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In this paper | provide significant mathematical evidence in support of the existence of direct short-time
approximations of any polynomial order for the computation of density matrices of physical systems described
by arbitrarily smooth and bounded from below potentials. While for Theorem 2, which is “experimental,” |
only provide a “physicist's” proof, | believe the present development is mathematically sound. As a verifica-
tion, | explicitly construct two short-time approximations to the density matrix having convergence orders 3
and 4, respectively. Furthermore, in Appendix B, | derive the convergence constant for the trapezoidal Trotter
path integral technique. The convergence orders and constants are then verified by numerical simulations.
While the two short-time approximations constructed are of sure interest to physicists and chemists involved in
Monte Carlo path integral simulations, the present paper is also aimed at the mathematical community, who
might find the results interesting and worth exploring. | conclude the paper by discussing the implications of
the present findings with respect to the solvability of the dynamical sign problem appearing in real-time
Feynman path integral simulations.
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[. INTRODUCTION In actual simulations, the Feynman-Kac formula is almost
) ) ) ) always used in conjunction with Monte Carlo integration
In the path integral formulation, the density matrix of a methods[5] and, for this purpose, one needs to construct
thermodynamic system is expressed as the expected value @idly convergent finite-dimensional approximations to the
a functional of the Brownian motion by means of the stochastic integra| described by Ea_) |dea||y, such ap-
Feynman-Kac formul@1-3] proximations should require knowledge of the potential only
for the computation of the density matrix or the partition
p(x,x'";B) 1 0 function of the physical system. This type of methods will be
kX B) E ex ‘IBJO VD (u) +oBldur. (1) called direct methods. The main question we address in the
P present paper concerns the rate of convergence of a class of
discretization techniques as measured against the number of
variables utilized for path parametrization. Throughout the
Ef'aper, we assume that the potenWéx) is an infinitely dif-
ferentiable and bounded from below function.
) 0 ; Until recently, the fastest direct method availatde order
appears in Eq(1), {B,,0<us<1}, is a so-called standard f convergence has been the trapezoidal Trotter discrete
Brownian bridge, defined as follows: {B,,u=0; is a stan-  path integral(DPI) method[6,7]. The technique is usually
dard Brownian motion starting at zero, then the Browniangerived by means of the Lie-Trotter product formula and an
bridge is the stochastic procef,,0<u<1[B,=0}, i.e., @  appropriate short-time high-temperature approximation. The
Brownian motion conditioned on the eveBf=0. A Brown-  formal asymptotic convergence of the trapezoidal Trotter
ian bridge can be realized as the proc¢Bs-uB;,0<u  DP| method and of related DPI techniques was extensively
<1} [4]. For additional information on Brownian motion and studied by Suzukj8,9] and was found to b&(1/n?). | shall
its relation to the Feynman-Kac formula, the reader is adcomment more on this method in Sec. Il A. With the intro-
vised to consult Appendix A as well as the cited bibliogra-duction of the random series implementation of the
phy. To complete the description of Efl), we setx,(u)  Feynman-Kac formulg10], faster methods became avail-
=x+(x'=x)u (called the reference pathr=(#?8/mg)*’% and  able. More precisely, two examples of direct path integral
let psp(x,X"; B) denote the density matrix for a similar free techniques constructed around the Lévy-Ciesielski and the
particle. Wiener-Fourier random series representations of the Brown-
The d-dimensional generalization of the Feynman-Kacian motion and pertaining to the general class of reweighted
formula is rather trivial. One just considers an independentandom series techniques were shown to h&¥d/n®)
Brownian bridge for each additional degree of freedom. Toasymptotic convergencgll,12. In a recent Monte Carlo
keep the notation simple, in this paper we shall work exclusimulation[13], the superior convergence of the reweighted
sively with one-dimensional systems. However, the reademethods proved to be crucial for the accurate determination
should notice that the main results of the paper remain truef the potential, kinetic, and total energies of a highly quan-
or have straightforward generalizations for systems of arbitum mechanical Lennard-Jones cluster made up of 22 mol-
trary dimensionality. ecules of hydrogen at a temperature of 6 K.

Here, p(x,x"; B) is the density matrix for a one-dimensional
canonical system characterized by the inverse temperatu
B=1/(kgT) and made up of identical particles of masg

moving in the potentialM(x). The stochastic element that
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In this paper, | try to argue that, in fact, for infinitely special family of short-time approximations. These results
differentiable potential®/(x), there might exist direct short- serve to illustrate the main difficulties regarding the con-
time high-temperature approximations of arbitrary polyno-struction of short-time approximations having convergence
mial convergence order. The construction of such approxierders higher than 2. | then state a theorem concerning the
mations is based upon an “experimental” theorem on thgointwise convergence of Lie-Trotter product formulas and
pointwise convergence of Lie-Trotter product formulas. Thisdiscuss its implications with respect to the design of short-
theorem is presented in Sec. Il A, where it is used to derive §me approximations having superior convergence orders. In
set of functional equations that short-time approximationssec. | B, | introduce a special class of short-time approxi-
must satisfy in order to have a given convergence ordemations constructed by replacing the Brownian motion ap-

,E”]Jf”ke. standard z_aplproaches baEEd ﬁpon.the construction gharing in the Feynman-Kac formula with appropriate finite-
effective” potentials[5,14-18§, the short-time approxima- qiensional Gaussian processes. The functions utilized in

gce)g?g\r/\vee dcf?r?ifggirn;r;rﬁg?oﬁ;?zepnptrgiﬁﬁ;t?éﬁsb?os?r?eogrgavlvrr?if;rllMe construction of these finite-dimensional Gaussian pro-
motion entering the Feynman-Kac formula. The potential _cesses will become the unknown variables for the systems of

self is left unchanged. It is for this reason that the set c)gunctional equations controlling the orders of convergence of

equations mentioned above do not depend upon the potentiihe a_ssomated s_hort-t|me approximations. These systems of
The equations can be solved once for a given order and theif'nctional equations are derived in Sec. Il.

(not unique solutions can be tabled and used in actual com-

putations for all potentials. A. A convergence theorem for product formulas

The main mathematical problem that is left unsolved in 0 f th t fruitful hes t tructing finit
this paper is the existence of finite-dimensional approxima- ne or the most fruitiul approaches to constructing finite-

tions to the Brownian motion that satisfy the functional equa_d_lmenspnal appr_oxmatlons to the q“a”t“m mechanical den-
ity matrix was given by Trottef6]. It exploits the fact that

tions for a given convergence order. To support the idea that > | .
. . - . BH- ‘
such solutions exist, | explicitly construct two short-time ap- e8>0} is a semigroup of operators drf(R), so that
(2

proximations to the density matrix having convergence or- o (B+BoH — o BiHgBH
ders 3 and 4, respectively. A solution for the order 3 has been

previously derived11], but the one I construct in the present o i coordinate representation,
paper utilizes fewer path variables and fewer quadrature

points. The solution for the order 4 is derived as evidence

that the general problem of constructing finite-dimensional (e PP )y = | daxe (e x).  (3)
approximations of arbitrary order is positively solvable. The :

fourth-order_ method has numerical _requirements similar tcun this work, the Hamiltonian, the kinetic operator, and the
the trapezoidal Trotter metho@s ratio number of calls to potential operator are denoted by the symbajs<, andV

the potential over number of path variablébhe method has  regpectively). The Trotter approximation theorem states that
been recently utilized in the study of the heat capacity of the

Ney; cluster[19]. e PH = |im [e AKIng=AVInn

In Sec. V, | verify by numerical simulations the n—oe
asymptotic convergence of the two short-time approxima- .
tions discussed above. The definite agreement with the thed? the Sense of strong operator convergence. The quantity
retical predictions is interpreted as proof that the theoretical o BKIng=pVin
development in the present paper is mathematically sound. |

conclude the paper by speculating that sequences of shok called a short-time high-temperature approximation of the
time approximations for increasing convergence ordérs eyact density matrix operatar?n,

they exisj may provide exponentially fast approximations  There has been a lot of research on the rate of conver-
for imaginary-time “propagated” wave functions, as mea-gence of the above approximation or of similar Trotter-like
sured against the number of path variables. | then analyze thgymulas. Of particular significance is Suzuki's wofg],

implications of this hypothesis with respect to the solvability yhich treats the more general problem based on short-time
of the dynamical sign problem for real-time Feynman pathapproximations of the form

integrals on a classical computer.

In Appendix B, | derive the convergence constant for the e AK+V) = g 20fVgbifKgrabV. ..ehiBgmabV[1 + OB 1],
celebrated trapezoidal Trotter path integral technique. The 4)
convergence constant is verified by numerical simulations.

The excellent agreement between theory and simulation ighere the sequences of non-negative real numbers
interpreted as further evidence that Theorem 2 is a Va"%o,al, ..., andby,b,, ... b are palindromic and sum to 1.
mathematical statemeferhaps after further restrictions on Following Suzuki, a short-time approximatidp(K,V; ) is

its hypothesis called of ordery if

Il. PRODUCT APPROXIMATIONS
e PRV =£,(K,V; B)[1 +0(B")].
In the first part of this section, | review the classical re-

sults of Suzuki concerning the order of convergence of dn this casd9],
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n’ (5 R2x[0,%) of triplets (x,x’; B)] convergence theorems of the
type shown by the following theorem, which applies pro-

[To be rigorous, | mention that E¢5) has been proved for vided thatpy(x,x’; 8) is symmetric.
bounded operators and B. The respective theorem states  Theorem 2 (experimentalpssume that there exists the
that the operator norm error of the finalterm Lie-Trotter  linear (automatically HermitiapoperatorT,, called a con-
product formula decays as fast anl/However, experience vergence operator, that associates to each infinitely differen-
shows that the orders of convergence are correctly predicteghble and compactly supported functigiix) the square in-
even for the unbounded operatd¢sandV. Moreover, if the  tegrable function
nonexistence theorem discussed below is true for bounded
operators, then it is also true for the more general class of
unbounded operatos. J [po(X,X";B) = p(X,X"; B) Jsh(x")dX’

The more general splitting formula given by Ed) was (T, ) (x) = lim
considered by Suzuki in order to produce path integral meth- . p—0" gt
ods having faster asymptotic convergence. Unfortunately, a ®)
theorem of Suzukisee Theorem 3 of Ref8]) states the
following.

Theorem 1 (Suzuki nonexistence theorehere are no
finite-length splitting formulag4) of order 3 or more such
that the coefficientsy,b;,a;,... are allreal and positive.

The Suzuki nonexistence theorem limits the asymptotic 1
order of convergence of this type of discrete path integral _ ol ~0BHT ~—(1-0)BH|y/
methods to 2, order of convergence that is attained for the =B JO e T,e x')do, ©
following symmetric Trotter-Suzuki short-time approxima-

n v+l enerally more convenient to use pointwige the space
e Ak = [f (KV Bﬂ [1+0(3—>]_ 0 y pointwi P

Then

lim (n+ 2)"[pn(%,X"; B) = p(x,X"; B)]

n—oe

tion wherep,(x,x’; B) is defined by Eq(7).
g AKHV) = 128V Bl 128V 1 + O(89)] 6) Justification Let T,(x,X’; 8) be defined such that
(or the one obtained by permutingwith K). po(X.X"; B) = p(x,x"; B) + BT (x,X"; B).

The Suzuki nonexistence theorem serves to illustrate the

difficulty of constructing path integral methods having Lije-Trotter composing the above relationtimes and using

asymptotic convergence better thafl /n?). The idea of the  the semigroup property of the exact density matrix, one ar-

Trotter theorem is commonly employed in the physical andyues that

chemical literature in order to generate faster integral meth-

ods starting with more general short-time approximations. 1

The general strategy is as follows. Based upon a certain  p (x,x";8) = p(x,x"; B) + B ——> dxlf dx,
R

n

physical model, one constructs a short-time approximation 1)V+l

po(X,X"; B) of the true density matrix. Then, one corrects iB B

upon the short-time approximation with the help of the Lie- X pl X, X0, = | T\ X, Xo; ———
1 +1

Trotter product formula

X, X", X " ).
Pl B) p(Xz,X — +0(1/n"Y
i)l
= d ‘e d Xyg——— |-+ , ’; . o .
fR A L ano(x % n+1 Po\ XX n+1 In the limit n—oo, one uses Eq(8) to cast the previous
equation into
m

If the short-time approximatiomy(x,Xx’;B) is “better” than lim (n+ 1)"Tpa(x,X";8) = p(x,X"; B)]
the trapezoidal Trotter-Suzuki one, improvath-order ap- n—e
proximations to the exact density matrix may be obtained. gt n iB
The notion of better approximation may refer not only to the = lim E dX1p<X,X1; Tl)
order of the short-time approximation but also to the overall noe | N n
quality of the approximation for finite [5]. (n—-)B

At this point, we remark that working with convergence X(TVP)(XLX';—J>
theorems in operator norm is difficult and not particularly n+1

helpful for actual developments of better short-time approxi-

mations. Indeed, the short-time approximations are usuallyn the formula above, the operatdy acts upon the density

constructed in the configuration space as symmetric integrahatrix to the right through the first variable. Finally, one
kernelspg(x,x’; B) and many properties related to the norm notices that in the same limit— o, the Riemann sum trans-

operator topology are not readily available. Therefore, it isforms into an integral over the intervgd, 1], so that
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lim (n+ 1) Tp(x,x"; B) = p(x,x"; B)] infinite  sequence of independent identically distributed
n—o (i.i.d.) standard normal variables. The short-time approxima-
1 tions are constructed by replacing the Brownian motion in
:BMJ daf dxyp(x,x1; 8)(T,p)[%1,X"; (1 = ) B]. the Feynman-Kac formula with the finite-dimensional

0 R

Gaussian process:

Of course, Eq(9) is nothing else than the above identity in q

Dirac’s bra-l_<et nc_Jtation. _ D ’éu => aka(u)- (10)
Observation It is needless to say that the above justifica- k=0

tion is not a proof, nor is the hypothesis of the theorem _

completely stated. In keeping with the scope of the papeilhe continuous and piecewise smooth functigig(u);0

(and with the level of mathematical knowledge of the au-<k=gq} are required to satisfy the following relations:

thor), | only provide the basic reasons why the theorem must

hold. The main effort of the present work is toward justifying Ao(0)=0, A1)=1,
the need for the theorems presented. The hope is that the (12)
mathematician will find the theorems interesting and worth Ad0)=A(1)=0 forl=k=q.

investigating. However, all results deduced from this theo-
rem, including the convergence constant for the trapezoidarhe general expression of the short-time approximations we
Trotter path integral methotsee Appendix B are verified study in the present paper is
by numerical simulations.

Theorem 2 facilitates the construction of more accurate 1oy = ’.
short-time approximations because it provides the exact con'—OO(X'X B) = prplxx "B)L du(a) L du(y)
vergence constant of the respective path integral method in
coordinate representation. In general, for a given ordene
would like to design short-time approximatiopg(x,x’; 8)
that minimize(as absolute valyehe convergence constant.
In the ideal situation that the convergence constant is can-
celed, the order of convergence increases by one. In Sec. Ilyhere
we shall use Theorem 2 to derive the set of equations that
must be satisfied by the short-time approximations of a given du(ay) = (27) Y2%exp (- a2)da,
order v.

1 a
X exp —ﬁfo V|:Xr(u)+0'k2 akAk(u)]du ,
=1

(12

and where

B. A general class of short-time approximations X (u) =x+ (X' - x)]\o(u)

To make optimal use of Theorem 2, we need to devisgg 4 reference path connecting the pointandx’.
s%stematlc ways of gonst(ructmg)sfymmetnc da”d pﬁsmve A second condition we enforce on the system of functions
short-time approximationgy(x,x’; 8) for any orderv. The ~ . .
positivity of the short-time approximatiopy(x,x’; B) is nec- {Au);0=k=q} is that
essary in order to avoid the appearance of the sign problem < A (1-u) =
in the Monte Carlo simulations. Development of such sys- Aol + A1 -w) =1 (13

tematic ways has been previously attempted by SURZEi  and that the finite-dimensional Gaussian procgissagA(u)
as well as by Makri and Millef21], among other$7,17,23.  ig jnvariant under the transformatiari=1-u. That is, we
Unfortunately, all short-time approximations constructed SGequire that

far involve derivatives of the potenti&(x), derivatives that

are either considered explicitly or introduced through the uti- ~4 a a4 _ ~5

lization of commutators involving the kinetic and potential BY =2 ad(u)=2 al(1-u)=B7,. (14)
operators. In fact, the higher the convergence order, the k=1 k=1

higher is the order of the derivatives that are necessary. Fofhe property described by E(L4) is analogous to the time
this reason, except for the Takahashi-Imada approximatiogymmetry of the standard Brownian bridB&, which is the
[17], such approaches have enjoyed only limited use. Agact that{B9_,,0<u<=1} is also a Brownian bridge and is
discussed in the Introduction, direct short-time high'equal in distribution to{B%,0=u<1}. As a direct conse-
temperature approximations based solely on the use of theence of Eqs(13) and (14), the short-time approximation
potential function are more desirable. po(X,X": B) given by Eq.(12) is symmetric under the permu-

In this section, | present an alternative approach to COMation of the variablesx and x'. This can be verified by

structing direct short—time.approximation;, approach that'| erforming the substitution’=1-u in Eq. (12). The time
related to the random series representation of the Brownial o ) ~
motion [10]. Evidence that will be presented in the subse-Symmetry of the finite Gaussian procés§, aA(u) can be
guent sections supports the claim that the approach is genef@fforced, for example, by restricting the functions
enough to accommodate any arbitrary convergence arder {A«(u);1<k=gq} to the class of symmetric and antisymmet-
In this work, unless otherwise specifieg, a,, ... denotes an ric functions.
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In this general setting, given a fixed integgrrheorem 2
suggests that the functiod (u);0<k=q} should be cho-
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1
fAk(u)du=1/2 fork=0,
0

sen such that the order of convergence be maximized. We

shall show in the following section that the system of func-

tional equations controlling the order of convergencénis
dependenif the potentialV(x). This system of equations

does not uniquely determine the functidﬁs((u) ;0<k=qd}.

For instance, it is a trivial matter to show that the short-time

approximation given by Eq12) is invariant under a linear
orthogonal transformation of the functions\,(u);1<k

=q}.
A consequence of the constraint given by Etl) is the

fact that the distributions of the end poirs and B, are
identical and equal to that of the variabdg. In order to

reproduce in a better way the properties of the Brownian

motion, we may also requir@ut it is not necessayyhat the
pairs of Gaussian variabléB,;,M,) and(B;,M,) have equal
joint distribution. Here,M; and M; are the so-called path
centroidg[25] (first moments of the Brownian motion and its
short-time approximationand are defined by the equations

1
Ml:f
0

1
B,du and Mlzf B, du,
0

respectively. To find the class of short-time approximations

for which this condition is “built in,” consideky(u)=1 and
A1 (u)=v3(1-2u), the first two normalized Legendre poly-
nomials on the interval0,1]. Let {\(u)},=» be a set of

functions which together with the first two Legendre poly-

nomials make up an orthonormal set f, 1]. The lto-
Nisio theorem(see Theorem 6 of Appendix)Asays that

©

d
By=agu +a;V3u(1 - u) + X, aA(u),
k=2

where

Ak(u) = JO )\k(T)dT.

Let us notice that ik=2, thenA,(1) =0 [by the orthogonal-
ity of N\, (u) on 1] and

[

[by the orthogonality of,(u) on u]. Therefore B;=a, and

1
A (u)du=A (1) - fo M(wudu=0

M—} +L§a
1—26‘0 6 M

depend solely on the variableg and a;. A little thought

1 —
f Agu)du=+3/6 fork=1, (15)
0

1
f Auydu=0 for2=sk=aq.
0

Until now, we have assumed that the path averages of the
type

1 q
f V[x,(u) +0, akka(u)} du

0 k=1

are evaluated exactly. For practical applications, one also
needs to devise a minimalist quadrature scheme specified by
some points &u;<u,< ---<unqs1 and non-negative
weightswy,wo, ... W, such that the discrete short-time ap-
proximation

po(X.X"; B) = pip(X,X"; B) L du(ay) - L du(ag)

n q
xXexpy - qu WiV|:Xr(ui) +0, akxk(ui)]
i=1 k=1
(16)

has the desired convergence order. In the case of the discrete
approximations, the set of quadrature points and weights as

well as the values of the function§,(u) at the quadrature
points are fitting parameters. For the reason of ensuring time
symmetry of the discrete formula, the quadrature scheme is
required to be symmetric, i.e., the sequencesu,

—Ug, ... ,1—unq andwy,w,, ... W, must be palindromic.

IIl. POWER SERIES EXPANSION FOR IMAGINARY-TIME
PROPAGATED WAVE FUNCTIONS

In this section, we shall derive the system of functional

equations that must be satisfied by the functidnéu) ap-
pearing in Eq.(10) in order for the associated short-time
approximation to have a convergence ordefo settle some
terminology related to the utilization of the term “short
time,” we interpret the paramet@ras a time variabléphysi-
cally, 48 has dimension of timeso that the density matrix
p(X,x"; B) constitutes the time-dependent Green’s function of
a diffusion equation, or imaginary-time Schrodinger equa-
tion. As Theorem 2 illustrates, it is necessary to establish the
power series expansion of the imaginary-time propagated
wave functions for the exact and the approximate propaga-
tors, respectively. | warn the reader that the power series
derived in the present section are only a bookkeeping device

shows that we can build in the correct joint distribution of for derivatives againsg and are not required to converge to
the end point and the path centroid by further restricting thehe actual imaginary-time propagated solutions. Moreover,

class of functiongf\k(u);0< k=<g} to those satisfying the
constraints

the potentialV(x) and its derivatives are required to have
finite Gaussian transforms. Actually, we require that
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1
1— f e 22|\ (x + )|l < 0 (17) M, = f (B du. (19
R 0

\2ma

for all xe R anda>0, as well as for all integerk=0 and

j=1. This condition is necessary in order to ensure that we .

recover the original potentials, derivatives, or products of? Second Taylor expansion leads to
such functions from their Gaussian transforms, in the limit

that a— 0 (see Theorem 3 of Ref24]).

1o
A. The exact propagator ~BH| ) = =0 j j
_ t propag (e l«//>—E“§j!¢ (X)U(Bl)]
The power series expansion of the propagated wave func- j=0
1 Z =piviox
<11 [2(_—3) ®) okJ(Mk)JH.

tion
(Xle™y) = f p(xX'; (X )dx’ (18) ol S 0 k)
R

is of utmost interest for the present development. With the , i

help of the Feynman-Kac formu[according to Eq(A3) of We now expanc_i fthe product in th_e preceding formula and
Appendix A] and the Taylor power series expansion onecollect the coefficients corresponding to the same power of
writes ’ 3. Remembering thatr=(%2/my)*2B*2, one argues that the

powers of3 are of the formB*, whereu is a non-negative

1 . . i
BH ) = [ _ fv +oB)d +oB half integer, i.e., an element of the sef={n/2:ne N}. For
ey epo B) Vix+oBydu|uix+ By v

o 2u) € N# 2 Ki =2
k=1

1
= — 0
'E“,Eo ma (X)cr‘(Bl)J] .
o J,u = (J l!jZ! . (20)
xI1 e AVFOK M, ,

k=0

where A little thought shows that

XePy= > B+ > (= 1)z H2u(f2mg)lirtiztAar+(2p=2)ip,)/2

nelNp (jl""'J.Z,u)e‘J,u.
IOV VD (x) ]z - - - [V (x) 2w
1tia! it (D43 [(20- 2)! T

with the convention that the term far=0 is ¢(x). The fact thaB, is a Gaussian distributed variable of mean zero implies that
if ji+jg+2ja+- - +(2u—2)j,, is odd, then

E[(B)I{(Mg)12(M)I3- -+ (M, _)2], (21

E[(B)'{(Mg)2(M)I3- - (M, _p)'2:] = 0,

as can be verified by induction. Singe+js+2j,+ -+ +(2u—2)j5,=2u=2(jo++* +],), One sees that +jz+2j,+ - +(2u
—2)j,, is odd if and only if 2« is an odd integer. Thus, the sum in Eg1) can be restricted to the numbeis= N, for which
2u is even, i.e., the sum can be restricted to the set of natural numbdrserefore,

J P AP =D B D (- 1)l a2 mg) iz iz
R

270 (ig. -z €d,
PPV VD(x) i3 - - - [VED(x) Jizu
i1liz! e dgu! RD4EYIs - [(2p = 2)! T

E[(Bl)h(Mo)jz(Ml)j:"'"(Mzﬂ—z)jzf‘]- (22)
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Observation The power series expansion for the
imaginary-time propagated wave function can also be de-
rived by expanding the operater® in a power series. One

E[(BY)!1(Mg)I2(M )13 - (Mz,u—z)jz“]

= E[(B)UMV2aMy)iz- -+ (Mp,)2]  (27)

obtains
for all 2u-tuples of non-negative integer§;,jz, ... ,j2,)
] such that
XlePM ) = 2 —(xI(= BH) |9
©n=0 M 2u
2 n > kjx=2u
= ,8"—{ %O(f—xz —V(x>] w(X)}- =t

(23) andlsusw.
The general problem that one would like to solve using
Of course, the terms of the two series given by E88) and the theory developed so far is the following. Given a conver-

(23) are equal. However, as we shall see in the followinggence ordep, is there a finite system of functiong(u) such
section, Eq(22) applies in an almost unchanged form for all that the corresponding short-time approximation has os@er
short-time approximations defined by E¢$2) and(16). In  If the answer is yes, what is the minimal numiogof func-
contrast, there might be no formal analog of ER3) for  tions A, (u) necessary to achieve the respective convergence
such short-time approximations. order? Then, what is the minimal number of quadrature
points such that a discrete short-time approximation has con-
vergence ordew? The relevance of the questions asked in
the current paragraph will be further clarified in Sec. VI,
where we analyze the problem of minimizing the statistical
The only property used for the derivation of the powernoise for real-time propagators.
series expansion of the exact propagator was the fact that the
Brownian motion is a Gaussian process. Since the approxi-
mation to the Brownian motion given by E@LO) is also a
Gaussian process, E@?2) remains true for the approximate
propagator, too. Therefore,

B. The approximate propagator and the identities controlling
its order of convergence

IV. EXAMPLES OF SHORT-TIME APPROXIMATIONS
HAVING CONVERGENCE ORDER 3 OR 4

In this section, | try to present evidence in support of the
idea that the system of equations appearing in Theorem 3 for
a given orderv is always satisfied by some finite system of
functions A (u). | do this by computing explicit numerical
solutions for the convergence orders 3 and 4. As apparent

fl { po(X,X"; B)YAX")dX’

_ » ot Hou(F 2 (ot i) from Table I, the number of equations that need to be verified
E’Oﬁ iy %M)EJ =D (7o) ’ for a given orderv incr(_aases rapidly Wi'[h./. _In fact, .t.he
i oD i V2E-D () number of elements af,, is the number of distinct partitions
‘ﬂ( VOV AV (]2 - [VHTI (0 )2 of 2u. With the help of the Hardy-Ramanujan asymptotic
]1 2! ! (2114315 -+ [(2u — 2)! i2w formula[27], one deduces that the number of equations that
~ . . need to be verified for a given orderbehaves asymptoti-
XE[(B1)J1(M0)'2(M1)J3‘” (Mzﬂ—z)m“]' (24) cally as
where v -
eﬂ'v‘4,u,/3.
~ 1 El 8,u,\r’§
Mk:f (B)*du. (25)
0

Therefore, the “by hand” approach utilized in the present
section is bound to fail even for slightly larger convergence

If the discrete short-time approximation given by E6) is

employed, then Eq(24) remains true, provided thefilk is
redefined to be

= wi(By) . (26)
i=1

Theorem 2 immediately implies the following statement.
Theorem 3A short-time approximation of the types given

by Eq.(10) or (16) has convergence orderif and only if

orders. By use of computers, one may hope to obtain solu-
tions for moderately large convergence orders. However, |
believe future work on the problem may reveal better strat-
egies for the computation of short-time approximations of
high convergence orders.

The two short-time approximations constructed in the
present section are called reweighted short-time approxima-

tions [11]. The defining features are the equalﬁw(u):u

and the fact that the functior{gk(u) ;1<k=q} appearing in
Eq. (10) are required to satisfy the constraint
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TABLE I. Indices of the equations that need to be verified forimposed, most of the functional equations for convergence
various values ofu. Shown are the nonzero components of theseorders 3 and 4 are automatically satisfied. However, the

indices.

n=1 j2=1
j1=2

ja=1
ja=1,j1=1

js=1,j1=1

j4:11j2:1

ja=1,j1=2
j3=2

n=3 ja=1,j2=1,j;=1

j3=1,j1=3
j2=3

12=2,j1=2

j2=1,j1=4
j1=6

jg=1
i7=1,j1=1
je=1,jo=1
je=1,j1=2
js=1,j3=1

j5=1,j,=1,j;=1

j5=1,j1=3
ja=2

ja=1,j3=1,j;=1

j4:11j2:2

n=4a ja=1,j5=1,j;=2

ja=1,j;=4
ja=2,j,=1
ja=2,j1=2

ja=1,j,=2,j;=1
ja=1,j,=1,j;=3

ja=1,j1=5
jo=4
j2:31j1:2
j2=2,j1=4
j2=1,j1=6
j1=8

q
> Adw?=u(l-u).
k=1

The last equation stems from the condition that the Gaussian
variables B, and B, have equal variances for eaadh

(28)

number of remaining equations still scales exponentially and,
for higher convergence orders, the constraint given by Eg.
(28) may actually become a nuisance.

One additional feature of the reweighted short-time ap-
proximations stems from the relatioy(u) =u and facilitates
the numerical implementation of the associated Lie-Trotter
product formula given by Eq.7). The following generaliza-
tion of a result of Predescu and Dédlee Theorem 2 of Ref.
[23]) is straightforward to prove.

Assumen is of the form n=2*-1 and let{a;;1=<I
<k, 1<j<2"% and{b j;1<I=<q,1<j=<2"} be two inde-
pendent sets of i.i.d. standard normal variables. Let
{Fij(w;1=1,1<] <211 pe the system of Schauder func-
tions [26] on the interval0, 1]. The Schauder functions can
be generated by translations and dilatations as follows. Let
F11(w:R—R be defined by

u, uel0,1/2]
Flyl(u) = 1 —-u, ue (1/2,1] (29)
0, elsewhere.
Then
Fju)=270"2F 27—+ 1) (30)

for all =1 and 1<j<2""L. Extend the functiongA,(u);1
<|=<gq} outside the interval0,1] by setting them to zero
[the same way the first Schauder functibp,(u) was ex-
tended to the whole real axis in E®9)] and define

Gy j(w) = 27K2A, (2Xu = + 1) (31)

for 1<sl<gand 1<j<2%
In these conditions, the following theorem holds.
Theorem 4 With the convention thata y-1,,=0 and
by 2, =0 for all | € 1,k, we have

pa(X X" B) _

= da. f d (2 —n/2
prp(X%:X"; B) JR Ly a pk-1(277)

1 K 2|—1
xXex —Eﬁiiiaﬁ)

I=1 j=1

X f dby ;- f dlbg o(27m) (D2
R R

q 2¢

SN [
Xex -5 ij |exp) - B 0V % (U)

=1 j=1
K
+ 02 & [2-Lpe1F f2-1g2(U)
=1

q
+o, b|,[2ku]+1G|,[2ku]+1(U)] du, (32
=

where[2'"1u] and[2*u] are the integer parts of 2u and Zu,

€[0,1] (equal weights As we shall see, if this constraint is respectively.
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The reader can easily verify that E(R2) is a so-called We now turn our attention to the remaining equation de-

reweighted Lévy-Ciesielski path integral technique, as defined byj;=2. One computes

fined in Ref.[11]. It has been arguef@3] that this represen-

tation is more advantageous than the direct expression of | (1~ |2 1 2 3 s 2

pn(X,X"; B) that is obtained from the Lie-Trotter product for- E Jo Bdu| = fo udu +k21 fo Auydul| |

mula, for practical implementations. The expression obtained -

by Lie-Trotter composing the discrete versionggtx,x’; 8) (35

given by Eq.(16) can also.be put in the form of Eq32).. which should equal

However, the one-dimensional integral at exponent is re-

placed by a quadrature sum. The quadrature scheme is speci- 1 2 1 2 1 2

fied by then,2* (not necessarily differepgjuadrature points E f Bdu| = JO udu| +3 fo u(l-udu| .

0

u; =2 u+j-1, 1s<isn, 1<j<2‘ (33 (36)
and the corresponding weights To compute the expected value of the square of the first
W, = 24w (34) ~ moment of the Brownian motion, write the Brownian motion

. . _ as a random series constructed via the Ito-Nisio theorem
The new quadrature pointg; are obtained by translations from the Legendre orthogonal polynomials on the interval
and dilatationgmore precise‘y, contractionsf the original [0, 1]. Then, as discussed in the preceding section,
gquadrature pointsi. . L .
f Budu=a0J udu+ \"§a1J u(l -uydu
0

A. Reweighted short-time approximation having 0 0

convergence order 3

~ and Eq.(36) follows. From Egs.(35) and (36), one easily

The equations that the function§(u) must satisfy in  obtains the identity
order to generate a reweighted short-time approximation of q L )
order 3 are those of the type shown by EZ7) for the D J A (u)du :i
indices(jq,j2, ... ,j2,) Presented in Table I, with=1, 2, and =1 Jo k 12°
3. For a better understanding, we mention that in Table | we
only present the nonzero components of a given indeX similar relation can be deduced for the discrete version but
(J1:J2+ -+ 1J2u)- There are a total 02+5+11=18equations with the integrals replaced by the corresponding quadrature
that should be verified. However, given the special form ofsums.
the reweighted finite-dimensional approximation to the We can summarize the findings of the present section into
Brownian motion, most of these equations are automaticallyhe following proposition.
satisfied. As such, the equations for which the only nonzero Proposition 1 A reweighted short-time approximation has
components arg andj, are verified by all reweighted short- order 3 if and only if
time approximations. The discrete versions satisfy the re-

. . . a 1 2
~ 1
spective equations provided that S [f Ak(u)du} _t 37)
ng k=1 /o 12
2 Wi = 1. . . . . .
=1 A discrete reweighted short-time approximation has order 3

provided that the associated quadrature scheme integrates ex-

One actually checks that all equations for2 as well as all  actly all polynomials of degree at most 2 and provided that
equations foruw =3, except for the one specified lpy=2, are

automatically satisfied. The discrete version verifies these 90 0 2 1
equations provided that the quadrature scheme is capable of 2| 2w | = (39)
i ; i 2 k=1 | i=1 12
integrating exactly all polynomials i1, andu<. For example,
let us consider the equation specified gy 1. We have We conclude the present section by constructing a mini-
ng ng Ny malist reweighted short-time approximation having conver-
E[EWi(éu )4] :EWiE[(Eu)4]:32 wiu2 gence order 3. Because of the ident{®8), the minimal
i i e . ~ L. .
i=1 i=1 i=1 numberq of functionsA,(u) capable of satisfying Eq37) is
By Eq. (27) as specialized fofs=1, the above value should 2. Indeed, ifq=1, thenA,(u)=[u(1-u)]* and
equal[see Eq.(A2) of Appendix A 1 )
1 1 1 { f Al(u)dul = 7264+ 1/12.
I f (By“du :f E[(By)*]du= 3[ u’du. 0
0 0 0

We now try a set of two functions of the form
This shows that the quadrature technique must integrate ex-

actly the polynomial?. A4(u) = Vu(l - u)cog a(u - 0.5)], (39)
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TABLE Il. Quadrature points and weights for the minimalist order 4, we choose to approximate the Brownian motion by
discrete short-time approximation of order 3. The points andthe finite-dimensional process
weights are those for the two-point Gauss-Legendre rule on the

interval [0, 1]. - d — a
By=agU + a3 v3u(1 ) + X aAy(u), (42)
i 1 2 k=2
Uj 0.211 324 865 0.788 675 135 where the functiong\k(u) satisfy the equations

w; 0.500 000 000 0.500 000 000

1
f A(u)du=0 for2=<k=q.
0

- -
A(U) = u —u)sinte(u=0.9]. As discussed in Sec. IIB, in this case the variables

The functions?&l(u) and 7\2(u) are orthogonal because the (ﬁo,iﬂo,iﬂl) have the same joint distribution &8y, Mg, M)

firstis symmetric under the transformatioh=1-u, whereas  (notice thatM, and M, are equal constantsThis remains
the second is antisymmetric. The constanis then deter-  true of the discrete reweighted short-time approximations
mined by Eq.(37) and has been evaluated with the help ofprovided that the quadrature scheme integrates exactly the

the Levenberg-Marquardt algorithm, as implemented inpolynomials of degree at most 2 as well as the functions
Mathcad[28]. The solution has the approximate value ;\k(u) for 2<k=q.

a~3.056 620 471. (40) Using the special form of Eq42), it is not difficult to
verify that all the equations in Table | are automatically sat-

To design a minimalist discrete short-time approximationjsfied with the exception of the one specified jay 2. This
of order 3, we consider an arbitrary symmetric quadraturgemains true of the discrete versions provided that the
rule on the interval0, 1] that integrates exactly all polyno- quadrature scheme integrates exactly all polynomials of de-
mials of degree less or equal to 2. Then, we find the value oéree at most 3 as well as the functiohg(u) for 2<k=aq.

a that satisfies Eq(38) for the chosen quadrature technique. £ <oie of an example, let us consider the equation
It is not difficult to argue that the minimal number of quadra- specified byjs=1,j,=1, which i’s the most difficult to verify.
ture points in the open intervéd, 0.5 must be 1. The reason " " forsthe ,réadér o argue that, in general, '

is that the values of the functions;(u) and A,(u) at the
pointsu=0 andu=0.5 do not depend upon the parameter ]E( > aaaaM i )
Thus, Eq.(38) cannot be satisfied if there are no quadrature Lzse e
points located inside the open interyél, 0.5.

The quadrature rule is taken to be the two-point Gauss-
Legendre rule on the interv@D, 1], quadrature rule that in-
tegrates exactly all polynomials of degree less or equal to 3Jsing Eq.(43), one computes
The appropriate value for the parameteis then determined

iLinigia

=Z(Mi,i,j,j+Mi,j,i,j+Mi,j,j,i)- (43
i

: 1 1
from Eq.(38) and is found to be E(f Buduf Bﬁdu)

a =~ 2.720 699 046. (41) 0 0

q
The quadrature scheme is given in Table Il, for ease of ref- =33 [fl Ki(u)dufl T\i(u)xj(u)zd”]
erence. ij=olJo 0
As shown by Eq(32), the number of path variables en- q L L

tering the expression op,(x,x";B) is (q+1)n+q=3n+2, _ f e f e
whereas the number of quadrature poifgse Eq.(33)] is - 32:’) 0 Ai(wdu 0 Ai(wudu

ny(n+1)=2n+2. Thus, for large enough, the ratio (2n a
+2)/(3n+2) approaches 2/3, value that is smaller than the 1.1 1 1.

one for the trapezoidal Trotter discrete path integral method. ) +5+32 0 Ai(wdu 0 Ai(wudu
Therefore, the method described in the present paragraph has

fewer numerical requirements than the trapezoidal Trotter 1
discrete path integral method for equal numbers of path vari- 2

ables, yet it achieves cubic convergence for smooth enough
potentials. where we used the equality

q
B. Reweighted short-time approximation having convergence Aj(U)2: u.
=0

order 4 J

Because the number of equations to be verified increasékne above equation remains true of the discrete versions,
significantly for the reweighted short-time approximations oftoo. For the full Brownian motion, one computes via the
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nal polynomials on the interv4D, 1],

1 1 1 1
ﬂﬁ:(f BuduJ Bﬁdu) ==+,
0 0 2 8

and the fact that the equatigg=1,j;=1 is satisfied follows.

random series representation based on the Legendre orthogo- a [

PHYSICAL REVIEW E 69, 056701(2004)

>

i,j=0

1 2
J Ai(u)Aj(u)du} = (44)

1
0 6
With the one-dimensional integrals replaced by appropriate
guadrature sums, E@¢44) must also be satisfied by all dis-

crete short-time approximations of order 4. Remember that

We now turn our attention to the equation specified bythe guadrature scheme is assumed to integrate exactly all the

ja=2. One computes

E(fol ~Bﬁdu)Z:E[fol (éa]\(u))zdur

= ]E:( % aiajci,j)z,

i,j=0
where
1 ~ ~
Ci,j :J A|(U)AJ(U)dU
0
Using Eq.(43), one deduces
1 2 q q 2
M(J Bﬁdu) =22+ 2] .
0 ij=0 i=0
At this moment it is useful to remember tﬁa@(u):u and
7\1(u):\s’§u(1—u). Moreover, notice that Eq28) implies
q 1 1
Ecii:f [u?+u(l-u)ldu==.
=0 Jo 2

Therefore,

Elfol Eﬁdu}zz Z-Eq:ol

1 - 2 1
f Ai(u)Aj(u)du} +Z.

0

For the full Brownian motion, one computes via the

Wiener-Fourier series

L 2 2 - ! | 2 sin(kwu) 2
. 2 _“ 2
JIL(fo Budu> B 9+4k:l|:JO N7k du}

S|t 2 sinkmu2 . |21
+2 =>———dul| +=>
Eloﬂz k? 4
2 841 241 1
=—+ =D, =+, S+
9 7T4k§1k4 7T4k§1k4 4
2 1 1
= —4+—+ -
9 9 4

Then, the equality

1 2
FU Bﬁdu) :E<
0

implies

polynomials of degree at most 3 and all the functidqgu)
for 2<k=q.

In the remainder of this section, we construct an example
of reweighted short-time approximation of order 4. Clearly,
we cannot set|=2 in Eq.(42) because then

Ag() ={u(l - w[1 - 3u(L -w]H?,

as follows from Eq.(28), and consequently,

l ~
f Ay(u)du # 0.
0

Thus, we setj=3 and look for functions of the form

A,(U) = r(u)cos[ay(u—0.5) + ay(u—-0.53],
(45)
As(u) = r(wsin [ay(u— 0.5 + ay(u-0.573],

where
r(u) ={u(1 -u[1-3u(l-up?

The functions7\2(u) and 7\3(u) are orthogonal because the
first is symmetric under the transformation’=1-u,
whereas the second is antisymmetric. The integral f¥et]

of the functionxg(u) is zero by antisymmetry. Then, the
constantsy; anda, are determined from the system of equa-
tions

1
f Xz(u)du: 0,
0

(463

3
> [ (46b)
i,j=0

1_ - 2 1
f Ai(u)Aj(u)dul = 5

0

The values of the constantg and «, have been determined
numerically to be

a;~5.768 064 999 and o, = 13.492 146 69.(47)

Let us now design a minimalist discrete short-time ap-
proximation of order 4. Given an arbitrary symmetric
quadrature technique that integrates exactly all polynomials
of degree less or equal to 3, we determine new valuegfor
and «, from the system of equations

Mg

E W|7\2(U|) = 01
=1

(483
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TABLE Ill. Quadrature points and weights for the minimalist The main steps of the NMM algorithm are as follows.

discrete short-time approximation of order 4. The quadrature point§irst, one restricts the system to an interfa)b] and con-
and weights are those for the four-point Gauss-Legendre techniqugiders a division of the interval of the type
on the interval 0, 1].

x=a+i(b—-a/M, 0<isM.

i 1 2 3 4

Next, one computes and stores the symmetric square matrix
u; 0.069 431844 0.330009 478 0.669 990522 0.930 568 156f entries

w; 0.173927 423 0.326072577 0.326 072577 0.173 927 423 b-a
A= — oW x x <ii<M
i M Po ( i Xy +1>v ')
g 21 The value of the partition functi then b d
~ ~ e value O e parution runction can en pe recoveredad as
2| 2 wiAiwAu) | ==, (48D) P
ij=o [ 1=1

ZY(B) = tr(A™),

Because there are two equations, it is easy to argue that tI@g/ computer experimentation, the interyal b] and the size

néjrgber of tqtl)JadrtaIturet gmgts I.WPQ tm _ttgt:h_ope; mte;vaIM of the division are chosen such that the computation of the
(0,0.5 must be at least 2. Consistent wi IS observa Ionpartition function is performed with the required accuracy. A

the quadrature techniqpe is chosen to be the fou_r—poin,rast computation of the powers of the matr can be
Gauss-Legendre technique on the inter@l,1]. This achieved by exploiting the ruld™"=(A™". For more de-

quadrature technique integrates exactly all the ponnomiaI§a”S, the reader is referred to the cited literature.
of degree at most 7. The new values for the parameters  Thg Gayssian integrals appearing in the expression of the

and a, are then determined by solving the system of equag;igcrete reweighted short-time approximation
tions given by Eq.(48) for the chosen quadrature scheme.
The solution of the system of equations is given by 9

po (X.X"; B) = prp(X,X"; B) f du(ay) - f du(ag)
a, ~6.379716 466 and a, ~ 8.160 188 248.(49) i i

. - . nq q ~
g;eeggzdg?trlérfzrvgﬁl:%hts and points are presented in Table Il xexp) - B>, WiV|:Xr(ui) +o>, akAk(ui)]
. i=1 k=1
As shown by Eq(32), the number of path variables en- )
tering the expression op,(x,x';B) is (q+1)n+q=4n+3, can be evaluated by means of the Gauss-Hermite quadrature
whereas the number of quadrature poifgse Eq.(33)] is  technique31] for small enougty (in our caseq is 2 for the
ny(n+1)=4n+4. Thus, for large enough, the ratio (4n approximation of order 3 and 3 for the approximation of

+4)/(4n+3) approaches 1, value that equals the one for thorder 4. For the purpose of establishing the asymptotic con-
vergence of the partition functions, it was found that a num-

trapezoidal Trotter discrete path integral method. Thereforgber of ten quadrature points for each dimension is sufficient

the fourth-order method has the same numerical requir both Short-ti ati tudied in th i
ments as the trapezoidal Trotter discrete path integral methofffr ooth short-imé -approximations studied in thé presen
ection. This is so because the errors due to the Gauss-

for equal numbers of path variables, yet it achieves quarti(].s_| i drat :mati iok] ish
convergence for smooth enough potentials. +(i>)rm|0e quadrature approximation quickly vanish &&n
— V.

Once the partition functions are evaluated, we compute

V. NUMERICAL VERIFICATION OF THE ASYMPTOTIC the quantities

ORDERS OF CONVERGENCE

(v) — ()
One of the main advantages of the Lie-Trotter product Rom1(B) = Zomia(B)IZ(B) (50

formula consists of the fact that, for low-dimensional sys-gnd

tems, the evaluation of the density matrix and related prop-

erties can be performed accurately by means of the numeri- 0= 2 RY (B -RY (B
cal matrix multiplication(NMM) method[29,30. We shall am =M in| 1+ R (B -1
use the NMM method to computgh-order approximations 2l

to the partition function of the type As demonstrated in Ref10], the slope ofa;’) as a function
of m converges to the convergence order. We want to verify

70 :f Oy x: B)dx vyhether or not this convergence orderylsThe exact parti-

n () an xx:8)d tion functionZ(B) necessary in Eq50) is evaluated either

by variational methods or by employing a lange
for one-dimensional systems. We follow closely the simula- The first example studied is the quartic potentidk)
tion strategy employed in Ref12] for a similar numerical =x*/2. The following values of the physical constariis
study of asymptotic orders of convergence. The synibpl atomic unity have been utilizeds=1, my=1, and 8=10.
to the exponent serves to differentiate between short-tim&he second example studied consists of a particle trapped on
approximations of different ordens a line between two atoms separated by a distdn@&?]. The
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a physical system of arbitrary convergence orders. | have
shown that the problem can be reduced to the construction of
finite-dimensional approximations to the Brownian motion

that satisfy a certain system of functional equations. Using
the developed theory, | have constructed two examples of
reweighted short-time approximations having convergence
orders 3 and 4. The predicted orders of convergence have

been verified by numerical simulations. In Appendix B, |
have derived the convergence constant for the trapezoidal
0 20 30 40 30 Trotter path integral method. The predicted convergence con-
m stant has also been verified by numerical simulations.
For imaginary-time path integral simulations, the reader
FIG. 1. The convergence orders of the two discrete short-timemay object that the use of a path integral technique having
approximations for the quartic potential. The plotting symbols arefaster asymptotic convergence is not a significant algorithmic
shown only for every tenth data point actually computed. improvement because the final computational effort is even-
tually controlled by the rate of convergence of the Monte
particle is assumed to interact with the fixed atoms througlCarlo integration method. The computational effort, as mea-
pairwise Lennard-Jones potentials. The resulting cage is desured against the number of calls to the poteMi{a), can be
scribed by the potential evaluated as follows. To attain a given absolute egayne

12 6 12 6 must utilize a number of
sl ({2 e
X X X—-L x-L

if 0 <x<L andV(x)=+« otherwise. The parameters of the path variables(here, const is som@roportionality con-
system are chosen to be those for the He atom. Wenget stan). The cost to evaluate the average potential for a
=4 amu, e/kg=10.22 K, 0=2.556 A, andL=7.153 A. At given path is equal to the number of quadrature points,
T=5.11 K, which is the temperature utilized in the presentwhich, in turn, is proportional to the number of path vari-
computations, the system is practically in its ground stateables[here, we do not take into account the cost for the
For more details regarding the present simulations, theomputation of the paths, which scales ratg,(n), but
reader is advised to consult R¢l.2]. which is usually negligible for the values ofcommonly

As Figs. 1 and 2 show, the orders of convergence preemployed in practice Thus, the cost for a single path
dicted in the preceding section are well verified. | interpretevaluation isconst/e!”. This cost is to be multiplied by
these results as proof that the mathematical analysis pethe number of Monte Carlo steps, which is given by the
formed in the present paper is sound. The He cage problem fermula
interesting because the Lennard-Jones potential lies outside
the class of potentials for which the theory was developed.

As explained in Ref[12], the density matrix of the Lennard- 45 ming that the variance of the Monte Carlo method does

Jones potential has an exponential decay near singulariti%t depend upon the number of path variables. Thus, the

and, therefore, the befhawor %fthe ﬁ)otent!all near S'nQUIar't'eEJtal cost, defined as the number of calls to the potential
is not important as far as the polynomial convergence ofecessary to attain a given error, is

imaginary-time path integral methods is concerned.

2.0

n = conste!’”

Noyc = consté?,

Cost = consix e "7 (51)

wherev is the convergence order of tlirect path integral
In this paper, | have considered the problem of constructmethod. Equatiorf51) shows that we cannot beat the slow
ing direct short-time approximations to the density matrix ofconvergence of the Monte Carlo integration scheme by in-
creasing the order of convergence of the path integral tech-
nique. The total cost changes fra?°to € 22 only, as we
switch from the trapezoidal Trotter to the fourth-order
method designed in the present paper.
o-aW  -a® However, the methods designed in the present paper are
m+lm still useful because the improvement, even if marginal,
O oS g - comes “free of any charge.” Indeed, as shown in Sec. IV B,
/U o-a® -a® the ratio number of quadrature points over number of path
m+l Tm variables is 1(for n large enoughfor both the trapezoidal
Trotter and the discrete fourth-order method introduced in
the present paper. Therefore, there is no loss of efficiency in
employing the discrete fourth-order method even for those
potentials for which the optimal convergence order is not
attained. Because no additional cost is incurred even in the

VI. CONCLUSIONS

4.0

3.0

2.04F

0 20 30 40 50
m

FIG. 2. As in Fig. 1 for the He cage problem.
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most disadvantageous situations, the discrete fourth-ordduture research on the subject is worth the time of investiga-
short-time approximation is a natural replacement for thetion and may lead to significant progress in the area of real-
trapezoidal Trotter short-time approximation in all path inte-time path integral simulations.
gral simulations.

At a more general level, the present development may be ACKNOWLEDGMENTS

relevant for the problem of performing real-time path inte- 1o gthor acknowledges support from the National Sci-
gral simulations[33]. In this case, the asymptotic rate of ence Foundation through Grant Nos. CHE-0095053 and
convergence isrucial because the noise in the Monte Carlo ' CHE-0131114. He also wishes to thank Professor Jimmie D.
simulation not only depends upon the number of path VarlDoll for helpful discussions concerning the present work.
ables, but actually increases exponentially fast with the num, Finally, the author would like to express a special thanks to
ber of path variables. This is the statement of the well- knowrbragos N. Oprea for pointing out the Hardy-Ramanujan
dynamical sign probleni34]. asymptotic formula.

Let us assume that for a given convergence okclénere
is a finite system of function§A,(u);0<k=<q,} that gener- APPENDIX A: SOME MATHEMATICAL FACTS

ates the short-time approximation of order ABOUT THE BROWNIAN MOTION
AND THE FEYNMAN-KAC FORMULA

. oo .. In this appendix, | review the definition and some of the
Py (XX': B) = prplx.X 'ﬁ)L duo(@n) - L dreo(ag) basic properties of the Brownian motion. In addition, an al-
ternative formulation of the Feynman-Kac formula and the
random series construction of the Brownian motion are pre-
xex 'Bf [Xr(u) * E akAk(u)} duf, sented. For further information, the reader is advised to con-
sult the cited mathematical literatuj®,4,26. Chapters | and
(52 Il of Ref. [35] also contain an in-depth introduction to
Brownian motion and its relation to the Feynman-Kac for-
mula.
dy(ay) = (2mo?) Y2exg - a2l(20?)|day. A standard Brownian motion is defined as a stochastic
processB,,u= 0} that satisfies the following conditions.
Notice that in Eq(52) we have performed a substitution of (@ Given 0<uy<u;<---<u, an arbitrary finite se-
variablesa; = oa, so that the dependence of the spread of thejuence of increasing t|mes the initial positiBg, and the
paths withg is no longer buried in the potentiglemember,  position increments,, u, "By, -+ By, ~By _, are mdependent
o=(h?BImg)*?]. In principle, this transformation should al- (b) If s,u=0 and[a,b]CR is some arbitrary interval,
Iow us to extend the above formulas to complex-valed then
We ask the question of whether or not it is more optimal to

where

give up the use of the Lie-Trotter product formula altogether P(B,..— B, < [ab]) = b1 exp(— X—z)dx
and instead consider the sequence of approximations s T a \27s 2s)
pg”)(x,x’;,B) — p(x,x";8) as v— . (53 (c) With probability one, the Brownian motion sam-
pling pathsB, are continuous.
If with appropriate restrictions oW(x) and ¢(x) the series The existence of a stochastic process satisfying the above
appearing in Eq(22) is analytic inp, it is straightforward to  conditions has been first proved by Wieri86] in 1923.
see that If Bo=0 with probability one, then the Brownian motion

is said to start at zero. In the present wdk,always denotes
J p(x, X" B) (X )dX’ _>J X" B x)dX (54 @ standard Brownian motion_ ;tarting at zero. The conditions
R (@) and (b) above are sufficient to demonstrate that the
Brownian motion starting at zero is a Gaussian process with

exponentially fast as measured against joint finite distributions given by
It is then apparent that a favorable scalinggpfwith v,
such as, for instance, a polynomial scaling, may strongly P(B,, € [a3,by], ... By € [anbnl)
alleviate the dynamical sign problem. As the Hardy- by by n
Ramanujan .fo_rmula shows, the number.of~equat|ons that :f Xm"‘f anH Puw (X1X), (A1)
must by satisfied by the system of functiof§,(u); 1<k

a a
<q,} increases withv faster than any polynomial. However,

. S ! . whereuy=0, X,=0, and
this does not necessarily imply th@fincreases withr at the 0 %o

same rate. In the examples constructed in Sec. IV, we have 1 (b-a)?
been able to accommodate the 18 equations for order 3 with pu(@b) = \s"_27ruex —

only two functions, whereas the 40 equations for order 4
were accommodated with three functions. In both cases, the Equation(Al) can be utilized to compute the expected
actual number of functions was much lower than the numbevalues of moments of standard Brownian motions starting at
of equations. | hope this short analysis justifies my belief thakzero. For example,

056701-14



EXISTENCE OF SHORT-TIME APPROXIMATIONS OF. PHYSICAL REVIEW E 69, 056701(2004)

1 X2 x|e Pt
E[(BU)“]:f ,_exp(— —>x4dx=3u2, ey
R V27U 2u 1
:f dZE?exp(— Z12)

where we have used the fact tHgt is a Gaussian variable : vem )
centered about origin and of variangeas follows from Eq. B 0
(A1). Therefore, Xexp{ ,Bfo V[x+ ogzu+ oB]du (X + 02).

1 1 1 Notice that the variablez and BS, as they appear in the

ﬂa“ (BU)“du} :f E[(Bu)“]du:J 3u’du=1. preceding equation, are independent. Moreoxés a Gauss-
0 0 0 ian variable of mean zero and variance 1. It follows that

(A2) +BS is equal in distribution to a Brownian motids), starting

) . 0 ) ) at zero. In these conditions, the Feynman-Kac formula reads
A standard Brownian bridgfB;,0<u=<1} is defined as a

standard Brownian motion starting at zero that is also condi- _ !
tioned to end up at zero at timez%: (&) = Elexil - 'BJO V(x+ oBydu] gix+oBy],

(A3)

where the symbaoli denotes the expected value with respect
A standard Brownian bridge can be constructed from a starf© the entire Brownian motioB,.

{B20=<u=<1}={B,0<u<1|B,=0}.

dard Brownian motion starting at zero as the differeBge I conclude this appendix by presenting the statement of
-uB,. More precisely, it can be demonstrated that the Ito-Nisio theoren{35,37, a theorem that gives an ex-
plicit construction of a standard Brownian motion over the
d interval [0, 1] as a random series.
(B2 0<u=1}={B,-uB,,0<u<1}, Theorem to-Nisio). Let {\\(7)}=o be any orthonormal

basis inL70,1], let
d u
where the symbol ameans that the left- and right-hand side A(u) :f A(ndr,
processes are equal in distributioimave equal finite- 0
d|men5|pnal d'St”p.Ut'or)S and have continuous sampllng and leta: ={ay,a,, ...} be a sequence of distributed standard
paths with probability one. Moreover, the random varlablesnormal random. variables. Then. the random  series
B, andB’=B,-uB, are independent. It follows that given a varl ' ’ !

Brownian bridgeB?J and an independent standard normal.zk:OakAk(u) Is uniformly convergent almost surely and equal

variablez (which plays the role oB,), the sum of indepen- distribution over the intervdl0, 1] with a standard Brown-

dent variablesBu:BS+uz is equal in distribution to a stan- lan motionB, starting at zero.
dard Brownian motion starting at zero. Thus To express the Feynman-Kac formula as the expected
' ' value of a functional of a random series, it is convenient to

d work with those orthonormal basif\(7)}=o for which
{B,0<us= 1}:{58 +uz0<1l<u No(7)=1 only. ThenAy(u)=u and

1 1
d Ak(l):J )\k(T)dT:J M(DNo(7)d7=0
and z=B; (becauseB(f:O, by the very definition of the 0 0
Brownian bridge.

As Simon often emphasiz€8], Eg. (1) presented in the
Introduction is only one of the many equivalent formulations

for all k=1. In these conditions, the Ito-Nisio theorem says

of the Feynman-Kac formula. Another popular formulation, * * d
which utilizes the full Brownian motion rather than the > aA(u) = > aA(U) — agu=B, - uB;.
Brownian bridge, will be presented shortly. Létx) be an k=1 k=0

arbitrary square integrable function. From Etj), we have  The |ast term in the preceding equation has been discussed in
a previous paragraph to be equal in distribution to a Brown-

(xleP| ) ian bridge. It follows that ifA¢(7)=1, then
—fdx’ = ex —(X,_X)Z} ‘o
B 2 \J”27T0-2 20'2 88:2 akAk(u)! Osus1l,
k=1
1
XE exp{— Bf VX + (X' =x)u+ aBg]du} (X'). equality in distribution that provides an explicit random se-
0 ries construction for the standard Brownian bridge.
In these conditions, i) is the set of all sequences
Performing the substitutior’ =x+ ¢z, we obtain :={a;,a,,...} and if
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1 1
E(B;M3) =E[B, | (By)3du]= 3f u’du=1.
0 0

is the probability measure dit associated with the sequence The trapezoidal rule produces

of independent random variables ={a,,a,,.. .}, then the

Feynman-Kac formula given by E@l) reads

pXX"3B) _
pro(X.X";B8)  Ja

l o0
xexp{— ﬁfo V[x,(u) + akz akAk(u)} du} .
=1

(A4)

dP{a]

Equation(A4) is called the random series representation of
the Feynman-Kac formulglQ].

E[(B)°M,] = E[(B) J (By)?du] = J (2u?+u)du=

o167+ 9] -

(3) Casej,=1 andj;=2: For the full Brownian motion,
we have

UOII\)

o1
+20

The trapezoidal rule produces

22+1=2

(4) Casejz=2: For the full Brownian motion, we have
[see Eq(36)]

APPENDIX B: THE CONVERGENCE CONSTANT
FOR THE TRAPEZOIDAL TROTTER APPROXIMATION
The short-time approximation for the trapezoidal Trotter
path integral method is given by the expression

V V(X'
PAT X3 B) = prg(,X' ;ﬁ)exr{- Bw} .

This short-time approximation is of the type given by Eq.

1 2
E[(M)?] = }E(L Budu) = % + %2

The trapezoidal rule produces

E[20+B)]*=1%

With the help of the series given by Eq22) and(24), we

(16), provided that the quadrature technique is specified bysompute

the two pointsuy=0 andu; =1, and the weights/,,=1/2 and
w;=1/2, respectively. The approximation is independent of

the functions{A,(u);0<k=q}, because the end points of
these functions are specified by E4l). We can therefore
consider that the functions are those for the third-order re-
weighted approximation, or one may work with a full ran-
dom series representation of the Brownian motion of the type

ou + > A (u)

k=1

as provided by the Ito-Nisio theorem. It does not make any
difference. The trapezoidal Trotter approximation is just a
discrete version of the third-order reweighted technique dis-
cussed in Sec. IV A or of the full Feynman-Kac formula.

Using the fact that the trapezoidal quadrature rule given
above integrates exactly the polynomials 1 andhe reader
may argue that all equations specified in Table | wjith
=1,2,3 aresatisfied, except for the followindor all, ©=3).

(1) Casejg=1: For the full Brownian motion, one com-
putes

1 1 1
E(M4):Ef (Bu)“du:f E(Bu)“du:sf u’du=1.
0 0 0
The trapezoidal rule produces a different result

0=

(2) Casejs=1 andj;=1: For the full Brownian motion,
one computes

056701-16

f ) [pg" (%,X"; B) = p(x,X"; B)]th(x")dX'

{0 () ) v
3
2

1)( 1)( )v<3 0PI

(=3l v

- %Z)n—b[vﬂkx)]w(x)} +o()

From the equation above, we learn that the trapezoidal
Trotter path integral technique has convergence order 2.
Moreover, the convergence operator for the trapezoidal Trot-
ter short-time approximation is

TZ:——(ﬁzf (x )———[v<1>< 2
48\ my

£2\2d (o _)
Bl v ©

The above form of Eq(B1) emphasizes the Hermiticity of
the convergence operator. According to Theorem 2, the fol-
lowing result is expected to hold.

Theorem 6 The convergence constant for the trapezoidal
Trotter path integral method is given by the formula
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FIG. 3. The convergence constant for the relative error of the FIG. 4. Same as in Fig. 3, but for the He cage problem.
partition function of the quartic oscillator, computed for the trap-
ezoidal Trotter path integral method. The sequence of observed con- 2 2
; : 2h d
vergence constantg, is seen to converge to the theoretical value of = V(Z)(x) — i (x) | dx
¢y~ 88.35, which is the value predicted by Corollary 1. my Jp dx

; or TT ’ ' = _2_ﬁ2 V(l)(x)i{i (X)]de
rI][r:c(n+ Dy (XX";8) = p(x,X";B)] T omeJy ax| ax’ '
1
= B3f (X|e" BT, (108 |x "\ d ), (B2)  Adding the last two equations and simplifying, we get
0
h? 242 d 2
- (4) 2 - (2) -
where the operatdF, is defined by Eq(B1). ZmOL VP00 i) "dx + Mo fﬁ Vv (X)[dxwk(x)} dx
For the purpose of numerical verification, we derive the ) .
convergence constant for the partition function. Though one _ @ | d
can work with the full density matrix and employ the Bloch " mo ‘HV (x) 'ﬁk(x)d)@ ) dx'ﬂk(x)
equation whenever necessary, it seems that it is more conve- 5
nient to utilize an eigenfunction expansion for the density x d_¢ ) | tdx (B4)
matrix. Settingx’ =x and integrating ovex in Eq. (B2), we @«

obtain, after several simplifications and an integration by

parts, However, by virtue of the Schrédinger equation, we have the

equality

lim(n+ 1)z} (8) - Z(B)] )

f d® d d?
- E{ l//k(X)@ hdX) — {&lﬂk(x)} [& l//k(X)} }

[}

1 ﬁZ 3 hZ
]| ) {— 2 V007

T 24 = d d
Mo ko = (%) [ Ex = VO Tie(x)} - [—mx)}
_ [\/(1)()()]2%()()2 dx dx
22 . [d ]2 s {[Ex = V) 1)}
+ EV (x) [ d_)(wk(X)} dx. (B3) —_ (//k(X)zv(l)(X).

Integrating by parts three times, one argues that Replacing the last equality in E¢B4), we obtain

2 e f VA (x) ¢ X)2dx + Zﬁzf V<2)(x){ d W (X):|2dX
h — — — —
-— f VA (x) ¢r(X)2dx 2mgJ “ Mo J dx "
2myJ
52 f d @ =2 J VO () Pyadx)%dlx,
= — V(l) —_ |: — :| 3
ol () dx{ dX) dlelfk(x) R
d 2 relation that, upon substitution in EB3), produces the fol-
+ &‘/’k(x) dx lowing corollary of Theorem 5.
Corollary 1. The convergence constant for the relative
error of the partition function for the trapezoidal Trotter path
whereas, integrating by parts once, we obtain integral technique is given by the average
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f VP () Pp(x; B)dx
R

lim (n + l)zzIT('B) ~2p) _ 1%
n—o Z(p) 24 my

’

L p(x; B)dx

(B5)
wherep(x; B) =p(x,X; B) is the diagonal density matrix.

Observation It can be shown that for a multidimensional
system, the convergence constant is given by the formula

TT _
rliifl(n + 1)2—2n ('?( IB)Z('B)

RS 1 fRd[&iV(X)]Zp(x;ﬁ)dx

24 i=1 rnO,i f ,

(B6)
P B)dx

R

PHYSICAL REVIEW B9, 056701(2004)

The numerical verification of Corollary 1 is done by nu-
merical matrix multiplication for the systems discussed in
Sec. V. The theoretical convergence constants

1w [V () p(x; B)dx
‘=24 m

J p(X; B)dx
R

can also be computed by numerical matrix multiplication
more generally, by Monte Carlo integratjoriThe experi-
mental values are obtained by numerically studying the limit

of the sequence
Z'B-2p
zp

As Figs. 3 and 4 show, the agreement between the theoretical
and the experimentally observed convergence constants is
excellent for both the quartic oscillator and the He cage prob-

lem. This agreement is further evidence that the statement of

c,=(n+1)>2

where 7 V(x) denotes the partial derivative with respect to Theorem 2 is correct, at least for the class of potentials and

the coordinate.
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