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Lattice Boltzmann method for the compressible Euler equations
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The lattice Boltzmann model for the compressible Euler equations is proposed together with its rigorous
theoretical background. The proposed model has completely overcome the defects of the previous model that
the specific-heat ratio cannot be chosen freely. The macroscopic variables obtained from the solution are shown
to satisfy, in the limit of the small Knudsen number, the compressible Euler equations if the variation of the
solution is moderate. This is the case where no shock waves or contact discontinuities appear. In contrast, when
the solution makes steep variation at several localized regions due to the appearance of shock waves and
contact discontinuities, the corresponding macroscopic variables satisfy the weak form of the Euler equations.
Their derivation is carried out rigorously by taking into account the scale of variation of the solution correctly.
This is the first study that has laid the theoretical foundation of the lattice Boltzmann model for the simulation
of flows with shock waves and contact discontinuities. Numerical examples and the error estimates are also
given, which are consistent with the above theoretical arguments.
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I. INTRODUCTION sistency of the numerical scheme, therefore, it must satisfy
) ] the severe restriction that the dimensionless mesh width is
~ Recently, the lattice Boltzmann methddBM) is attract-  mych smaller tham, since the kinetic equation involves de-
ing a great deal of attentiofi—9. The LBM solves the ki-  rjyative terms. The derivative terms can generate error terms
netic equation of the discrete-molecular-velocity type suchy finite magnitude if the mesh width (), or the width of
that the macroscopic variables obtained from the solutioRne shocks or the contact discontinuities.
satisfy the desired fluid-dynamics-type equations. Various o\wever, the mesh width db(z) is often used to simu-

merits of the LBM are pointed out: a simple scheme, lineafj;ie fiows with shocks and contact discontinuities by the
advective terms, high resolution for shock wave computay g in order to save computation tim@—3]. It is impera-

tion, and so on. Because of the last merit for the shock wavg e ‘therefore, to present a clear theoretical background. To
computation, the LBM, is often used as a simulation t_°°| for,this end, we consider the integral relation of the kinetic equa-
compressible flows with shock waves and contact discontizyn, in the same manner as the weak form of the Euler equa-

nuities[1-3). However, its theoretical background is unclear.jong peing considered when treating solutions with discon-
We focus on this aspect first, and then make a statemegt, jitiag [12-15. This integral relation includes no

about our model subsequently. _ derivatives of the velocity distribution function. It is easy to
When using the LBM as a numerical tool, one must con-,

. hat th . iabl btained h | show that, even if the mesh width &(e), the usual finite-
f!rm that the macroscopic variables obtaine from the SOlUyitference scheme of the kinetic equation is consistent with
tion of the kinetic equation of the LBM satisfy the desired

fluid-d ic-t i in the limit ef— 0 wh . this integral relationthe proof is shown in the Appendix of
uid-dynamic-type equations in the fimit @1, wheree 1S e present stugyWe then prove that the macroscopic vari-
the Knudsen number. For that purpose, the so-calle

ch Ensk ion is oft R f bles obtained from the solution of this integral relation sat-
apman-Enskog expansion Is often uskeB]. Recently, as .isfy, in the limit of e — 0, the weak form of the compressible
the more systematic analytical procedure, the asymptoti

vsis is al W t note. h that h Buler equations. It is well known that the weak form of the
analysis is also usefd]. We must note, however, that suc compressible Euler equations can correctly describe flows

analytical confirmation makes sense only when the NUMETGith shocks and contact discontinuities if the subsidiary en-

c_al s_cheme L_Jsed in th_e LBM is consistent with the orlglna_ltrOIOy condition is satisfie13—15.
kinetic equation. That is, the difference between the numeri- In addition, we present a new lattice Boltzmann model

cal scheme a_nd the original .klnetlc equation must remainy, gives the solutions of the compressible Euler equations
small. Otherwise, the theoretical confirmation of the LBM (and also their weak form In the early model§2—4], there
starting from the original kinetic equation is meaningless. ¢ 5 serious defect that the specific-heat ratio’ cannot be

Bearing th|_s in m_mo_l,_ let us _conS|der ﬂOWS_ with Sh_OCkSchosen freely. Recently, the two-dimensional model that
and contact discontinuities, which are of our interest in the

. . . i fovercome:s this defect was suggesféfl The new model
present study. It is k_nown.the_lt_ th? dimensionless width opresented in this study, however, is not limited to the two-
;hocks and_con_tact discontinuities is of the ordes atcord- dimensional version, but also for the one- and three-
ing to the kinetic theory10,11. In order to assure the con- dimensional versions. Moreover, the new model of the two-
dimensional version succeeded in reducing the number of

molecular velocities from 17 of the previous model to 9.

*Corresponding author. FAX+81-78-803-6137; Email address: Thus, the computation time is almost halved. The other di-
kataoka@mech.kobe-u.ac.jp mensional versions are also small in their number of molecu-
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lar velocities (5 and 15 for the one- and the three- <« —<¢ @ —>— g
dimensional versions, respectivily -V, -V, 0 v, v,

It is noted here that the compressible Navier-StakéS)
equations are not necessary for the analysis of the initial-
value problem of compressible flows in their continuum limit @)

(or flows whose Mach number is of the order of unity in their
continuum limite —0). In the compressible flows, the vis-
cous and diffusive terms appear only as perturbations of the
Euler equations and they vanish in the continuum limit
[16,17. Therefore, the lattice Boltzmann model for the Euler
equations is sufficient to describe compressible flows. It is
inefficient to use the lattice Boltzmann model for the com-
pressible NS equatiorfd8] whose number of molecular ve-
locities and computation time become larger in general.

The present paper is arranged in the following order. In
Sec. I, the new lattice Boltzmann model is presented. Its
theoretical background is given in Sec. lll, where the
asymptotic analysis for smal is carried out. Numerical
examples and error estimates are arranged in Sec. IV. In the
last sectionSec. Vj, some concluding remarks are given.

Il. LATTICE BOLTZMANN MODEL )

We introduce a lattice Boltzmann model in its dimen-
sional form in Sec. Il A, and then, in its nondimensional
form in Sec. Il B.

A. Dimensional expressions

First, we write down the compressible Euler equations
explicitly:

Q_{_r?pua:

0, 1
at  IXx, (13
dpu, dpuy,u J
p_ + p—é + _p - 0' (1b)
at JXg X,
p(bRT+U2)  apu (bRT+U2) +2pu,
p( a)+ PU( 3) +2p -0 (10
A I X,
(@=1,2,...D; B=1,2,...D), (©)
wheret is the time x, is the spatial coordinate, u,, T, and FIG. 1. Distribution of the discrete molecular velocitigg(«
=1,...D;i=1,2,...]) for each dimensional model(a) one-
p=pRT (2 dimensional modelD=1,1=5); (b) two-dimensional modelD

are, respectively, the density, the flow velocity in tedi- = 2:/=9: (¢) three-dimensional mod¢D=3,1=15).

rection, the temperature, and the pressure of alasdD
are the specific gas constant and the number of spatial di- p=p° u,=®, T=T° at t=0, (4)
mensions, respectively. is a given constant expressed as

2 wherep®, W%, andT° are given functions ok,.
b= 1 () Now we present a lattice Boltzmann model that gives the
Y solutions of the initial-value problem of the compressible
where y is the specific-heat ratio. Note that, in the presentEuler equationgla—(1c) with the initial condition(4). Let
study, the subscripts and 8 represent the number of spatial ¢, (i=1,2,...]; | is the total number of discrete molecular
coordinates and the summation convention is applied teelocitieg be the molecular velocity in the, direction of the
these subscripts. The initial condition is ith particle, andy; be another variable newly introduced to
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control the specific-heat ratid;(t,x,) is the velocity distri- :

bution function of thdth particle. The macroscopic variables p(bRT+u2) = > £79c, + 70), (9d)
p, U,, andT are defined as i=1
! |
p= 2‘1 fi, (53 pl(b+2RT+uzlu, = z fPYCls+ 7)Cia, (9¢)

| Then the macroscopic variables u,, and T derived from
pu, = D fic, (5b) the solution of the kinetic equatiaf®) with the initial con-
3 dition (7) satisfy the compressible Euler equatigtg)—(1c)
and their initial condition(4) if the time and length gales of
| variation of solution are much larger thanand ~VRT, re-
2y = (2 2 spectively. The proof is given in Sec. Il A.
p(ORT+u,) glf'(c'“+ - 9 The specific models that satisfy the above constraints
(9a—<9e) are presented in the following secti¢8ec. Il B).
Note that, in the present study, the summation convention is

not applied to the subscriptrepresenting the kind of mol- B. Nondimensional expressions

ecules.
Consider the initial-value problem of the Bhatnager— The nondimensional variables and equations, which are
Gross-Krook-type kinetic equatigi9): convenient for the following analysis and numerical calcula-

tion, are listed first.
af; afi _ f4pu,T) - Let L, po, and T, be, respectively, the reference length,
It * Ciﬂ@ B T ' 6) density, and temperature. Then, the nondimensional variables
are defined as follows:
with the initial condition

a t a Xa - Cia ~ 7
t=——, X,=—, GC,= . =,
fi=fYp%u, T at t=0, (7) LIRT, L' "R, 7T RT,
where 7 (the relaxation timg is a given constant and .
f7p,u,,T) (the local equilibrium velocity distribution ;= f Fea f._q
function) is a given function of the macroscopic variables. oo " po’
In the LBM, the following discretized form of Eq6) is
often used: . p ; u, . T " D
p =—, o = —, =—, =,
fl(t + At!xa + CiuzAt) B fi(tvxa) _ fiea(pluavT) - fi (8) Po \‘JRTO TO pORTO
At - T '
whereAt is the discrete time step of order It is clear that p°= o )= Uy e v po= ik (10)
P P “ \RTy To' PoRTo

Eqg. (8) is only one of the finite-difference scheme of the

kinetic equation(6). Therefore, we use Eq6) as a basic | terms of these nondimensional variables, the compressible

kinetic equation in the fO||0Wing. It is also noted that there is Euler equation$la)_(1c) and their initial Conditior(4) are
a recent trend in the LBM community to use the usual finite-

difference scheme of Eq6) rather than Eq(8) due to the dp dpl,

numerical stability problenh20,21]. ot + Fran
Now return to the explanation of the lattice Boltzmann

models. The following constraints are imposed on the mo-

0, (11a

a

ments off 9 appearing on the right-hand sides of E@.and dpl, + af»ﬁaﬁé + ‘9_|5 -0 (11b)
@ ot a%g 9%,
B
|
=D f, 9 Ip(bT+0P)  9pl,(bT+(3) + 2pi,
p=2 (9a) pOT+E) | 9p0. T+ + 2P0, _ ()
at Xy
|
puazzfieocia, (9b) (azl,Z,D, ﬁzl,z,...D),
=1 where
| L
p=pT (12
p5a,8 + puauB = E fieaciaci,B! (QC)
i=1 and
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A_~0  n 00 T_T0 $= .
p=p’, U0,=0, T=T at t=0. (13 ﬁﬁa:Efieuﬁ.a, (18b)
The nondimensional macroscopic variables used in the LBM i=1
are defined as
| ~
R A PS5+ pU,ls= D, 7% ,Cis, 18c
p=2 i (143 POap ™ PUalg 21' iaCig (189
i=1
| |
- P A+A2 = Feqa2 + 52
b, =2 T8 (14b pOT ) = 2 G+ ), (189
i=1
| Teqa2 | ~2\a
pIOT+05) = X Ti(&, + 7)), (149 ALl +2)T+ Gyl _Elfiu(cwm)c'“' e
i=1

from Egs.(5a—5c). The kinetic equatiori6) and its initial
condition(7) of nondimensional form are

ot of; 45,0, -1
gt 0D (15
at IXg &
and
fi=19p°,00,79 at =0, (16)
wheree is the Knudsen number defined by
—
IRT,
e= %) (17)

f79 satisfies the following constraints from Eq9a—(9e):

|
=> f (183
i=1

r
b-1-

7]0

=1

—v§+(b+2)1'+0§

A =9 2(v1 [ ((b l)—+1) +ul} for i=2,3

2(02 [ ((b 1)—+1)T+ul} for i=4,5,

We will give a specific model for each number of dimen-
sions D(=1, 2, or 3 that satisfies the above constraints

(183—(18e.
(1) One-dimensional modéD=1,1=5).
Let
0 for i=1
6i1: 221 COi’ﬁi) for i=2,3
v, coqmi) for i=4,5,

(19
. _Jm for i=1
"=1o for i=2,34,5,

wherev,, vy(#v4), and 7 are given nonzero constarfsee
Fig. (a)], and let

feq p(A +B0,G,) for i=1,2,3,4,5 (20

be a local equilibrium velocity distribution function, where

(218

20,2 2
21)1(01 - Uz)

~ 03+ (b+ 2T+

Bi:

for i=2,3
(21b

2v§(v§ -

Then C,

for i=4,5.

y s andfieq (i=1,2,3,4,5 given above satisfy the constrairits89—18e). This is the first lattice Boltzmann model

of one-dimensional version whose specific-heat ratipivhich is related tab by Eq. (3)] can be chosen according to our
convenience, while the previous model gives the unphysical valye=8f(or b=1) only.
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(2) Two-dimensional modelD=2,1=9).

Let
p
(0,00 for i=1
(cosﬂi sinli> for 1=2,3,4,5 for i=1
~ A U1 >y =£,9,4, ~ 7]0 =
(C|11C|2) - 1 - L 1 {O for i:2,3,...,9, ( )
i i
cos sin for 1=6,7,8,9,
\”2[ “(2 4) ”(2 4)}
wherev,, vo(#v4), and 7 are given nonzero constarfsee Fig. 1b)], and let
9= (A + B0l + Dill Cialglip) for i=1,2,...,9 (23
be a local equilibrium velocity distribution function, where
(
b-2- .
— T for i=1
770
V2
A =1 { ((b 2)—+2) —goi} for i=2,3,4,5 (243
4(01 U1
v2
{ ( b- 2)—+2) —iai} for i=6,7,8,9,
4(02 Ul) Uy
-3+ (b+2)T+0
vz (b+2) for i=2,3,4,5
_ 2U1(U1 U2)
B = N (24b)
—vi+(b+2)T+ 0 _
> 5 3 for 1=6,7,8,9,
2v5(v5 = v7)
1 .
— for 1=2,3,4,5
2U1
D= 1 (240
— for i=6,7,8,9.
205

Then¢, (@=1,2), 7, andff9(i=1,2,...,9 given above satisfy the constraints8g—(188. Compared with the previously
proposed moddll], this model is superior in the computational efficiency, since the number of molecular velocities is reduced
from 17 to 9. Thus, the computation time is almost halved.

(3) Three-dimensional mod¢D=3, 1=15).

Let

(0,0,0 for i=1
v1(£1,0,0, 010, £ 1,0, v5(0,0, + D for 1=2,3,...,7 A_{no for i=1
-

(€i1,€i2,Cia) = : (25)
_ 0 for i=2,3,...,15,
Y2(41,+1,+1) for i=8,9,...,15, or |
V3
wherev,, vy(#v,), and 7, are given nonzero constarjtee Fig. 1c)], and let
feq p(A +Bi0,8, +Di0,8,08,) for i=1,2,...,15 (26)

be a local equilibrium velocity distribution function, where
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p
b-3- .
— T for i=1
o
1 v3 ~ U5
A= —[—v2+((b—3)—2+3)T+—20i} for i=2,3,...,7 (273
R R A A
1 2 L 32— 2
ﬁ[—v§+((b—3)v—§+3)n = szai] for i=8,9,...,15,
\8(1)2_1)1) o 202
— 02+ (b+ 2T+
vat 02Ty o oo 7
2U1(Ul_vz)
i = - (270
3[— vi+(b+2)T+ 02] ,
2 7 2 for i1=8,9,...,15,
8U2(02_U1)
1 .
— for i=23,...,7
2v]
Di={ g (270
—— for i=8,9,...,15.
1604

Then ¢, («=1,2,3, 7%, and %$Q(i:1,2,...,15 given
above satisfy the constraintd8a—18e. This is the first

The following analysis is based on the general model,
Egs. (15—18), and application to the concrete models is

lattice Boltzmann model of three-dimensional version whosestraightforward: only to substitut,, 7;, andfieq of the spe-

specific-heat
convenience.

ratio can be chosen according

IIl. ASYMPTOTIC ANALYSIS

In this section the asymptotic analysis for smaldf the
initial-value problem(15) and (16) is carried out to investi-
gate the behavior of a solution in the limit ef—0. We

consider the case where the deviationfpfrom that of a
uniform reference state at rest is of the order of ugitythe
Mach number of the flow is of the order of unjitthrough-

to oucific model given by Eqs(19) and(20), or (22) and(23) or

(25) and(26), into the corresponding parts of the following

analysis. For the sake of clarity, a proposition is suggested

first and its proof is given subsequently.

A. Solutions of moderate variation

Proposition 1. Consider a case where the solutfpn
makes an appreciable variation ofeandX, of the order of

unity at any place. Then the soluticfn of the initial-value
problem, Egs(15) and(16), in the limit of e — 0 is given by

?i:ffq(b,a,?) whose macroscopic variablgs i, and T sat-

out. When the scale of variation is of the order of unity with isfy the compressible Euler equatiofila~11¢) and their

respect ta andX,, the usual asymptotic analygi$6,17 is
applied. This is explained in Sec. Ill A. We will find that the

initial condition (13).
Proof. We look for the asymptotic solution of Ed.5) for

macroscopic variables obtained from the kinetic equationyma|i ¢ whose scale of variation is of the order of unity with

(15) with the initial condition(16) satisfy, in the limit ofe
—0, the compressible Euler equatiofidg—11c) and their
initial condition (13).

In contrast, when the shock waves and contact disconti-

respect to the coordinatésand X,, in a power series of

[22]:

fi = ]Qi(o) + s?i(l) + szﬂ(z) + o (28

nuities appear and the solution includes the regions of steep R
variation, the effect of steep variation must be taken intowhere the component functidti‘{“) (m=0,1,2,..) is a quan-
account correctly in the analysis. This case is treated in Segity of the order of unity.

Il B. Since the usual finite-difference scheme of the kinetic

equation(15) of the mesh widthO(¢) is not consistent with
the kinetic equation itselfsee Sec.)| but with the integral
relation (see Appendix the integral relation of the kinetic

equation is used as a basic equation. Then the macrosco
variables obtained from the integral relation are found toand p. The component functionk

satisfy, in the limit ofe —0, the weak form of the Euler
equations.

Macroscopic variables are also expanded:

h=hO + eh® + £2R@ 4 ... , (29)

pwlereﬁ represents any of the macroscopic varialples,, T,

" satisfy the relations

derived from Eqs(143—(140 and (12). Only the leading-
order relations are explicitly given:
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|
~(0) — 20
pO=2 1,
i=1
5050 = 2 05,

|
pOILTO + (@)% = ZAOE, + 7)),
i=1

PO = HOFO)

The equilibrium distribution function is also expanded as

follows:

f;eq: ]?ieq(o) ¥ S}ieq(l) ¥ szfieq(Z) P

The component functiorﬁfqm) satisfies the following con-

straints from Eqs(18a—(18e):
|

pO=3 i,
i=1

|
pOH0 = 3 510%,,
i=1

b0 0+ PO T = 2 1710884
i=1

|
POTOTO + (U2)%] = X 190, + 7)),

i=1

(30a

(30b)

(300

(30d)

(31

(322

(32b

(320

(320

POLb+2TO + (@)Y = 3 9O, + 78,

i=1

(32¢)

PHYSICAL REVIEW E 69, 056702(2004

7= 179050, 0, 7). (39

Equation(33b) for ?i(l) is linear and inhomogeneous. From
the relation=!= 1g,(ff“‘*(l)—fi(l)):o, where

gi= 1! éia’ or 6izcr + ;IIZ' (35)

Eqg. (33b) has a solution only when its inhomogeneous term
satisfies the following relatiofisolvability condition:

|
a1 &f°)>
) —+" =0. 36
glgl( z?f |,B(9X/3 ( )

When condition(36) is satisfied, the solution of E¢33b)
is given by

f(O) f(O)

fl = feav - (37)

FIFT
Substituting Eq(34) into the solvability condition36), we

can get the equations for the leading-order component func-
tions of the macroscopic variables:

['71"(0) J (O)U 0)
LA + p—A =0, (38a
ot ax,
975050 L9 500G (9“(0>
P P P _0, (38
at &XB axa

apOLbTO + (@)% ap P [bT + (U] + 2p 00
at 3%y
=0, (380

where EQqs(329—32¢ are used. We can proceed with the
analysis to the higher orders in a similar way. One finds that
the leading-order s¢B8a—38c) corresponds with the com-
pressible Euler set of equationi$1a—11c). However, the
next-order set, which is not explicitly given here, includes
terms that never arise in the Euler equations, and will con-
tribute to the error of the LBM.

As for the initial condition of the leading-order set

where only the leading-order constraints are explicitly given(38a—38c), it is given by the leading-order macroscopic

Substituting Eqs(28) and (31) into Eq. (15) and arrang-
ing the same order terms i we obtain the following series

of equations forf(m)

fedO -0 =0

The solution of Eq(339 is

(333

(33b)

variablesﬁ(o),ﬁ?,ﬂw in the limit of t— 0+. According to Eq.
(34), the leading-order velocity distribution function is given
by fO=199(30 g 7)), and this fits to the initial condi-
tion [Eq. (16)] by setting its macroscopic variablg® =p°,

(O)—u and TO=TC. Thus, the initial cond|t|0n for the
Ieadlng order sef38a—38¢) is given by p©@=p° u(o)—u
andTO=

Thus, the solutioﬁi of the initial-value problen{15) and

(16) in the limit of e —0 is given by the local equilibrium
distribution function, or Eq(34), and its macroscopic vari-

ables satisfy the compressible Euler equati¢tiba<(11¢)
and their initial condition(13). |

056702-7



T. KATAOKA AND M. TSUTAHARA PHYSICAL REVIEW E 69, 056702(2004)

B. Solutions with steep variation makes steep variation in several localized regions represent-
In order to make a discussion simple, we consider thd9: for example, shock waves and contact discontinuities. In

one-dimensional problem in this section. The subscripts the regions, the solutiofy makes an appreciable variation

and 3 representing the spatial directions are omitted. Theovert andX of O(e). In the other regions, which are called

extension of the discussion in this section to the two or threethe Euler regions, it makes a moderate variatian appre-

dimensional problems is straightforward. ciable variation ovet and X of order unity. Then the solu-
It is well known that flows with shock waves and contact jo, f. of Eq. (40) in the limit of e 0 is given by,

discontinuities can be correctly described by the weak solu-_fea(A g 'AI') whose macroscobic variablési. andT satisfy
tions of the compressible Euler equations with the subsidiary 'i Pyt P psu,

entropy conditiorf13-15. The weak solutions of the initial- he integral relation39), or the weak form of the compress-

: ; ible Euler equations.
value problem of the Euler equatio$la—11c¢) with Eq. : . . .
(13) are the solutions of the following integral relation: Proof. The localized regions of steep variation are repre-

sented by several thin layers of widB{(s) on thet-X plane.
The variables inside these layers are attached with the sub-

J d;(f ﬁ_‘f pll script§, i.e., fi, fis andhg (h represents any of the macro-
- Jo | |~ scopic variables Their scale of variation is of the order of
p(bT+0°) unity in the direction along the layers, and of the ordek of
pl normal to the layers. The variables in the Euler regions are
+(9_¢ He2+p di attached with the subscrif, i.e., fg, fi2, andhz. Their
Ix ~ scale of variation is of the order of unity but have disconti-
pU(bT+ 0?) + 2pi nuities across the thin layers of steep variation. The variables
~0 in the thin layergwith the subscrip) converge to those in
% ,A)vo the Euler regiongwith the subscripE) very rapidly as the
+J pu #(0,X)dx=0, (39 distance normal to the layers increases.
o f;o[b%°+ @2 In order to make the asymptotic analysis for smslive

expand the variables in power seriessdike Egs.(28), (29),
where y(,%) is any smooth test function dfandX, which ~ and(31) with the subspripE or Sattached tq each variable.
vanishes foft+|%| large enough. The integral relati¢89) is Th_e component f_unctlons have the_ magnitude of order of
called the weak form of the Euler equations. According toUnity and they satisfy the same relations as £88a—300d)
Refs.[13-15, the solutions of the integral relatiq89) sat- ~ and (328326, where the subscripts and 3 are removed
isfy the Euler equations themselves in the regions where th@"NdE or Sis attached to each variable. .
solution is smooth, and they satisfy, at their discontinuities, Substituting the expanded series of variables into(&@.
the correct jump conditions derived from the conservatior@nd noting that the integral area of the layers of steep varia-
form of the compressible Euler equatiofe the Rankine- tion with nonzero value off is O(e), we arrange the same
Hugoniot relationg10,23). order terms ine. We then obtain the following series of

In order to obtain the weak solutions of the Euler equadintegral relations:
tions, or the solutions of the integral relati@g®9) by the

kinetic-equation system, we consider the following integral fw d“fw 0 _ fed0y i = 0 a1
relation derived from the kinetic equatigh5) and the initial L 0 (fig - fig™)yt=0, (413
condition (16):
- » teqs & Ty _ T N N LAY Ay 2
. dy . oy\, FpILT-f f dxf {(—+c-—)f.<°>+(f.<1>—f.e°‘1>)¢]d”t
dxf Y +o—|f.+ ——— Ly |dt P i .o |ViE iE iE
f_w o [(&f |(9)A() i e 1 —o 0 Jat JX
S “ - feq0)~0 ~0 T0 A

+f fe%p°, 0, T (0,9 d%= 0, (40) + f_m fie(p°, 0%, T7) y(0,X)dX
wherey is the above-mentioned test function which is inde- +f f [(FQ - 899 — (£ - $e4O)]ydtdx= 0,
pendent ofe. The finite-difference scheme of Eql5) is Ds
consistent with this integral relatio@0) even if the mesh (41b)

width is O(e) (see the Appendix for propf Therefore we
make an analysis on the basis of E40). According to the  where Dg indicates the domain of steep variation on the
analysis of the Boltzmann equation, shock waves and contaetx plane.
discontinuities are not real discontinuities but the thin layers From the leading-order relatiq@1a), we get
of width O(e) across which the variables make an appre-
ciable variation. In view of these facts, assuming the similar fO = §ed0(50 O TO), (42)
situation, we suggest the following proposition.
Proposition 2 Consider a case where the solution  sincey is arbitrary.
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The next-order equatiod1lb) can be seen as a linear the scheme, since it cannot realize the internal structure of

inhomogeneous equation foﬁ(é) From the relation the shock waves. Thus, the shock waves across which the

I . - .
i=l - Fedql) _F(Ly T entropy of fluid particles decreases may appear in the nu-
Zi-1Gi(fig " ~fig ) =0, whereg; is given by Eq.(39), Eq. merical results. However, we believe that such shocks will

(41b) has a solution only when its inhomogeneous term sat- : ! . : .
isfies the following relatiorsolvability condition: practically not appear. This estimate will be demonstrated in

Sec. IV B, where only the shocks across which the entropy
of fluid particles increases are found to appear in all the

|
> gi{f ds(f (a_lfﬂ + 6ia—ip>fi(g>di numerical results.
i=1 - Jo X

- ~0 ~0 2 s n A. Propagation of expansion waves
+ | i o 21 Pag P

We consider the one-dimensional initial-value problem of

R R R R Egs.(15) and(16) with D=1 whose initial macroscopic vari-
+JJ [(fQ - £899) — (2 - £299) Jydidx ¢ = 0. ables are given by
Ds ~
(43) p°=T°=1, 09=U tanh%y, (45)

Substituting Eq(42) into the solvability condition43), ~ WhereU is a given constant. Itis expected that, whér 0,
we get the following integral relation for the leading-order ONly the expansion waves will propagate and no shock waves
component functions of the macroscopic variables in the EuWill appear. This problem is characterized by the three pa-
rameterse, U, and y (or b).

ler regionsp?, 02, T, andp: . . .
er regionspe”, Ug', Tg', andpg The numerical resultgflow velocity, pressure, density,

P and temperatupeat t=1 with e=10% andU=1 are shown

fw dAf” Y]~ for three different values of=5/3, 7/5, and 9/7or b=3, 5,
» X o Pe EA and 7 in Fig. 2 by the plots. The one-dimensional lattice

POBLTY +(09)?) Boltzmann model, Eq§19), (20), (21a), and(21b), was used

for calculation. The corresponding numerical results of the

~(0)r4(0)
o Pe Ue Euler equations themselves solved by the so-called MacCor-
+ 22 09002 + p0 dt mack schemg24] with sufficient number of meshes are
X A shown by the lines. We find a good agreement between the
~(0)r4(0) 0) 4 (1912 00 '
Pe Ue (bﬁE +(Ug")7) + 2pg U two results for each value of.
p° The error of the LBM is now defined as
+ f po0° ¥/0,%)dx=0, (44) S
| 20 nT0 4 (710\2 E=f |Gy — 079 d%,, (46)
pObTO+(1%?) =

where Egs.(328—32e (with the subscriptsy, 8 removed where the variable with the superscript ‘exa’ represents the
and E attached to each variableand 3/=,g,(fe9®-1©)  exact solution. Here we used the numerical solution by the
il g-(f?“o)—f.(o)):o are used. We find that E¢44) cor- MacCormack method ywth s'uff|C|ent number of.meshes as
=191V E - CiE ' T the exact solution. In Fig. & is plotted as a function of the
responds with the weak form of Fhe Eul-er.equatuﬁag?. spatial mesh widthAX. One finds thatE is proportional to
Thus, the solutiorf; of Eq. (40) in the limit of e—~0is  (A%)2 when A% is relatively large, since the second-order
given by the local equilibrium distribution function, or EQ. finite-difference scheme is used. For the smaller valu&sof
(42), and its macroscopic variables satisfy the weak form ofygwever, we find thaE asymptotes to some value that is
the compressible Euler equatio(&9). B proportional toe. This is the error inherent to the LBM, since
the macroscopic variables obtained from the solution of the
LBM satisfy the Euler equations at the leading order
O(1)] but not at the next orddror O(e)] as mentioned in
Sec. Il A[see the statements below E¢38a—(380)]. Thus,
Now we present several numerical examples of the latticeéhe result of the asymptotic analysis in Sec. Ill A has been
Boltzmann models introduced in Sec. Il and estimate theisupported numerically.
errors. The parameters included in E(E9), (22), and(25)
are chosen to be;=1,v,=3, 7,=2, and the finite-difference
scheme with the usual first-order forward in time and the
second-order upwind in space is used for the numerical com- In this section we focus our attention on flows with steep
putation of the kinetic equatiofi5). The mesh width fof is ~ variation, or the Riemann problem: the initial-value problem
set atAt=g/4. The scheme is consistent with the integralOf the one-dimensional integral relatig#0) whose initial
relation(40) when computing flows with shocks and contact macroscopic variables®, (°, andT° are piecewise constant,
discontinuities. The consistency is shown in Appendix. Notewith one jump discontinuity. Note that the Riemann problem
that the entropy condition is not guaranteed to be satisfied blgas no characteristic length in the initial condition so that the

IV. NUMERICAL EXAMPLES AND ERROR
ESTIMATES

B. Riemann problem

056702-9



T. KATAOKA AND M. TSUTAHARA

PHYSICAL REVIEW E 69, 056702(2004)

FIG. 2. TheX, dependence of
0y, P, p, andT att=1 of the nu-
merical results for the one-
dimensional problem whose initial
condition is Eqg. (45 with e
=10% andU=1. The plots are the

results by the LBM with AX
=0.02:W, y=5/3; A, y=715;0,
v=9/7. The lines represent the

corresponding results by the Mac-
Cormack method with sufficient
number of meshesy=5/3 (solid
lines), 7/5 (dashed lines and 9/7
(dotted lines. From the symmetry
of the problem with respect t&;
=0, only the results fok;>0 are
shown.

time of our interest is chosen as the characteristic tigne
Thus, the nondimensinal timéf the following results are
always 1, and the characteristic length becorigs, t,.

U
-U

for %, <0

>0,

ﬁO::i'O: 1, []g: (47)
for

|

%

First, consider the one-dimensional initial-value problem

of Eg. (40) whose initial macroscopic variables are given by

LR L AL LR LA
107+ -
E ,

/
1021 -
o--0-"""
103 /-/ -
B~
/.
10'4 T NN | L1 I/I'lllll TS RTET
10 A$ 10" 10°

FIG. 3. TheAX dependence dt for the numerical results of the
one-dimensional problem whose initial condition is given by Eq.
(45 with U=1 andy=5/3,0,, =103, B, e=10"* The dash-dot
line in the figure represenB~ AX?.

whereU is a given constant. This problem is characterized
by the three parametets U, and vy (or b).

The numerical results wite=10* andU=1 are shown
for three different values of=5/3, 7/5, and 9/{or b=3, 5,
and 7 in Fig. 4 by the plots. The one-dimensional lattice
Boltzmann model, Eq$19), (20), (218, and(21b), was used
for calculation. The corresponding exact theoretical solutions
[25] are shown by the lines. We find a good agreement be-
tween the two results for each value #f Some numerical
data that are far below the exact solution adjacent to the
shock, are only due to the use of numerical scheme whose
mesh width isO(e) that could incur the error of order unity
in the shock region only.

The errorE defined by Eq(46), with 03*® given by the
exact theoretical solution, is plotted as a functionAdf in
Fig. 5. One finds thaE is proportional toAX for relatively
large A%, although the second-order finite-difference scheme
is used. This error is a contribution from the shock layer
inside which the error of the solution is of the order of unity,
and the width of the layer is proportional thx. For the
smaller value ofA%, however,E asymptotes to some value
that is proportional te, since the width of the shock layer
asymptotes to the value proportionaldo
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FIG. 4. TheXk, dependence of
Gy, P, p, andT of the results by the
LBM for the one-dimensional
problem whose initial condition is

P Y LU T S

—
T
o PO
Y B
|}

P T BT Eq. (47) with e=10% and U=1.
0 0.5 % 1 1.5 The plots are the results by the
1

LBM with AX=0.002: M, y=5/3;
A, y=715; O, y=9/7. Thelines
represent the corresponding theo-
retical solutions fory=5/3 (solid
lines), 7/5 (dashed lines and 9/7
(dotted line$. From the symmetry
of the problem with respect t&;
=0, only the results fok;>0 are
shown.

Next, we consider the shock-tube problem. The initial
macroscopic variables are given by

1 for X,<O N
0= } =0, T°=1, (48
P for X;>0,

T T T wherep®=p°T? is the nondimensional initial pressure aRd

is a given constant. This problem is characterized by the
three parameters, P, and y. The numerical results fog
=104 P=5, andy=5/3, 7/5, 9/7 areshown in Fig. 6 by
the plots together with the corresponding exact theoretical
solutions(represented by the lingsWe find a good agree-
ment between the two results for each valueyofThe
error E defined by Eq(46) is plotted in Fig. 7. In this case
also,E is proportional toAX for relatively largeA%, andE
asymptotes to some value that is proportionaktas AX
becomes smaller.

From the above numerical examples, we find that flows
with steep variation can be described by the finite-difference
scheme of Eq(15) with the error ofO(g) + O(AX). By choos-

L 3 1 ing AX~ ¢, then, the error becom&X¢), and agrees with the
Ax 10 10 result of the asymptotic analysis in Sec. Il B.

Finally, we note the following three points. First, we cal-

FIG. 5. TheAX dependence dE for the numerical results of the culated the Riemann problem using the two-and three-
one-dimensional problem whose initial condition is given by Eq.dimensional lattice Boltzmann models also. The results gave
(47 with U=1 andy=5/3: ), ¢=107%, B, =10 The dash-dot the same tendency as those of the one-dimensional model
line in the figure represens~ AX. presented above. Second, there appeared no shock waves

107!

..,....,
Lo vl

1072

LI BB |
A T

103 | v
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L

-2

FIG. 6. TheXk, dependence diy, p, p, andT of the results by the LBM for the one-dimensional problem whose initial condition is Eq.
(48) with e=10"* and P=5. The plots are the results by the LBM wittk=0.002: M, y=5/3; A, y=7/5;(), y=9/7. Thelines represent
the corresponding theoretical solutions figr5/3 (solid lineg, 7/5 (dashed linegs and 9/7(dotted lines.

across which the entropy of fluid particles decreagas
waves across which the pressure of fluid particles decrgases
in all the obtained numerical results including the two- and
three-dimensional flows which are not shown here. Thus, we
believe that the scheme used in the present sftiay usual
finite-difference scheme with the first-order forward in time
and the second-order upwind in space of the kinetic equation
(15)] can describe the shock wave propagation correctly
with the entropy condition being satisfied. Third, the lattice
Boltzmann models including our model can cause numerical
instability if the local Mach number exceeds 1. The precise
mechanism of this instability has not yet been clarified, and
there are some opinions, e.g., the velocity distribution func-
tion being negative values. However, we found that stable
calculation is possible even with the negative velocity distri-
bution function if the local Mach number does not exceed 1.
The reason for this numerical instability is, therefore, a pend-
ing problem of the lattice Boltzmann method that should be
clarified.

V. CONCLUSION

107!

E

1072

103

LA BB | T

LN

S,

1 |
103 , . 107 107!
Ax

FIG. 7. TheAk dependence dE for the numerical results of the
one-dimensional problem whose initial condition is given by Eq.
The lattice Boltzmann model for the compressible Euler(48) with P=5 andy=5/3: 0, ¢=107%, W, ¢=10* The dash-dot
equations that can take the flexible specific-heat ratio withine in the figure represenS~ AX.
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small number of discrete velocities is presented together with o “ 1yt = At,x) = ¥(t,x)

its rigorous theoretical background. First, we treated the case f dx f At

where the solution makes an appreciable variation over the w00

length or time scale of the system. Then the macroscopic P(t,X) — (t, X + AX)
variables obtained from the solution of the kinetic equation +G Ax fi(t,x)
(15) and the initial condition(16) satisfy the compressible

Euler equations and their initial condition. In contrast, when ffa(P,U,T) - fi(t,x)

the scale of variation is steep due to shock waves and contact B e Y(t.x) |dt
discontinuities at some local regions, the macroscopic vari- " At

ables obtained from the solution of the integral relati4) _f dx wdt: 0. (A4)
satisfy the weak form of the compressible Euler equations. = Jo At

Numerical examples and the error estimates are also pre-

sented, and the results supported the above theoretical argliié  difference  of (t—At,x)fi(t,x)(0<t<At) and

ments. #(0,x)f,(0,x) is of the order of unity only in the regions of
O(g)+0O(Ax) where the initial value off; makes a steep
APPENDIX: CONSISTENCY OF THE variation, and it iSO(At) in the other regions where the ini-
FINITE-DIFFERENCE SCHEME WITH THE INTEGRAL tial value of fi makes a moderate variation. ThUS, the last
RELATION (40) term on the left-hand side of E¢A4) becomes

In this appendix, we will prove that the usual finite- __F dx A l//(t—At,X)fi(t,X)dt
difference scheme with\i~¢ and AX~¢ of the kinetic o 0 At

equation(15) (D=1) and the initial conditior(16) is consis- "

tent with the integral relatioi40) (see also Ref[14]). For = _f #(0,%)f;(0,x)dx+ O(e) + O(AX) + O(At)
the sake of simplified discussion and notations, the first-order -

scheme is considered and the caret notation is omitted. The

extensions to the multidimensio®=2,3) and the higher- :-j w(o,x)ff““(po,ug,To)dx+ O(g) + O(Ax) + O(At),
order schemes are straightforward. We start with the follow- -
ing finite-difference scheme of the kinetic equatid®) (D (A5)

=1) and the initial condition(16):
) 19 where the initial conditioriA2) is used to derive the far right

fi(t + At,x) — fi(t,x) ‘e fi(t,x) = f;(t,x = Ax) side. Then, from Eq(A4),
i
At ax f‘” dxf”[(w(t,x)—w(t—m,x)
_ e - fi(t,X), (AD) o At
€
t,x+ Ax) — ¥(t,

+ciw( X AX) i X)>fi(t,x)

fi(0.) = f£9p°,u0, T). (A2) X

e — .
Multiplying Eq. (A1) by i(t,x), or any smooth test function + ffp.u ™)~ filt,x) glf(t,x)]dt

of t andx that vanishes fot+|x| large enough, and integrat- €

ing over the wholg—x plane, we obtain

. “ [ fit+ At,x) = fi(t, %) fi(t,x) = f;(t,x — Ax)
f B dxf . [( At e Ax (A6)

+ J ’ (0,0 Fe%p°, U2, TOdx= O(e) + O(AX) + O(AL).

As At~ & andAx~ ¢ tend to zero, then, EqA6) converges
)lﬂ(t,X):|dt=0. (A3) 0 the integral relation(40). Thus, the consistency of the

finite-difference scheméAt~ ¢ and Ax~ ¢) with the inte-
Transforming the term involving(t+At,x) on the left-hand  gral relation(40) has been proved.

_ fleq(pluiT) - fi(t,X)
&

side by replacing the variable of integratibhAt by t, and We can easily extend the above discussion to the scheme
the term involvingf(t,x—Ax) by replacing the variable (8) often used in the LBM, and also to the higher-order
—-Ax by x, we get finite-difference schemes.

056702-13



T. KATAOKA AND M. TSUTAHARA

[1] G. Yan, Y. Chen, and S. Hu, Phys. Rev.99, 454 (1999.
[2] Y. H. Qian, J. Sci. Comput8, 231(1993.
[3] Y. Chen, H. Ohashi, and M. Akiyama, Phys. Rev5B, 2776
(1994).
[4] F. J. Alexander, S. Chen, and J. D. Sterling, Phys. Red7E
2249(1993.
[5] Y. H. Qian and S. A. Orszag, Europhys. Le#tl, 255(1993.
[6] M. B. Reider and J. D. Sterling, Comput. Fluid®4, 459
(1995.
[7] Y. H. Qian, D. d'Huméres, and P. Lallemand, Europhys. Lett.
17, 479(1992.
[8] S. Chen and G. D. Doolen, Annu. Rev. Fluid Me0, 329
(1998.
[9] T. Inamuro, M. Yoshino, and F. Ogino, Phys. Flui@s 3535
(1997).
[10] L. D. Landau and E. M. LifshitzFluid Mechanics 2nd ed.
(Pergamon, Oxford, 1987
T. Ohwada, Phys. Fluids A, 217 (1993.
P. D. Lax, Commun. Pure Appl. Math, 159 (1954.
13] P. D. Lax, Commun. Pure Appl. MatHL0, 537 (1957).
14] P. D. Lax and B. Wendroff, Commun. Pure Appl. Math3,

PHYSICAL REVIEW E 69, 056702(2004)

217(1960.

[15] Y. Sone, J. Jpn. Soc. Fluid Mech, 182(1987 (in Japanese

[16] Y. Sone and K. AokiMolecular Gas DynamicéAsakura, To-
kyo, 1994 (in Japanese

[17] Y. Sone Kinetic Theory and Fluid DynamigBirkhauser, Bos-
ton, 2003.

[18] T. Kataoka and M. Tsutahara, Phys. Rev.68, 035701R)
(2004.

[19] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Raaly.511
(1954.

[20] R. McNamara, A. L. Garcia, and B. J. Alder, J. Stat. PH84.
395(1995.

[21] N. Cao, S. Chen, S. Jin, and D. Martinez, Phys. Re®5:21
(1999.

[22] D. Hilbert, Grundziige einer Allgemeinen Theorie der Linearen
Integralgleichunger{Teubner, Leipzig, 1912

[23] H. W. Liepmann and A. Roshkdzlements of Gasdynamics
(Wiley, New York, 1957.

[24] R. W. MacCormack, AIAA Pap69, 354 (1969.

[25] J. J. Gottlieb and C. P. T. Groth, J. Comput. Phy8, 437
(1988.

056702-14



