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We present an adaptive sampling method for computing free energies, radial distribution functions, and
potentials of mean force. The method is characterized by simplicity and accuracy, with the added advantage
that the data are obtained in terms of quasicontinuous functions. The method is illustrated and tested with
simulations on a high density fluid, including a stringent consistency test involving an unusual thermodynamic
cycle that highlights its advantages.
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I. INTRODUCTION

Many of the most important tasks for Monte Carlo simu-
lations involve the computation of a distribution function, or,
equivalently, an effective free energy. When investigating the
temperature dependence of the specific heat or magnetic sus-
ceptibility in a magnetic model, one of the most efficient
approaches is to compute a histogram as a function of energy
and to then calculate the desired property as a continuous
function of temperature from those data[1–4]. We might
also want to compute a distance-dependent distribution func-
tion to compare with x-ray scattering studies, or we might be
interested in the free energy of a particle as a function of its
interaction with its surroundings as part of a calculation of its
chemical potential.

In all cases mentioned, a standard difficulty is that the
probability for a straightforward Monte Carlo simulation is
often much too low to be practical to sample all parameter
values of interest. It is well known that one of the most
efficient ways of getting around this problem is to perform a
multicanonical simulation[5], in which the low probability
of an inaccessible region is compensated by adding an arti-
ficial effective potential. The effect of the added potential
can then be subtracted out to calculate the desired informa-
tion.

If the added potential is exactly equal to the desired free
energy, the free energy barriers to inaccessible regions will
be completely eliminated. Unfortunately, if we knew this free
energy, we would not have to do the computation in the first
place.

A number of adaptive methods have been developed to
solve the problem of calculating an appropriate compensat-
ing potential[6–10]. The main idea is to obtain data about

the desired free energy during the course of the Monte Carlo
simulation itself. As the simulation progresses, the compen-
sating potential in the simulation is changed as it becomes
better known. Technically, this approach violates detailed
balance. However, detailed balance is restored asymptoti-
cally as the adaptive potential converges to the correct func-
tion, and many studies have shown that the procedure is
effective [9].

The question remains of how to perform adaptive sam-
pling most efficiently. This paper presents a method of adap-
tive sampling that synthesizes the advantages of various ear-
lier methods. It has several key features.

(1) Instead of calculating a histogram that is proportional
to the probability of a parameter of interest, we calculate
derivatives of this probability. This is based on the theoreti-
cal point that the information on which a Monte Carlo step is
made involves only the relative probabilities of the two
states; it does not involve the absolute probabilities. Conse-
quently, the most efficient strategy should involve the direct
estimates of ratios between neighboring bins, with the full
probability distribution being constructed at the end of the
calculation. These considerations have been validated by the
success of the broad histogram method[11] and transition
matrix Monte Carlo[10].

(2) The use of additional information from details of the
configurations has proved very effective in increasing the
efficiency of the broad histogram method and transition ma-
trix Monte Carlo. Our method incorporates such information
whenever possible.

(3) Yan and de Pablo have recently presented an inter-
esting paper in which they showed some of the advantages of
working with the derivative of the free energy[12]. They
phrased their method in terms of an effective temperature,
but we would like to expand the concept to include deriva-
tives with respect to any parameter of interest. In addition to
a derivative with respect to energy, we are particularly inter-
ested in derivatives with respect to nonlinear parameters in
the interactions between particles, separations between par-
ticles, and generalized reaction coordinates.

A particularly important advantage of using derivatives is
that the bins can be made very small without losing accuracy,
as we will discuss in Sec. III. Since the generalized free
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energy of interest is reconstructed at the end of the calcula-
tion by numerical integration, making the bins smaller can
produce a smoother function and greater detail, but will not
introduce any distortion. This is of particular importance in
biological applications where details of the changes in free
energy can help with understanding the underlying pro-
cesses. This is in contrast to the usual histogram of values
that are proportional to the desired probability. If the bins are
made smaller, the relative statistical fluctuations become
larger, and the signal can disappear into the noise.

The proposed adaptive integration method(AIM ) includes
the computation of derivatives of the desired generalized free
energy over a parameter region of interest with a large num-
ber of bins and small bin size. The updated estimates for the
derivatives are then immediately incorporated into the Monte
Carlo simulation to reduce the effective barriers and improve
efficiency. This direct use of derivatives not only makes a
direct use of important information available from the simu-
lation, but it also highlights the close connection between
free energies or potentials of mean force, and the generalized
forces experienced by the particles during the simulation.
This deep connection both enables us to achieve high accu-
racy and to increase the sensitivity of the results to details of
the physical behavior. We will return to this point when we
discuss the information contained in the average generalized
forces.

The potential of mean force is well named because its
gradient is the ensemble-averaged force. This makes it par-
ticularly useful in biophysical applications, both for the in-
sight it is capable of providing and because these forces are
becoming amenable to experimental manipulation.

We also introduce a different way of carrying out the sam-
pling for radial distribution functions by doing the actual
simulation without any direct interaction between the par-
ticles of interest. We show that the direct interaction has a
purely additive effect on the total potential of mean force
(pmf), so it can be added in at the end of the calculation. This
enables us to do a single Monte Carlo simulation that allows
us to generate potentials of mean force for a wide variety of
direct interactions.

The goal of the calculations presented in this paper is to
provide clear illustrations and tests of the method. To do this,
we need a system that is computationally simple in order to
study the convergence properties and accuracy of the
method. This allows us to do multiple long runs to gather
good statistics for an accurate description of the behavior.
The test system should also be well understood, so that we
can verify the correctness of our results. It is essential to
establish a method on such a system before applying it to
physically or biologically more interesting systems, which
tend to be larger and more complex. A good test system is
essential to verify that the method really works correctly, and
to ensure that there are no undetected systematic errors.

The two-dimensional Lennard-Jones(LJ) fluid is an ideal
model for our purpose. The pairwise potential has the form

fLJsrd = 4eFSs

r
D12

− Ss

r
D6G , s1d

which makes it computationally simple. It is well under-
stood, but still exhibits behavior complex enough to provide

challenging problems[13–21]. As we will show, it allows us
to test the efficiency of our methods by applying them in
different ways.

We have performed a variety of tests. The first tests con-
cern the calculation of a radial distribution function for a
dense liquid. This is the simplest example of a more general
calculation of potentials of mean force, which involve find-
ing the free energy along a reaction coordinate. This is a very
common type of calculation in biological systems[22,23].

The next set of tests involves the calculation of the chemi-
cal potential. The basic approach here is well known, but the
advantage of AIM is the production of quasicontinuous inte-
gration curves that reduce numerical integration errors.

In the final set of tests we compute a thermodynamic
cycle in which we can apply AIM in different ways and
examine the accuracy and consistency of the method. The
calculations on the cycle illustrate the advantages of AIM for
the direct calculation of the chemical potential. They also
show how to obtain the chemical potential through two in-
dependent paths while illustrating the usefulness of the
solvent-induced potential of mean force, which is computed
without any direct interaction between particles.

In the following section, we will discuss the general for-
malism for adaptive integration with histograms, and then
explain the adaptive integration method in Sec. III. Explicit
calculations of the radial distribution function will be given
in Sec. IV. Sec. V contains the description of our analysis of
a thermodynamic cycle, the first part of which also contains
the calculation of the chemical potential.

II. ADAPTIVE METHODS

Adaptive methods are designed to find the free energy of
a system as a function of some parameterl, or to determine
the probability distribution of an observable of interest.

For free energy problems, the parameterl could be part
of the original problem of interest, or it could be contained in
a term in the Hamiltonian that has been added or modified
for convenience. One example would be an overall multipli-
cative factor for the energy, in which case we would have
Usl ,Xd=lUsXd. Another example would be a parameter in
a two-particle interaction energy, either between all pairs or
between two specific particles. In simulations of biological
molecules, the parameter could describe motion along a gen-
eral reaction coordinate.

If the system is described by an internal energyUsl ,Xd,
then the probability of a microstateX is given by

PsuX uld =
e−bUsl,Xd

E
V

e−bUsl,XddX

, s2d

the partition function is

Zsld =E
V

e−bUsl,XddX s3d

and the associated generalized free energy is

FASNACHT, SWENDSEN, AND ROSENBERG PHYSICAL REVIEW E69, 056704(2004)

056704-2



Fsld = − b−1lnfZsldg. s4d

In the equations aboveb=1/kBT, whereT is the temperature
of the system andkB is the Boltzmann constant.

As an example of the computation of the probability dis-
tribution for an observable of interest, we will discuss the
radial distribution function for the separationr ijsXd between
particlesi and j . The parameterl we are interested in is the
separation between particlesi and j . From Eq.(2), the dis-
tribution is then given by

Pijsrd =

E
V

e−bUsXdd„r − r ijsXd…dX

Z
. s5d

Naturally, the same formalism applies with obvious changes
to any reaction coordinate or observable of interest.

In each case, adaptive methods seek an approximation to

Fsld or Pijsrd, which we will denote asF̂sld and P̂ijsrd. As
the simulation progresses, the estimates are modified by us-
ing the information obtained to smooth the effective interac-
tions. In the case of the free energy, the simulated probability
changes from Eq.(2) to being proportional to

expf− bUsl,Xd + bF̂sldg s6d

so that the marginal distribution forl becomes proportional
to

exph− bfFsld − F̂sldgj. s7d

As F̂sld approachesFsld, this distribution becomes flat,
making the simulation more efficient.

For the case of the radial distribution function, the prob-
ability of the configurations becomes proportional to

e−bUsl,Xd

P̂„r ijsXd…
s8d

which also has the effect of smoothing the distribution of the
distancer ijsXd.

The adaptive integration method we present in the follow-
ing section is based on the principles given in the Introduc-
tion and has several advantages over previous methods.

III. ADAPTIVE INTEGRATION METHOD

To give a concrete description of the AIM, we will first
discuss the method for a calculation of the free energy. As-
suming that the internal energy is a continuous function ofl,
U=Usl ,Xd, we can formally calculate the derivative of the
free energy with respect tol:

dFsld
dl

= −

− bE
V

e−bfUsl,XdgdUsl,Xd
dl

dX

bZ
s9d

or

dFsld
dl

=KdUsl,Xd
dl

L
l

, s10d

where the notationk·ll indicates that the average is taken for
a fixed value ofl.

In all adaptive sampling methods, intervals of values ofl
are grouped together to divide up the continuous range ofl
into bins, so that there are a finite number of quantities to
calculate. An advantage of our method is that we are able to
greatly increase the number of bins and decrease the bin size,
so that we can obtain much finer resolution, as discussed
below.

The average in Eq.(10) can easily be obtained from simu-
lations. The free energy as a function ofl can then be cal-
culated by integrating with respect tol:

Fsld =E KdUsl,Xd
dl

L
l

dl. s11d

This last equation and Eq.(10) are well known and form the
basis of the thermodynamic integration method(see e.g.,
Ref. [24]).

In order to calculate the integral in Eq.(11), we carry out
a Monte Carlo(MC) simulation that includes moves inl. By
recording the averagekdU/dll

l for all values(bins) of l in
the range of interest, we can reconstruct an estimate for the

free energy differences between two values ofl, DF̂sld by
simple numerical integration.

The acceptance probability for a change ofl between an
old valuelo and a new valueln is then modified to

pslo → lnd = minfeh−bfUsln,Xd−Uslo,Xdg+bfF̂slnd−F̂slodgj,1g.

s12d

MC moves between configurations are done in the usual way,

using the current value ofF̂sld.
Similarly, if we are interested in calculating a radial dis-

tribution function, or any generalized free energy as a func-
tion of some reaction coordinate, we would modify the ac-
ceptance probability to be

psXo → Xnd = minFe−bfUsXnd−UsXodg P̂„r ijsXod…

P̂„r ijsXnd…
,1G ,

s13d

whereXo andXn are the old and new configurations of the
system. The AIM approach can be used for any quantity for
which we can calculate a derivative. This makes it unsuitable
for problems in which the relevant derivatives would diverge
such as the calculation of the radial distribution function for
a hard sphere gas. However, for most systems of interest
with continuous degrees of freedom, derivatives are well be-
haved and the method is applicable.

One advantage of this approach is that we can obtain al-
most continuous estimates of the free energy as a function of
the parameter of interest. Since we are integrating in the
method, finer binning does not result in decreased accuracy.
For the adaptive integration method, all the values between
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two points are taken into account when calculating the dif-
ference in biasing potential, independent of how many bins
are in between. So the bins can be made almost arbitrarily
small, the main limitation being memory for storing all the
values. This is not true for methods that use a biasing poten-
tial based on probabilities: For these methods, the potential
difference will depend on the number of hits per bin. The
fluctuations in that number increase with decreasing bin size.
The errors for the potential will therefore increase as we
make the bin size smaller and the biasing potential will con-
verge more slowly. This is not only important for the
smoothness of the final potential, but also during the simu-
lation for the biasing potential, since these methods satisfy
detailed balance only asymptotically when the potential has
converged.

Another obvious advantage of AIM is that the calculation
can easily be divided up into different windows, each of
which is covered by an independent calculation. This is often
an advantageous reformulation of the implementation of
adaptive algorithms, since the characteristic time for a ran-
dom walk in energy space is at least proportional to the
square of the range of energies. Since the full range of ener-
gies is generally proportional to the number of particles or
spins in the system, this can be quite important. Because
AIM calculates derivatives, there is no matching problem in
splicing together the results of independent simulations. Al-
though there are good methods for dealing with the problem
of joining histograms[1–3,25] it is still better not to have the
problem at all.

A recent paper by Yan and de Pablo[12] introduces a
measurement technique that is closely related to the method
described in this section. The random-walk method they pre-
sented for taking data from a simulation is a special case of
the general formalism introduced here, although they used a
different representation of the derivative of the free energy
than would arise directly from our formulation. They used an
integral representation of the inverse temperature to calculate
the density of states in a fluid. However, they did not use
those data as part of the adaptive simulation, relying on the
Wang-Landau method instead. They also restricted them-
selves to the special case mentioned, rather than generalizing
the approach as done here. The results presented in Sec.
IV A lead us to believe that the already excellent results of
Yan and de Pablo’s random-walk algorithm could be further
improved by using derivative methods for directing the adap-
tive sampling as well as for the data collection.

There are also related approaches based on molecular dy-
namics and a generalization of thermodynamic integration
[26–31]. The basic idea is that free energy can be seen as the
potential of mean constraint force. The theoretical formula-
tion in Ref. [31] is similar to the method we describe here.
The methods give excellent results. However, the fact that in
molecular dynamics we have to keep track of the dynamics
of the system and have to introduce constraint forces makes
these methods much more complicated than the Monte Carlo
framework we propose.

A. Potentials of mean force

Consider a system ofN particles interacting with a pair-
wise interaction potentialf. The total potential energy of the
system is given by

UsXd = o
i, j

fsxi − x jd. s14d

The probability for a certain configurationX in the NVT
ensemble is given by

PsXdNVT =
e−bUsXd

E e−bUsXddX

s15d

=
e−bUsXd

Z
, s16d

whereZ is the partition function.
We want to calculate the pmf between two particlesi and

j . We definer i j ;xi −x j, wherexi and x j are the respective
positions of the particles, andr ;ir i ji. The potential of mean
force f̂ is the potential that would generate a probability
distribution along a certain degree of freedom equal to the
marginal distribution of the full probability distribution with
respect to that degree of freedom. It is related to the pair
distribution functiongsrd by

f̂i jsrd = −
1

b
lnfgsrdg. s17d

The pair distribution function is defined as the probability
Psrd of finding a pair of atoms a distancer apart, relative to
the probabilityPideal gassrd expected for a completely random
distribution of an ideal gas at the same density[32]:

gijsrd ;
Psrd

Pideal gassrd
. s18d

Pideal gassrd is given by

Pideal gassrd =
rd−1Cd

V
, s19d

whereV is the total volume of the system,d is the number of
dimensions, andCd is the surface of a unit sphere ind di-
mensions. The probability of two particles in the interacting
system being at a distancer is given by

Psrd =
E e−bUsxi,x j,XN−2ddsur i j u − rddxidx jdXN−2

Z
, s20d

whereXN−2 are the position vectors of all the particles other
than i and j anddXN−2=pkP” hi,jj dxk. Without loss of gener-
ality, we can set the origin of our coordinate system atsxi

−x jd /2. Thenxi =r i j /2 andx j =−r i j /2. Since we have trans-
lational invariance, we can integrate over all possible posi-
tions of the origin. Similarly, integrating over all orientations
of r i j is equivalent to rotating all the other particles, so the
angular degrees of freedom can be integrated out. It follows
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Psrd =

VE e−bUsr r̂ i j /2,−r r̂ i j /2,XN−2drd−1CddXN−2

Z
. s21d

Using Eqs.(18) and (19), and the fact thatr is constant for
the integration, we find

gsrd =

V2E e−bUsr r̂ i j /2,−r r̂ i j /2,XN−2ddXN−2

Z
s22d

=

V2E e−bUsXddXN−2

Z
s23d

=KE e−bUsXddXN−2. s24d

From Eq.(17) it follows that the derivative off̂i j with re-
spect tor is

df̂i jsrd
dr

= −
dgsrd/dr

bgsrd
s25d

and from Eq.(24)

dgsrd
dr

= − bKE e−bUsXdF sF j − Fid · r̂ i j

2
GdXN−2. s26d

Fi andF j are the total forces on particlesi and j , respectively,
given by

Fi = − =iU = − o
k=1

N

=ifsxi − xkd. s27d

This means that the derivative of the potential of mean force
is given by

df̂i jsrd
dr

=
E e−bUsXd sF j − Fid · r̂ i j

2
dXN−2

E e−bUsXddXN−2

s28d

=−KsFi − F jd
2

· r̂ i jL
r

s29d

=KdU

dr
L

r
. s30d

This last expression says that we only need to calculate the
average forces on each particle projected onto the line be-
tween the two particles.

Given this, we recover the potential of mean force by
integrating with respect tor:

f̂i jsrd =E KdU

dr
L

r
dr. s31d

Equations(28) and(31) underscore the intuitive physical in-
terpretation of the pmf as the negative integral of the average
forces.

Volume normalization and uniform sampling. In more
than one dimension, sampling will not be uniform as a func-
tion of distance if we just subtract out the potential of mean
force. The particles are more likely to be at larger separations
due to the larger available volume. If we want to sample
distances uniformly, we have to use an additional bias term
that corrects for this. The probability for particles to be at a
certain distancer, if they do not interact and are uniformly
distributed, is given by Eq.(19). To achieve uniform sam-
pling in r, we add a term of the formsd−1dlnsrd /b to the
biasing potential.

B. The chemical potential

The chemical potential of a fluid can be calculated in a
number of ways. In the particle insertion method proposed
by Widom [33], a particle is randomly inserted into the fluid
to sample the interaction energyDU of the test particle with
the rest of the fluid. The averagekexps−bDUdl can be used
to calculate the excess chemical potentialm8;m−mideal gas
usingm8=−kBT lnkexps−bDUdl. The averagek·l here is over
all configurations of the fluid without the test particle and all
random positions of the test particle. This method works well
for dilute fluids. For dense fluids, however, the averages will
be dominated by sampling of physically irrelevant configu-
rations where the test particle overlaps with another particle,
so that sampling is not very accurate. One way around this is
to insert the test particle gradually by incrementally increas-
ing the interaction of the test particle with the rest of the
fluid, as described by Mon and Griffiths[34]. The chemical
potential can then be calculated by using thermodynamic in-
tegration(see, e.g., Ref.[24]) over the different stages.

This formalism can be adapted to calculate the excess
chemical potential of a particle using the adaptive integration
method. In order to do this, we could modify the potential
energy such that all the interactions of a certain particlek are
scaled by a factor oflù0. The modified total potential en-
ergy is given by

UlsXd = o
i, j ;i,jÞk

fsr ijd + l o
i;iÞk

fsrkid s32d

=U0sXd + lU1sXd. s33d

To simplify notation, we will denote the first term in the
potential energy asU0 and the second term aslU1. The free
energy, as a function ofl, of our system is

Fsld = −
1

b
lnsZld s34d
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=−
1

b
ln1E e−bfU0sXd+lU1sXdgdX

LdNN!
2 , s35d

whereL=sbh2/2pmd1/2 is the de Broglie wavelength of the
particles, which results from integrating over the momentum
degrees of freedom. The factor ofN! is a result of havingN
particles of the same species. It follows that

dFsld
dl

= −
1

b

d

dl
lnsZld s36d

=−

− bE e−bfU0sXd+lU1sXdgU1sXddX

bLdNN ! Zl

s37d

=kU1ll. s38d

Integrating this froml=0 to l=1 then gives the free energy
change due to interactions when adding an extra particle,
which is the definition of the excess chemical potentialm8.
The number of particles is constant. To get the total chemical
potentialm, we need to adjust the number of particles, cor-
responding to the ideal gas componentmideal gas which is
known exactly:mideal gas=kBT lnsN/Vd.

A well-known problem with this approach is poor conver-
gence[34,35]. The difficulty is thatU1 and the derivative
that we wish to calculate diverge asr →0. This makes con-
vergence nearr =0 very difficult, although the method works
well for other ranges of values.

A way around this divergence problem is to change thel
dependence of the potential energyUsld. As long as the two
limits l=0 and l=1 evaluate to the right values, we can
choose any well-behaved parametrization[34]. We have cho-
sen to rescale the interaction radius of the test particle so that
it interacts with other particles with

flsrd ; fLJS r

l
D = 4eFSls

r
D12

− Sls

r
D6G . s39d

Then

UlsXd = o
i, j ;i,jÞk

fsr ijd + o
i;iÞk

flsrkid. s40d

With this parametrization, reducingl corresponds to de-
creasing the interaction radius of the test particle with other
particles. The resulting free energyFsld is well behaved,
with finite derivatives even atl=0. Another advantage of
this formulation is that we have a direct relation between the
chemical potential and the particle size, so we need to do
only one calculation for different test particle sizes.

IV. ADAPTIVE METHODS APPLIED TO THE RADIAL
DISTRIBUTION FUNCTION

In order to test the simulation methods introduced in the
preceding section, we have applied them to the Lennard-
Jones model of a simple fluid to calculate the radial distribu-

tion function, and consequently the effective potential of
mean force, between two selected particles.

The choice was based on several considerations. The ra-
dial distribution function is a simple example of a more gen-
eral class of effective potentials of mean force, which means
that this calculation demonstrates the implementation of a
wide variety of problems of interest. The model is relatively
simple and well understood. The computational effort in-
volved in making convincing tests is not extravagant.

Finally, there is also an easily computed standard by
which to judge the results. For a Lennard-Jones fluid, the
radial distribution function can be calculated very accurately
by taking data from all pairs of particles instead of just two,
because all particles are identical. This will increase the
available data by a factor ofNsN−1d /2. In addition, the cal-
culation of an effective potential from just two particles is
fundamentally challenging because the diffusion of particles
is slow. To obtain an accurate radial distribution function, it
is necessary for the two particles to diffuse over large dis-
tances relatively rapidly. This problem does not arise if all
pairs of particles are used in the calculation and the pmfs
obtained converge very rapidly. For these reasons we use the
potential of mean force obtained from an average over all
pairs of particles as reference pmf to which to compare our
results below.

We have to emphasize, however, that this approach of
averaging over all particles to obtain the pmf is only valid as
long as all particles are identical. The adaptive integration
method introduced is aimed at cases where this is not true.
We chose a system of identical particles merely as a test case
to evaluate the method.

The performance of AIM is compared to a state of the art
method, the Wang-Landau method. The Wang-Landau
method has received a lot of attention since its introduction
because of its high efficiency and flexibility. Apart from the
original work on spin lattice systems[9,36], it has also been
used for sampling along chemical reaction coordinates[37],
the study of phase transitions in fluids[38], and the simula-
tion of proteins[39,40].

We performed the tests for a dense two-dimensional
Lennard-Jones fluid withr* =0.8 andT* =0.625, since calcu-
lations of potentials of mean force at high density are diffi-
cult due to long diffusion times and therefore make for a
stringent test case. We used a relatively small system ofN
=36 particles to allow for long runs with high statistics. In all
cases, we use a square box with periodic boundary condi-
tions.

Conformations of the fluid were sampled using a Me-
tropolis Monte Carlo scheme, with acceptance probabilities
modified according to the respective algorithm(Wang-
Landau or AIM). The pseudorandom numbers used in the
calculations were generated using an implementation of the
the ran2sd pseudorandom number generator described in Ref.
[41]. This pseudorandom number generator, which is based
on a paper by L’Ecuyer[42], has a very long periods.2
31018d and it is generally agreed to have very good proper-
ties [41].

A. AIM compared to Wang-Landau method

We performed 15 simulation runs of 107 Monte Carlo
sweeps(after equilibrating the system) for both AIM and the
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Wang-Landau Method and used each algorithm to calculate
the potential of mean force between two test particles.

To compare the errors for the potential obtained with AIM
and the Wang-Landau method, we calculated the rms differ-
encedrms between the corresponding pmf and the reference
pmf from an average over all particles(see Sec. IV). For the
Wang-Landau method, we performed preliminary runs with
different settings of the parameters. The accuracy of the
method, as measured by the rms difference from our refer-
ence pmf, did not vary significantly for settings close to the
values suggested in the original papers by Wang and Landau
[9,36]. For data shown below we chose an initial multiplica-
tion factor of f =1.5, with 0.8 as the threshold for flatness of
the histogram. With these settings the Wang-Landau method
converged after roughly 107 steps. Beyond this point, the
multiplication factorf is too small to improve the pmf effec-
tively [36].

Figure 1 shows the rms differencedrms, our measure of
error for the potentials, as a function of number of MC
sweeps for the different methods. The squares represent the
results for the Wang-Landau algorithm. The circles show the
results for AIM. The triangles were obtained by calculating
the potential by integrating the average force while running
the Wang-Landau algorithm, which is essentially the ap-
proach used by Yan and de Pablo[12].

The results indicate that the adaptive integration method
converges somewhat faster than the Wang-Landau method. It
also shows that even when using the Wang-Landau algo-
rithm, the accuracy of the potential can be increased by re-
cording the average force: The average error at the end of
107 MC sweeps for the adaptive integration method was
drms=0.0137±0.0019. For the Wang-Landau calculations we
obtaineddrms=0.0256±0.0047 and for the calculation of the
pmf from derivatives while running with Wang-Landau we
found drms=0.0177±0.0022. All numbers are in units of re-

duced energy. To show the nature of the errors more, Fig. 2
depicts the pmf at an early stage in the simulation. After only
53105 MC sweeps, the potentials have not converged com-
pletely. This makes it easier to see that the curves obtained
using AIM are almost continuous, since we were able to use
very small bin sizes. The smoother potentials are valuable
when exploring the local structure of the potential of mean
force.

Naturally, AIM also automatically records the derivative
of the pmf, which can be useful for determining the location
of peaks. As can be seen from Fig. 2, derivatives would be
more difficult to calculate from the results of the Wang-
Landau method.

From these data we can see that AIM converges faster
than the Wang-Landau method in terms of Monte Carlo
sweeps. The actual execution time for the simulations is al-
most the same for both methods. The additional steps needed
for either algorithm take up only an insignificant fraction of
the total computation time, as the most time-intensive part of
the calculation is the calculation of the potential energy dif-
ferences.

B. Modified direct interaction

We have used AIM to calculate the potential of mean
force between two special particles in the unusual case in
which they have a zero direct interaction potential and only
feel the effect of the solvent particles. An interesting feature
of this calculation is that it captures all the information about
the effect of the solvent on the behavior of the two special
particles, even when they do have a direct interaction. We
will refer to this part of the potential of mean force as the
solvent-induced pmf.

Once the solvent-induced pmf is known, we can deter-
mine the potential of mean force for any other direct inter-
action between these two particles without any further simu-
lations. The direct interactionfab between the special

FIG. 1. Average rms differencedrms of the pmf calculated by
different methods from a reference pmf(see Sec. IV) as a function
of number of MC sweeps.drms is averaged over 15 runs for the
Wang-Landau(squares) and adaptive integration methods(circles).
The third line(triangles) shows the error when calculating the pmf
using derivatives during the simulation with the Wang-Landau
method.

FIG. 2. Potential of mean force after 53105 MC sweeps. The
filled squares are from adaptive integration, the circles from Wang-
Landau. The continuous gray line is the reference potential. The
curves on the figure represent raw data, not smoothed curves.
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particlesa and b is an additive term in the total potential
energy:

UsXd = o
i, j

fsr ijd s41d

=fabsrabd + o
i, j ;i,j¹ha,bj

fsr ijd s42d

=fabsrabd + U*sXd, s43d

whereU* consists of the remaining terms. It is then easy to
see that

f̂absrabd = fabsrabd +E KdU*

dr
L

r
dr. s44d

Since the average in the second term does not depend on
the direct interaction and is for a fixed separation of the
special particles, we need only calculate it for the case in
which the special particles have no direct interactions. This
allows us to sample all possible separations, including those
in which the special particles overlap strongly. Any direct
interaction of interest can then be added analytically to the
solvent-induced pmf.

C. Recovery of the original radial distribution function

Naturally, we can recover the usual Lennard-Jones radial
distribution function from the solvent-induced pmf, which
provides an important consistency check for the method. In
this case, all the particles, including the special particles,
interact with the same potential. For this Monte Carlo simu-
lation, we performed 10 runs with 107 MC sweeps each for a
36-particle Lennard-Jones fluid withr* =0.8 andT* =0.625.

The dotted curve with3 markers in Fig. 3 shows the

solvent-induced pmf. The potential was calculated by inte-
grating the average force, which is shown in Fig. 4. The gray
curve with squares as markers on the same figure was ob-
tained by adding the Lennard-Jones potential to the solvent-
induced pmf.

The black dashed curve is a reference potential of mean
force obtained from using all pairs of particles. The error
bars shown are for an equally spaced subset of the data
points, and indicate the variation of the calculated pmfs from
different runs. The errors for the remaining data points are
similar, but were omitted to make the plot more readable.

Since the difference between the reference potential and
the recovered potential is too small to be visible in Fig. 3, we
plot the difference between the two curves for a subset of the
points in Fig. 5. The deviations are quite small compared to
the actual function value and well within the error bars, with
the single exception of the first data point, withr =0.95s.
Since for smallr values the repulsive part of the Lennard-
Jones potential becomes large, the standard simulation using
all particles has relatively low statistics. In this region, the
reconstructed potential is actually more accurate than the ref-
erence pmf. We note that the deviations from zero between
neighboring values ofr are strongly correlated in Fig. 5. This
is not surprising, given that the values are calculated by in-
tegration to give smooth curves.

The plot of the average forces in Fig. 4 allows us to ac-
curately determine the positions of the maxima and minima
of the potential of mean force. It also shows interesting struc-
ture in the variation of the potential, which is hard to see in

FIG. 3. Potential of mean force for regular Lennard-Jones par-
ticles. The dotted curve with3 markers shows the solvent-induced
pmf. The black dashed curve is a reference potential calculated
from the radial distribution functions of all the particles(see above).
The gray curve with square markers was calculated by adding the
direct Lennard-Jones interaction to solvent-induced pmf. The black
and gray curves are essentially on top of each other.

FIG. 4. Average, solvent-induced force on the special particles
as a function of separation. The plot shows the average values of the
force over ten independent MC runs of 107 MC sweeps each, with
different initial random numbers. We plot the individual points
without connecting them, so that fluctuations between neighboring
bins are more easily visible. The error bars, shown for a subset of
the points, indicate the standard deviation of the values from differ-
ent simulation runs. The standard deviations for the remainder of
the points are of comparable size. The solvent-induced pmf shown
in Fig. 3 was obtained by integration of the forces used to calculate
the average force shown here.(The integration in Fig. 3 was done
for each MC run to obtain individual pmfs before averaging over
the ten simulations to obtain the final plot.)
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the potential itself. In particular, the shoulder in the plot of
the average forces aroundr =2s is much easier to see than
the subtle variations of the slop of the pmf plot in Fig. 3. A
more detailed study reveals that the structure in the average
forces aroundr =2s is due to the second and third rings of
particles around the center particle: In a solid, there would be
two peaks ingsrd at r =Î3sr1/6 and 2sr1/6. In a fluid these
peaks will be broadened and overlap since they are very
close together. To verify that these peaks would lead to the
structure seen in Fig. 4, we generated a simple model of the
radial distribution function that uses weighted Gaussian
functions atr =Î3sr1/6 and 2sr1/6 to model the peaks. We
then calculated the corresponding pmf and force curves. The
corresponding curve for the average force showed a clearly
visible shoulder aroundr =2s, while the potential curve dis-
plays only small variations in the slope, very similar to what
we see in Figs. 3 and 4, which strongly supports our inter-
pretation.

This demonstrates another advantage of AIM: in a lot of
applications, such as in calculations on biological systems,
weak signals can very often point to subtle but important
effects. These are very hard to detect in poorly understood
systems. The resolution and additional information provided
by the average force plot in AIM could be important tools in
detecting such effects. It is important to note that this infor-
mation would be very difficult to obtain with other methods.
Calculating accurate derivatives is very difficult with
histogram-based methods.

Figure 6 compares the solvent-induced potential of mean
force for the NVT and the NPT ensembles. The parameters
of the NPT simulation were chosen to make the average

volume close to that of the previous NVT calculation. The
pressure imposed wasp* =1.585, giving an average volume

of V̄NPT
* =45.2 versusVNVT

* =45.0. We can see from the graph
that the results are almost identical for values ofr .s. How-
ever, the curve for the NPT calculation is systematically
lower for small values ofr. This is to be expected, since the
average volume of the system will be reduced when the two
test particles overlap for the constant pressure ensemble.
Since a smaller volume is favorable in the NPT ensemble,
overlapping particles will be more favorable in this ensemble
in comparison with the constant volume ensemble.

V. A Thermodynamic Cycle

In this section we apply AIM in a more general context by
using it to calculate a complete thermodynamic cycle that
would be very difficult to simulate with ordinary methods.
This cycle will explicitly link the chemical potential of a
particle with the radial distribution function of the fluid. A
schematic depiction of the sequence is shown in Fig. 7. We
begin with a system ofN particles, and insert one additional
particle with the same properties. The free energy needed for
this step is the chemical potential. Next, we remove the di-
rect interaction between the new particle and one other par-
ticle. The potential of mean force between those two par-
ticles is the solvent-induced pmf that we have already
discussed. We then constrain these two particles to overlap
and reduce the particle number by one. This state is equiva-
lent to having a test particle in the system that interacts twice
as strongly with the remaining particles. By reducing this
interaction to the normal particle-particle interaction, we
complete the cycle.

As before, the calculations will be done on relatively
small systems to allow for long runs, since the main goal of
the calculation is to test the methods.

FIG. 5. Difference between the reconstructed potential of mean
force and the reference pmf(gray curve with squares and black
dashed curves in Fig. 3). The reconstructed pmf was calculated by
adding the direct Lennard-Jones interaction to the solvent-induced
pmf. The values are averaged over ten MC runs. The error bars
represent the standard deviation of the potentials of mean force
from different runs. The differences represent a small fraction of the
actual function values. The deviations between neighboring values
are correlated because the pmf is calculated by integration. The
largest difference is forr ,s, where the reference potential is dif-
ficult to calculate, because this is a very low probability
configuration.

FIG. 6. Comparison of potential solvent-induced pmf for regular
Lennard-Jones particles for the NVT(gray dashed curve) and
NPT ensembles(black continuous curve with error bars). The
curves are very similar. The main difference is the lower value of
the pmf for overlap of the two special particlessr =0d for the
NPT curve, because this enables the reduction of the total volume
of the system.
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There are several reasons for carrying out this calculation:
First it provides a stringent test of the consistency and accu-
racy of the method. The errors in each step can be calculated,
and the errors from different stages of the calculation can be
compared, and, of course, this provides the consistency
check that the total free energy difference must vanish.

The second purpose is to illustrate the advantages of AIM
for the direct calculation of the chemical potential. The small
bin sizes that can be used with AIM eliminate a significant
source of error in such calculations. A similar calculation in
the last part of the cycle shows how to use the method to
calculate changes in the free energy when the strength of the
interactions is varied. This is relevant to biochemical and
materials science calculations that explore the effects of
modifying the interactions.

We use AIM to calculate both, the potential of mean force
and the chemical potential. Because this cycle returns to the
original state, the net sum of the free energy differences be-
tween all individual stages must be zero. This provides a
stringent test for the accuracy and efficiency of our methods.
This type of test of the accuracy of the method is essential
for biological applications. Very often the quantity of interest
in calculations in this field is a difference between large
quantities that almost cancel each other out. To get meaning-
ful results, it is very important to have methods that give
precise results.

The third purpose is to show how to obtain the chemical
potential through two independent paths. This provides an
additional way to compute chemical potentials. Although the
first (well-known) path has the smaller statistical errors for
this example, it is not completely clear that this would be the
case for all problems.

The fourth purpose is to illustrate the usefulness of the
solvent-induced potential of mean force discussed in Sec.
IV B, which is computed without any direct interaction be-
tween particles. Because the solvent-induced pmf can be
used to generate the full pmf for any direct interaction with-
out further simulations, it allows us to perform a numerical
integration to calculate the free energy involved in removing
the interactions between particles. The value of the solvent-
induced pmf at zero separation is also physically meaningful,
since it is related to the chemical potential.

A. Sequence of states in the cycle

In this section, we will look at this cycle more rigorously
and describe what quantities must be obtained from the
Monte Carlo simulations to calculate the free energy differ-
ences.

Because the sequence of states is cyclic, going fromA
throughF and back toA, the net change in free energy must
be zero. Consequently, the Helmholtz free energy for the
insertion of a particle(chemical potential) can be found in
two ways. We can either follow pathABC, or in the opposite
direction, use the pathAFEDC.

StateD is particularly interesting, because it provides a
system that is well suited for adaptive sampling calculations
of the effective interaction between particles. By using this
thermodynamic cycle, we have a consistency condition for
the free energies that can be exploited to improve calcula-
tions.

As we describe the calculations of the free energy differ-
ences between states, we will illustrate them with a numeri-
cal example for a Lennard-Jones system withN=35+1 par-
ticles at T* =0.625 andr* =0.8. All numerical quantities,
including the free energy differences, are reported in reduced
units (see, e.g., Ref.[32]).

1. From A to B

This step adds a noninteracting particle to anN particle
system to give aN+1 particle system. For clarity in the
following discussion, let us also assume that the extra par-
ticle is a different color, and make it a white particle to
distinguish it from the other particles which we assume to be
gray.

The partition function for a system ofN particles at con-
stant volumeV and constant temperatureT is given by

ZN
A =

1

LdN

1

N!
E

V
dXN expf− bUN

AsXNdg, s45d

whereL is the de Broglie wavelength,XN is the vector of all
particle coordinates, XN=hx1,x2, . . . ,xNj, and dXN

=dx1dx2¯dxN. The potential energy is

UN
AsXd = o

j=1

N−1

o
i. j

N

fsr ijd. s46d

wherefsr ijd is the potential between particles separated by a
distancer ij = uxi −x ju.

FIG. 7. Schematic view of cycle. We define the following se-
quence of states:A—N particle system;B— sN+1d particle system
that is composed of a normally interactingN particle system plus
one particle that does not interact with any other particle, i.e., an
ideal gas particle;C— sN+1d particle system with uniform interac-
tions between all pairs of particles;D— sN+1d particle system with
one pair of special particles without direct interaction with each
other;E— sN+1d particle system with one pair of special particles
that have no direct interaction with each other and are constrained
to be at the same position;F—N particle system with a single
special particle whose interactions with the other particles are
double the normal interaction. From stateF, reducing the strength
of the interactions of the special particle with the rest of the par-
ticles returns the system to stateA.
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The partition function for a system withN particles inter-
acting with potentialsfsr ijd and one noninteracting particle
is then

ZN+1
B =

V

LdZN
A. s47d

The change in the Helmholtz free energy between statesA
andB is given by

FN+1
B − FN

A = −
1

b
lnS V

LdD , s48d

FN+1
B − FN

A =
1

b
lnS 1

V
D + C. s49d

The first step of the cycle does not require simulation,
since it is just the chemical potential of an ideal gas particle.
For convenience we choose the constants and units such that
the constantC=0 in Eq. (49) and findFN+1

B −FN
A=−2.3792

for our test system.

2. From B to C

To go from stateB to stateC, we turn on the interactions
of the original particles with the new particle. This corre-
sponds to calculating the excess chemical potential and can
be handled as described in Sec. III B by changingl from 0
to 1 in Eq.(40). We also have to account for the fact that at
the beginning of this step we have two species of particles:N
regular Lennard-Jones particles(gray) and one special par-
ticle (white). Whenl=1, all pairs of particles have the same
interactions, but there are still two species. We call this state
C8. We must then account for the entropy change in going
from this system to stateC, in which all particles are of the
same species(gray). Note that there is no difference in the
energies or relative probabilities of configurations in states
C8 andC.

We use AIM to evaluate the free energy difference be-
tweenB and C8 by changing the size of the particle as ex-
plained in Sec. III B. The potential energy is

UN+1
BC8,lsXd = o

j=2

N−1

o
i. j

N

fLJsr ijd + o
j=2

N

flsr1jd s50d

with

flsrd = 4eFSls

r
D12

− Sls

r
D6G . s51d

We then use AIM to calculate the change in free energy as
function of l. It follows

]

] l
F =

]

] l
FBC8,lsN + 1,V,Td =K ]

] l
UN+1

BC8,lL
l

, s52d

which is the usual equation for thermodynamic integration
for particle insertion to calculate the excess chemical poten-
tial.

For the free energy difference betweenC8 andC we have

ZN+1
C8 =

E
V

dXN+1e
−bUN

CsXN+1d

LdsN+1dN ! 1!
s53d

and

ZN+1
C =

E
V

dXN+1e
−bUN

CsXN+1d

LdsN+1dsN + 1d!
s54d

so that

FN+1
C − FN+1

C8 =
1

b
lnsN + 1d. s55d

Figure 8 shows the free energy of the system as a function of
l between stagesB andC8, which scales the extra particle’s
interaction radius from zero to normal size. The free energy
initially decreases, which is expected since the particle is
small enough to fit in between other particles. As the radius
increases, it will move into a low energy position near the
minimum of the pairwise interactions with the surrounding
particles, as shown in Fig. 9. When the interaction radius of
the special particle is about half the size of that of the other
particles, it can sit in between two other particles and be at
the minimum of the interaction potentials with both. As the
size further increases, it can simultaneously interact with
three particles. As the particle radius further increases, the
low energy configuration at the right of Fig. 9 is no longer
possible and the energy starts to increase. Note that Fig. 9
shows a close packed configuration, which is certainly not
the normal case for a fluid. However, because the density of
the fluid is very high, local configurations will look roughly
like this. In fact, the location of the minimuml
=0.575±0.005 is very close to the geometric value for the

FIG. 8. Excess chemical potentialm8 vs l for adaptive integra-
tion for stageB to C. l modifies the interaction radius.N=36 par-
ticle Lennard-Jones system atT* =0.625,V* =45, andr* =0.8. The
fall and rise of the curve can be explained by the configurations
shown in Fig. 9(see text).
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close packed configuration. For the reduced free energy dif-
ference between stagesB andC8 we find

FN+1
C8 − FN+1

B = 0.6687 ± 0.0035 s56d

for our test system. Between stagesC8 and C we have

FN+1
C −FN+1

C8 =2.2397. Consequently, the total change in the
Helmholtz free energy for this stage is thenFN+1

C −FN+1
B

=2.9084±0.0035.

3. From C to D

To go to stateD, we select two particles and remove the
interactions between them. We again break this stage up into
two parts: fromC to C9 and fromC9 to D. In stateC9, all the
particles interact with a regular Lennard-Jones potential, but
two special particles are given a different identity, which is
again indicated by a different color(light gray). The corre-
sponding partition functions are

ZN+1
C9 =

E
V

dXN+1e
−bUNsXN+1d

LdsN+1dsN − 1d ! 2!
, s57d

ZN+1
C =

2!

NsN + 1d
ZN+1

C9 , s58d

so that

FN+1
C9 − FN+1

C =
1

b
ln S 2!

NsN + 1dD . s59d

To go from stageC9 to D, we label the positions of the
two special particlesx1 andx2. The potential energy for state
D, where particles 1 and 2 do not interact, is

UN+1
D = o

i=1

N+1

o
j=i+1,jÞ2

N+1

fsr i,jd s60d

so that for stateC9 the potential energy can be written as

UN+1
C9 = UN+1

D + fsr1,2d. s61d

The partition functions are now given by

ZN+1
D =

E
V

dXe−bUN+1
D sXd

LdsN+1dsN + 1d!
s62d

and

ZN+1
C9 =

E
V

dXe−bUN+1
D sXde−bfsr1,2d

LdsN+1dsN + 1d!
. s63d

This gives us

ZN+1
C9

ZN+1
D = ke−bfsr1,2dlD s64d

=E
0

`

drVsrde−bfef f,Dsr1,2de−bfsr1,2d. s65d

The average in the last equation is for the internal energy
where the two special particles do not interact. The potential
of mean forcefef f for stateD is equivalent to the solvent-
induced potential of mean force discussed in Sec. IV B and
IV C. The free energy change for stagesC to D is therefore

FN+1
D − FN+1

C9 =
1

b
lnfke−bfsr1,2dlDg. s66d

For the Helmholtz free difference betweenC andC9, we

find FN+1
C9 −FN+1

C =−4.0286.
In order to evaluate the free energy difference betweenC

and D, we need the radial distribution function of the two
noninteracting particles, which was calculated using AIM.
We performed ten independent runs of 107 MC sweeps each
with T* =0.625,V* =45, andr* =0.8. The resulting solvent-
induced potential of mean force is the same as the one cal-
culated before in Sec. IV C. It is shown as dotted curve with
3 markers in Fig. 3.

The figure shows that it is very favorable for the two
particles to overlap, as expected, since other particles around
the overlapping particles see essentially one particle with
twice the interaction strength while the density of the re-
maining fluid is reduced. We can also see that the potential of
mean force is still relatively large at the edge of the simula-
tion box. Evaluating the integrals yields

FN+1
D − FN+1

C9 =
1

b
lnfke−bfsr1,2dlDg s67d

=− 1.692 ± 0.012 s68d

for the change in free energy betweenC9 and D. The total
free energy difference for this stage isFN+1

D −FN+1
C

=−5.720±0.012.

4. From D to E

In stateD, we have anN+1 particle system with uniform
interactions between all pairs of particles except for particles
1 and 2, which do not interact with each other but can move
freely. To go to stateE, we constrain the two special particles

FIG. 9. Geometric interpretation of the free energy as function
of interaction radius. The light gray particles are regular Lennard-
Jones particles. The dark gray circle depicts the special particle. The
filled circles represent the interaction radii between the solvent and
special particle. The larger open circles represent the interaction
radii of the Lennard-Jones interaction between the solvent particles.
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to occupy the same position, although that position can still
move freely. For stagesE andD, the partition functions are
given by

ZN+1
E =

E
V

dXe−bUN+1
D sXddsx2 − x1d

LdsN+1dsN + 1d!
s69d

and

ZN+1
D =

E
V

dXe−bUN+1
D sXd

LdsN+1dsN + 1d!
. s70d

Therefore

ZN+1
E

ZN+1
D =

E
V

dXe−bUN+1
D sXddsx2 − x1d

E dXe−bUN+1
D

s71d

=E dx12PDsr1,2ddsx2 − x1d s72d

=E du rdrPDsr1,2d
dsr1,2ddsu2 − u1d

r
s73d

=PDs0d, s74d

wherePDs0d is the probability density for exact overlap of
the test particles. So

FN+1
E − FN+1

D = −
1

b
lnfPDs0dg s75d

=−
1

b
ln1 e−bfef fs0d

E
V

Vsrddr e−bfef fsrd2 s76d

=fef fs0d+
1

b
lnSE

V
Vsrddr e−bfef fsrdD ,

s77d

wherefef f is the same solvent-induced pmf used for stageC
to D.

No extra simulation is needed for this step, since we again
use the solvent-induced potential of mean force,fef f, calcu-
lated earlier, to evaluate the integrals. We find a free energy
change of

FN+1
E − FN+1

D = − 1.5338 ± 0.0011 s78d

for constraining the two particles to occupy the same posi-
tion.

5. From E to F

In stageE we have the two overlapping special particles
andN−1 regular particles. In stageF we haveN−1 regular
particles plus a single special particle(shown in black) with
a doubled interaction with the rest of the particles. It follows
that the partition functions are related by

ZN+1
E =

1

2!
ZN+1

F s79d

so that

FN
F − FN+1

E =
1

b
lnS 1

Ld2!
D . s80d

This step keeps track of the entropy change involved
when we reduce the number of particles by one, with all the
interactions remaining the same. We haveFN

F −FN+1
E

=−0.4332 for the difference in the free energy.

6. From F to A

The final step fromF back to A involves reducing the
interaction between the test particle and the other particles
from double the interaction strength to the normal interaction
strength. To again account correctly for different particle spe-
cies, we divide this step into two parts: fromF to A8 and
from A8 to A. In both statesF and A8, one particle is of a
different species. Since the path of integration does not in-
clude l=0, we do not encounter the convergence problems
discussed in Sec. III B, and we are free to use a linear factor
multiplying the energy of the test particle:

UN
FA8,lsXd = o

i, j ;i,jÞk

fLJsr ijd + l o
i;iÞk

fLJsrkid. s81d

The difference between the two states is then that in stateF,
l=2, while in stateA8, l=1.

Using AIM, the change in the Helmholtz free energy asl
changes from 2 to 1 is

]

] l
FFA8,lsN,V,Td = −

E
V

dX
]

] l
e−bUN

FA8,lsXd

bZN
FA8,lLdNN!

s82d

or

]

] l
F = FFA8,lsN,V,Td =K ]

] l
UN

FA8,lL
l

. s83d

In stageA8, we have two different species withN−1 par-
ticles and one particle respectively. So the free energy differ-
ence between the stages is given by

FN
A − FN

A8 =
1

b
lnsNd. s84d

The change in free energy as a function of the coupling
constantl is shown in Fig. 10. We only use the part of the
data betweenl=1 andl=2, but we have shown the singu-
larity at l=0 for completeness. The result is
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FN
A8 − FN

F = 4.9626 ± 0.0002. s85d

An integration froml=0 to l=1 would, of course, corre-
spond to the calculation of the excess chemical potential.
However, we can see that such a calculation diverges forl
→0, as discussed in Sec. III B. The error bars forl→0 get
very large, indicating the numerical problems that would be
associated with such a calculation.

For the free energy change betweenA8 and A, we find

FN
A−FN

A8=2.2221. The change in the Helmholtz free energy
for the full step is then given byFN

A−FN
F =7.1847±0.0002.

7. Summary

If we add up all the contributions, we should get zero,
since this is a closed thermodynamic cycle. Table I summa-
rizes the results. Note that all free energy differences shown

are in units of reduced energy. The accuracy of the method
can be evaluated by looking at the sum of the individual free
energy differences for the full cycle:

DFcycle= o
IJPhAB,. . .,FA,AA8j

DFIJ. s86d

We can see from Table I that the total computed free energy
difference,DFcycle=0.027, is very small in comparison with
the values of the energy changes between the different steps
in the calculation[44].

The numerical errors in Table I were calculated by per-
forming each simulation step multiple times. The reported
values are the mean values. The errors given are the errors on
the average. Each of the steps is independent, except for
stepsCD andDE, which use the same data. The overall error
calculation therefore has to take into account the correlation
matrix between these two steps. The final free energy differ-
ence from zero over the full cycle is also consistent with the
rather small calculated error.

B. Other tests of the thermodynamic cycle

In addition to the calculation of a thermodynamic cycle
discussed above, several additional such calculations were
performed on other systems with various temperatures, den-
sities, and numbers of particles.

Table II shows a summary of the results for these calcu-
lations. In all cases, the results gave very good accuracy and
were consistent with the expected zero sum of the free en-
ergy differences around the cycle. The details of these calcu-
lations are too extensive to present in this paper, but those
interested can find them in Ref.[43].

VI. CONCLUSIONS

In this paper, we have introduced the adaptive integration
method and demonstrated its advantages for practical calcu-
lations. We have shown its flexibility in computing radial
distribution functions and potentials of mean force, and we
have shown its accuracy for thermodynamic integrations in
the calculation of chemical potentials.

Our calculations of the thermodynamic cycle provide a
very stringent test for AIM’s accuracy and consistency. The
results show that the method performs very well. In all cases
examined, the total free energy differences over the cycle are
very close to the theoretical value of zero. In all cases we

FIG. 10. m8 vs l for adaptive integration(doubling of interac-
tion). The data are for aN=34+1 particle Lennard-Jones system at
T* =0.625,V* =45, andr* =0.778. The part of the data,lP f1,2g,
used to calculateFN

A8−FN
F is indicated by the double headed arrow.

The range oflP f0,1g could be used to calculate the excess chemi-
cal potential. However, it is obvious from the plot that there is a
divergence of the derivative atl=0, as discussed in Sec. III B.

TABLE I. Results for T* =0.625, V* =45 with N=36
particles.

Stage DF ssDFd

A→B −2.3792 0.0000

B→C8 0.6687 0.0035

C8→C 2.2397 0.0000

C→C9 −4.0286 0.0000

C9→D −1.692 0.012

D→E −1.5338 0.0011

E→F −0.4332 0.0000

F→A8 4.9626 0.0002

A8→A 2.2221 0.0000

Full cycle 0.027 0.013

TABLE II. Summary of results for thermodynamic cycles under
different conditions.

T N V r DF ssDFd

0.625 36 45.00 0.8 0.027 0.013

0.625 81 101.25 0.8 −0.005 0.023

0.70 81 101.25 0.8 0.013 0.024

0.45 81 112.19 0.722 −0.022 0.013

0.45 81 2700.0 0.03 0.016 0.017

0.5 81 124.61 0.65 −0.0189 0.0096
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have looked at, including several calculations that we have
not had space to present here in detail, the total free energy
change over a full cycle is within one or two calculated stan-
dard deviations of zero.

These calculations also illustrate the flexibility and con-
venience of AIM. All computations were done with the same
code. The only lines in the program that needed to be
changed were those specifying the parameters used for the
free energy calculations(e.g.,l or r) and the definition of the
internal energy.

We believe that AIM will prove to be a useful tool for a
wide variety of simulations in statistical mechanics, materi-
als science, biochemistry, and biophysics.
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