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Adaptive integration method for Monte Carlo simulations
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We present an adaptive sampling method for computing free energies, radial distribution functions, and
potentials of mean force. The method is characterized by simplicity and accuracy, with the added advantage
that the data are obtained in terms of quasicontinuous functions. The method is illustrated and tested with
simulations on a high density fluid, including a stringent consistency test involving an unusual thermodynamic
cycle that highlights its advantages.
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[. INTRODUCTION the desired free energy during the course of the Monte Carlo
simulation itself. As the simulation progresses, the compen-
Many of the most important tasks for Monte Carlo simu- sating potential in the simulation is changed as it becomes
lations involve the computation of a distribution function, or, better known. Technically, this approach violates detailed
equivalently, an effective free energy. When investigating thebalance. However, detailed balance is restored asymptoti-
temperature dependence of the specific heat or magnetic susally as the adaptive potential converges to the correct func-
ceptibility in a magnetic model, one of the most efficienttion, and many studies have shown that the procedure is
approaches is to compute a histogram as a function of energgffective [9].
and to then calculate the desired property as a continuous The question remains of how to perform adaptive sam-
function of temperature from those dafta—4]. We might  pling most efficiently. This paper presents a method of adap-
also want to compute a distance-dependent distribution fundive sampling that synthesizes the advantages of various ear-
tion to compare with x-ray scattering studies, or we might béier methods. It has several key features. .
interested in the free energy of a particle as a function of its (1) Instead of calculating a histogram that is proportional

interaction with its surroundings as part of a calculation of itst® the probability of a parameter of interest, we calculate
chemical potential. derivatives of this probability. This is based on the theoreti-

In all cases mentioned, a standard difficulty is that thecal point that the information on which a Monte Carlo step is

probability for a straightforward Monte Carlo simulation is made involves only the relative probabilities of the two

: tates; it does not involve the absolute probabilities. Conse-
SZE gsmgf?nigfegwI:Oisbsvgﬁaﬁﬁgs\lﬁ:oﬂf;mﬂi 6:)':‘ ?ﬁéamiget'guently, the most efficient strategy should involve the direct

ffici ¢ . d thi blem i ; estimates of ratios between neighboring bins, with the full
efficient ways of getting around this problem Is to perform aprobability distribution being constructed at the end of the
multicanonical simulatiorj5], in which the low probability

. . s ; calculation. These considerations have been validated by the
of an inaccessible region is compensated by adding an artj:

Yuccess of the broad histogram metHad] and transition
ficial effective potential. The effect of the added potential ; g fad)
hen b b d el he desired inf matrix Monte Carlo[10].
can then be subtracted out to calculate the desired informa- ) The e of additional information from details of the
tion. configurations has proved very effective in increasing the

If the added potential is e_xactly equal to the desired fre. fficiency of the broad histogram method and transition ma-
energy, the free.erjergy barriers to |nacc_:eSS|bIe regions Wiy Monte Carlo. Our method incorporates such information
be completely eliminated. Unfortunately, if we knew this freewhenever possible.

energy, we would not have to do the computation in the first (3) Yan and de Pablo have recently presented an inter-
place.

but we would like to expand the concept to include deriva-
tives with respect to any parameter of interest. In addition to
a derivative with respect to energy, we are particularly inter-
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energy of interest is reconstructed at the end of the calculachallenging problemgl3-21. As we will show, it allows us
tion by numerical integration, making the bins smaller canto test the efficiency of our methods by applying them in
produce a smoother function and greater detail, but will nodifferent ways.

introduce any distortion. This is of particular importance in  We have performed a variety of tests. The first tests con-
biological applications where details of the changes in freqern the calculation of a radial distribution function for a
energy can help with understanding the underlying progense liquid. This is the simplest example of a more general
cesses. This is in contrast to the usual histogram of valuegy|cylation of potentials of mean force, which involve find-
that are proportional to the desired probability. If the bins ar&ng the free energy along a reaction coordinate. This is a very
made smaller, the relative statistical fluctuations become .\ mon type of calculation in biological systef22,23.

Iar%;_?]r, and the Siggal (t;an _ditsappf[a.ar intot tg(:,j\/lrloisei d The next set of tests involves the calculation of the chemi-
e proposed adaptive integration meti ) Includes cal potential. The basic approach here is well known, but the

the computation of derivatives of the desired generalized fre : . ; . !
energy over a parameter region of interest with a large num%\dvantage of AIM is the production of quasicontinuous inte

ber of bins and small bin size. The updated estimates for thgre}t|o?hcu][yesl thatt ridtuccta numerical |nttegratt|hon errgrs. .
derivatives are then immediately incorporated into the Monte n the final Set of tests we compute a thermodynamic

Carlo simulation to reduce the effective barriers and improvéY¢le in which we can apply AIM in different ways and
efficiency. This direct use of derivatives not only makes a&xamine the accuracy and consistency of the method. The

direct use of important information available from the simu-calculations on the cycle illustrate the advantages of AIM for
lation, but it also highlights the close connection betweerthe direct calculation of the chemical potential. They also
free energies or potentials of mean force, and the generaliz&dhow how to obtain the chemical potential through two in-
forces experienced by the particles during the simulationdependent paths while illustrating the usefulness of the
This deep connection both enables us to achieve high accgolvent-induced potential of mean force, which is computed
racy and to increase the sensitivity of the results to details ofvithout any direct interaction between particles.
the physical behavior. We will return to this point when we In the following section, we will discuss the general for-
discuss the information contained in the average generalizeshalism for adaptive integration with histograms, and then
forces. explain the adaptive integration method in Sec. IIl. Explicit
The potential of mean force is well named because itgalculations of the radial distribution function will be given
gradient is the ensemble-averaged force. This makes it pain Sec. IV. Sec. V contains the description of our analysis of
ticularly useful in biophysical applications, both for the in- a thermodynamic cycle, the first part of which also contains
sight it is capable of providing and because these forces athe calculation of the chemical potential.
becoming amenable to experimental manipulation.
_We also in_trodgce_a d_ifferent way of carryi_ng out the sam- Il ADAPTIVE METHODS
pling for radial distribution functions by doing the actual
simulation without any direct interaction between the par- Adaptive methods are designed to find the free energy of
ticles of interest. We show that the direct interaction has & system as a function of some paramateor to determine
purely additive effect on the total potential of mean forcethe probability distribution of an observable of interest.
(pmf), so it can be added in at the end of the calculation. This For free energy problems, the parametecould be part
enables us to do a single Monte Carlo simulation that allowf the original problem of interest, or it could be contained in
us to generate potentials of mean force for a wide variety o term in the Hamiltonian that has been added or modified
direct interactions. for convenience. One example would be an overall multipli-
The goal of the calculations presented in this paper is teative factor for the energy, in which case we would have
provide clear illustrations and tests of the method. To do thisU(\x,X)=\U(X). Another example would be a parameter in
we need a system that is computationally simple in order t& two-particle interaction energy, either between all pairs or
study the convergence properties and accuracy of thBetween two specific particles. In simulations of biological
method. This allows us to do multiple long runs to gathermolecules, the parameter could describe motion along a gen-
good statistics for an accurate description of the behaviokral reaction coordinate.
The test system should also be well understood, so that we |f the system is described by an internal enekif, X),

can verify the correctness of our results. It is essential tahen the probability of a microstaté is given by
establish a method on such a system before applying it to

physically or biologically more interesting systems, which g BULX)

tend to be larger and more complex. A good test system is P(X[\) = ) 2
essential to verify that the method really works correctly, and f e BYNX)gx

to ensure that there are no undetected systematic errors. %

The two-dimensional Lennard-Jon@s)) fluid is an ideal N o
model for our purpose. The pairwise potential has the formthe partition function is

o\12 [ o\6
¢LJ(r):4E|:<?> ‘(?) ] 1 Z()\):JV e BUNX)gx (3)

which makes it computationally simple. It is well under-
stood, but still exhibits behavior complex enough to provideand the associated generalized free energy is
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— _n1
FO\) = - B4n[Z0V)]. (@) dF(M:<dU“-X)> , (10
A

In the equations abov@=1/kgT, whereT is the temperature dA d

of the system andg is the Boltzmann constant. where the notatiok), indicates that the average is taken for
As an example of the computation of the probability dis- 5 fixed value of\.

tribution for an observable of interest, we will discuss the | g)| adaptive sampling methods, intervals of valuea of

radial distribution function for the separatiop(X) between e grouped together to divide up the continuous range of

particlesi andj. The parametex we are interested in is the into hins, so that there are a finite number of quantities to

separation between particlesandj. From Eq.(2), the dis-  calculate. An advantage of our method is that we are able to

tribution is then given by greatly increase the number of bins and decrease the bin size,
so that we can obtain much finer resolution, as discussed
e VX S(r =1y (X))dX below. . . . .
_Jv The average in Eq10) can easily be obtained from simu-
Pij(r) = a : ®) lations. The free energy as a functionlofcan then be cal-

culated by integrating with respect o
Naturally, the same formalism applies with obvious changes
to any reaction coordinate or observable of interest. FO\) :f <M> d\. (11)
In each case, adaptive methods seek an approximation to d\ N

F(N) or P”(.r)’ which we wil denotg a()) and Pij(r)j AS  This last equation and E@10) are well known and form the
the simulation progresses, the estimates are modified by U§zqis of the thermodynamic integration methae e.g.
ing the information obtained to smooth the effective interacq¢. [24)). '

tions. In the case of the frge energy, t_he simulated probability |, order to calculate the integral in E€L1), we carry out
changes from Eq2) to being proportional to a Monte CarlgMC) simulation that includes moves ln By
recording the averadeU/d)\ >X for all values(bing) of \ in

exf~ BUN,X) + BF(M)] © the range of interest, we can reconstruct an estimate for the
so that the marginal distribution for becomes proportional free energy differences between two values\pAF(\) by
to simple numerical integration.
The acceptance probability for a changendbetween an
expi- BIF(\) - FOV ). (7)  old valuek, and a new value, is then modified to
As F(\) approachesF(\), this distribution becomes flat, P(Ao — Ap) = min[elAVAaX)I"U0 X AR FOJ 1],
making the simulation more efficient. (12)
For the case of the radial distribution function, the prob-
ability of the configurations becomes proportional to MC moves between conﬁgurations are done in the usual way,
using the current value d#(\).
g PIex ®) Similarly, if we are interested in calculating a radial dis-
Is(rij(X)) tribution function, or any generalized free energy as a func-

tion of some reaction coordinate, we would modify the ac-
which also has the effect of smoothing the distribution of theceptance probability to be
distancer;;(X). .
_ The gdaptive integration me_thqd we prese_nt in the follow- D(X, — X,) = min| e AUXn-U0o) P(rii(Xy)) 1
ing section is based on the principles given in the Introduc- 0 n Is(r--(X ))’
tion and has several advantages over previous methods. A

(13

ll. ADAPTIVE INTEGRATION METHOD whereX, and X,, are the old and new configurations of the

. - . ... system. The AIM approach can be used for any quantity for

di To g“{{ﬁ a cotrrl]crgtfe descrllptKI)nt_ of thfﬂ'?‘”\?’ we wil flrs’i which we can calculate a derivative. This makes it unsuitable
ISCUSS th et {Ee . ct’ orl a cajculation Ot' e re? en?r?qy. f Sfor problems in which the relevant derivatives would diverge

su_mmg at the internal energy IS a continuous TUNCUoN,0t g,y 45 the calculation of the radial distribution function for

U=U(\,X), we can formally calculate the derivative of the a hard sphere gas. However, for most systems of interest

free energy with respect t: with continuous degrees of freedom, derivatives are well be-

haved and the method is applicable.

-B f e-B[U(NX)]de One advantage of this approach is that we can obtain al-

dF(\) _ v d\ 9 most continuous estimates of the free energy as a function of

a BZ ©) the parameter of interest. Since we are integrating in the

method, finer binning does not result in decreased accuracy.

or For the adaptive integration method, all the values between
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two points are taken into account when calculating the dif- - .

ference in biasing potential, independent of how many bins u(x) % P =X)). (14
are in between. So the bins can be made almost arbitrarily

small, the main limitation being memory for storing all the The probability for a certain configuratio in the NVT
values. This is not true for methods that use a biasing potensnsemble is given by

tial based on probabilities: For these methods, the potential

difference will depend on the number of hits per bin. The e AUX)
fluctuations in that number increase with decreasing bin size. P(X)nyt =

The errors for the potential will therefore increase as we J e BUX)gx
make the bin size smaller and the biasing potential will con-

verge more slowly. This is not only important for the
smoothness of the final potential, but also during the simu- _BU(X)
lation for the biasing potential, since these methods satisfy _£
detailed balance only asymptotically when the potential has z '
converged.

Another obvious advantage of AIM is that the calculationwhereZ is the partition function.
can easily be divided up into different windows, each of We want to calculate the pmf between two partidlesd
which is covered by an independent calculation. This is ofter). We definerj; =x;-x;, wherex; andx; are the respective
an advantageous reformulation of the implementation opositions of the particles, and=||r;;|. The potential of mean

adaptive algorithms, since the characteristic time for a ran¢,ce & is the potential that would generate a probability
dom walk in energy space is at least proportional t0 th&jisribution along a certain degree of freedom equal to the

square of the range of energies. Since the full range of eneg, ,vina) distribution of the full probability distribution with
gies is generally proportional to the number of particles or

2 . o respect to that degree of freedom. It is related to the pair
spins in the system, this can be quite important. Becausﬁistribution functiong(r) by
AIM calculates derivatives, there is no matching problem in
splicing together the results of independent simulations. Al-
though there are good methods for dealing with the problem &S--(r) - 1 In[g(r)]. (17)
of joining histogramg1-3,29 it is still better not to have the b B
problem at all.

A recent paper by Yan and de Pallb2] introduces a The pair distribution function is defined as the probability
measurement technique that is closely related to the methad@|(r) of finding a pair of atoms a distanceapart, relative to
described in this section. The random-walk method they prethe probabilityP,geq 4akl) expected for a completely random

sented for taking data from a simulation is a special case Gfjstribution of an ideal gas at the same denga):
the general formalism introduced here, although they used a

different representation of the derivative of the free energy P(r)
than would arise directly from our formulation. They used an gij(nN=——"-.
integral representation of the inverse temperature to calculate Pideal gaéf)
the density of states in a fluid. However, they did not use

those data as part of the adaptive simulation, relying on th&igeal gaff) is given by

Wang-Landau method instead. They also restricted them-

selves to the special case mentioned, rather than generalizing ri-1c,
the approach as done here. The results presented in Sec. Pigeal gall) = vV
IV A lead us to believe that the already excellent results of

Yan and de Pablo’s random-walk algorithm could be furthefyhereV is the total volume of the syster,is the number of
improved by using derivative methods for directing the adapdimensions, and, is the surface of a unit sphere ¢hdi-

tive sampling as well as for the data collection. mensions. The probability of two particles in the interacting
There are also related approaches based on molecular dyystem being at a distancds given by

namics and a generalization of thermodynamic integration

(15

(16)

(18

: (19

[26—-31]. The basic idea is that free energy can be seen as the

potential of mean constraint force. The theoretical formula- fe_ﬁu<xi’xj’x'“‘2)5(|rij| = ndx;dx;dX -,

tion in Ref.[31] is similar to the method we describe here. P(r) = . (20
The methods give excellent results. However, the fact that in VA

molecular dynamics we have to keep track of the dynamics . .
of the system and have to introduce constraint forces make¥nereXy-, are the position vectors of all the particles other
these methods much more complicated than the Monte Carf@ni andj anddXy_>=Il;, dx.. Without loss of gener-

framework we propose. ality, we can set the origin of our coordinate systen{xat
_ —Xj)/2. Thenx;=r;;/2 andx;=-r;;/2. Since we have trans-
A. Potentials of mean force lational invariance, we can integrate over all possible posi-

Consider a system dfl particles interacting with a pair- tions of the origin. Similarly, integrating over all orientations
wise interaction potentiap. The total potential energy of the of rj; is equivalent to rotating all the other particles, so the
system is given by angular degrees of freedom can be integrated out. It follows
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v f g AUIT12 71512 XN-2) 410 g
P(r) =

Z (21)

Using Eqgs.(18) and(19), and the fact that is constant for
the integration, we find

2 —BU(rf;/2,—rF/2,X -
\V; Je BUrT}/2,ri5/2, Xy Z)dXN_z

= 22
g(r) 7 (22
V2 J e PVXdX \_p
= 2
Z (23
=K f e AUXdX . (24)

From Eq.(17) it follows that the derivative of{zs”- with re-
spect tor is

debi(r) _ dg(r)/dr

ar o) 29
and from Eq.(24)
dg_(rr) =-pK f e-BU<X>[—J—l(F' ~ ;i) il ]de_z. (26)

F; andF; are the total forces on particleandj, respectively,
given by

N
Fi==-ViU==2 Vih(x; —X. (27)
k=1

PHYSICAL REVIEW E 69, 056704(2004)

&ij(r)=f <C(jj_LrJ> dr.

Equationg28) and(31) underscore the intuitive physical in-
terpretation of the pmf as the negative integral of the average
forces.

Volume normalization and uniform samplingh more
than one dimension, sampling will not be uniform as a func-
tion of distance if we just subtract out the potential of mean
force. The particles are more likely to be at larger separations
due to the larger available volume. If we want to sample
distances uniformly, we have to use an additional bias term
that corrects for this. The probability for particles to be at a
certain distance, if they do not interact and are uniformly
distributed, is given by Eq(19). To achieve uniform sam-
pling in r, we add a term of the formdd—1)In(r)/ 3 to the
biasing potential.

(31

B. The chemical potential

The chemical potential of a fluid can be calculated in a
number of ways. In the particle insertion method proposed
by Widom[33], a particle is randomly inserted into the fluid
to sample the interaction energyJ of the test particle with
the rest of the fluid. The averagexp(—BAU)) can be used
to calculate the excess chemical potenfid= p— tigear gas
usingu’ =—kgT In(exp(—BAU)). The averagé-) here is over
all configurations of the fluid without the test particle and all
random positions of the test particle. This method works well
for dilute fluids. For dense fluids, however, the averages will
be dominated by sampling of physically irrelevant configu-
rations where the test particle overlaps with another particle,
so that sampling is not very accurate. One way around this is
to insert the test particle gradually by incrementally increas-
ing the interaction of the test particle with the rest of the
fluid, as described by Mon and Giriffith84]. The chemical
potential can then be calculated by using thermodynamic in-

This means that the derivative of the potential of mean forcéegration(see, e.g., Refi24]) over the different stages.

is given by
) (F —F,)-f
pue) T T P T
ddhy(r) _ Je 2 w2

dr (28)

f e VXX,
<<F_2FL> _f”> 9

du

()

This last expression says that we only need to calculate th@nergy

This formalism can be adapted to calculate the excess
chemical potential of a particle using the adaptive integration
method. In order to do this, we could modify the potential
energy such that all the interactions of a certain particee
scaled by a factor ok =0. The modified total potential en-
ergy is given by

UX)= X o)+ > lry)

i<jiij#k ik

(32

=Uy(X) + AU (X). (33
To simplify notation, we will denote the first term in the
potential energy ably and the second term atJ,. The free
as a function of, of our system is

average forces on each particle projected onto the line be-

tween the two particles.

Given this, we recover the potential of mean force by

integrating with respect to:

1
FON) =- [—gln(Z}\) (39
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~ tion function, and consequently the effective potential of
f e AOMUC0Igx mean force, between two selected particles.
=—ZIn N , (35) The choice was based on several considerations. The ra-
B ATN! dial distribution function is a simple example of a more gen-

where A =(8h2/27m)*2 is the de Broglie wavelength of the eral class of effective potentials of mean force, which means
that this calculation demonstrates the implementation of a

particles, which results from integrating over the momentum . . f brobl £ Th del is relativel
degrees of freedom. The factor Nf is a result of having\ W'de variety of problems of interest. The model Is relatively
. : simple and well understood. The computational effort in-
particles of the same species. It follows that volved in making convincing tests is not extravagant.
dF(\) 1d Finally, there is also an easily computed standard by
—=-——In(Z,) (36) which to judge the results. For a Lennard-Jones fluid, the
dh BdA radial distribution function can be calculated very accurately

by taking data from all pairs of particles instead of just two,

_ because all particles are identical. This will increase the

_ BlU(X)+AU1(X)]

'Bf en FPUL(X)dX available data by a factor ®(N-1)/2. In addition, the cal-

=~ BAINN1 Z (37)  culation of an effective potential from just two particles is
N

fundamentally challenging because the diffusion of particles
is slow. To obtain an accurate radial distribution function, it
=(Upy. (38)  is necessary for the two particles to diffuse over large dis-
tances relatively rapidly. This problem does not arise if all
é)airs of particles are used in the calculation and the pmfs
Obtained converge very rapidly. For these reasons we use the
otential of mean force obtained from an average over all
%airs of particles as reference pmf to which to compare our

Integrating this from\=0 to A=1 then gives the free energy
change due to interactions when adding an extra patrticl
which is the definition of the excess chemical potentiél

The number of particles is constant. To get the total chemic
potential u, we need to adjust the number of particles, COrasults below.

responding to the ideal gas compongnfea gas Which is We have to emphasize, however, that this approach of
known exactly:sigeal gas™kgT IN(N/V). _ averaging over all particles to obtain the pmf is only valid as
A well-known problem with this approach is poor conver- |ong as all particles are identical. The adaptive integration
gence[34,33. The difficulty is thatU, and the derivative method introduced is aimed at cases where this is not true.
that we wish to calculate diverge as-0. This makes con- We chose a system of identical particles merely as a test case
vergence near=0 very difficult, although the method works to evaluate the method.
well for other ranges of values. The performance of AIM is compared to a state of the art
A way around this divergence problem is to changexhe method, the Wang-Landau method. The Wang-Landau
dependence of the potential enetgfh). As long as the two method has received a lot of attention since its introduction
limits A=0 andA=1 evaluate to the right values, we can because of its high efficiency and flexibility. Apart from the
choose any well-behaved parametrizatjgd]. We have cho-  original work on spin lattice systen8,36), it has also been

sen to rescale the interaction radius of the test particle so th&ged for sampling along chemical reaction coordinga$,
it interacts with other particles with the study of phase transitions in fluif38], and the simula-

tion of proteins[39,4(Q.
r AR DA We performed the tests for a dense two-dimensional
(1) = by VA 4e T ) T\ (39 |ennard-Jones fluid witp* =0.8 andT*=0.625, since calcu-
lations of potentials of mean force at high density are diffi-
Then cult due to long diffusion times and therefore make for a
stringent test case. We used a relatively small systed of
UX)= X o)+ 2 hy(ri). (40) =36 particles to allow for long runs with high statistics. In all
I<phizk ik cases, we use a square box with periodic boundary condi-

With this parametrization, reduciny corresponds to de- tions. _ _ _

creasing the interaction radius of the test particle with other Conformations of the fluid were sampled using a Me-
particles. The resulting free enerdy(\) is well behaved, tropolis Monte Carlo scheme, with acceptance probabilities
with finite derivatives even ak=0. Another advantage of Modified according to the respective algorith(ang-
this formulation is that we have a direct relation between thé-@ndau or AIM. The pseudorandom numbers used in the

chemical potential and the particle size, so we need to dgalculations were generated using an implementation of the
only one calculation for different test particle sizes. the ran2) pseudorandom number generator described in Ref.

[41]. This pseudorandom number generator, which is based
on a paper by L'Ecuyef42], has a very long period>2

IV. ADAPTIVE METHODS APPLIED TO THE RADIAL >< 10'%) and it is generally agreed to have very good proper-
DISTRIBUTION FUNCTION ties [41].
In order to test the simulation methods introduced in the A. AIM compared to Wang-Landau method

preceding section, we have applied them to the Lennard- We performed 15 simulation runs of AMonte Carlo
Jones model of a simple fluid to calculate the radial distribusweepgafter equilibrating the systenfior both AIM and the
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> AM . ©  Wang-Landau
a  Wang-Landau 1k o ’ g”:‘rence
w0k 4 f<dH/dr>

05

-1

1‘ 1‘.5 é 215 3
MC sweeps rle
FIG. 1. Average rms diﬁerencérms of the pmf calculated by FIG. 2. Potential of mean force after10° MC sweeps. The
different methods from a reference piske Sec. 1Y as a function filled squares are from adaptive integration, the circles from Wang-
of number of MC sweepss, is averaged over 15 runs for the Landau. The continuous gray line is the reference potential. The
Wang-Landayusquaresand adaptive integration methogtsrcles). curves on the figure represent raw data, not smoothed curves.
The third line(triangleg shows the error when calculating the pmf
using derivatives during the simulation with the Wang-Landauduced energy. To show the nature of the errors more, Fig. 2
method. depicts the pmf at an early stage in the simulation. After only
5X 10° MC sweeps, the potentials have not converged com-
Wang-Landau Method and used each algorithm to calculatpletely. This makes it easier to see that the curves obtained
the potential of mean force between two test particles.  using AIM are almost continuous, since we were able to use
To compare the errors for the potential obtained with AIMvery small bin sizes. The smoother potentials are valuable
and the Wang-Landau method, we calculated the rms differwhen exploring the local structure of the potential of mean
ence &,,s between the corresponding pmf and the referencéorce.
pmf from an average over all particlésee Sec. IY. For the Naturally, AIM also automatically records the derivative
Wang-Landau method, we performed preliminary runs withof the pmf, which can be useful for determining the location
different settings of the parameters. The accuracy of thef peaks. As can be seen from Fig. 2, derivatives would be
method, as measured by the rms difference from our refeimore difficult to calculate from the results of the Wang-
ence pmf, did not vary significantly for settings close to theLandau method.
values suggested in the original papers by Wang and Landau From these data we can see that AIM converges faster
[9,36]. For data shown below we chose an initial multiplica- than the Wang-Landau method in terms of Monte Carlo
tion factor off=1.5, with 0.8 as the threshold for flatness of sweeps. The actual execution time for the simulations is al-
the histogram. With these settings the Wang-Landau methoghost the same for both methods. The additional steps needed
converged after roughly I0steps. Beyond this point, the for either algorithm take up only an insignificant fraction of
multiplication factorf is too small to improve the pmf effec- the total computation time, as the most time-intensive part of
tively [36]. the calculation is the calculation of the potential energy dif-
Figure 1 shows the rms differenc®,, our measure of ferences.
error for the potentials, as a function of number of MC
sweeps for the different methods. The squares represent the
results for the Wang-Landau algorithm. The circles show the B. Modified direct interaction
results for AIM. The triangles were obtained by calculating
the potential by integrating the average force while running We have used AIM to calculate the potential of mean
the Wang-Landau algorithm, which is essentially the apforce between two special particles in the unusual case in
proach used by Yan and de Papi®]. which they have a zero direct interaction potential and only
The results indicate that the adaptive integration methodeel the effect of the solvent particles. An interesting feature
converges somewhat faster than the Wang-Landau method.df this calculation is that it captures all the information about
also shows that even when using the Wang-Landau algdhe effect of the solvent on the behavior of the two special
rithm, the accuracy of the potential can be increased by reparticles, even when they do have a direct interaction. We
cording the average force: The average error at the end ofill refer to this part of the potential of mean force as the
10’ MC sweeps for the adaptive integration method wassolvent-induced pmf
Sms=0.0137+0.0019. For the Wang-Landau calculations we Once the solvent-induced pmf is known, we can deter-
obtaineds,,,s=0.0256+0.0047 and for the calculation of the mine the potential of mean force for any other direct inter-
pmf from derivatives while running with Wang-Landau we action between these two particles without any further simu-
found 8,,s=0.0177+0.0022. All numbers are in units of re- lations. The direct interactionp,, between the special
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FIG. 3. Potential of mean force for regular Lennard-Jones par-

ticles. The dotted curve witkk markers shows the solvent-induced ~ FIG. 4. Average, solvent-induced force on the special particles
pmf. The black dashed curve is a reference potential calculate@s a function of separation. The plot shows the average values of the
from the radial distribution functions of all the partickesee above  force over ten independent MC runs of”IC sweeps each, with
The gray curve with square markers was calculated by adding theifferent initial random numbers. We plot the individual points
direct Lennard-Jones interaction to solvent-induced pmf. The blackvithout connecting them, so that fluctuations between neighboring
and gray curves are essentially on top of each other. bins are more easily visible. The error bars, shown for a subset of
the points, indicate the standard deviation of the values from differ-
ent simulation runs. The standard deviations for the remainder of
the points are of comparable size. The solvent-induced pmf shown
in Fig. 3 was obtained by integration of the forces used to calculate

_ the average force shown he(@he integration in Fig. 3 was done
UX)= E ¢(r‘j) (42) for each MC run to obtain individual pmfs before averaging over
the ten simulations to obtain the final phot.

particlesa and b is an additive term in the total potential
energy:

i<j

= dav(rab) + E B(rij) (42) solvent-induced pmf. The potential was calculated by inte-
I<Jil.jeab) grating the average force, which is shown in Fig. 4. The gray
curve with squares as markers on the same figure was ob-

= ap(Tap) + U (X), (43) tained by adding the Lennard-Jones potential to the solvent-
whereU" consists of the remaining terms. It is then easy tolnduced pmf. . .
see that The black dashed curve is a reference potential of mean
force obtained from using all pairs of particles. The error
- _ du’ bars shown are for an equally spaced subset of the data
atfTab) = bar(Tab) +f <W>rdr' (44) points, and indicate the variation of the calculated pmfs from

i i different runs. The errors for the remaining data points are
Since the average in the second term does not depend Qiyilar, but were omitted to make the plot more readable.
the direct interaction and is for a fixed separation of the  gjyce the difference between the reference potential and
special particles, we need only calculate it for the case ifne recovered potential is too small to be visible in Fig. 3, we
which the special particles have no direct interactions. Th'?)lot the difference between the two curves for a subset of the
allows us to sample all possible separations, including thosgints in Fig. 5. The deviations are quite small compared to
in which the special particles overlap strongly. Any directihe actyal function value and well within the error bars, with

interaction of interest can then be added analytically to thge single exception of the first data point, witk0.95.
solvent-induced pmf. Since for smallr values the repulsive part of the Lennard-
Jones potential becomes large, the standard simulation using
all particles has relatively low statistics. In this region, the
reconstructed potential is actually more accurate than the ref-
Naturally, we can recover the usual Lennard-Jones radiarence pmf. We note that the deviations from zero between
distribution function from the solvent-induced pmf, which neighboring values af are strongly correlated in Fig. 5. This
provides an important consistency check for the method. Ifis not surprising, given that the values are calculated by in-
this case, all the particles, including the special particlestegration to give smooth curves.
interact with the same potential. For this Monte Carlo simu- The plot of the average forces in Fig. 4 allows us to ac-
lation, we performed 10 runs with 101C sweeps each for a curately determine the positions of the maxima and minima
36-particle Lennard-Jones fluid wigi =0.8 andT ' =0.625.  of the potential of mean force. It also shows interesting struc-
The dotted curve withx markers in Fig. 3 shows the ture in the variation of the potential, which is hard to see in

C. Recovery of the original radial distribution function
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FIG. 5. Difference between the reconstructed potential of mean . . )
force and the reference pnigray curve with squares and black FIG. 6. Compans_on of potential solvent-induced pmf for regular
dashed curves in Fig.)3The reconstructed pmf was calculated by Lénnard-Jones particles for the NVigray dashed curyeand
adding the direct Lennard-Jones interaction to the solvent-induceh’PT ensembles(b_lagk CO”““UOPS (_:urve W't_h error barsThe
pmf. The values are averaged over ten MC runs. The error barGurves are very similar. The main dlﬁgrence |§ the lower value of
represent the standard deviation of the potentials of mean forcE'€ Pmf for overlap of the two special particlés=0) for the
from different runs. The differences represent a small fraction of thé\‘PT curve, because this enables the reduction of the total volume
actual function values. The deviations between neighboring valuegf the system.
are correlated because the pmf is calculated by integration. The
largest difference is for <o, where the reference potential is dif- volume close to that of the previous NVT calculation. The
ficult to calculate, because this is a very low probability pressure imposed was =1.585, giving an average volume

configuration. of Vypr=45.2 versud/y, 1 =45.0. We can see from the graph
the potential itself. In particular, the shoulder in the plot of that the results are almost identical for values ofo. How-
the average forces aroume 2o is much easier to see than €Vver, the curve for the NPT calculation is systematically
the subtle variations of the slop of the pmf plot in Fig. 3. A lower for small values of. This is to be expected, since the
more detailed study reveals that the structure in the averagd/€rage volume of the system will be reduced when the two
forces around =20 is due to the second and third rings of test particles overlap for the constant pressure ensemble.
particles around the center particle: In a solid, there would b&ince a smaller volume is favorable in the NPT ensemble,
two peaks ing(r) atr=y30rY6 and 218, In a fluid these Overlapping particles will be more favorable in this ensemble
peaks will be broadened and overlap since they are verf! cOmparison with the constant volume ensemble.
close together. To verify that these peaks would lead to the
structure seen in Fig. 4, we generated a simple model of the
radial distribution function that uses weighted Gaussian In this section we apply AIM in a more general context by
functions atr=130r® and 216 to model the peaks. We using it to calculate a complete thermodynamic cycle that
then calculated the corresponding pmf and force curves. Theould be very difficult to simulate with ordinary methods.
corresponding curve for the average force showed a clearlyhis cycle will explicitly link the chemical potential of a
visible shoulder around=2¢, while the potential curve dis- particle with the radial distribution function of the fluid. A
plays only small variations in the slope, very similar to whatschematic depiction of the sequence is shown in Fig. 7. We
we see in Figs. 3 and 4, which strongly supports our interbegin with a system o particles, and insert one additional
pretation. particle with the same properties. The free energy needed for

This demonstrates another advantage of AIM: in a lot ofthis step is the chemical potential. Next, we remove the di-
applications, such as in calculations on biological systemsiect interaction between the new particle and one other par-
weak signals can very often point to subtle but importanticle. The potential of mean force between those two par-
effects. These are very hard to detect in poorly understooticles is the solvent-induced pmf that we have already
systems. The resolution and additional information provideddiscussed. We then constrain these two particles to overlap
by the average force plot in AIM could be important tools in and reduce the particle number by one. This state is equiva-
detecting such effects. It is important to note that this infor-lent to having a test particle in the system that interacts twice
mation would be very difficult to obtain with other methods. as strongly with the remaining particles. By reducing this
Calculating accurate derivatives is very difficult with interaction to the normal particle-particle interaction, we
histogram-based methods. complete the cycle.

Figure 6 compares the solvent-induced potential of mean As before, the calculations will be done on relatively
force for the NVT and the NPT ensembles. The parametersmall systems to allow for long runs, since the main goal of
of the NPT simulation were chosen to make the averagéhe calculation is to test the methods.

V. A Thermodynamic Cycle
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00 @ @ ® romzcerciion The fourth purpose is to illustrate the usefulness of the
0000 ——— 0000 O ; : : .
YY) 000 solvent-induced potential of mean force discussed in Sec.
A B IV B, which is computed without any direct interaction be-
tween particles. Because the solvent-induced pmf can be
ormalTescton used to generate the full pmf for any direct interaction with-
@ @ @ Doubic interacrion 0000 out further simulations, it allows us to perform a numerical
0.0.0:’0 ’.‘.’.‘ integration to calculate the free energy involved in removing
F c the interactions between particles. The value of the solvent-
induced pmf at zero separation is also physically meaningful,
since it is related to the chemical potential.
. .N.ormal Interaction . . .Norm(aDl Interaction
00— ~—— @O @~ Nolwruion A. Sequence of states in the cycle

..‘ Constrained ... O

E D In this section, we will look at this cycle more rigorously
FIG. 7. Schematic view of cycle. We define the following se- and describe _What _quant't'es must be obtained from the

quence of states\—N particle systemB— (N+1) particle system Monte Carlo simulations to calculate the free energy differ-

that is composed of a normally interactibgparticle system plus €NCES.

one particle that does not interact with any other particle, i.e., an Because the sequence of states is cyclic, going ffom
ideal gas particleC— (N+1) particle system with uniform interac- throughF and back toA, the net change in free energy must
tions between all pairs of particleB;— (N+1) particle system with ~be zero. Consequently, the Helmholtz free energy for the
one pair of special particles without direct interaction with eachinsertion of a particlgchemical potentiglcan be found in
other;E—(N+1) particle system with one pair of special particles two ways. We can either follow pathBC, or in the opposite
that have no direct interaction with each other and are constrainedirection, use the patAFEDC.

to be at the same positiofi—N particle system with a single StateD is particularly interesting, because it provides a
special particle whose interactions with the other particles aresystem that is well suited for adaptive sampling calculations
double the normal interaction. From stdtereducing the strength  of the effective interaction between particles. By using this
qf the interactions of the special particle with the rest of the parthermodynamic cycle, we have a consistency condition for
ticles returns the system to stae the free energies that can be exploited to improve calcula-

There are several reasons for carrying out this calculatior?®"S: , _ ,
First it provides a stringent test of the consistency and accu- S We describe the calculations of the free energy differ-
racy of the method. The errors in each step can be calculate8NCes between states, we will illustrate them with a numeri-
and the errors from different stages of the calculation can bal €xample for a Lennard-Jones system With35+1 par-
compared, and, of course, this provides the consistencijcles atT =0.625 andp =0.8. All numerical quantities,
check that the total free energy difference must vanish.  including the free energy differences, are reported in reduced

The second purpose is to illustrate the advantages of AIMINits (see, e.g., Ref32]).
for the direct calculation of the chemical potential. The small
bin sizes that can be used with AIM eliminate a significant 1. From Ato B
source of error in such calculations. A similar calculation in
the last part of the cycle shows how to use the method to
calculate changes in the free energy when the strength of t . . .
interactions is varied. This is relevant to biochemical and©!lowing discussion, let us also assume that the extra par-
materials science calculations that explore the effects dficle is a different color, and make it a white particle to
modifying the interactions. distinguish it from the other particles which we assume to be

We use AIM to calculate both, the potential of mean forcegray-
and the chemical potential. Because this cycle returns to the The partition function for a system &f particles at con-
original state, the net sum of the free energy differences bestant volumeV and constant temperatufieis given by
tween all individual stages must be zero. This provides a
stringent test for the accuracy and efficiency of our methods.
This type of test of the accuracy of the method is essential
for biological applications. Very often the quantity of interest
in calculations in this field is a difference between large\ynereA is the de Broglie wavelengtiX, is the vector of all
quantities that almost cancel each other out. To get meaningsarticle  coordinates, Xy={X1,Xo, ... Xn}, and dXy
ful rgsults, it is very important to have methods that 9IVe_ g, dx,- - -dx,. The potential energy is
precise results.

This step adds a noninteracting particle toMuparticle
stem to give aN+1 particle system. For clarity in the

11

A _
INZ v

JV dXy exd— BUN(Xn)], (45)

The third purpose is to show how to obtain the chemical N-1 N
potential through two independent paths. This provides an UQ(X) =>> B(ri). (46)
additional way to compute chemical potentials. Although the j=1 i>]

first (well-known) path has the smaller statistical errors for . . .
this example, it is not completely clear that this would be thewhere(r;;) is the potential between particles separated by a
case for all problems. distancer;;=|x;—x;|.
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The partition function for a system witN particles inter-
acting with potentialsp(r;;) and one noninteracting particle
is then

g _V

R, = Fzﬁ. (47

The change in the Helmholtz free energy between states
andB is given by

1 [V
FEH_FQ:_EIn(P), (48)
1 (1
FE,+1—FA=[—3In<\—/)+C. (49)

PHYSICAL REVIEW E 69, 056704(2004)

0.8 T T T T T T T T
08
04
0.2
0
—0.2}

2

-0.41

-

-12

The first step of the cycle does not require simulation, A
since it is just the chemical potential of an ideal gas patrticle.

= . h th tant d unit ht FIG. 8. Excess chemical potential vs\ for adaptive integra-

hor convenlen_ce we choose the c;pns %n S ar;_unl S suc n%tn for stageB to C. A modifies the interaction radiudl=36 par-
the constanC=0 in Eq. (49) and findFy.,~F\=-2.3792 i1 | ennard-Jones system Bt=0.625,V" =45, andp'=0.8. The
for our test system.

fall and rise of the curve can be explained by the configurations

shown in Fig. 9(see text
2.FromBto C

To go from stateB to stateC, we turn on the interactions
of the original particles with the new particle. This corre-
sponds to calculating the excess chemical potential and can
be handled as described in Sec. 11l B by changinfyjom 0
to 1 in Eq.(40). We also have to account for the fact that at
the beginning of this step we have two species of partidles:
regular Lennard-Jones particlégray) and one special par-
ticle (white). WhenA =1, all pairs of particles have the same
interactions, but there are still two species. We call this state
C’. We must then account for the entropy change in going
from this system to stat€, in which all particles are of the
same specie@ray). Note that there is no difference in the so that
energies or relative probabilities of configurations in states
C’ andC.

We use AIM to evaluate the free energy difference be-
tweenB and C’ by changing the size of the particle as ex-
plained in Sec. lll B. The potential energy is

J X 17PN
v

c’
N+1 —

AINFDIN 1 63

and

J dX s 1€ PUNKNsD)
\%

S (NE ]

Z§|:+1 = (54)

/ 1
Fle— Flar = F: In(N +1). (55)

Figure 8 shows the free energy of the system as a function of
\ between stageB andC’, which scales the extra particle’s

B N1 N N interaction radius from zero to normal size. The free energy

URSM(X) = 2 X ua(rip) + 2 (1) (50) initially decreases, which is expected since the particle is

172 1>] =2 small enough to fit in between other particles. As the radius

with increases, it will move into a low energy position near the
minimum of the pairwise interactions with the surrounding

Ao\ 2 [ao\® particles, as shown in Fig. 9. When the interaction radius of

() = 46{(7) - (T) } (51)  the special particle is about half the size of that of the other

particles, it can sit in between two other particles and be at
We then use AIM to calculate the Change in free energy ay'le minimum of the interaction potentials with both. As the
function of \. It follows size further increases, it can simultaneously interact with
three particles. As the particle radius further increases, the
low energy configuration at the right of Fig. 9 is no longer
possible and the energy starts to increase. Note that Fig. 9
shows a close packed configuration, which is certainly not
which is the usual equation for thermodynamic integrationthe normal case for a fluid. However, because the density of
for particle insertion to calculate the excess chemical potenthe fluid is very high, local configurations will look roughly
tial. like this. In fact, the location of the minimum\

For the free energy difference betweBhandC we have  =0.575+0.005 is very close to the geometric value for the

9
I\

J
—F=

N

’ 07 '
FEEAN+LV,T)=( —URG™ ), (52

056704-11



FASNACHT, SWENDSEN, AND ROSENBERG PHYSICAL REVIEW &9, 056704(2004)

| axemfiao
p _JV
ZN+1_ Ad(N+l)(N+l)! (62)
and
A=0.4 A=0.5

2=0.5774 D
J dXe_IBUNﬂ(X)e_B(b(rl,z)
\%

FIG. 9. Geometric interpretation of the free energy as function 7<= (63)
of interaction radius. The light gray particles are regular Lennard- N+1 AINEDN + 1)1
Jones particles. The dark gray circle depicts the special particle. The = |
filed circles represent the interaction radii between the solvent and NiS gives us
special particle. The larger open circles represent the interaction c
radii of the Lennard-Jones interaction between the solvent particles. Z%ﬂ — <e—B¢(r1’2)>D (64)
Zyn
close packed configuration. For the reduced free energy dif-
ference between stag&andC’ we find - f - drV(r)e Berip(rL g o2 (65)
0

FS,,—FB,,=0.6687 +0.0035 (56)
The average in the last equation is for the internal energy
for our test system. Between stag€$ and C we have where the two special particles do not interact. The potential

Fﬁ+l_|:ﬁ;1:2_2397_ Consequently, the total change in theof mean forcegey; for stateD is equivalent to the solvent-

Helmholtz free energy for this stage is théig,,—FE,,  induced potential of mean force discussed in Sec. IV B and
=2.9084+0.0035. IV C. The free energy change for stagédo D is therefore
s 1 _
3. FromCtoD FRe1— Fur = [—3 In[(e P42y 1. (66)

To go to stateD, we select two particles and remove the
interactions between them. We again break this stage up into For the Helmholtz free difference betweenandC”, we
two parts: fromC to C” and fromC” to D. In stateC”, all the  find F§,,—Fg,,=-4.0286.
particles interact with a regular Lennard-Jones potential, but In order to evaluate the free energy difference betw@en
two special particles are given a different identity, which isand D, we need the radial distribution function of the two
again indicated by a different colglight gray). The corre- noninteracting particles, which was calculated using AIM.

sponding partition functions are We performed ten independent runs of MC sweeps each
with T"=0.625,V'=45, andp =0.8. The resulting solvent-
f dX @ BINKND) induced potential of mean force is the same as the one cal-
, v Nt culated before in Sec. IV C. It is shown as dotted curve with
Z5 = (57) X markers in Fig. 3.

N+L T A d(N+D) (g — ,
A (N-Dt2l The figure shows that it is very favorable for the two

particles to overlap, as expected, since other particles around

the overlapping particles see essentially one particle with

twice the interaction strength while the density of the re-

maining fluid is reduced. We can also see that the potential of

so that mean force is still relatively large at the edge of the simula-
tion box. Evaluating the integrals yields

2! "
Z(N:+l: N(N + 1)Z(l:]+11 (58)

" 1 2!
FC — FC =—1n <—> . (59) " 1
TN T ANN Y FRies =l = inl(e012)0] (67)
To go from stageC” to D, we label the positions of the
two special particleg; andx,. The potential energy for state ——1692+0.012 (68)

D, where particles 1 and 2 do not interact, is
for the change in free energy betwe€fi andD. The total

N+l  N+1 ; i igPl c

free energy difference for this stage iEy,;—Fyu

W= 3 4y (60) = 572040012, C
i=1 j=i+lj#2

so that for stateC” the potential energy can be written as 4 FromDto E

In stateD, we have arN+1 particle system with uniform

Uﬁ:1 = Uﬁﬂ +P(ry o). (61) interactions .between a_II pairs of _particles except for particles
1 and 2, which do not interact with each other but can move
The partition functions are now given by freely. To go to stat&, we constrain the two special particles
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to occupy the same position, although that position can still 5. FromEtoF
move freely. For stagels andD, the partition functions are In stageE we have the two overlapping special particles
given by andN-1 regular particles. In stage we haveN-1 regular
particles plus a single special partighown in black with
f dXe_BUB+1(X)6(X2— X1) a doubled interaction with the rest of the particles. It follows
S = % 69 that the partition functions are related by
N+1~ Ad(N+1)(N + 1)| ( ) 1
and ZE+1 = Ezl'ful (79
f X PR so that
p _7JV o 1 1
N1 Ad(N+1)(N +1) (70 Fy—Frner= ,E In(m . (80)
Therefore This step keeps track of the entropy change involved
when we reduce the number of particles by one, with all the
], e neraclons famaing Ve Some. W vei~F
Z5., v -~ =-0. or the difference in the free energy.
==
Zyn JdXe_BUB” 6. From Fto A

The final step fromF back to A involves reducing the
interaction between the test particle and the other particles
:J dX1Pp (1 2) 8(Xp = X) (72) from double the interaction strength to the normal interaction
strength. To again account correctly for different particle spe-
cies, we divide this step into two parts: fromto A’ and

8(ry )86, 6) from A’ to A. In both stated= and A’, one particle is of a
:f dé rdrPp(ry o) : (73 different species. Since the path of integration does not in-
r clude =0, we do not encounter the convergence problems
discussed in Sec. lll B, and we are free to use a linear factor
=Pp(0), (74) multiplying the energy of the test particle:
where Pp(0) is the probability density for exact overlap of UM = X gl A2 g, (8D
the test particles. So i<jiij#k iji#k

1 The difference between the two states is then that in §tate
FRi1— FRe =— = In[Pp(0)] (750 A=2, while in stateA’, A=1.
B Using AIM, the change in the Helmholtz free energyzas
changes from 2 to 1 is

1 @ Bei0)
T 5 |n (76) dX ie_BUEA”}\(X)
f V(r)dr e Aeern) 3 v I\
v FAANVT =~ =AW (82
J BZN MAINNI
1
:¢eff(0)+ — |n<f V(r)dr e‘ﬁ‘f’eff(r)), or
B v p P
—F=FA NV, T)=( —UR™ ) . 83
(77) PN ( ) AN ) (83
where ¢.¢1 is the same solvent-induced pmf used for st@ge In stageA’, we have two different species with—1 par-
to D. ticles and one particle respectively. So the free energy differ-

No extra simulation is needed for this step, since we againce between the stages is given by
use the solvent-induced potential of mean forggy, calcu-

lated earlier, to evaluate the integrals. We find a free ener 1
change of ’ v FN-FN = 3 In(N). (84)
FRe1— Foep=—1.5338+0.0011 (78) The change in free energy as a function of the coupling

constantx is shown in Fig. 10. We only use the part of the
for constraining the two particles to occupy the same posidata between=1 andA=2, but we have shown the singu-
tion. larity at \=0 for completeness. The result is
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©

TABLE II. Summary of results for thermodynamic cycles under
different conditions.

T T N v p AF o(AF)

I 0.625 36 4500 0.8 0.027 0.013

sf 0.625 81 10125 0.8 -0.005 0.023

J 0.70 81 10125 0.8 0.013 0.024
= 0.45 81 11219 0722  -0.022 0.013

il 0.45 81  2700.0 0.03 0.016 0.017

2 0.5 81 12461  0.65 -0.0189  0.0096

are in units of reduced energy. The accuracy of the method

e s s s . s s s can be evaluated by looking at the sum of the individual free
0 0.2 0.4 06 08 1 1.2 14 16 1.8 2 . .
A energy differences for the full cycle:

FIG. 10. ' vs \ for adaptive integratioridoubling of interac- AF¢yce= > AF,;. (86)
tion). The data are for &l=34+1 particle Lennard-Jones system at
T°=0.625,V" =45, andp"=0.778. The part of the data,e[1,2],
used to calculaté? ~FF is indicated by the double headed arrow. Y& €an see from Table I that the total computed free energy
The range of e [0, 1] could be used to calculate the excess chemi-difference,AF;,=0.027, is very small in comparison with
cal potential. However, it is obvious from the plot that there is athe values of the energy changes between the different steps
divergence of the derivative at=0, as discussed in Sec. Il B. in the calculation44].

The numerical errors in Table | were calculated by per-
N F forming each simulation step multiple times. The reported
Fn —Fn=4.9626 +£0.0002. (85 values are the mean values. The errors given are the errors on

An integration froma=0 to A=1 would, of course, corre- the average. Each of the steps is independent, except for

spond to the calculation of the excess chemical potentiaSt€PSCD andDE, which use the same data. The overall error
However, we can see that such a calculation diverges for calculation therefore has to take into account the correlation

.0, as discussed in Sec. Il B. The error barsXor 0 get matrix between these two steps. The final free energy differ-
very large, indicating the numerical problems that would be®Nce from zero over the full cycle is also consistent with the

IJe{AB,...FAAA'}

associated with such a calculation. rather small calculated error.
For the free energy change betweghand A, we find
FA-FA =2.2221. The change in the Helmholtz free energy B. Other tests of the thermodynamic cycle
for the full step is then given bify—Fy=7.1847+0.0002. In addition to the calculation of a thermodynamic cycle
discussed above, several additional such calculations were
7. Summary performed on other systems with various temperatures, den-

If we add up all the contributions, we should get zero,Sities, and numbers of particles.
since this is a closed thermodynamic cycle. Table | summa- 1aPle Il shows a summary of the results for these calcu-

rizes the results. Note that all free energy differences showltions. In all cases, the results gave very good accuracy and
were consistent with the expected zero sum of the free en-

ergy differences around the cycle. The details of these calcu-

TABLE I Results for T'=0.625, V=45 with N=36 lations are too extensive to present in this paper, but those

particles. interested can find them in Rg#3].
Stage AF o(AF)
VI. CONCLUSIONS

A—B -2.3792 0.0000
B_C' 0.6687 0.0035 In this paper, we have introduced the adaptive integration
c'C 29397 0.0000 mgthod and demonstrateq its adygntages for practical calcu—
cC 40286 0.0000 Iqtlons. We haveT shown its erx.|b|I|ty in computing radial

' ' distribution functions and potentials of mean force, and we
¢'—D ~1.692 0.012 have shown its accuracy for thermodynamic integrations in
D—E -1.5338 0.0011 the calculation of chemical potentials.
E—F -0.4332 0.0000 Our calculations of the thermodynamic cycle provide a
F—A 4.9626 0.0002 very stringent test for AIM’s accuracy and consistency. The
A A 22221 0.0000 results show that the method performs very well. In all cases
Full cycle 0.027 0.013 examined, the total free energy differences over the cycle are

very close to the theoretical value of zero. In all cases we
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have looked at, including several calculations that we have We believe that AIM will prove to be a useful tool for a
not had space to present here in detail, the total free energyide variety of simulations in statistical mechanics, materi-
change over a full cycle is within one or two calculated stan-als science, biochemistry, and biophysics.

dard deviations of zero.

These calculations also illustrate the flexibility and con-
venience of AIM. All computations were done with the same
code. The only lines in the program that needed to be We thank Dr. John F. Nagle, Dr. Robert F. Sekerka, Oner
changed were those specifying the parameters used for th&zan and Andrew Peterson for helpful comments and dis-
free energy calculation®.g.,\ or r) and the definition of the cussions. This work was supported in part by a grant from
internal energy. NIGMS, Grant No. RO1-GM62221J.M.R., P).
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cancel each other out. So these steps do not contribute to the
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