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Electromagnetic scattering by optically anisotropic magnetic particle
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The Mie theory for electromagnetic scattering by spherical particle is extended to the case of magnetic
particle with gyromagnetic type of permeability. Specifically, we first construct for the magnetic ind&gtion
inside the particle a new set of vector basis functions, which are the solution of the wave equaBparidr
expanded in terms of the usual vector spherical wave functdd88VF’s) with different values of wave vector
k. The relationship betwedn and the frequency is obtained as the eigenvalues of an eigensystem determined
by the permeability tensor. The incident and scattered fields are expanded as usual in terms of the VSWF's. By
matching the boundary conditions, a linear set of coupled equations for the expansion coefficients are obtained
and then solved for the solution to the scattering problem. Preliminary numerical results are presented for the
case in which the scattering is due solely to the optical anisotropy within the particle. The scattering efficiency
is found to exhibit miscellaneous dependence on the incident angle, the polarization, the degree of anisotropy,
as well as the size parameter. In addition, the possibility of the photonic Hall effect for one Mie scatterer is
confirmed.
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I. INTRODUCTION teristics(1) of the magnetic particles near the ferromagnetic
_ , , __resonance frequency.
The purpose of this paper is to present a Mie-type solution - gecond, another class of artificial metamaterials that have
to the problem of the scattering of plane electromagnetiGeceived an increasing amount of interest is the photonic
(EM) waves by a magnetic sphere of arbitrary size and withyrystals, which has a characteristic size of spatial inhomoge-

gyromagnetic permeability tensg, neity that is comparable to the wavelength. Due partly to the
_ lack of efficient methods, however, little attention has been
M ~ip,e O paid to periodic structures composed of magnetic particles,
Z=pud iwe wm 0], (1) which can be a photonic band-gap material tunable by mag-
netic field and temperaturi®]. Actually, most calculations
0 0 1 for photonic crystals composed of optically anisotropic ma-

f bit directi f i d polarizati f1h terials are based on plane-wave expansion method, which
or arbitrary directions of propagation and polarization ol th€.,, 5o metimes suffer from large errors and nonconvergence,

incident plane waves. The research is motivated by the folpagnecially when modeling systems with sharp contrast of
lowing aspects. First, much experimental and theoretical _effnaterial parameters or complex lattice structii@.

forts have been recently devoted to the study of negative Thjrg, many experiments have been done with manipulat-
refractive index materialNIM's, also known as left-handed jng light with a magnetic field11] as well as the diffusion of
materialy [1-6]. These metamaterials are characterized byjight in a magnetic field12—17. Up to now, theories that
simultaneously negative electric permittivity and magnetictake into account the anisotropy of the optical parameters use
permeability and are thus expected to possess unusual elgssintlike scatterg18,19 or are based on a perturbational
tromagnetic effects such as subwavelength focu$ing].  approacH20,2]. Although the perturbation approach seems
The first successful fabrication of the NIM's is the so-calledquite successful for the case of magnetoactive particles for
“split-ring wire” structure[2]. One of us has proposed an which the anisotropy induced by magnetic field is rather
alternative possibility of making the NIM’s based on metallic small, it may not produce correct results for the case of fer-
magnetic granular composites. Based on the effective maite or other magnetic particles where one may expect much
dium approximation, it was shown that by incorporating me-greater anisotropic changes induced by the magnetic field.
tallic magnetic nanoparticles into an appropriate insulating Fourth, composites with magnetic particles may be used
matrix, and controlling the directions of magnetization of as microwave filters. The first step in understanding this pos-
metallic magnetic components and their volume fraction, itsibility requires the basic knowledge discussed here.

may be possible to prepare a composite medium of low eddy Finally, multiple radiative scattering by particles is a com-
current loss which is left handed for electromagnetic wavesnon subject in a wide range of scientific and technical fields
propagating in some special direction and polarization in atretching from astrophysics, climatology, nanoscience, re-
frequency region near the ferromagnetic resonance frequenegyote sensing to aerosol medicifg2]. Two of the most pow-
[7,8]. Further exploring the possibility beyond the effective erful and widely used tools for rigorously computing multi-
medium approximation requires a more exact formalism ofparticle scattering are the clustEmatrix approact23] and

EM scattering that takes into account the anisotropic charadhe generalized multiparticle Mie solutid24], both requir-
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ipg the computation of thg propdr matrix of a single par- VXV X(ugt B)- k§B| =0 (4)
ticle. Although many efficient approaches have been pro-
posed for evaluating the propér matrix of geometrically  with kgszESMS and
anisotropic particlg23], little attention has been paid to the
optically anisotropic scatterg®5]. w —ipe O
As a result, it is desirable to have a generalized Mie-type 1|, "0 (5)
formulation for EM scattering with anisotropic permeability st Mo '
(or permittivity) of the form such as Eq1), which serves as 0 0 1
the building block for all the above multiple scattering prob-
lems. where
The rest of the paper is organized as follows. In Sec. I,
we present a comprehensive derivation of a Mie-type solu- e Hr pl=— M (6)
tion to the problem of the scattering of plane EM waves by i T Wi
an optically anisotropic magnetic particle. In Sec. Ill, we
make some brief comments on the numerical strategy andihe divergenceless propert2d) suggests thaB, be ex-
present some numerical results. A summary is given in Seqanded in terms of the vector spherical wave functions
IV. Details on some technical results are relegated to thés ﬁ(k,r) and Ngz(k,r) [26]
appendices.

Bi =2 End M ii(kD) + CueNi(kD], (D)
Il. GENERAL FORMULATION nm

We start in Sec. Il A by constructing for the magnetic wherek is as yet undetermined. In general, there are three
inductionB, inside the anisotropic sphere a new set of vectokinds of VSWF's M fj)n(k,r), Ngﬂ)n(k,r), and Lﬁj)n(k,r). The
basis functions, each of which is the solution of the wavedivergenceless property & implies that it does not involve
equation forB, and expanded in terms of the usual vectorL .,, thereby simplifying the algebra involved. The three
spherical wave functionsVSWF’s) with the values of the kinds of VSWF'’s are given fod=1 and 3 in Appendix A.
wave vectolk obtained as the eigenvalues of an eigensystenikxcept otherwise explicitly specified, hereinafter the summa-
determined by permeability tensor. The electric and magnetition =, ,, implies thatn runs from 1 to +c andm from -n to
fields are then written as sums of the VSWF's with the dif-+n for eachn. The implication ofX, , is similar. The pref-
ferent values ok;. After expanding the incident and scattered 4cior g, =i"E,C,,,, with [24]
fields in terms of VSWF's in the isotropic medium outside

the sphere in Sec. Il B, we match the boundary conditions to 2n+1 (n-m |2
obtain a linear set of coupled equations for the expansion Cin= D (nem! , (8)
coefficients in Sec. Il C. Expressions for evaluating scatter- n(n+1) (n+m!

ing properties such as scattering and extinction efficienc

based on the expansion coefficients are given in Sec. I D‘)(NhereEo characterizes the amplitude of electric field of the

incident wave. With the use of the properties of VSWF's, it
can be worked out thasee Appendix B
A. Expansion of electromagnetic field inside sphere

+o 4y

The Maxwell equations for time-harmonic field inside the o1 mn ~ mn ~ mn
: . . = + +
sourceless and homogeneous sphere (@sslming time de- peflt M= 2, 2 (G M +8 wNuy + L],

) v=0 u=-v
pendences«Y),
V X E,| =iwB,, (2a) +o0 +y o
peftt Nipn= 2 2 [GoM y, + €Ny, + LT (9)
V X H| = _i(l)D| (Zb) v=0 u=-v
T —
V.D,=0, (20 where, withu, =u/ -1,
_ ~ [(n®+n =Py +Mu, 10,6
V .B,=0. (2d) 9 o' = SnuOmu™t n(n:rl) LU
The constitutive relations between the electric displacement (108

vector D, the magnetic inductioB,, the electric fieldg,,
and the magnetic fiel#l, inside the particle are given by

=mn_ I(n + m)[mﬁr' - (n + 1)#,,(]5 —l,v‘smu

Bij=x-H, D=¢&E, 3 b
n(2n+ 1)
where the permeability tens@iis given by Eq(1), ande is ) — ,
the scalar permittivity. It follows from Eq2) that theB field L= m+ Dimuy + e (10b)
inside the particle satisfies the wave equation (n+1)(2n+1) '
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—i(n+mmu, —(N+ 1) ]61-1,0mu

mn_
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Emn_ _ i(n + m)(n + 1)[mﬁ,’ + (n - 1)/-”;,(]5n—1,u5mu

w = w n(n-1)(2n+1)
(2n+1)
) i(n=m+2)n[mu; = (N+2) . 16041, mu
i(n=m+ L)[mu] +nu.] 81,6 - et
+ Iu’r ,LL n+1, mu, (10C) (n+ 1)(n+ 2)(2n+ 1)
(2n+1) (100
|
S_s s 4 {{2n?+2n+ 3)m? + (2n?+ 2n - 3)n(n + 1) I, + (4n?+ 4n — )M/} 8, Smu
o ey n(n+1)(2n-1)(2n+3)
_(n+D+m=D+ M)y 81, 0my NN=M+ 1) =M+ 2) 1/ 112, Oy (100
(n-1(2n-1)(2n+ 1) (n+2)(2n+1)(2n+3) '
[
Zin_ _ [(0*+ 0= 3m°) 1~ m(2n — 2)(20 + 3) 41,1 VXLM=0 (13)
Uv —_
(2n-1)(2n+3) one gets
(n+2)(n+m=1)(n+ M) 82,y o
(2n-1)(2n+1) 2 EndOnM (k1) +TnNi(k1=0,  (14)
n,m
n(n=m+ 1)(n=m+ 2)u/ Grs2,Omu (100
(2n+1)(2n+3) with
Therefore, one has ~ EU —
_ Amn= kzz E_u[@ lr#}n wtd m)ncuu] - kgdmna
peii By = 2 End dnM (K1) + CrNi(K, 1) v S
n,m
+ Wil fa(k, 1)+ Wool Gy (K, 1), (11) P 2
Cnn=k 2 _—[é mnduv te mncuv] - k::,Cmn- (15
where v Emn
E Equationg14) and(15) imply an eigensystem governing the
Gon= S 2 (g d, +g% e, ], (129 value ofk for expansion(7),
v,u Emn JU—
G G\(d d
_ = =\¢)= hY NE (16)
_ Eo e w o —uw £ €
Cmn= E —_u[é umn wt€ umnCuU]a (12b)
o Emn wherex=k2/Kk?, and the matrice§, G, £, andé are given by
_ 2 EUU ? ) f_uu ~ Euv~ w = Euv—uy
Wmﬂ_ —_[ mnduv + mnCuv]r (12C) gmnuy == g mn gmn,UU = —_g mny
vl Emn Emn mn
2 |2 E E
_ ' — ~ E — E
Woo =~ \/;M"dm_ 15H Coz: (129 Emnu = = Emnuw = e (17)
Emn mn

Inserting Egs(7) and (11) into the wave equatio), and
noticing the following equations satisfied by the VSWF’s

1 1 —
VxVxMb-kmb =0,

VXV xNY-KeNY =0,

with mn and uv denoting the row and column indices, re-
spectively. Let\; and (dy,n;,Crny) " denote, respectively, the
eigenvalues and the corresponding eigenvectors of eigensys-
tem (16), with | representing the index of eigenvalues and
corresponding eigenvectors. One can then construct a new
set of vector function¥,| based on the eigenvectors,
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EEmr[olm.w1 (K, T) + Cy Nk, 1) (18)

with k=kg/V\,. It follows directly from

V- Mp=V Np,=0 (19
thatV, are divergenceless
V-V,=0. (209
In addition, they satisfy the wave equation 8y field (4),
VXV X(ugit-V)-KV,=0 (20b)

Thus, they form a new set of vector basis functionsBer
namely,B, can be expanded in terms ¥f,

BFE“M,
I

(21)

where the expansion coefficieris are to be determined by

matching the boundary conditions at the surface of sphere.

With B, given by Eq.(22), it follows from Eqgs.(2b) and(3)
thatH, andE, fields can be written as

leﬁ_l'Bl

:_EEmnzw_es
n,m | K

m[dmn.M Wk, r) + CrN'D (k)

{W"‘” Dkt )}

K, r)}E

(229
E| = I_ V X H|
weg

== 2 IEmnE Oll[cmn,llvI mn(k|,r) + dmn,lN (k|,l’)]

n,m

(22b)

where use has been made of E@$l), (12), and (15),
whereas

E
Wmr1| = 2 o

v,u

Woo, = \/i%dou \/ Mr Coz)-

Notice that, sinceV:-H,#0, its expansion include$ ,,
terms that are absent in the isotropic case.

(233

¢ w
up,| +f mnCuU I]

mn

(23b)

B. Expansion of the scattered and incident fields
The scattered fieldsg, H, and incident field&;,c, Hi,c IN
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FIG. 1. Geometry of the scattering problem.

In terms of VSWF's, the scattered field&,H,) are ex-
panded as

Ee= 2 iEmdamNE ko, 1) + bnM ko, 1)1,

o o End BN ko, 1) + amM Sko, 1)1, (24)

OUORm

where kf):wzeo,uo with €, and ug being, respectively, the
scalar permittivity and permeability of the surrounding me-
dium. The expansion coefficienss,, and b,,, are to be de-
termined by matching boundary conditions.

Suppose that the particle is illuminated by a plane wave
characterized b, with

Ko = Ko(Sin 6,cOs ¢ &, + sin O Sin ¢ie, + cos bie,),
(25

whereeg,, &, ande, are three unit base vectors of the Carte-
sian coordinate system ar# (¢,) is the polar(azimutha)
angle ofky, as shown in Fig. 1. The electric and magnetic
fields of the incident plane wave are then

Einc = Eo(Psbi + pqs;f’k)eiko'r ,

pd;ok)eiko'r , (26)

H inc = _EO(pB(’i’k -

whereﬁz(pebw p¢(}5k) is the normalized complex polariza-
tion vector, with|p|=1, and the unit vectorg, and ¢, are

the isotropic surrounding medium have the same form as ifjefined in the direction of increasingk and ¢ such as to
Mie solution [26,27. Notice, however, that the form of the constitute a right-hand base system together Withk o/ ko,

permeability tensofl) we have used implies that the mag-
netization direction of the magnetic particle is along the

axis. For arbitrary directions of propagation and polarization

as shown in Fig. 1, namely,

|20><A0k=a’k: kafA/’k=|zo, gkaﬁozbk- (27)

of the incident plane waves, the expansions of the field are

not limited tom=+1 modes.

With the use of the mathematical ident{i®8]
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1e%o” = 3 [AmNi(ko ") + BraM (ko1 + Crl (ko 1)]

nm
+ Cool 69 (koiF), (28)
wherel is the unit dyad, and

_2n+1 (n-m)!
™ n(n+ 1) (n+m)!

"= i 7m0(COS 61 b
+ 7,,(COS 6) B Je M,

2n+1 (n—m)! ~
= n(zi D EEJr—R!i”[— i Tmr(COS 6,) O

~ Tr(COS 6) e ™,

A T ULy

(n m).

in 1Pm(COS 6k)k0e m¢k COO: - iko,

(29)

with P](cos 6) the associated Legendre function of the first

kind, the incident field$E;,.,H;,.) can be expanded as

Eine=— > iEmd PN &Ko, ) + GneM Dk, 1)1,

nm

Hinc: kO E Emr[qmnN(l)(kO r) + pmnlvI (l) kO r)]
Mon,m

(30)

The expansion coefficients,,, and g, are
mn =[Py Tmr(COS B = ip¢7Tmn(COS Hk)]e_im¢k

mn=[PeTmn(COS 6) = P 4Tmr(COS B)Te ™% (31)

where the regular angular functionsr,(cos#) and
Tmn(cos 0) are defined by24]

Tmn(COS 6) = CmnSIn Pp(cos 6),
- d .,
Tmn(COS 6) = Cmnd—e Ph(cos6), (32

with C,,, given by Eq.(8).

C. Matching boundary conditions

With the internal fields, scattered fields, and incident

fields given, respectively, by Eq$22), (24), and (30), all

expressed in terms of the usual VSWF's, one is ready to

apply the standard boundary conditions

[Einc+Es] X er:EI X €,

PHYSICAL REVIEW E 69, 056614(2004)
[Hinc+Hs]X6r:Hl><er- (33)

After some algebra, one gets the equations to determine the
expansion coefficients,, a,, andb,,, based onp,,, and
qmnv

|:'r//r,1(x)_amn+§|: _rnsE l//é(X) mnl_ I = Pmns
(343
&9 | [ 1 gm0 |
= bmn —— . Cny = Qs
|:‘/"n(x)_ +§,: | mk () G n,l_ 1=
(34b)
& o doim |
[ lﬂn(X) :|amn+ 2 | Mg lﬁn(x) mm_ @ = Pmns
(340
& oM (kM)
Lﬂé(ij’"“;{ Hs Y0 C’“"'}“'
.HE

where the size parameterkgrg, with rg the radius of sphere,
and

ks — K
== k=—.
mS k01 | ks
o 2
=ik, N= 5= (35)
|

|
The Riccati-Bessel functiong,(z) and &,(z) are given by

[27]
(2 =22, &2 =20V, (36)

with j,(2) andhff)(z) being, respectively, the spherical Bessel
functions of the first and third kinds. The last term on the
left-hand side of Eq(340d) originates from thd.,,, terms in
the expansion oH, field (22). Equationg34) can be rewrit-
ten in matrix form

(o o))+ (2)e=L2)
¢ Re) o

The matrices are given by

= Sv(X) Oy O

(373

mnuv

= S1(X) 8 G

mn,uv
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1 — The efficiency factors for scattering., extinctionQ,,; and
Umnt = —=Tn(X,MskX)Cryp absorptionQ,,s as well as the asymmetry parametgr
mgk =(cos #) [27] can be expressed based ay, andb,,, The

only difference from the Mie theory is that one should in-

1 — _
Umm = _—Tn(xvmsklx)dmn,la

clude all terms instead of only the=+1 terms. Explicitly,

mek; they are given by24]
4
A — Quca= 3.2 ([l + [bmd?), (429
anl = £o ITn(xa msklx)dmnly 8 in,m " m
Ms
4 * *
— N— — =<2 R + , 42h
me - %Tn(xvmsklx)cmn,l +Wmn,|a Qext in,Em e(pmnamn qmnbmn) ( )
S
p— T Qabs= Qext— Qsca (420
1 T,(x,mkx)
Winn) = %)—El;m(—msg)wmm, (38) A
S X X * o~ x =~
T P T 0= 5~ Re@n B+ bpb), (420
where X“Qscan,m
S0 &n(x) S &%) whdere the superscript * stands for the complex conjugate,
X)=~——, X)==—, an
Un(X) Y 3
Amn= 1:1bmn+ f2amn+l + f3amn—l1
lﬁn(z) — ‘J/r;(z)
Ta(x,2) = v Tax2)=—"—, (39 =~
" ‘/’n(x) " (ﬂn(X) I:)mn: flamn+ f2bmn+l + f3bmn—1’ (43)
and the logarithmic derivatives of the Riccati-Bessel functionwith
/(2) __m
D(l) = (/ln . f -
n (Z) l/fn(Z) 1 n(n + 1)
Equations(373 and(37b) can be solved to give 1 [nn+2)(n-m+ Dn+m+ 1) 12
E:R(p) (409 T n+1 (2n+1)(2n+3) ’
q

A

= l[(n_ D(n+H(n=-m)(n+ m):|1/2

(44)

n (2n-1)(2n+1)

The fields inside the particle are evaluated based o).

where with ¢ given by Eq.(409).

IIl. NUMERICAL RESULTS

~ 0 1
U 0 A The general formulation in the preceding section applies,
in principle, to the case with arbitrarily anisotropic perme-

(41  and & 1-Np,, in terms of VSWF’s such as Eq9) can be

(Y 0 )‘1<V— U) ability, provided that the expansion coefficients/6ft-M .,
worked out. In Sec. lll A, we exploit the axial symmetry of

the permeability tensor to simplify the eigensysté€if) and
S=ZR, (410  the linear systeni37). Algorithms for computing some vari-
ables appearing in matrix elements are described in Sec.

Y=A-A. (410

Il B. In Sec. Il C, we present some numerical results that
demonstrate the effect due solely to optical anisotropy on

scattering properties. In Sec. Il D, we address the issue of
the magnetotransverse anisotropy in light scattering, the so-
D. Scattering properties called photonic Hall effect, for a single Mie scatterer.

With the expansion coefficients,, and b,,,, that charac-
terize the scattered fields obtained from E4Ob), it is

A. Simplification of the eigensystem and the linear system

straightforward to evaluate fields outside the particle as a As in Mie scattering, in practical calculation, the series
sum of the scattered field24) and the incident field$30).  expansion of Eq(22) is supposed to be uniformly conver-
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gent and can be truncated at sonven.. The resultant error

Cmy f
incurred due to truncation is assumed to be insignificant. The Cv+ngm> = {d if
criterion for the determination of the required scattering m

terms for Mie scattering is well establishgi7,29, which is

ne=x+4x3+2, (45)

PHYSICAL REVIEW E 69, 056614(2004)

is even
is odd,

(m,o) v—My

(51
v—m

where, again,v=m;,m;+1,...n.. Let 7™ denote the
2ngm)><2ngm) transformation matrix betweed™? and ¢(™,
i.e.,

wherex=Kkgyr is the size parameter. In the present case, the

value of n, depends also on degree of anisotropy, usually

requiring a greater value of, for a greater anisotropy.

M) = 7 em, (52)

If one terminates the series expansion at some degree After the transformation, the eigensyst¢AY) becomes

=n. and adopts the usual combined indeto represent the
two indicesmn [28]

j=n(n+1)+m, (46)
then E E Z‘, and € in the eigensystenil6) are allng X ny
matrices, withng=ng(ne+ 2), while in the linear syster@7),

A andA areny X ngy diagonal matriced), U, V, V, andW are
ng X n; matrices, whiléx is an, X 1 matrix. Heren,=2ny. The
solution requires computing the inverserpiK n, matrices as
shown in Eq.(41a8—(41d), as well as calculating all eigen-
values and eigenvectors of apx n, matrix (16).

The axial symmetry of permeabilityl) suggests two
characteristics that, corresponding to two Kronec&eym-
bols in Eqg.(10), may greatly simplify the calculation. The
first Kronecker symbob,,, indicates that one may solve for
the eigensyster(il6) and linear systen37) for each value of
m separately, wittm=-n.,-n.+1, ... n.—1,n.. For eachm,
Eq. (16) reduces to

(’Q(m) 5”‘)

m  gm “7)

) c(m) — )\(m)c(m),

where G, etc., arengm)xngm) matrices given by Eq(17)
with u=mandn,v=m;,m;+1,... n.. Here,

n"=n+1-m; with m;=max1,m|). (48
The column vectoe™ in Eq. (47) is
c(Um) =dny,
cf)n:agm) = Cmy (49

with v=mg,m;+1,... n.. The linear systent37) is simpli-
fied similarly so thatA(™, A(M, areném)x ngm) diagonal ma-
trices, andu™, UM, (M /M gre alln{” x 2n{™ matrices.
The calculation is much simplified by solvingig” x 2n{”
eigensystem and computing the inverse oﬁx ZnEjm) ma-

trix for eachm, instead of dealing with matrices of much

greater dimensiom,.

& ¢ma) = \M¢mo) (53)
where
'é(m) am)
5:7@)(?(@ zn )T o

is of block-diagonal form and can be decomposed to two
ném)xngm) submatrices. The same procedure applies to the
linear system(37), resulting in the computation of the in-
verse of two n{”xn{” matrices instead of oneng”

x 2n{" matrix.

As a result, due to the axial symmetry of Eq), one
finally needs to solve a series of eigensystems and compute
the inverse of a series of matrices. The dimension of these
matrices aren” X n{”, with n{” given by Eq.(48) andm
=-n;,—n.+1,... n.—1,n.. The maximum matrix dimension
is limited to n., while solving Eqgs.(16) and (41) directly
requires operating with matrix of dimension=2n.(n.+2)
>N,

B. Evaluation of S,(x), Ty(x,2)

Solution of Eq.(40) requires the evaluation &,(x) and
T.(x,2), etc., appearing in Eq.38). To obtain reliable nu-
merical valuesS,(x) andT,(x,z) are evaluated based on the
following recurrence relations:

Further simplification can be made by taking advantage of

the second Kronecker symbé), ,, 8,:1,, and é,.,, appear-
ing in EQ.(10). Instead of solving the eigensyst&ri’), one
can reorder the column vectof™ into ¢(™* given by

cl(,m’”):{dmv i.f
Crp f

is even
is odd,

v—mMy
U_ml

(50)

_ &0 _ [DF() + nix]
Sn(x) - l//n(X) - S’]—l(x) [DS’)(X) + n/x] ’
SV . BN 1 o Rl S
I g0~ D0 + i)
starting with the following initial values
262ix
S0 = Zx 7 (563
To(%,2) = °- 1e‘(x‘2) (56b)
O\ e2ix -1 ’

for nonmetallic sphere. For metallic particle that has a large
imaginary part ire, on the other hand, the initial valygéb)
can be replaced by
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e2iz _ 1 ) T T
— ix =4.0
To(X,Z) - eZiX _ 1e (57) 3.0 F z
——— u=0.2
to avoid numerical overflow, while the resultamtobtained I R Z:g:g
from Eg.(40) for the internal fields have to be multiplied by . 20l u=0.8 |
Emsk"‘ accordingly. The remaining two quantities in £g9), Q@ //
S,(x) and T,(x,2z), are computed using -~
1.0 ST e -
< X oY T ST e
007 lﬂr:(x) =S D?l)(x) ’ P,
n nWeooo e
® 00 . RERNEEEE S .
= In(2) DY (2) z=4.0
T(x2) =" =T(x 2= (58) 3.0 f==r J
n(X) D, (x) S~ ——— p1=0.4, LCP
. . . . . . | N eveereenea «=0.4, RCP
where the logarithmic derivatives of the Riccati-Bessel func- \\ - migg, JLQ%};
tions are defined by s 20k N He=75 i
Q
%]
DY@ =4 @ln(2, DY@ =862, (59 <
In our calculation,Dgl)(z) is evaluated based on the down- 1.0 s . i
ward recurrence relatiof27] i Tl S~ >
1) _n_ ; 0.0 . . | . . ‘I ““““ -___...
Dra(2) = n (60) 0 30 60 90
DV (z) + -
z (®) Ok (degree)

starting from an asymp();otic Valu“st:0'0+io'o _With Nst FIG. 2. (a) Scattering efficiencyQs., as a function of incident
=max|z| ,n.+15). For D,”(z), we found that a simple up- angle ¢, for case | with the size parameterkyrs=4.0 at various

ward recurrence, values ofu. The incident wave is linearly polarized wiilpy, p,s)
=(0,12). (b) Scattering efficiencf.,as a function off, for case Il
D(3)(Z) - _ n + ; (61) with x=4.0 at various values gf,. LCP and RCP denote the left
n l

and right circularly polarized incident waves, wittp,,pg)
=1/y2(1,i) and(pe,p¢):1/\52(1,—i), respectively.

n-

Z n
E - D<3)1(Z)

. . 3. . . .
starting withDg' =i yields results with a satisfactory numeri- to positive and negative uniaxial particles. Case Il is the

cal accuracy. gyromagnetic anisotropic particle with=¢, and
C. Effect of anisotropy 1 -ig, O
We are now ready to present some numerical examples w=po| i, 1 0. (63)
demonstrating the effect of the anisotropy. Due to the aniso- 0 0o 1

tropy in the permeability, the scattering depends on the angle

of incidence, denoted b as shown in Fig. 1, as well as the The refractive indices of particle and the surrounding me-
polarization of the incident wave. The axial symmetry of thedium are also matched if the gyromagnetic anisotropy pa-
permeability implies that the scattering is independent of théameteru,=0. In both cases, the scattering is due solely to
azimuthal angleg,. In this section, without loss of general- the anisotropy, differing from those where the isotropic op-

; - P P - tical contrast dominate7].
ity, we set¢, =0, which implies¢,=e,, and the efficiency of o i
scatteringQ..{ 6 is a function of incident angl@,. For case |, it is noted that thecomponent oH field of

To concentrate on the effect of anisotropy solely, we study}he |nCIdent_que IS not e_lffecte_d _by the scatte_{@ﬁ_], lead-
Ing to a vanishing scattering efficiency for an incident wave

two simpl tchi .C I is th iaxiall -
0 Simple mate mg_ cases. Lase 1 1s the Uniaxialy amsoWIth (Pg,Py)=(1,0) [see Eq(26)]. So for case |, we limit to
tropic particle withe;=¢€, and & -~ L
the scattering of the incident plane wave with linear polar-
10 O ization given by(py,p,)=(0,1). For case IlI, on the other
G=pl0 1 0 |, (62)  hand, we focus on the circularly polarized incident wave,
00 1+u with (pg,ps)=1/v2(1,i) and (ps,ps)=1/v2(1,-), corre-
sponding, respectively, to left circular polarizatidrCP) and
such that the refractive indices of the particle and the surright circular polarizationfRCP).
rounding medium are matched when the uniaxial anisotropy The dependences of the scattering efficiency on the inci-
parameteu=0. This case is called uniformly anisotropic in dent angle is shown in Fig. 2 for cases | and Il, at different
Ref. [25], with u>0 andu<0 corresponding, respectively, values ofu andu,. It is found that if the size parameteris
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4.0 — :
u=04 Jp—
z=14.000 .'--__ ----- .'-_'. /,/I
3.0 \7o = ;;20:0 // 7]
: 5
5 2.0
<
1.0
@ 0.0
3.0 e
T e : TN \
5 2.0 .
« "

M = 0.4 3
1.0f|-—— £=10.0, LCP Moo\
----------- z=10.0, RCP N NS
| | ———— 2=20.0, LCP Sel A
x=20.0, RCP e
ool—————T—— .
0 30 60 90

(b) Ok (degree)

FIG. 3. (a) The same as Fig.(d), with u=0.4 at various values
of the size parametet. (b) The same as Fig.(B), with x,=0.4 at
various values ok.

not very large, the scattering efficien@.,for case | mono-
tonically increases with the incident anglg in the region
from 0 to w/2, while it decreases with, in the region from
712 to 7 due to symmetrQ.{ 6) = Qscd 7— ). For case ll,
on the other handQ.., decreases with the, for 0< 6,
< /2 for small u,, whereas it increases fdrr/2)< 6,
< owing to the symmetrnyQg.{6)=Q.{7— 6. Here o
=11, with o=+1 (0=-1) denoting the incident wave of
LCP (RCP. For bigger u,, the dependence o#fy is no
longer monotonical, as shown in Fig(? for x,=0.8 and
LCP incidence.

Figure 3 showXQ,., versusé, for different values of the
size parametex, with u=0.4 for case | angk,.=0.4 for case
. It is seen that the dependence @pis no longer mono-
tonic for relatively largex. For x=20, e.g., Qg reaches
maximum at6,=53 for case |, and a#,=49°, and 73° for
case Il with LCP and RCP incidence, respectively.

Qsc40) versusx for case Il withu,=0.4 exhibits oscilla-

PHYSICAL REVIEW E 69, 056614(2004)

4.0 T T T T T T T T T
— Qsca(o)‘ LCP |1
30 -/ \ |77 Qsca(o)r RCP |
3 ,//_\\\ /’/‘_- N
8 2 O B ,’ \\\ //’ \‘\:
Q’ /I \\ 7
I/ N\, \_—’,/
1.0 .
,U//C = 04
0.0 . | . I , 1 . 1 . I
0 ) 10 15 20 25 30
x

FIG. 4. Scattering efficienc@s.{0) vs the size parameterfor
case Il withu,,=0.4. LCP and RCP denoting, respectively, left and
right circularly polarized incident waves.

This leads to the coincident overlap of tlag,, versusx
curves. Such coincident overlap of tQg.,versusx curves is
found to be unique for matching cases in which the scatter-
ing is due solely to the optical anisotropy. For the mismatch-
ing case with isotropic optical contrast between the particle
and surrounding medium, no such coincidence behavior is
observed.

Qscd7/2) [Qscd0)] as a function ofu (u,) is shown in
Fig. 5@) [Fig. 5b)] for case I(case I) with —0.4<u=<1.0
(0= pu,=<0.8), at different values ok. Different oscillatory
behaviors are observed for largeleading to the appearance
of peaks in the range af (w,) studied.

D. Photonic Hall effect

We now turn to more general scattering problems. Of par-
ticular interest is the so-called photonic Hall effect, a mani-
festation of a magnetic field induced transverse current in the
light transport, which bears a strong phenomenological re-
semblance to the electronic Hall effect. The photonic Hall
effect finds its origin in the magnetically induced changes of
the optical parameters. Based on perturbation theory, Lacoste
et al. [20] have addressed the issue whether or not there is a
photonic Hall effect for one single Mie scatterer. Here, as the
second numerical example, we present our results based on
the exact Mie-type solutiofi30].

Figure 6 is a polar plot of the magnetotransverse scatter-
ing cross sectior(6, ¢) at 6=m/2, for the case with size

tory behavior as shown in Fig. 4 for both LCP and RCPparametex=3, e,= ¢, us=1.5u0, sy =1, andu,=0.001[Fig.

incidences.Qs.{7/2) versusx for case | withu=0.4 (u
=-0.4) is found coincide withQLSH(0) versusx [QRSH(0)
versesx] for case Il with u,=0.4. The reasons for these
coincidences are as follows. For case Il wigh=0, the ef-
fective permeability for incident wave of LCERCP) is,
for w,=0.4, peri =(1+mIuo=14uo, (S =(1-muo
=0.6ug], as inferred from Eq.63). For case | with g,
=/2 and H;,. polarized inz direction [corresponding to
(Ps:Py)=(0,1)], the effective permeability isugfzf:,usz(l
+U) uo=1.4ug and 0.Guy for u=0.4 and -0.4, respectively.

6(a)], #,.=0.01 [Fig. §b)]. Here 6 (¢) denotes the polar
(azimutha) angle ofr. The incident wave vector is ir di-
rection, given byg.=m/2 and ¢,=0, and normal to the di-
rection of the applied magnetic field indirection. This cor-
responds to the maximum effect of the transverse scattering
[20]. The magnetotransverse scattering cross se&i{eng)

is defined by the difference of differential scattering cross
sections for the cases wifla, # 0 andu,=0, corresponding

to the cases in the presence and in the absence of the exter-
nally applied magnetic field, respectivel§0],
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4.0
3.0
€l
= 20
@
<>
1.0
0'(—)0.4 -0.2
(a)
4.0
3.0
S
§ 2.0
Qa Teaeet
=10.0, LCP
1.0}k / —_—— ;=10.0,RCP 1
VA 20— z=20.0, LCP
/S e z=20.0, RCP
0. —s a1 og§
%.0 0.2 04 0.6 0.8
) Fr

FIG. 5. (a) Scattering efficiencyQs.{7/2) vs u for case | at
various values of the size parameteihe incident wave is linearly
polarized with(py,p,)=(0,1). (b) Scattering efficiencyQs.{0) vs
u, for case Il at various values af The incident wave is either left
or right circularly polarized, denoted by LCP and RCP, with
(pé,,pd,):l/\e‘“Z(l,i) and 1A2(1,-), respectively.

do(6, p) da(6, p) FIG. 6. Polar plot of magnetotransverse cross sedti@h ¢) at
F(6,¢) = 40 T 40 (64)  g=m/2 for a Mie scatter of size parameter 3 with x,=0.001(a)
0 #,=0 and u,=0.01 (b). The curves have been normalized py. Solid

. . ) L line (dotted ling denotes positivénegative values forF (6, ¢). The
The differential scattering cross section is given by applied magnetic field is irz direction (normal to the plot and
incident wave vector irx direction. A net magnetotransverse scat-
M - |f(0 ¢)|2 (65) tering is expected for both cases, because the projectiony @xie
dQ ’ of F(6,¢) do not cancel. For biggem,, the antisymmetry
F(ml2,¢)=—F(wl2,27— ¢) is ruined.
with the scattering amplitudg 6, ¢) defined by

kot To quantitatively describe the anisotropy of light scatter-
E<=EJf(6,¢) . r=lr|— o, (66) ing, one usually associates the transverse light cutresith
r an integration of magnetotransverse scattering cross section

. o . F(6, ) over outgoing wave vectors,
From Fig. 6, it is seen that a net magnetotransverse scattering

is expected because the projections ontoyth&is of F(6, ¢) T o
do not cancel, confirming the possibility of photonic Hall |=f sin Hdaf
effect for a single Mie scattergR0]. In addition, it is found
that for small u,, F(7/2,2m—¢)=-F(ml2,¢), exhibiting  where the factor si sin ¢ represents a projection onto the
antisymmetry with respect to the incident direction, in agreeimagnetotransverse direction, which is thelirection if we
ment with the results based on the perturbation approachssume that the applied exteriBglfield is in z direction and
[20]. For biggeru,, the antisymmetry is ruined, as displayed the incident wave vector is ir direction. Lacostg20] pro-

in Fig. 60b), suggesting the possible failure of the perturba-posed to normalizd by the total transverse light current
tion theory. when u,=0 (corresponding to the case in the absence of

do F(6,¢)sin 6 sin ¢, (67)

0 0
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0.04 IV. SUMMARY
aes We have extended the Mie theory for electromagnetic
0.00 scattering by spherical particle to the case of a magnetic
—o0.02| particle that possesses the gyromagnetic form of permeabil-
2 I ity (1), which includes the uniaxial anisotropy as a special
—0.04 case. This is done by first constructing for the magnetic in-
006l ductionB, inside the particle a new set of vector basis func-
— tions in terms of the usual VSWF’s with different values of
(@) —008 wave vectork;. The values ofk are the eigenvalues of an
0.2 eigensystem determined by the permeability tensor. The new
o1l set of vector basis functions are divergenceless and satisfy
1 the wave equation fdB,. With theB, field expanded in terms
0.0¢ of the new set of vector basis functiof®dl), E, andH, fields
o~ -01 can then be written based on VSWF's with the different val-
_gal ues of wave vectok,, instead of a single value in isotropic
1 case. The difference from isotropic sphere lies also in that the
—0.37 expansion oH, field includes the third set of VSWFk
-0.4 in addition to the usuaM, and N, becauseH, is no
00 20 40 60 80 100 longer divergenceless. The incident and scattered fields are
() - expanded as usual in terms of the VSWF’s. By matching the

boundary conditions, a linear set of coupled equations for the
FIG. 7. Asymmetry parametey (a) and normalized magne- €XPansion coefficients are obtained and then solved for the
totransverse light curreng vs the size parametar=krs at various ~ S0lution to the scattering problem. _ o
values ofu,. The curves have been normalized foy. Results for The formulation can be applied to the case with arbitrarily
1,.=0.005 andu,=0.05 show no graphically discernible difference, @nisotropic permeability tensqf, provided that the expan-
suggesting the linear dependencerabn u, and thus on the exter- sion coefficients ofz™*-M,, and &Ny, in terms of
nally appliedB,, field. For biggeru,, the dependence ofonu, is ~ VSWF’s such as E¢(9) can be worked out. The particular

no longer linear. In addition, a change of signsjris observed. axial symmetry of Eq(1) greatly reduces numerical com-
plexity and thus avoids numerical errors in dealing with ma-
applied magnetic field,) [30], which leads to trices of large dimensions.

As the first application of the formulation, we present
_ I 68 some numerical results for scattering due solely to the optical
= fw wa . (69 anisotropy within the particle. The scattering efficiency ex-
sin 6 do

d¢b [f(6, #)[|sin 6 sin ¢| hibits miscellaneous dependence behaviors on the incident
angle, the polarization, the anisotropy parameter, as well as

If one chooses a coordinate system such that the applied the size parameter. In the second example, we study the
field is in thex direction and incident wave is along tlye transverse electromagnetic scattering effect. Our results con-

0 0

direction, then the transverse light curréritecomes firm the possibility of the photonic Hall effect for one single
Mie scatterer.
| =9Csca (69 Apart from magnetic particles, the formulation presented

with the asymmetry parametgrgiven by Eq.(42d). When here is also expected to find a_ppllcatlons in electrom_agr)etlc
. ; . scattering by plasma sphere in external dc magnetic field,
normalized by the total scattering cross section, the trans-

. with some minor revisions to take into account the gyroelec-
verse light current reduces actually to the asymmetry paramy: . 2 racteristics
eterg that is readily available from Eq42d), avoiding the '
integration over outgoing wave vectdi®g).

Figure 7 shows bothy and g as a function of the size ACKNOWLEDGMENTS
parametex for the case witheg= €y, us=1.5uq, #,=1.0, and
different values ofu,. The transverse light current due to ~ Z.L. wishes to thank Professor C. T. Chan for helpful
nonvanishingu, is clearly observed, confirming the possibil- discussion. Z.L. was supported in part by CNKBRSF and
ity of a photonic Hall effect for a single Mie scatterer. It is CNNSF. S.T.C. was supported by DARPA and the NSF.
also noted that, when normalized lpy,, the results foru,
=0.005 andu,=0.05 show no graphically discernable differ-
ence, suggesting the linear dependence of w,, in agree-
ment with the linear magnetic field dependence of the mag-
netotransverse photon flukl3-17,3Q9. When pn, is big ens @ O
enough, the linear dependence is found to be ruined. In ad- The VSWFSM oy Newy
dition, a change of sign im is observed at certair that ,
depends on the value @f,. M oA(K.1) = [i 7 COS B)€y = Tin(COS B)e, ]2 (kr)e™?,

APPENDIX A: VECTOR SPHERICAL WAVE
FUNCTIONS

andLS‘) are given by[24,2q

n
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1 d 2 T
NGA(K,T) = [7nd(COS B)€, + i T COS 0)e¢]ﬁa[rz(n”(kr)] L fo N, - Nmn Sin 6 d6 dep

_4mn(n+1) (n+m)!
T @2n+12 (n-m)!

X[+ 1)Z5_1(Kr) + nZ, 1 (KN Snyno

) (J) Kr)
x &M+ en(n+1)PN(cos 0)%@”‘"5

20K g
kr

LiNKF) = [7nr(COS B)eg + iy (COS H)e,] L
1d _ f f LY, -LmnsSin 6d6d¢
+ePM(cos 0)Ea[sz)(kr)]e'm"’, (A1) o o
_ 4m (n+m)!
T (2n+1)2(n-m)!

_ _ | [nZ4(kn) + (n+ 12,1 (kD)] S
wheree,, ey, ande, are three unit base vectors in spherical

coordinate system, arR}l(x) is the first kind associated Leg-
endre function26,27. The radial functionsz) is given by 2r (w
f J L, -Nmnsin 6 d6 d¢

2700 = 00,2700 = hP(x) (A2) o o
_4mn(n+1) (n+m)!

~ (2n+1)? (n-m)!

[Zr21—1(kr) - z§1+1(kr)] 5mu5nv ’
(A5)

with j,(x) the first kind of spherical Bessel function and
hgl)(x) the first kind spherical Hankel functions. Two auxil-
iary functions,m,(cos #) and 7.,,(cos 6), are defined by

m
cos ) = ——P"(cos h),
e ) sin @ n )

d
Tmn(COS 6) = 30 P(cos 6).

The VSWF's satisfy

VX VxMI-ktmY =0,

V X V XN -KND =0,

MET{L:%V X N Mg?n:iv X N,

mn mn?

V-M=0,V -N{ =0,V X L =0.

They are orthogonal in the sense th26],

27 T

f f M}, -Npnsin 6d6 dep=0,
o Jo
27 T

f f Ls, *Mmnsinddédg=0,
o Jo

2 T
f f M7, - My, sin 6 d6 de
0 0

_4mn(n+1) (n+m)!
" 2n+1 (n-m)!

Z2(KN) 8uShy

where the superscript denotes the complex conjugate on
angular functions, differing from the superscript * that stands
for the complete complex conjugate, e.g.,

M (K, 1) = [ 77(COS )€ = Tinr(COS B)ey]Zy(kr)E™?,

(A3)
M (K1) = [= i77,(COS 0)€5 = Ty COS B)e 4]z (kr)e™™?,
(Ada) M (K, 1) = [= i 7(COS 6) €y = Tinr(COS B)e 4]z, (ke ™.
APPENDIX B: EXPANSION OF jit-M, and it N
In this appendix, we outline the derivation of the expan-
sions(9) for i 1-M ,, and it -Np,, In dyadic form, Eq(5)
(Adb)  can be rewritten as
Pl E S 188y F iRt 11768y F eR,
(A4c)

=piee, +ulele +epy, (B1)
where the superscript * denotes, as usual, the complex con-
jugate,

1 .

e, = =(e+ig),
V2
€ =€,

1
e.=—=(g-ig), (B2)
V2

and u;=u, + u.. Rewritten in terms ofe. and g, the
VSWF'’s Eq.(Al) become
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i *
Min(k,r) = E(n +m)(n-m+ )X 12Vel

X”‘+1 e, —imxTzZVe,, (B3a)
N(J)(k 0= (n+ 1)(n+m)(n+m—1)xm_1 )
2 2n + 1 n-1n-1
nn-m+L(n-m+2)_ .
,2(2n+ Toame S - (1 DXz el
N nn-m+1) . %)
2n + l n+1n+1
(n+1)(n+m)
TX L2 |eo, (B3b)
L9k )_ (n+m(+m-1) .,
2 2n+1 1l
n-m+1)(n-m+2)_ «
rml (J) erl (J) e
\’2(2n+ 1)[ i Zoen ¥ Xoo1Zn-1]€s
(n-m+1) (n+m)
- {W Mzt = oo XaaZis (€
(B30)
with X!'=PM(cos #)é™? satisfying
2m A7 (n+m)!
Xu X'singdod )
f f ¢= 2n+1(n-m)! e
(B4)

Where@:Pg(cos 6)e¢. Multiplying (B3a) by dyadugii*
gives

PHYSICAL REVIEW E 69, 056614(2004)

HefE My = =(n+ m)(n=m+ 1) Xz

=~
I\ﬂl -

E XN Z08, ~ imXZqeo

=2 2 [G5gM, +epmqupq+f paL pal:

(BS)

where use has been made of E8j1) and the second equality
follows from the expansion of any vector field in terms of the
VSWF's. Taking the scalar product of E@B5) with M},
given by

M, (k,r)=— —(v +U)(v - u+ DXz, (kne-
I J—
- —EX‘U’”zv(kr)e+ +iux'z, (kne,  (B6)
v
leads to
+oo +Q
DD My, (G M g+ 8 N+ T L
uv p
4=0 p=—q
N 1 J— J—
= [%Mixnm_lxﬂ_l X muX | 2.7,

(B7)

with y=(n+m)(n-m+1)(v+u)(v—u+1). Integrating both
sides of Eq(B7) over the solid angle and taking into account
the orthogonality relationgA5) and (B4) yield Eq. (10a).
Similarly, taking the dot product of EqB5) with N}, and
L5, respectively, and integrating over solid angle results in
two linear equations, which can be easily solved to give Egs.
(10b) and(100).

In a similar way, by taking the posterior scalar product of
dyad ugi* and vectomM,,, given by Eq.(B3b) and expand-
ing the resulting vectopigt * Ny, in terms of the VSWF's,
one gets an equation analogous to BH). Taking the scalar
product of this equation wittM}, N, andL,, respec-
tively, and integrating over solid angle give rlse to three lin-
ear equations, which can be solved to produce Egs.

(10d)~(10f).
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