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Heisenberg-Fisher thermal uncertainty measure
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We establish a connection amo(ig the so-called Wehrl entropyii) Fisher’s information measure, and
(iii) the canonical ensemble entropy for the one-dimensional quantum harmonic osgii@yoiVe show that
the contribution of the excited HO spectrum to the mean thermal energy is givep bsile the pertinent
canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one.
Our findings should be of interest in view of the fact that it has been shown that the Legendre transform
structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-
Shannon entropy by Fisher’s information measiBeR. Frieden, A. Plastino, A. R. Plastino, and H. Soffer,
Phys. Rev. E60, 48 (1999]. Fisher-related uncertainty relations are also advanced, together with a Fisher
version of thermodynamics’ third law.
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I. INTRODUCTION protagonist of the present effort, in Sec. Ill. In Sec. IV we

We will here explore some features of an information—e_Xplore_ its _properties with rega_rds to temperature’s estir_na-
theoretic uncertainty measure, the Wehrl entrgplyl,,. As  tion while, in Sec. V, we establish some results concerning
shown by Lieb[2], Iw=1, and this bound represents a uncertainty relations. Finally, we draw some conclusions in
strengthened version of the uncertainty principle. In the cas®ec. VI.
of a harmonic oscillator in a thermal statg, coincides with
the logarithmic information measure of Shannon’s in the
high-temperature regime. However, it does not vanish at zero

temperature, thus supplying a nontrivial measure of uncer- | Ref. [3] the authors discuss quantum-mechanical
tainty due to both thermal and quantum fluctuatig8b It phase-space distributions expressed in terms of the cel-

will be shown here that intriguing connections liif, 0 eprated coherent stati of the harmonic oscillator, eigen-
Fisher’s information measure As far as possible, we will  giates of the annihilation operataf11,12;:

use the notation of Anderson and Halliwgs].

The present endeavor is motivated by the fact that much
interesting work has recently been devoted to the physical
applications of Fisher’s information measyfdM) (see, for
instance, Refs[4-8]). Frieden and Soffef4] have shown 2z=(Xoy +iploy),
that Fisher’s information measure provides one with a pow-
erful variational principle—the extreme physical information
one, which yields most of the canonical Lagrangians of the- 2= (Mw/2/)% +i(2hwm)™?p,=x" +ip’ with x’
o_retical physics{é},a. Additiona_lly,] has been shown to pro- =x120,, p'=pl20y;
vide an interesting characterization of the “arrow of time,”
alternative to the one associated with Boltzmann’s entropy
[9,10). Thus, unraveling the multiple FIM facets and their oy = (hl2mw)*? o= (hmwl2)*? oyop,=hI2. (1)
links to physics should be of general interest. The Legendre
transform structure of thermodynamics can be replicated a¥arianceso are evaluated for the HO ground state. Coherent
well, without any change, if one replaces the Boltzmann-states span Hilbert's space, constitute an overcomplete basis,
Gibbs-Shannon entrogyby Fisher’s information measute ~ and obey the completeness rufese “natural variables”

In particular,(i) | possesses the all important concavity prop-X",Y") [11]:
erty [7], and(ii) use of the Fisher's measure allows for the
development of a thermodynamics that seems to be able to J d_22| W |_J d
treat equilibrium and nonequilibrium situations in a manner T A
entirely similar to the conventional ori&]. Here, the focus

of our attention will be, following Ref[3], the thermal de-

scription of harmopic oscillatofHO). _ _ d?z=d Re(2)d |m(z):ﬂ3§ xdp'. )

For the convenience of the reader, in Sec. Il we review 2h
some fundamental aspects of the HO canonical-ensemble de-
scription from a coherent states’ viewpoii3]. We also dis- Varianceso are evaluated for the HO ground state. The We-
cuss some ideas related to Fisher’s information measure, thel entropy[1] is defined as

II. BACKGROUND NOTIONS

Ho=ho[@a+1/2], a=i(2hom) 2+ (mw/2h)Y%;

x dp N
o Ix,p)x,p[=1,
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dp dx parameter. An observer makes a measuremenx @ind has
lw= ‘f orh p(x,p)In w(x,p), (3 to best inferd from this measurement, calling the resulting

o . o . estimateE:E(x). One wonders how welh can be deter-
where u(x,p)=(zp|2) is the “classical” distribution function  mined. Estimation theory16] asserts that the best possible
associated to the density matfof the system. The function . ~ :
) romalzed n e o ch dwzmuop)  Coeol ST 8 1 08 T of e
= [(dx dp'/7m)u(x',p’)=1, and is often referred to as the . L : - q 2 y

o N . . . relationship involving Fisher’d, namelyle<=1, where the
Husimi distribution[13]. It is of particular interest to discuss Fisher's information measureis of the form
the equilibrium case as represented by Gibbs’ canonical dis-

tribution, where the “thermal” density matrix is given py aln f,(x) |?
g A i - 1(0)= | dx fo0) ——— - (8)
=Z1lgPH. z=Tr(e”") is the partition function andg 0 90
=1/KT, T being the temperature arldthe Boltzmann con- . L ) o )
stant, to be set equal to unity hereafter. Specializing things This “best” estimator is called thefficientestimator. Any
for the HO, with eigenstatds) associated to the eigenener- otr;er estimator ";]US'[ Eave a Iarlge_r mhean—?lquar_e error. ghe
gies En:ﬁw(n+%), one has (Zp|2)=(1/2)%, e (z|n)? ony prowsp to t .e above result is t.at a t.estlmato'rs e
. 2 J1o12n 122 o unbiased, i.e., satisfyd(x))=6. Thus, Fisher’s information
with [(z|n)|?=(|z/*"/n!)e"1?", so that the distribution reads )
3 measure has a lower bound, in the sense that, no matter what
3] parameter of the system we choose to meaduhas to be
w(x,p) =(Zpl2) = (1 _e—Bhw)e—(l—e’ﬂ'“")|z|2, (4) Iarger_than or equal to the in\{erse of the_ mean-square error
associated with the concomitant experiment. This result,
and the Wehrl information(3), after integration over all 1e?=1, is referred to as the Cramer—R@R) bound[5]. A
phase space, turns out to be particular| case is of great importance: that of translation
o= 1 - In(1 - e-Bho 5 families [5,6], i.e., distribution functiongDF) whoseform
W n(1-e*). ®) does not change undérdisplacements. These DF are shift
Note thatx’, y’ in Eq. (1) have been chosen so as to obtaininvariant(in the manner of Mach, no absolute origin fey,
the following result. First defingl) efz‘(g,w)zefz‘, (2) J,  and for them Fisher’s information measure adopts a some-

=(1/m) fdxdp’ w(x',p)|z and ©) J  what simpler appearangé]:
=(1/m) fdx'dp’ w(X',p’)|Z. Then 2
In f
I (shift invarianj:J dx f(x){ana—x(x)} . (9

&= 3~ 2= 9, - (= [
Fisher’s measure is additiy®]; if x and p are indepen-

=(1-ePhey L, (6) dent variables, |(x+p)=I(x)+1(p). Note that for =71
=(x,p) (a point in phase spagewe face a shift-invariance
situation. Since in defining in terms of the variablez and
p, these are scaled by their respective variaricésabove
the definition of(z)), the Fisher measure associated to the
probability distributionu(x, p) = u(7) will be of the form[6]

dx'dp’

v

w(xX',p)(x'2+p’?)

We write down now, for future reference, well-known HO
expressions for the entrofy, the mean energy, the spe-
cific heatCy, andZ, respectively[14,15.

hw
S= Bm - In{1 - e Phe,

dp dx
u=f;%;meA, (10
1 1
U=ho| -+——
{2 eﬁf“"—l] with
2 2
hoB 12 _ | 4In p(x,p) dIn p(x,p)
CV:—BZ((9U/(9ﬁ)V:|:eﬁhw€1:| e, A UX[ Ix *op ap - 4y
Given theu expression(4), |, becomes
h

In Z=- ﬁ;w - In{1 - e}, (7 |,=1-ehhe, (12

which, in view of Eq.(6) immediately yields

2 —
lll. FISHER'S INFORMATION MEASURE | .€,(B,) = 1(CR bound reached (13

One important information measure is that advanced by\e realize at this point that the Fisher measure built up with
Fisher in the 1920¢a detailed study can be found in Refs. Husimi distributions is to be best employed to estimate
[4,5]). Let us consider a system that is specified by a physicaiphase-space positionz|. Further, efficient estimation is
parameterd, while x is a stochastic variabléx e ReV) and  possible for all temperaturesa rather significant result.
f4(x) the probability density forx, which depends on the Comparison with Eq(5) allows one now to write
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lw=1-In1,]0 ly+In[l,]=1. (14)

Since bothl\y andl , are positive-definite quantities, E.4)
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In I,:—,Bh?w—ln Z=-[BEgs+In Z], (22)

tells us thatthey are complementary informational quanti- with Egs denoting the ground state energy. Thus,

ties what one of them gains, the other loses. Following

Anderson and Halliwel[3], let us analyze now the high and

low temperature limits. When the temperature tends to zero
(B—), | =1, its maximum possible value, since we know
that the ground state will be the only one to be populated. |

on the other hand, the temperature tends to infiy- 0),

then| .~ Bhw and tends to zero because we know before
hand that, in the limit, all energy levels will be populated in

uniform fashion. The uniform distribution is that of maxi-
mum ignorancg17]. The range ofl , is [0, 1], that of Iy is
[1,]. Replacingl , into Eq.(7) we note that

e (W2)pho

l,= — (15

so that it coincides with the canonical-ensemble probability

for finding the system in its ground state.
IV. FISHER, INVERSE TEMPERATURE, AND
THERMODYNAMICS' THIRD LAW

Consider now the general definitig8) of Fisher’s infor-
mation measure in terms of the DKEX, p):

_ M)z
lﬁ_f ( !p)( &B ’

with 8= 6 being the parameter to be estimated. Since

dp dx
2mh M

(16)

I , h _
aln (;.L;X p) — eﬁhwa)_ 1[1 _(1 —-e ,Bha))|z|2:|'

one readily ascertains thé) the x mean value of Eq(17)
vanishes, andii)

17)

fw |2
l6=| giw—q| (T=[0=]—=1p=[0]), (19

which, in view of Eq.(7), entails
e—,Bﬁw
o

Reflection upon thé; range(18) might lead one to conclude

|= (19)

that it constitutes &isher manifestation of thermodynamics’

third law. Not only Shannon’s measure, but also Fish€ids

hw —
S:,B[?"‘\"B] +In Z, (22

fWhich is to be compared to the well-known canonical-

ensemble general expression connectand the mean en-
ergy U [14],

S=InZ+pU, (23

we see that is related to the excited spectrum contribution
to U while | . is to be linked to the partition function. We will
look now for a new connection between Fisher's measures
andl . From Eq.(18) it is possible to rewritd 5 in the form

fiw € Phe\2
|/3 = 1- e—ma ' (24)
and therefore
— J e'ﬁh“’
INlg= fiwe Bho = — g (25)
Ip

i.e, the product on the left-hand side is {Belerivative of the

Boltzmann factor(constant energywigeat the inverse tem-
peratureB. In other words] . \s’lﬁ measures thg gradient of

the Boltzmann factor.

V. UNCERTAINTIES

We focus attention now on the actual phase-space vari-
ablesx,p (not onx’,p’), and start with the obvious results
x),=(p),=0. We immediately find

dp dx ol
(AMX)2:<X2>M:J o Xeu(X, D):?_ZM,- (26)
In a similar vein
202
(Ap)?=(p?, = 1_—6_5%, (27)
which entails
Alu:AMXAMp—m—l—D LA, ,=h. (28

We reconfirm thus the already mentioned fact that phase-

the HO, at leasgtvanishes at zero temperature. Replacingspace “location” is possible, with Husimi distributiotidP-

now Egs.(12) and(18) into the entropy expressidef. Eq.
(7)] we immediately arrive at the relation

S=pViz-Inl,. (20)

The HO entropy can be expressed as the sum of two term

one associated with the Fisher informatignand the other
with the Fisher information for translation familiés corre-
sponding to the phase-space variallpsx). Using Eq.(7)

we also have

DFs) only up to#. This is to be compared to the uncertainties
evaluated in a purely quantal fashion without using HPDFs.
This is made by recourse to the virial theor¢td], which
entails both(i) U=me?(x?) and(ii) U=(p?/m [cf. Eq.(7)].
g.rom these we easily deduce

fiw + 2<X2>

(X =0}

! 0 (3, = (29)

eﬁﬁw -1 - 1 +e—ﬁﬁw

and
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ho 4 1 2<p2> VI. CONCLUSIONS

e?
A=t 0 (pD), = —— . (30
L Pehho — 1 P 1+ePhe ) We have explored in this work connections between

canonical-ensemble quantities and two FIMs, associated to
Consequently, the estimation of, respectivelyi) phase-space locatiafh,)
5 eBho 4 1 2 Ax Ap and temperaturé ). O_ur moit ?mportant rgsult |s perhaps,
AX Ap= v T e (30 to show that t.here exists a “Fisher-associated” third law of
2efh0-1 l1+e thermodynamics(at least for the HQ@ From a pure
information-theoretic viewpoint, we have, in addition, ad-
vanced several results, nameli) a connection between
ehrl’'s entropy and ;. [cf. Eq.(14)], (2) an interpretation of
» as the HO’s ground state occupation probability. Eq.
15)], (3) an interpretation ofl; proportional to the HO’s
ecific heafcf. Eq. (19)], (4) the possibility of expressing
the HO’s entropy as a sum of two terms, one for each of the
| above FIM realizationgcf. Eq. (20)], (5) a new form of
F(B,0) = AXAp= i(l +e Pho) = }{ﬁ + \_lé} (32 Heisenberg’_s _uncertaint_y re]ations in Fishgr ter[nf; Eq.
21, 21 (32)], (6) efficient|z estimation can be achieved with at
all temperatures, as the minimum Cramer-Rao value is al-
so that, forT varying in[0,], the range of possiblAxAp ways reachedicf. Eq. (13)].
values is[#/2,=]. Equation(32) is a “Heisenberg-Fisher”  These results are, of course, restricted to the harmonic
thermal uncertaintyTU) relation(for a discussion of the TU  oscillator. However, this is such an important system that HO
concept, see, for instance, Ref8,18,19. F(B,») grows insights usually have a wide impact, as the HO constitutes
with 15 and diminishes with ;. Note that,for fixed uncer- much more than a mere example. Nowadays it is of particu-
tainty F(8, w)=const, . andl ; play “parallel” roles: improv- lar interest for the dynamics of bosonic or fermionic atoms
ing temperature-estimation performar@ethe sense thdl;  contained in magnetic trag20-27 as well as for any sys-
grows also enhances that of phase-space locatioem that exhibits an equidistant level spacing in the vicinity

As B—o, A, is twice the minimum quantum value for
AxAp, and A, —7, the “minimal” phase-space cell. The
quantum and semiclassical results do coincide at a very hig
temperature, though. Finally, with the help of Rgf&4,25,
one readily can recast Heisenberg’s uncertainty relation as
function of both frequency and temperature in the fashion

T

(I, has to grow as well and vice versa. of the ground state, like nuclei or Luttinger liquids.
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