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Noise-enhanced stability in fluctuating metastable states
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We derive general equations for the nonlinear relaxation time of Brownian diffusion in randomly switching
potential with a sink. For piece-wise linear dichotomously fluctuating potential with metastable state, we obtain
the exact average lifetime as a function of the potential parameters and the noise intensity. Our result is valid
for arbitrary white noise intensity and for arbitrary fluctuation rate of the potential. We find noise enhanced
stability phenomenon in the system investigated: The average lifetime of the metastable state is greater than the
time obtained in the absence of additive white noise. We obtain the parameter region of the fluctuating potential
where the effect can be observed. The system investigated also exhibits a maximum of the lifetime as a
function of the fluctuation rate of the potential.
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I. INTRODUCTION which cannot be described by Kramers-like behavior, was

Activated-escape in systems with metastable states undepPServed and investigated theoretically and experimentally
lies many physical, chemical, and biological problems. Ex-n various physical systems and mainly concerning MFPT in
amples are crystal growth, tunnel diode, lasers, quantum ligPeriodically —or randomly driven metastable states
uids, spin systems, protein folding, and polymer physicd3,9,14-24. In these papers the nonmonotonic behavior of
[1,2]. The most interesting and stubborn case of metastabléie average escape time was observedin physical sys-
state is one described by time dependent potential, whictems, like tunnel diodg¢14], and Josephson junctioiig],
fluctuates on a characteristic time scale that may vary over where the influence of thermal fluctuations on the supercon-
large range. In particular, the metastable states with fluctuatiuctive state lifetime and the turn-on delay time for a single
ing barriers are common to chemical and biological modelslosephson element with high damping was investigated;
[3-5], and to a wide range of physical problems, such asn chemical systems, like the one-dimensional return map of
nonequilibrium transport models, molecular dissociation inthe Belousov-Zhabotinsky reaction, by investigating the be-
strongly coupled chemical systeni8], ratchet models for havior of the length of the laminar region as a function of the
the action of molecular motor§], noise in microstructures noise intensity{22], and(iii) in biologically motivated mod-
and generation process of carrier traps in semiconducto®ls, such that investigated in R¢8], where the overdamped
[8-10. The escape from metastable state with fluctuating omotion of a Brownian particle moving in an asymmetric
randomly switching barrier was studied in the past mainly byfluctuating potential shows noise induced stability.
well known mean first passage tini®IFPT) technique. In Here we study the NES phenomenon for the NLRT in
Refs.[11,17 exact results for the MFPT of escape procesgandomly switching metastable state, and we obtain analyti-
over fluctuating barrier that switches between two configucally the region of system parameters, where this effect takes
rations have been obtained. However, the MFPT method replace. We find also resonant activation phenomenon by in-
quires the implication of absorbing boundary in the systemyestigating the mean lifetime as a function of switchings
and it does not take into account the inverse probability curmean rate. Moreover, we find that the NLRT exhibits a maxi-
rent through this boundary. The nonlinear relaxation timemum as a function of barrier switching rate. This new
(NLRT) method is devoid of this disadvantaffe3]. Never-  resonant-like phenomenon is related to the NES eff&add)].
theless the theory for the NLRT is not well developed and The paper is organized as follows. In the second section
the equations for the NLRT are unknown for the case of timeve derive the general equations for the nonlinear relaxation
varying potential. time of Brownian diffusion in randomly switching potential

In the present paper we derive general equations for theith a metastable state. In the third section we analytically
NLRT for potentials randomly switching between two arbi- derive the mean lifetime for piece-wise linear potential. In
trary configurations with a sink. We find the exact solution ofthe next section we obtain the condition to observe the NES
these equations for a piece-wise linear potential flipping bephenomenon and investigate the behavior of the mean life-
tween unstable and metastable configurations, for arbitrarfime as a function of switchings mean rate. In the final sec-
white noise intensity and fluctuation rate of the potential.tion we draw the conclusions.

Analyzing this exact result we focus on the noise enhanced

_stability(NES) effect, which implies th_at the sys_tem remains Il. GENERAL EQUATIONS

in the metastable state for a longer time than in the absence

of additive white noise, and the lifetime of the metastable We consider the one-dimensional overdamped Brownian
state has a maximum at some noise intensity. This effectnotion in switching potential profile

1539-3755/2004/68)/0611037)/$22.50 69 061103-1 ©2004 The American Physical Society



DUBKOV, AGUDOV, AND SPAGNOLO PHYSICAL REVIEW EG69, 061103(2004

\ U(x)-V(x)
\

o Ly
dxo):fo dt ) WI(X, X, 0)dX, 7)

wherexg e (L;,L,). The NLRT is also interpreted as mean
lifetime of Brownian particles in the intervdl ,,L,) or av-
erage residence time, because, in accordance with (Bgs.
and(7) can be rewritten as conditional time average

FIG. 1. Switching potential with metastable state. 7(Xg) = <J A(x(t) — L1) O(L, — x(t)) dt|x(0) = X0>,
0
dx _ dP(xt) where 6(x) is the step function.
at ax ¢, Let us rewrite the definitioli7) in the form
Ly
B(x,1) = UX) + V) (D). ) )= | Yo O ®

Here x(t) is the Brownian particle displacemenriyt) is the  where Y(x,xy,5) is the Laplace transform of conditional
white Gaussian noise with zero mean and correlation funcprobability densityW(x, t|Xy,0). After Laplace transforming
tion (&(t)&(t+7))=2D&(7). The potentiatb(x,t) is the sum of  Egs. (4), with initial conditions(5) and (6), we obtain the
two terms: The fixed potentiaU(x) and the randomly following closed set of ordinary differential equations
switching termV(x) %(t). The variablez(t) is the Markovian
dichotomous noise, which takes the values +1 with the mean
flipping rate v. If we invoke the following expression for

DY"+[U'(X)Y +V'(X)R]" =sY=—8(x—Xo),

probability density in terms of the average DR’ +[U'(X)R+V'(X)Y]' = (s+ 20)R= + 8(X = Xo),
9)
WI(X,t) = (o(x — x(t 2 . L
00D = (S0 =x(0)) @ whereR(x,Xg,S) is the Laplace transform of auxiliary func-
and introduce auxiliary functio@(x,t) tion Q(x,t), defined by Eq(6). Using the method proposed
in Ref. [27], we expand the functionsY(x,Xy,s) and
Q(x,t) = (7(t) (x — x(1))), (3) SR(X,Xg,S) in power series irs
we obtain the next closed set of equatigaee[25,26, and SY(X,Xo,S) = Zo(X,Xo) + SZy(X,Xg) + - -
the Appendix
SRX,X0,9) = Ro(X,X0) + SRi(X,Xo) + -+ (10
AW 9 PW . . . :
— = —[U'(0W+V'(x)Q]+D——, Since all Brownian particles move to the sink located at the
Jt  9x 9X pointx= +% (see Fig. 1 we have zero stationary probability
distribution, i.e.,
9Q _ 9y ' ‘72_Q lIMW(x,t|Xg,0) = lImsY(x,Xy,s) =0
L ——2vQ+&X[U (X)Q+V (x)W]+DaX2. (4) lim (%, t[X0,0) lim (X,X0,5) = 0.

As a consequence, in expansidii®) Zy(x,Xy) =0, Ry(X,Xg)
=0, and the definitioni8) becomes

W(X,O) = 5()( - XO) 1 (5) L2

%) = | Zi(XXp)dX. (11)

and W(x,t) becomes the conditional probability density Ly
W(X'”.XO'O)' Since 7(0) is a deterministic value, the initial - g,pstituting the expansion0) in Egs.(9) and equating the
condition for the functiorQ(x,t) is [see Eqs(3) and(5)] terms withouts, we obtain the following set of equations for
the functionszZ;(x,%y) and R;(X,Xg)

Let x=x, be the initial position of Brownian particles. Then

Q(x,0) =WI(x,0)7(0) = £ &(x = Xg). (6)
. . . _ DZj+[U'(X)Zy + V' (X)Ry]" = = 8(x— %),
Let us consider the potential profilegx)+V(x) with a wall
at x— - and a sink atk— +oo (see Fig. 1 The potential DR] +[U'R, +V'Z,]' - 20Ry = T d(x—xg).  (12)
profile U(x)+V(x) corresponds to a metastable state, and
U(x)—V(x) corresponds to an unstable one. Because of the reflecting boundaryxat—ce, the probabil-

Thus, we investigate the system with randomly switchingity flow equals zero at this point, and from Eqé) we have
metastable state. JW

The nonlinear relaxation timéNLRT) for the state lo- D— +U'(X)W+ V' (X)Q =0,
cated in the intervall,,L,) is defined as follow$13] IX

X=—00
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FIG. 2. Switching piece-wise linear potential.

9Q , ) B 2vD 1 2wx
[D5+U (x)Q+V (x)W} =0. (13 Zl(x)=cl<cosh7x+ %) +C,Sinh Eo T '
X=—00
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X

DR, -kf(x-L)R;+az, =1+ 2vf Rdy.  (17)
0

We solve the set of differential equatio(iss) in the regions
0<x<L andx>L separately, and then use the continuity
conditions at the poink=L

Zy-0=Zy+00  Ry-0=Ry+o0- (18
For 0<x<L, the solutions of Eq17) read

W,

Making the Laplace transform of Eqgl3) and substituting

the expansiongl0), we obtain the following conditions for

the functionsZ;(x,X,) and R;(X,Xg)
[DZ; +U'(X)Zy + V' (XR = = 0,

W a
Ri(x)=—--— hyx+ hy)-—=, (19
1(X) a (cysinh yx + c,coshyx) D02 (19

whereZ;(x) =Z;(x,0), Ry(x) =Ry(x,0) and

[DRy +U' (R + V' (0Z4]=-e = 0. (14) r=4 ;_22 + ZEV (20)

By integrating the syster(il2) from —x to X, with boundary
conditions (14), we obtain the following closed set of The finite solutions of Eqq17) in the interval(L, +) are
integro-differential equations for the functio@s(x,x,) and

Rl(XIXO)
DZ; + U’ (X)Zy + V' (X)Ry == (X = Xg),

1
Z,(x) = cge* + PE

C3(k— uD
X Rl(X) = MeM(X—L)’ (21)
DR1+U’(X)R1+V’(X)21=2vf Ridy F 0(x = Xo). a
- where
(15
2
These general equations allow to calculate the NLRT for W= 2_k{1 +1/1+ 37’2? cos( o+ 2”)]
potential profiles above-defined. We may consider two mean 3D k 3
lifetimes 7,(xg) and 7_(Xp), depending on the initial configu-
ration of the randomly switching potential profite(x,0): _1+90D - a?)/k? 99
U()+V(x) or U(X)-V(x). The NLRT(L1) is equal tor,(xy), COS 0= = 1 3 2022 (22)
when we take the sign “~” in the second equation of system _ _ ) )
i is the negative root of the following cubic equation
(15), and vice versa for_(xp). th t t of the foll b t
k\? 2vk
x(x——) -+ 22 =0. (23)
Il. LIFETIMES FOR PIECE-WISE LINEAR POTENTIAL D D

Let us consider a piece-wise linear potential profdee  Substituting the solutiond 9) and(21) in the continuity con-

Fig. 2) with V(x)=ax (x>0, 0<a<k) and

ditions (18) and in the second equatigh7), we obtain, after
rearrangements, the following compact system of algebraic

+ o, x<0 equations for unknown constants,c,,Cs
Ux)=30, Os=x=<L. (16) 20k
k(L-x), x>L clcoshyL+czsinhyL+c3<?—1):0,
' M

Hereafter we shall analyze the average residence firt®

from the interval(L;=0,L,=b) with b>L, which is finite in ) k- uD a?
deterministic case. We consider the initial position of all Cy Sinh YL +C; COShL + G — =~ 13,
Brownian particles at the origin, i.exy=0. The potential
profile U(x)+ax corresponds to metastable state amgk) ka2 ah
—ax corresponds to unstable one, as indicated in Fig. 2. After C1—C3 s = 5 (24
substituting the potentiall6) andV(x)=ax in Egs.(15) and pI*D - 20D
choosing the sign “+” we arrive at where

DZ;-ké(x-L)Z, +aR =-1, I'=D,
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2val B

a
h="+
Kk

The solutions of Eqs(24) are

o= ah . a’k(2vDa sinh L — hI'®)
17 2uD  2uI3D[a%k + D(2vk — ul'?) coshyl + uI'D(uD - k) sinh L]’

_a{(ul'? - 2vk)(2vDa+ hI3sinh yL) + [hul*(k — uD) — 2va’k]coshyL}
2 2uI'¥3a%k + D(2vk — uI'?)coshyL + uI'D(uD - K)sinh yL] ’

s pa(2vDa sinh yL - hI'®)
37 2uI'[a?k + D(2vk — uI'?)coshyL + uI'D(uD - K)sinh yL]’
Substituting the expressio$9) and(21) of the functionZ;(x) in Eq.(11), and using Eqg26), we obtain finally the following
result for mean lifetime
)= b, v_|_2+ a ( DI'{2va[T?(e*P™V - 1) + 20kL] + hI'?(2vk — uI'?)}sinh yL — 2vDa(a?k + ul'?D — 20kD)
=TT T Tourt a2k + D(2vk - ul')coshyL + uI'D(uD - K)sinh L

(26)

.\ D[hul*(uD - k) + 2va(a’k + uI'°D — 2vkD)]coshyL — hT[T%(e“®™Y - 1) + 20kL + uD(uD - k)]) @7
a?k + D(2vk — ul'?)coshyL + uI'D(uD - k)sinh yL '
[
Equation(27) is exact, and was derived without any as- 2w 20D(1 +0?)
sumptions on the white noise intensiy and on the mean M= L(L-¢?) - kL(1-P? | (29

rate of flippingsw.

Substituting Egqs(29) into Eq. (27), and retaining the terms

IV. CONDITION TO OBSERVE NOISE ENHANCED up to first order inD, we obtain the following expression for
STABILITY (NES) NLRT at small noise intensity

Because of the complicated expressi@i) of the mean D
lifetime, we analyze the limiting cases of very large and very 7-(0) = 75+ =f(g,»,5) +0(D). (30
small noise intensities. Using the approximate estimations a

for small parametery and x in the limit D — o
P ¥ K - Here

\/2"<1+ az) \/2"(1 k_ ) 3@+40-5 _ 3q2+Qq-3 20°
y=\<l1l+—=| wp=-\/=Z|1-——]. o2+ 4q - g°+q- ®
D 4vD D 2\2vD f(g,w,5) = + 2w -—
k 20-¢) ai- @

. Pl+g) q(1 -0 -20°)

T'(O):EJrL_Z[l_M]*O(i)- (28) T (1+q)(1—q2)+(1_e_5) 2(1-¢?)
k 2D ol D

obtained from Eqs(20) and(22), we find from Eq.(27)

(31)
Herew=vL/k andq=a/k are dimensionless parameters. The
parameterq quantifies the degree of potential flathess after2nd
the pointL (see Fig. 2 Under very large noise intensiy,

2 - —
Brownian particles “do not see” the fine structure of potential _2 + L + b-L _ 91 -9

T0—

(1-€79), (32

profile and move as in the fixed potentidéx- Therefore, the a a k 2v
NLRT decreases with noise intensity, tending to the value oo ) _ _
b/k as follows from Eq(28). is the mean lifetime in the absence of white Gaussian noise

The NES phenomenon should be searched in opposit@zo)- In Egs.(31) and(32) new dimensionless parameter
limiting case of very slow diffusioiD —0) [9,14,24. The

approximate expressions, obtained in this limit, for param- o= 20(b/L - 1)
etersy,I’ and u are 1-¢* '
y= 3(14,@), F:a<1+@), is introduced. o _
D a a For very slow switchingy— 0, we find from Eq.(32)
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0.8 0.9 1
q

FIG. 4. Semilogarithmic plot of the normalized mean lifetime
7-(0)/ 7y vs the white noise intensitl for three values of the di-
mensionless mean flipping raée=vL/k: 0.1 (curve 1, 0.05(curve

FIG. 3. Shaded area is the parameter region on the ptanre
where NES effect can be observed. Hare(vL)/k, g=a/k, and

b=2.. 2), 0.01(curve 3. Parameters are=1, k=1, b=2, anda=0.995.

(v — 0) = L + b- L' 33y . The maximum value of the NLRT and the range of noise
a k+a intensity values, where NES effect occurs, increases when
o o decreases.
which is different from the deterministic time By using exact Eq(27) we have also investigated the
behavior of the mean lifetime_(0) as a function of switch-
ry=To(v=0)=— + b- L_ (34) ings mean rgteu._ In Fig. 5 we plot this behavior for seven
a k+a values of noise intensity.
. . At very slow flippings(v— 0) we obtain

Difference between the resuit33) and(34) is due to a non-

zero probability of one switching within the deterministic 0) = 7 — D(1-e?D) 37

time interval(0,7y) in the casev— 0. 7(0) = 74 2(1+q) (37

The condition to observe the NES effect can be expressed ) ]
by the inequality i.e., the NLRT of the fixed unstable potentiél(x)—ax.

While for very fast switchinggv— ) we obtain

f(9,w,8) > 0. (35 b L2
~(0)=~-+—,
Let us analyze the structure of NES region on the plane (0 k 2D
(9, w) from Egs.(31) and (35). At very slow and fast flip-

pings we obtain

(38)

i.e., the mean lifetime for average potentix). All limiting

values of the NLRT expressed by Eq87) and (38) are

\E -9 shown in Fig. 5. At intermediate rates the escape from the

=0,7863, w—0 metastable state exhibits a minimumeat 0.1, which is the
signature of resonant activation(RA) phenomenon
[2,4,12,28.

q(39°+q-3) Moreover, in Fig. 5 we observe a new resonant-like be-

1——qz’  — ®, (36) havior for the NLRT as a function of mean fluctuation rate of

potential. The NLRT exhibits amaximumbetween the slow

q>

In Fig. 3 we show the NES regiaishaded argaon the plane
(0, w) for b/L=2, obtained from inequality35). 20
The NES effect occurs a=1, i.e., at very small steep-

nessk—a=k(1-q) of the reverse potential barrier for the 15

metastable state. For this potential profile, a small noise in- =(0)

tensity can return particles into potential well, after they 10

crossed the point. Then Brownian particles stay for long 5

time in the metastable state. This means that, for a fixed

mean flipping rate, the NES effect increases whenl. For 0

fixed parameteq the effect increases whan— 0, because 4 6 4 2 o 2 4
Brownian particles have enough time to move back into po- ©

tential well. FIG. 5. Semilogarithmic plot of the mean lifetime(0) vs the

In Fig. 4 we show the plots of the normalized mean life- gimensionless mean flipping rae=»L/k for seven noise intensity
time 7_(0)/ 7, Eq.(27), as a function of the noise intensily  values. Specifically from top to bottom on the right side of the
for three values of the dimensionless mean flipping ate figure:D=0.03, 0.05, 0.07, 0.09, 0.15, 0.25, 0.35. The other param-
=yL/k: 0.01, 0.05, 0.1. eters are the same as in Fig. 4.
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limit of potential fluctuationgstatic limit) and the RA mini- oW ]
mum. This maximum occurs for a value of the barrier fluc- 51 5(<x(t)5(x—x(t))>. (A1)
tuation rate on the order of the inverse of the timg(D) _
required to escape from the metastable fixed configuration Substitutingk(t) from Eq.(1), and using the definitio(8) of
b auxiliary function, we can rewrite EqA1) as
D) b-L L . D(e?“P -1) (39)

T = -7 . oW o J J

T k-aa dl-g == U GOWT+ IV (X0Q] - (&0 8(x—x(D)).
This suggests that, the enhancement of stability of metastable A2
state is strongly correlated with the potential fluctuations, (A2)
when the Brownian particle “sees” the barrier of the meta-To obtain the evolution of functiorQ(x,t), we use the
stable stat¢9,14,24. Shapiro-Loginov’s formula for Markovian dichotomous

noise[29]

V. CONCLUSIONS d :
gt MORL7]) = = 2u(nOR 7D +{n(OR{7]),  (A3)

We have investigated the nonlinear relaxation time for
one-dimensional system with additive white Gaussian no'seWhereRt[n] is an arbitrary functional depending on the his-

and potential profile switching between two configurations, . .
due to a Markovian dichotomous noise. From the generaiP"y ©f random procesg(7), 0= r<t. ReplacingR{ 7] with

equationg15), we provide exact expression of the mean life- 5(x—x(t))_in Eq. (A3), using Eq.(1) and taking into account
time for piece-wise linear potential, for arbitrary noise inten-tNat 7(1)=1, we arrive at
sity, and arbitrary fluctuation rate of the potential. We find ;4 9 9 J
the noise enhanced stability and the resonant activation phe=, == 2vQ+ —[U’(X)Q] + ——[V'(x)W] = —(&(t) n(t) 5(x
. . . . . Jt JX JX X
nomena in the system investigated. We obtained analytically

the region on théq, w) plane, where the NES effect can be - X(1))). (A4)

observed. Moreover, \{vheln we fix white noise intendity To split the functional averages in Eqa2) and(Ad), we
flatnessg, and vary switchings mean rate we can observe oo : : .
use the Furutsu-Novikov’s formula for white Gaussian noise

new resonant-like behavior of the mean lifetime, which isg(t) [30]
related to the NES phenomenon. The NLRT shows a maxis
mum as a function of the mean flipping rate of potential, e SF{ €] _ SR €]

with the NES effect strongly correlated with the potential  (€(DF{&D = 0<§(t)§(T)> ) dr=D S /-
fluctuations. The general equations derived in this paper en-

able us to perform the analysis of the NES effect conditions (A5)

in physical systems with more complex potential profiles. whereF{[£] is an arbitrary functional of(t). Replacing se-
quentially F{£] with 8(x—=x(t)) and with 7(t) S(x—x(t)) in
ACKNOWLEDGMENTS Eqg. (A5), and taking into account that, in accordance with
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(&) n(t) S(x = x(t))) = - D=~

JW
(EM)a(x = x(1)) == D=

(A6)

APPENDIX: EQUATIONS FOR PROBABILITY DENSITY . . .
Q Substituting the expressiolid6) in Eqgs.(A2) and(A4), we

Upon differentiation of Eq(2) ont, we obtain obtain the desired closed set of E¢4).
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