example, the transform

This behavior has also consequences$lispace. In gen-

of the site-site matrix element®1g and its inverse are eral, correlation functiond=((2,€)"), such ash,,(Q,Q"),

given by

Far(a) = 2 eiq'x”"’an',m\u

Xnn'

(229

1 —iq- ’
Fon o = f Fa(@)e @ mdq. (22b)
VizJ 182

Symmetry properties of the one-particle distributjg®(Q)

will  have “unphysical” parts, [[F(Q,Q")dQ dQ’,
JE(Q,Q")dQ’, and [F(€,Q")dQ. In that case their “physi-
cal” part is given by

Fo (0,97
=JSZ fsz R(Q'Q//)F(Q/I’Q///)R(Q///,Q/)dﬂ!/dﬂ/li’

(26)

and of G, (2,Q') and its\ transform are presented in Ap- where the projectoR(2,')=8(Q|Q’)-1/4x projects out

1Instead, one could also use a complete set of functions, dete
mined by the rotational symmetry. R is the point symmetry group

the unphysical parts. The reader should note that this is dif-
Fgarent to the decomposition of the pair potential into an iso-
tropic partf v, (Q,Q")dQ dQ’ and crystal field terms re-

of the lattice andPy, the symmetry group of the molecules, one can [at€d t0Jvny (2, Q2")dQ and vy (2, 07)dQ’ [9-11]. In that
use basis functions for irreducible representations of the symmetrgase these terms have a physical meaning.

group of p(Q), which is a subgroup oP® Py [8,13,14. For

It is straightforward to prove that for the transform of

axially symmetric particles, these are linear combinations of thd=°(£2,Q’) it is F,,,=0 for =0 and/orl’ =0. This is reason-

spherical harmonic¥, (Q),A=(Im) [8,13.

able since the\ transformings of the correlation functions
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with =0 and/orl’=0 do not describe orientational degreesof liquid theory, and so we chose the most straightforward

of freedom and therefore are unphysical. analogon of the PY approximation for the lattice, which is
Using Eqgs.(15) and(18) one gets forn#n’,
[pP(Q)h(Q,Q",0)pP(Q) ]y Crn (€2,2") = F (2, Q2) (G (2, ) = €y (12, 27))
1 o o = (Q,Q)(1 +h,y (2,Q) =y (2,Q7)).
= (4 )2 2 D)\}\nh)\//)\m(q)D)\///)\/y (27) m m nn
7T )\I/)\//I(INI///qko) (33)
which implies Note that Eq.(32) involves ¢, ,(Q,Q') and h_,(Q,Q),

1 only, but in Eq.(33) the full functionsc,,(,Q’) and
S°(g)=D° +—D°h°(q)D° =47 G°(q). (28) hy (Q,Q7) appear. It can be shown for hard particles and
4ar n#n’ that c ,(Q,Q") already determinesc,,(£,(’)
Here, the Fourier transformh®(q) has to be determined by uniquely [20], and the same is true fdn;n,(Q,Q’) and
using the constraint for ak\’, h,v(Q,Q") [see Appendix B, Eq(B7)]. f,,(Q,Q’) is the
. Mayer f function, which is
N = 0- (29 ,
Equation(28) generalizes the well-known relation between fr (0, Q) = expl= BV (2, )} =~ 1 (34)
the static correlatoS(q) and the total correlation function for n#n’. For hard particles, the pair potential is
h(qg) for liquids [cf. Eq.(1)] to molecular crystals. Vi (©2,Q7)=0 [if the pair (nQ2,n"Q’) has no overlapand
Now we are in a position to introduce the direct correla-Van ((,Q')= (if the pair has overlap This implies
tion functionc®(q) and to derive the OZ equation?(q) is
0, no overlap

defined by for (Q,Q7) = { (35)

L L -1, overlap.
¢ (@) =(G) -G (@)™ (30) . o .
o L The range of thé function for hard ellipsoids is m&a,b), if
Substituting(G°(q))™ from Eq. (30) and G°(q) from Eq.  the ellipsoids are fixed with their centers of mass on the

(28) into lattice. In accordance with the theory of liquids of hard par-

; ; "= (@ =
(Go (q))—l G° (q) =1° t|C|eS, Eq (33) y|e|dS gnnr(Q,Q )—0<—>pnn,(Q,Q )—O,

while ¢,y (Q,Q’) remains undetermined, {h{,n’Q’) has
overlap andc,,v(Q2,Q')=0 while g, (2,Q") remains unde-
1 termined, if(nQ),n’Q}’) has no overlapl,2].
h°(q)=c°(q) + i (@)D°h°(q). (31 The transform of the Mayer function will be nonzero for
™ I=0 and/orl’=0. The same holds for the transforming of
The back transformation of E¢31) leads to the OZ equa- Cny(£2,€2"). Therefore the direct and, as stressed above, the

and making use of Eq199) yields the OZ equation

tion in real and angular spaces, total correlation function related by the PY approximation
1 contain unphysical parts, in contrast to the direct and total

1-8. )0 (Q.0)=c (Q.0)+— f f cqrrelgtlon fpnctlons relateq by the Oz equation. Fortunately,

( )Pl )= Con( ) 4Trn”(§n’) 2Jg this will not introduce a serious problem as will be discussed

i in Sec. IV B and shown in more detail in Appendixes B and
X ¢, y(Q,Q2")D° (", Q") C, and in Ref[20].

° n ! ”n "
X Py (27,02 )dQ” da”. (32) IV. RESULTS FOR HARD ELLIPSOIDS ON A SIMPLE

Note thatc, (Q,Q') #0, in general. CUBIC LATTICE

This result is almost the same as for molecular liquiis The self-consistent solution of the OZ equation and the
There are two main differences. First, we have to use alPy approximation has been done numerically. In order to
matrices with the first row and column of the original matri- check the quality of these solutions we have performed MC
ces skipped. Second, there appears the ma&fiand third  simulations, which also allow to determine the phase bound-
the Fourier backtransform df°(q) has to fulfill the condi-  ary between orientationally ordered and disordered phases.
tion (29) for all AN'. We stress that the investigation of the phase transition has

Up to now, the equations are not closed. Since neither thaot been our major motivation. Therefore we have not at-
total correlation nor the direct correlation function is given, tempted to verify the phase boundary by more sophisticated
the previous concepts are almost useless if one is interest@dC algorithms. Before we describe the numerical solution of
in an analytical approach to determine the structure factorghe OZ/PY equations in Sec. IV B, let us present some details
(23) and(28). An additional equation, called the closure re- of the MC simulations in the following section. The results
lation, must be used to find a self-consistent solutiorhfop)  from both approaches will be discussed in Sec. IV C.
andc(q), as for simple and molecular liquids. It has been our  For both, the numerical solution of the OZ equation using
intention to follow as close as possible the established linethe PY approximation and the MC studies the overlap crite-
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rion of Vieillard-Baron[23] for hard ellipsoids of revolution
is used. a) prolate ellipsoids

A. MC simulations Limit of convergence
for OZ/PY theory

The MC simulations are performed for a simple cubic
lattice with 16X 16X 16 sites and periodic boundary condi- ]
tions. For systems having very long-ranged correlations
along a certain lattice direction, test runs with>332x 32
particles are done, but the results are only slightly different as-
and not shown in this work.

The only possible MC move is a rotation for a randomly
chosen particle perpendicularly to its orientation axisby 3
an angle G< < 6p,o= 7, Where cos is at random, and a Paseboundary for
subsequent rotation with respect to its original orientation by 27
a random angle & ¢<2m. If this move leads not to an 1
overlap of ellipsoids, it is accepted, otherwise rejected, in 0 01 02 03 04 05 06 07 08 09 I
which case the next move is not tried for the same particle,
but for a new randomly chosen one. L.

As starting configuration for each MC run parallel ellip- b) oblate ellipsoids
soids are chosen. Each particle is moved on an average ¢
1000 times withd,,5,=7/2 to get a rapid convergence to the
disordered phase having a cubic symmetry, if possible. Af-
terwards, 6o IS adjusted to an acceptance rate of 25% and %87
the system is equilibrated well before the production phase. o7+

To discriminate between the disordered and ordered
phases, we have used several crit¢@i@]. Let us describe
two of them. First, after equilibration we have calculated the

Closest packing of
parallel ellipsoids

0.9 4
Closest packing of parallel ellipsoids

0.6

a 0.5

largest eigenvalua, of the Saupe tensdr4] for a given 0.4 Limitof comergence
size of the lattice. Note thak, is related to(Y,,), m= 03 s
-2,...,2, andhat\,=0. Due to finite size effects, be- 02

comes small, but nonzero in the disordered phase. We hav Phase boundary for

0.1+ order-disorder transition

checked that this small value decreases with increasing sys
tem size, as it should be in the disordered phase. Second, tt  © | | | T T T

symmetry relations, EqA3), which hold in the disordered ! H 12 =5 = L5 15
phase only, were used. For instance, calculatig,) and
(Y4 from the MC trajectories the ratifY,.4)/(Y, should FIG. 2. Phase diagrams f@a) prolate andb) oblate hard ellip-

be close to the exact valulé \70 [cf. Eq. (A3)]. Since this  Soids of revolution on a simple cubic lattice. Solid lines refer to the
test involvesl =2, it is more reliable, because one cannotclosest packing for parallel ellipsoids. Within the light gray areas an

exclude that an orientational order exists for whit) order-disorder phase transition occurs, while the dark gray areas
-0 indicate where the numerical solution of the OZ/PY equations starts
'.I'he resulting phase diaarams for prolate and oblate elli to diverge. For a more detailed discussion see text of Secs. IV A
soids are shovgnpin Fig 29The thin zolid lines Characterizpeand IV B. In the figures above, areas are used instead of error bars.

the closest packing of parallel ellipsoids. They represent up- . )
per bounds for the phase boundaries for transitions to off@nsition. The dark gray areas refer to the OZ/PY solution
dered phases witkligned ellipsoids. Whether there exist and indicate Whe_re the iteration scheme descrl_bed in Sec.
more complex ordered phases, commensurate, or incommeh. B and Appendix C turns from convergent to divergent.
surate ones with even larger volume fraction than on the thin
solid lines is not known. An interesting feature of these lines
can be observed. For prolate and oblate ellipsoids there are
characteristic pair¢a,b) at which cusps occur, indicating a
maximum volume fraction. The light gray areas represent the The numerical solution of the OZ/PY equations is per-
transition region from an orientationally disordered to an or-formed by the iterative procedure described in Appendix C
dered phase. The latter is not necessarily a phase of aligndar lattices of size 3X 32X 32 and periodic boundary con-
ellipsoids. Transitions have been observed from the ordereditions. The head-tail symmetry of the particles restricts the
to the disordered phases and also vice versa for systems wittumber of nonzero matrix elements Gy, , c,, (andhy,,
ellipsoids of small enough maximum linear dimension, hav-,, for n#n’) to | and|’ even. The only exception is the
ing only few interaction partners. The hysteresis is smallself-part of G, (see Appendix A The numerical solution
indicating either a continuous or a weakly first-order phaseof the OZ/PY equations requires a truncation of these matri-

B. Numerical solution of the OZ equation
using the PY approximation
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ces atlya, With exception off,, which is cut at 2,4 a) Guo,imrm’ b) Simrm (Q)
Us_ually we have choselp,,,=4. For some systems, charac- P oo e e e —
terized by(a,b), we have also takeh,,,=2 andl,,,,=6. All 0] @ L S ®oy oo | ]
the correlators we have investigated remain qualitatively un- 107+ . | I W e
changed, while the correlation lengths of these correlatorsj).] 1§ gim |10 %
become larger for increasing,, For those systems showing o' 1007
no convergence of the iteration scheme because of divergin( 1 fmgar22! &, 0221 g o221
correlation lengths fol,, =4 and 32< 32X 32 lattice sites, 147 e R
system sizes up to 128128% 128 have been used. But then 0% R N B DDD
also for none of these bigger system sizes convergence couljg_lz -
be achieved. 107§ GOORI00 L D200 g 2020

For the iteration procedure it is convenient to use the 10?4 i & % @ “ﬂﬁuﬁg, e, o O
\-transform of the PY equatio(83), _18_7: e [ 0 e s ) 5 0 T‘f;m-

-0ty d @ . “a®
Coran = 2 AN N2 AN, oq® t

MAohghg

0 2 46 802 4680246 8
n n n
(36)

} 12

1/2
} C(14]41,000

X(Gnn agh, ™ Conragh) , . _ ,
FIG. 3. (a) Log-lin representation of the direct space orienta-

tional correlatorsGg ompm along highly symmetric lattice directions
(solid circles= OZ/PY results, squares MC results; dashed lines
are a guide to the eyg(b) orientational structure factoiS pm(q)
along the respective reciprocal lattice directiofsolid lines
=0Z/PY results, dotted linesMC resulty. These results are for
oblate hard ellipsoids with axes=0.4,b=1.2 on a simple cubic
lattice with lattice constant equal to one ame0,1,2. Forfurther
explanation see text of Sec. IV C.

where

(2, +1)(215+1)

A )\)\/ )\ )\ ,)\ )\ — i|’—|+|1—|2+|3—|4|:
( | 1N2 A3 4) 477(2| + 1)
2,+1)(2,+1)

X

[ 4721 +1)
X C(l,l4l",000C(I4]5l,mmsm)
XC(Iol4l",mymym”) (37

with C(l41,l5,mym,ms) the Clebsch-Gordon coefficientg].

somel\’ and larger values af is due to the error margins.
Similarly to direct space, only correlato&, (q) along

The self-consistent solution of the OZ/PY equations needg1igh|y symmetric reciprocal lattice directions are displayed,

o . . . . . " le., q=&@0,0,m), &0,m,m), and &, m,m) for 0<¢é<1,
Dyr @ndfan av @s input, which will be given in Appendix which are the correlators from the Brillouin zone center to its

B. Convergence of the iteration is assumed after the relativ . . S ; .
change of the correlators has submerged a certain threshol%;ﬁ?veeén t:ree rejgﬁﬁgﬁsﬁggdgﬁfa&f) g;::g;ﬁ%(o&ng

Then the fix point solutiorh°(q) is taken to calculat&(q) directior) S (0,7, ) direction) and A ((m,m.m)

from Eq. (28) and Gy by back transformation. direction), as usual in solid state physics. /|, (q) which
are shown are real by the symmetr{@$). Additionally, by
Eq. (23), the diagonal elementS,,m(q) and Syum(q) are
Results obtained from the numerical solution of thepositive. The numerically determined correlatoss, (q)

OZ/PY equations and the MC simulations are presented ifhave been interpolated by cubic splines with the correct
Figs. 3-8 for four different pairs dfa,b), including prolate

C. Numerical results for the correlation functions

and oblate gllip;oids. We hgve restricted the iIIustratiqns of g G0, mt'm’ b) Simrm (Q)
correlators in direct and reciprocal space to the matrix ele- 1
mentS(IZI’:Z,m:m’ZO,l,Z, (|:2’|r:4’m:m;:0'1,2, :8;_ 00n,2242 0nn,2242 nnn,2242 j]()ZOS: 2242
and(I=I"=4,m=m"=0,1,2,3,4. (Lo FA VA WA A VN EUURUUUPRRURR O FIE AAAAAA -0:50—

Log-lin representations of the direct space orientational-10"+ o™ B ong | 0751/

. . . . —107* Rae® IE’;‘ o
correlatorsGy ,, are shown along lattice directions of high ;.5 of e _1.00]
symmetry, i.e.,X,,=(0,0,n), (0,n,n), and (n,n,n) for n 10" Sag Onn2T4T |~ ann2T4T 050 N
=0,1,--,8 [part (a) of Figs. 3—§. Along these directions, %] magoo  |Pgeg o O | 02s]"
all G\ are real for the choseR\’, by the symmetries — _jg7{ s "‘D’ """"" DD 0.00
(A5). Note that a stegn=1 corresponds to different lengths -107 e -0.25
in direct space, namely 12, and\3 for the different lattice 10 F—00n 2050 Onn2040 2040 2001
H 1 — ! H H 1 AIE m A El& ’

directions. For eaclh=m’ and each lattice direction, a sepa- 1074 7 e [T"mmeugy [Pae._ oo | 150]
rate picture is provided and a logarithmic plotting has been-}g’,,: i s e o 2 o e o 50 e o 100
chosen for positive and negative values®f ,,, separately, o+ og" 050
i.e., the negative values are presented asGgh),/|. This — -0'4% ~ | | 0.001

plotting shows that the direct space correlations decay expo
nentially in most cases. The respective valueg gfandA\’
are included, too. Note that the scatter of the MC data for
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a) Gno,im m’ b) Simrm’ (Q) a) Gno,iml' m’ b) Simrm (@)
10'& 00n4444 & Onnd444 g nnnd4444 10'& 00n2222 @ 0nn2222 @ nnn2222
4} @ - : 1.254 =2 X
CERR e [, [P A W% oo [Maeg [“agguee |am
10_7_}.’,'.\.'...‘\.’;.\‘.’... E| ..... 1.004 1077_*.',‘""\ ...................... . JON - L I 1504
AR o o | oooo i Tty beetD oo '
:1(0)71-* ] ] 0.75 HITR 78 _ig,l_ ﬁ 1001
10’15‘ 00n,4343 [} Onn, 4343 ® nnnd343 1.60 [t [t
-4 | BEg N R
_10_7_ ......................... Peooofecennasd Weeaoane *
“10* D oo O 0o | 1.20-
-10"'4
0'g 00T g 0T g oond202 10" g 00n2020 Elﬂﬁ:n;,zozo glﬂgnnn,ZOZO
4 J Y
ig-'l:l\ ?‘:‘ ?‘. ,"\‘ ? 'ﬂug‘uu Bm, o000 200 18*7- \ DDE'E\D e qqs.ugﬂ
71077_l£.’,l.“.’,'.1‘.’, \‘/ P D T 1501 _1077_..-"‘ ...... /,'”.' ............ Fos s sl s ves we Ve o
_10*4 \ g Yo o o oo : _107* ‘w—g,v’. oOoo u]
_1071-n 1‘m- _1071_llllllll TTrrrrororr TTrrrrrorr
10'® 003’4141 g oAl g AT o0 07246 80246802456;3 0 g 1
1071 | \ b
107 ugg || ?‘E E "\ DF
—}g;’: Vo g o “h"l oo go | %] FIG. 7. Same as in Fig. 3, but for prolate hard ellipsoids with
gy 0.60 axesa=3.6,b=0.24.
1078 |i0011,4040 & 0md0d0 & nond040
igf‘.‘ i ?".‘ i B P B, oo | 19] space, in case where the MC results are large enough. In fact,
1 1 i - . . .
_104.E',"\'r‘.|'/"‘-;," """"""""" l'j-"-“‘ """ 1004 such an agreement appears for all investigated oblate ellip-
1 ! * . . A
0 kg o | ~Homo soid systems, for which MC results are available, except for
=10 -o'ﬁ'i'é'é e 0303 ! the system withra=0.72,b=1.1. Relatively long-ranged os-
n n n 12 cillations appear for all correlators along the fourfold lattice
direction[0,0, 1] havingeven n=m’. The other correlators
FIG. 5. Same as in Fig. 3, but forl=I"=4 and along the same direction decay faster and monotonously
m=0,1,2,3,4.

without oscillation, and also the correlators along the other

directions decay without oscillations. Note that fax0.4
boundary condition of vanishing gradients fg=0 and andb=1.2 the ellipsoids can only interact via their nearest

£=1. Note the different scales of the illustrations for differentneighbors, which are localized along the fourfold lattice di-

AN, rections. Therefore, it is tempting to assume that the oscilla-
Let us first start by discussing the results &nlate hard

tions are primarily related to a direct particle interaction via
ellipsoids with axesa=0.4 andb=1.2 shown in Figs. 3-5.

nearest neighbors along a certain lattice direction. For denser
This system has a packing fraction ofp=0.3 oblate and some prolate systems, the oscillations extend up
and is quite close to the MC phase boundary shown in Figto many lattice constants. For the structure fac®gs(q),

2(b), but not close enough to find a tendency to a divergencéhe agreement of OZ/PY and MC results is satisfactory. The
of some of theS,,/(q). Notice the almost perfect agreement most significant deviations appear ferl’ =2 nearq=0. The

of the OZ/PY and MC orientational correlators in direct oscillations exhibited by some of th@,,,, manifest them-

a) Gno,iml’m’ b) Simrm (@) a) Gno,iml m’ b) Simrm (@)
10'¢ 00n2222 & Onn2222 & nnn2222 2222 107'4  00n2222 _ 0nn2222 _ omn.2222 4.00 1 2222
1 i b 4 e B
1877-3 ﬁ "‘. o0 \ :‘m\ w Ho \ 18,7 i ““‘1* ‘\““‘.,‘ 3.00
RIV AT A WAV S (VR WY AN U T T
_10”-§i \/ ‘\/D‘.’ ‘ \‘m'l ¥ 'D * _10*’—?.‘ 2,00 A
_10*4y @O D Pl 107 | ee-ee z
- 1] 1.00
-107' 4 -107 4 : A
10" $g %0n,2121 o Onn2121 4 1074, 000212 Onn, 2121 nnn, 2121 6.00 2121
- .
107 TOfmme | Ufeeg 10 T | e e
107 ] 1074 Y .o 400
g f B B ] AEIPIPHTILN OISR X
10 o 107+ 200 \o*
-107' 4 -107 4 A
104 00n2020 & 0mn2020 ¢ 1074 0002020 | O0nn2020 | nnn,2020 2.00- 2020
1074 M‘ & ,O oo 1074 b . ““‘ by
[RAT I VN e ]
Lk (WANAWLY A i 38 RV A I I T s S .
107 Y 107N ]
YERY} ¢ 4 1.00
-0t @ ¥o'o 0 ~10™ b
i _107H4 0.50 A
0246n80246n80 0246802462802 468 0 g 1
n n n

FIG. 6. Same as in Fig. 3, but for prolate hard ellipsoids with  FIG. 8. Same as in Fig. 3, but for prolate hard ellipsoids with
axesa=1.6,b=0.6. axesa=4.8,b=0.24.
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selves in some maxima at the Brillouin zone edge, mainly fopphase. For this, we have derived the OZ equation, well
correlatorsS,om(0) and S;mum(g) with m even, but also for  known in liquid theory, for a rigid periodic lattice with inter-

the correlatorsS,,dq). Increasinga and/orb for oblate sys-  nhal orientational degrees of freedom. As a closure relation we
tems, the OZ/PY results for some of these zone-edge maxinf3@ve adopted the PY approximation. As pointed out, there

show a tendency to diverge, accompanied by a simultaneo@® differences for the present approach to that for liquids.
divergence mainly of the remaining!’ =2 correlators at the ©One of them is the fact that the OZ equation only involves
zone center. the physical parts of the direct and total correlation func-

Now, we turn toprolate ellipsoids. Compared to oblate 1ONS; i.e.,Coy(Q,97) and by, (Q,0Q), whereas the PY ap-

nn’ nn’
ellipsoids, the correlators for the prolate ones depend morBroximation relatesc,y (2,Q') and hyy(,Q'). Another
sensitively ona and b. We show results fot=1"=2 only. ~ mportant, well-known difference is the one-particle orienta-
Correlators with(l,1) # (2, 2), which were also calculated, tional distribution functiorp™(€2). In the isotropic phase of
do not yield new insight. First, we have chosen prolate ellip-2 molecular liquid it '59(1)(9)_:1/47” but due to the aniso-
soids with a=1.6, b=0.6, having a packing fraction of tropy of a crystap!™(€2) exhibits a nontrivial) dependence.
#~0.3, for which some results are shown in Fig. 6. For thisIn order to solve the OZ/PY equations, one has to calculate
system, oscillations appear additionally along the two othep'™(Q2) separately. In our case, we have performed MC simu-
lattice directiong(i.e.,[0,1,1] and[1,1,1]), which confirm lations. Analytical approaches are also possible, e.g., for
the assumption that they may be caused by direct interactiofixed a one could perform a kind of virial expansion for
via nearest neighbors for appropriate values ahd not too ~ smallb.
large a. Again, the MC results in direct space match the Despite these differences, the form of the OZ equation for
analytical results very well, though latter overestimate somé& molecular crystal is quite similar to that for molecular lig-
of the correlation lengths. The much too large OZ/PY resultd!ids [2]. In order to explore the applicability of the lattice
for the correlatorsS,,,4{q) at the zone boundary along the ~ OZ equation in combination with the PY approximation, we
direction are perhaps also due to this overestimation. have solved these equations for hard ellipsoids of revolution
Now we pass to more and more elongated prolate ellipon @ simple cubic lattice. Due to the orientational degrees of
soids and investigate what happens. In the limit of this profreedom, the orientational correlatdy - in direct space
cess one obtains the hard-needle system, which is discusséd, Si(d) in reciprocal space, witth=(Im), are tensorial
e.g., in Ref.[25]. Ellipsoids with axesa=3.6 andb=0.24 quantities. Accordingly, the self-consistent numerical solu-
have a huge aspect ratio §=a/b=15. Of course, the pack- tion of the OZ/PY equations requires a truncatiom,gt. We
ing fraction of these ellipsoids on the simple cubic lattice ismainly have choseh,,=4. As a result, we have found ori-
quite low, about 10%, but the frustration effect of the rigid entational correlators which have less structure in direct and
lattice may provide completely new effects in comparison to"eciprocal spaces than for liquid systems. Nevertheless, there
a liquid. As shown in Fig. 7, the behavior of most of the are some interesting features depending on the lemgtidb
correlatorsGng ampm IS rather monotonous in comparison to of the ellipsoid axes. For oblate ellipsoids and prolate ones of
a=1.6 andb=0.6. Oscillations have disappeared completelyarge enougtb, some of the direct space orientational corr-
except some oscillatory transient behavior for [, 1] di- elators exhibit oscillations in certain lattice directions. Since
rection and =\’ =(22). However,G ), shows less regular the oscillations have period two they lead to maxima of
variation along the[0,0,]] direction for A\=\"=(20). The  Sw(q) at the Brillouin zone edge for some.’. Although no
OZ/PY results clearly underestimate t8g,(q) correlators ~long-range orientational order exists, the oscillatory behavior
for smallg. This is also the case for tf,m(q) correlators ~ Originates from an alternating reordering of the ellipsoids on

of other investigated systems in the neighborhoodo8.6, 2 finite length scale, which can extend up to many lattice
b=0.24. constants.

The last system we present consists of ellipsoids with D€creasing for prolate ellipsoidsand increasing leads
a=4.8 andb=0.24, for which it isX,=20 and ¢~ 16%. to a d|sappearance of almost all of these S|gn|.f|cant oscilla-
Results are shown in Fig. 8. The correlators in direct spactons. In this case, the correlatdgor(q) take their absolute
essentially show monotonous decay, and the correlatiofl@xima at the Brillouin zone centéef. Figs. 7 and § in-
lengths have clearly increased in comparisorats.6 and dicating ferrorotational fluctuations, while this behavior is
b=0.24. Unfortunately, this system lies beyond the MCMNOt found to the same extent for the other correlatsee
phase boundarysee Fig. 23)], so that no MC results are also Ref.[20]). The behavior of the correlato,,m(q) re-
available. Despite of the monotonous behavior of most corsembles that of a liquid of ellipsoids with aspect ratio larger
relators, theGy »000 COrrelators along thg0,0, direction,  than about two which forms a nematic ph42€]. Surpris-
for example, show irregular behavior, as it was the case folngly. increasinga for fixed b more and more the OZ/PY
a=3.6 andb=0.24(see Fig. J. In Fig. 8, the beginning of a results forS;;,n(a) lead to a divergence af=0, which in-
divergence of theS,;,,(q=0) correlator is seen. The corre- dicates the tendency to establish a long-range ferrorotational

sponding value foa=5.6 b=0.24 is about 20. order. This finding demonstrates that PY theory applied to
molecular crystalsan yield the onset of a phase transition to
V. DISCUSSION AND CONCLUSIONS an ordered phase, as it was already found before for a liquid

of hard ellipsoidg4].
Our main goal has been the study of static orientational Some correlators for appropriately long prolate ellipsoids
correlation functions for a molecular crystal in its disorderedexhibit rather irregular behavior in direct space, which is
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and therefore has to be taken seriousl Fig. 7). We sup- p to factors(4m)~*2p™". 2n Sec. IV B and Appendix B, the

pose the frustration effect of the lattice to be the reason fogsnonical averagedY,)= [ pP(Q)Y,(Q)dQ are needed.

this irregular behavior. ~ ~ -
Comparison of the PY results with those from MC simu- The Values(Ysy, (Yey), and(Ygy have been calculated by

lations shows a satisfactory agreement. But the quality oMC Simulations(see Sec. IV A for several values o& and
this agreement is less good than it is, e.g., for a liquid of hard®- The nonvanishingY,) in the disordered phase up to
spheres. The reason for this may lie in the PY approximation=9 are given by
For a liquid its physical content has been elucidated by Per-
cus [27] (see also Ref[1]) by use of a grand canonical 1 V21 -
ensemble. Since in a molecular crystal the particles are fixed, (Yoo = T (Yoo = ?<Y41>’
it is not obvious how this reasoning can be used. Of course, Ve
it might be interesting to investigate whether other closure
relations[1] or the turn to much highelr,,., can lead to an V30 - V2 -
improvement. (Yaza) = E<Y41>: (Yeo) = Z<Y61>a
To conclude, we have presented for molecular crystals a
theoretical framework for the calculation of correlation func-
tions. This has been achieved by an extension of the OZ \5 . V33 -
equation from liquids to crystals. In combination with the PY (Yera) =~ Z<Y51>, (Yoo = ?<Ys]>,
approximation we have demonstrated that this framework
leads to satisfactory results compared with MC data.

—_—
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support in performing the MC simulations by J. Horbach, V. These relations also allow to check whether the system is in

Miiller. and W. Paul. the disordered phase. For instance, calculati¥gy and
(Y4+4) from the MC trajectories, their ratiQ 4.4/ (Y 40) must

~1 .70

APPENDIX A: SYMMETRY RELATIONS FOR THE ONE- be ~ 14\ 70.

Next, we investigate the symmetries &, (Q,Q’),
which will help to reduce the numerical effort to solve the
OZ/PY equations. From definitiof®) it follows immediately

In this appendix we will present some useful properties of
the one-particle and two-particle quantities. G (Q,Q) =G, (Q,Q). (Ada)

Let us first discuss the one-particle orientational distribu-
tion function p'*(€) in the disordered phasg!™(2) must  |f the inversion| belongs toP, the invertedG,,(Q,Q’)
carry the full point symmetryP of the underlying periodic  myst match the old one by use of E8), sinceH{,},{I.})

lattice, and also the symmetryy of the particles[8,13.  remains unchanged under inversion then
Neglecting the latter for a momeniY(Q) for axially sym-

PARTICLE DISTRIBUTION AND THE CORRELATION
FUNCTIONS

metric particles can be expanded into a series gPafivari- G- 0. -0) =Gy (Q,Q) (A4b)
~ n’n ) - “nn’ ) '

ant combination¥),, (2) of spherical harmonics. This expan-
sion readdcf. (200)] whereQ)=(6, ¢) —-Q=1Q=(7-6, ¢+ ) has been used. If

. o the symmetry groupP contains rotationsR, the rotated

(1) = _in @D
P _g( D" piny Yin (€. (AL) G, .(Q,Q') must be the original one,
|

Here, the numbers, are the multiplicities of the unity irre- Griy (RQL,RQ') =Gy (Q,Q), (A4c)

ducible representation contained in the point group represen-

tation of P established by all spherical harmonics of orter .

Then, by the invariance requirement under symmetry oper%\ggﬁjriolz\:rg stands forRx,y. The propertieqAda)~Adc)
tions of the particles, EqAl) can eventually be further sim- nnvANs

plified [8,13. If the lattice is cubicP=0y, and for any kind .

of axially symmetric particles we have G v = G (A5a)

1 - R .
D(Q) = —=Yp1(Q) + p¥ Y41(Q) = p&) Ye1(Q o
PR = Vo) * i Yl ) = pii Yeal ) Gonroons = (= D™ G (ASb)

+pg Yau(() +0(1 = 10). (A2) N , , |
. . In our opinion, the factoé in the expression fowg in Ref. [28]
The Oy, cubic invariantsYpy(Q)=Yo(Q)=(4m)7Y2, Y44(Q),  is a misprint and should reatlinstead.
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_ [ 1" ) "
GRrart Im,1'm’ = n{%” DmM’(R)Dm’m"'(R)Gnn’,lm”,I’m’”- dy =4m il _lfsz p(l)(Q)Y)\(Q)Y)\r(Q)dQ
(ASc) g e s | @D D ]2
In Eqg. (A5c), Wigner’s generalized spherical harmonics- o v 47(21" +1)

tation matricegare used?2]. The reader should note that for
the calculation of the correct rotation matrix elements in Eq. XC(I'",000C 1", = mm/ m")(Y,n),
(A5c), one has to use the three Euler angles carrying some
coordinate frame, in whichx,, is fixed, into a new,
symmetry-equivalent one such that the rotated vertgr

coincides withRx,,,. The behavior of the spherical harmon- \ynere the product rulg2] for the spherical harmonics and
ics under complex conjugation yields a fourth property, Y,)=fdQ pP(Q)Y,(Q) has been used. Since the values

Gy gy = (= DI e G. (Asd) (Y, are obtained from the MC simulation, Eq#3) allow

to determine the canonical averad®s). Then,(Y,) is sub-

Equationg/A5) are translated to the Fourier transformed ma-giityted into Eq(B2), with summat|on truncated &, This
trices S(q)=4m G(q) [see Eqs(23) and(28)] due to approximate result fod,, yieldsD;,, from Eq. (B1).

S(g) = SM(Q) (A6a) Contrary to the lattice correlation functiorfs,, (Q2,Q’) is
not affected by the lattice and refers exclusively to what
, happens between two particles. Therefore, it is advantageous
Sw(@=(=D""s(~q), (ABb)  to use ther frame for the calculation of the matrix elements
fan s i.€., the coordinate system in which the connecting
line of the particle sites coincides with tleaxis. In that
frame itisf | \\/= 8w f Ly 1/ Having calculated |
one gets

doo,00= 1, (B2)

nn’,|I-m,l”—

Smim (R = > DL (RD!, (RS rrr(Q),
n.(!n.(// nn! ”!
(A6C)

fan o = D,R,,Rf,,, B3
Sml’m’(Q) ( 1)|+| +m+ms m|r_mr( CI) (Aﬁd) nn".Ax % mm( ) m’( ) nn’ Il ( )

Equation (A6a) demonstrates thab(q) is Hermitian, but similarly to Eq.(A5c). The rotation matrixR carries the cu-

Gnpy in general is not. . . bic coordinate frame into ther frame, where Rx,,
The symmetry of the particles can bring about extra char-

o \ . =(0,0,Xq])- In ther frame, the matrix elements have simi-
acteristics of the matrix elemeni8,13). For axially symmet- : :
. : o . lar properties as in Ref21],
ric particles with inversion symmetry, which are fixed with

their inversion centers to the Iatt|ceG(d 0,0

nn’ f ' i m’ = 5 f ! ' f ! _( l)|+| f T rm?
nn,( —Q,0")= Gnn/(Q -Q')= Giﬁ])r( -Q,-Q') is valid, and nn’,Im,1’m mnY © e/l m nn’ ll’'m nn’,ll’'m
the self- part fulfills G(S)(Q Q)= G(S)( Q,-Q’). Conse- r r
quently,G( can have nonzero elements foandl’ even or fonrm=f o -me (B4)

for | andl’ odd, respectively, Whl|é3 has nontrivial ele-

ments forl andl’ even, only.
We want to conclude this section with the remark for o+ 122 (] T2

cubic lattices, that by symmetry the knowledge of the corre- ¢ ()= (- 1)m< ) {( m).] sin 6 P,.(cos 6)

lation functions for only—8 of all lattice vectors o& of the (I+m!

volume of the first Brillouin zone is necessary to calculate

the correlations for the complete lattice or Brillouin zone. IS used, where we define

In the following, the abbreviation

A1

APPENDIX B: CALCULATION OF  D;,,,fnn ans AND P, -m(cos 6) = (- 1)mE ; Pim(cos 6)
gnn’)\)\’

_In this appendix we describe how the input quantitiesto cover all possible values ah. Using Q,=(6;, ), Q)
D,,. [needed for the OZ equatio8l) and to determine =6, ), b= — oy, o=+, nn,(Q Q)
Sw(q) from Eq. (28)] and foy i+, Gnw s [needed for the  —¢r(jx. [ 6,6/, 4, (which function is 27 periodic with
PY approximation, Eq(33)] are calculated. respect to ¢,) and the relations f (X!, 6,6, $1)
\-transforming equatioil8) yields =1 (|, 6, 6], —b0), and £ (X, 6, 6, 1)
(B1) = (Xl 6, 7= 0], m+d)=F (X |, 7= 0, , 67, T+ Do)
=f "(Xg|, 7= 6,, 7= 6] , $1) (due to the head-tail symmeijry
with one finally ends up with

Dy =y = Ay 00 ooy

061105-11
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have found(©(q))” and its back transforrc,, ).
2. Step.Substituting(¢°(g))” into the OZ equatiori31)

yields the total correlation function denoted @y (q))™. Its
back transform(h ) will not fulfill Eq. (29) in general.

where the Mayer function in the integrand has to be takerf herefore one has to use

from Eq. (34).
The calculation ofg,, \\» N#n’, is done as follows.
From Eq.(13) we get

Gnv o = O+ N (B6)

o

The OZ equation yields,,,(q) from which the back trans-
formh, ., ), is deduced. For the calculation g )+, how-
ever, we needh,y .. It is easy to prove thah, ,,, is

uniquely determined bj?l° [20],

nn’ AN/

5}\'00 dOO)\")hnn’,)\”)\”’(5)\/”)\' - 500)\/ d)\///'oo),

(B7)
where summation convention is assumed. Takdgg from
Eq.(B2), hyy
summations at=l,,, EQ.(B7) yields an approximation for
Pans -

hnn’,m' = (S

APPENDIX C: THE ITERATION SCHEME

The iteration scheme for solving the OZ/PY equations
self-consistently will be described in this appendix. For par-

ticles of inversion symmetry, only th¢l’ ever) matrix ele-

ments do not vanista priori. Qualitatively the scheme is
similar to that for liquids, but in detail it is much more in-

volved.
1. StepAs initial condition, which is thepreliminary first
iteration denoted byc,, ), it is chosen

(énn’)(l) = {

Fourier transformation yield<c(q))Y and (©°(q))" by

0, n=n 1
1:nn’a n#n'.

from the OZ equation and again truncating

(e @)= @ - =S @@ (€2
q

from which one getgh, )* and (g,,)" by use of Egs.
(B6) and (B7).

3. StepWe substitutéh® (g))” into the OZ equation. The
resulting direct correlation function after back transformation
is denoted by(G - ). Finally, thepreliminary sth iteration
@) is replaced by thdinal one,

a@ )P+ (1-a)@.)», n=n’

(C /)(V) =
" (Enn’)(v)a n#n’,

(C3

where« is a mixing parameter.

4. Step.Now one substitute$g,,)™”, (coy)”, andf,,
into the right-hand side of the PY equati¢d6) for n#n’
and obtaing(c,¥)**Y. Then thepreliminary (v+1)th itera-

tion (€ )Y is obtained from

(v+1) — (Cnn)@),
alcp) "V + (L= a)(con)™, n#n'.

(C9

This procedure is repeated until a fix point for the matri-
ces has been reached. Typicallys=0.1 is chosen to avoid
divergence. Convergence is assumed if all elements of
(h )™ have submerged a certain threshold, which is chosen
to be 10*3times the maximum absolute value of any matrix
element(h ;H,M,)(V). Additionally, the average of all nonzero
matrix elements of(C,, )Y~ (C,y)” must be belowa

times a second threshold, which is calculated in the same
manner as theh threshold, but by taking also thke=0,

n=n’

(énn’)

eliminating the first row and column. Now let us assume wel’ =0 matrix elements into account.
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