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The Mie theory for electromagnetic scattering by spherical particle is extended to the case of magnetic
particle with gyromagnetic type of permeability. Specifically, we first construct for the magnetic inductionBI

inside the particle a new set of vector basis functions, which are the solution of the wave equation forBI and
expanded in terms of the usual vector spherical wave functions(VSWF’s) with different values of wave vector
kl. The relationship betweenkl and the frequency is obtained as the eigenvalues of an eigensystem determined
by the permeability tensor. The incident and scattered fields are expanded as usual in terms of the VSWF’s. By
matching the boundary conditions, a linear set of coupled equations for the expansion coefficients are obtained
and then solved for the solution to the scattering problem. Preliminary numerical results are presented for the
case in which the scattering is due solely to the optical anisotropy within the particle. The scattering efficiency
is found to exhibit miscellaneous dependence on the incident angle, the polarization, the degree of anisotropy,
as well as the size parameter. In addition, the possibility of the photonic Hall effect for one Mie scatterer is
confirmed.
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I. INTRODUCTION

The purpose of this paper is to present a Mie-type solution
to the problem of the scattering of plane electromagnetic
(EM) waves by a magnetic sphere of arbitrary size and with
gyromagnetic permeability tensormJ,

mJ = ms1 mr − imk 0

imk mr 0

0 0 1
2 , s1d

for arbitrary directions of propagation and polarization of the
incident plane waves. The research is motivated by the fol-
lowing aspects. First, much experimental and theoretical ef-
forts have been recently devoted to the study of negative
refractive index materials(NIM’s, also known as left-handed
materials) [1–6]. These metamaterials are characterized by
simultaneously negative electric permittivity and magnetic
permeability and are thus expected to possess unusual elec-
tromagnetic effects such as subwavelength focusing[1,3].
The first successful fabrication of the NIM’s is the so-called
“split-ring wire” structure [2]. One of us has proposed an
alternative possibility of making the NIM’s based on metallic
magnetic granular composites. Based on the effective me-
dium approximation, it was shown that by incorporating me-
tallic magnetic nanoparticles into an appropriate insulating
matrix, and controlling the directions of magnetization of
metallic magnetic components and their volume fraction, it
may be possible to prepare a composite medium of low eddy
current loss which is left handed for electromagnetic waves
propagating in some special direction and polarization in a
frequency region near the ferromagnetic resonance frequency
[7,8]. Further exploring the possibility beyond the effective
medium approximation requires a more exact formalism of
EM scattering that takes into account the anisotropic charac-

teristics(1) of the magnetic particles near the ferromagnetic
resonance frequency.

Second, another class of artificial metamaterials that have
received an increasing amount of interest is the photonic
crystals, which has a characteristic size of spatial inhomoge-
neity that is comparable to the wavelength. Due partly to the
lack of efficient methods, however, little attention has been
paid to periodic structures composed of magnetic particles,
which can be a photonic band-gap material tunable by mag-
netic field and temperature[9]. Actually, most calculations
for photonic crystals composed of optically anisotropic ma-
terials are based on plane-wave expansion method, which
can sometimes suffer from large errors and nonconvergence,
especially when modeling systems with sharp contrast of
material parameters or complex lattice structure[10].

Third, many experiments have been done with manipulat-
ing light with a magnetic field[11] as well as the diffusion of
light in a magnetic field[12–17]. Up to now, theories that
take into account the anisotropy of the optical parameters use
pointlike scatters[18,19] or are based on a perturbational
approach[20,21]. Although the perturbation approach seems
quite successful for the case of magnetoactive particles for
which the anisotropy induced by magnetic field is rather
small, it may not produce correct results for the case of fer-
rite or other magnetic particles where one may expect much
greater anisotropic changes induced by the magnetic field.

Fourth, composites with magnetic particles may be used
as microwave filters. The first step in understanding this pos-
sibility requires the basic knowledge discussed here.

Finally, multiple radiative scattering by particles is a com-
mon subject in a wide range of scientific and technical fields
stretching from astrophysics, climatology, nanoscience, re-
mote sensing to aerosol medicine[22]. Two of the most pow-
erful and widely used tools for rigorously computing multi-
particle scattering are the clusterT matrix approach[23] and
the generalized multiparticle Mie solution[24], both requir-
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ing the computation of the properT matrix of a single par-
ticle. Although many efficient approaches have been pro-
posed for evaluating the properT matrix of geometrically
anisotropic particle[23], little attention has been paid to the
optically anisotropic scatterer[25].

As a result, it is desirable to have a generalized Mie-type
formulation for EM scattering with anisotropic permeability
(or permittivity) of the form such as Eq.(1), which serves as
the building block for all the above multiple scattering prob-
lems.

The rest of the paper is organized as follows. In Sec. II,
we present a comprehensive derivation of a Mie-type solu-
tion to the problem of the scattering of plane EM waves by
an optically anisotropic magnetic particle. In Sec. III, we
make some brief comments on the numerical strategy and
present some numerical results. A summary is given in Sec.
IV. Details on some technical results are relegated to the
appendices.

II. GENERAL FORMULATION

We start in Sec. II A by constructing for the magnetic
inductionBI inside the anisotropic sphere a new set of vector
basis functions, each of which is the solution of the wave
equation forBI and expanded in terms of the usual vector
spherical wave functions(VSWF’s) with the values of the
wave vectorkl obtained as the eigenvalues of an eigensystem
determined by permeability tensor. The electric and magnetic
fields are then written as sums of the VSWF’s with the dif-
ferent values ofkl. After expanding the incident and scattered
fields in terms of VSWF’s in the isotropic medium outside
the sphere in Sec. II B, we match the boundary conditions to
obtain a linear set of coupled equations for the expansion
coefficients in Sec. II C. Expressions for evaluating scatter-
ing properties such as scattering and extinction efficiency
based on the expansion coefficients are given in Sec. II D.

A. Expansion of electromagnetic field inside sphere

The Maxwell equations for time-harmonic field inside the
sourceless and homogeneous sphere read(assuming time de-
pendencee−ivt),

= 3 EI = ivBI , s2ad

= 3 H I = − ivDI s2bd

= ·DI = 0, s2cd

= ·BI = 0. s2dd

The constitutive relations between the electric displacement
vector DI, the magnetic inductionBI, the electric fieldEI,
and the magnetic fieldH I inside the particle are given by

BI = mJ ·H I, DI = esEI , s3d

where the permeability tensormJ is given by Eq.(1), andes is
the scalar permittivity. It follows from Eq.(2) that theB field
inside the particle satisfies the wave equation

= 3 = 3 smsmJ
−1 ·BId − ks

2BI = 0 s4d

with ks
2=v2esms and

msmJ
−1 = 1 mr8 − imk 0

imk8 mr8 0

0 0 1
2 , s5d

where

mr8 =
mr

mr
2 − mk

2 , mk8 = −
mk

mr
2 − mk

2 . s6d

The divergenceless property(2d) suggests thatBI be ex-
panded in terms of the vector spherical wave functions
M mn

s1dsk,r d andNmn
s1dsk,r d [26]

BI = o
n,m

ĒmnfdmnM mn
s1dsk,r d + cmnNmn

s1dsk,r dg, s7d

wherek is as yet undetermined. In general, there are three
kinds of VSWF’s M mn

sJdsk,r d, Nmn
sJdsk,r d, and L mn

sJdsk,r d. The
divergenceless property ofB implies that it does not involve
L mn, thereby simplifying the algebra involved. The three
kinds of VSWF’s are given forJ=1 and 3 in Appendix A.
Except otherwise explicitly specified, hereinafter the summa-
tion on,m implies thatn runs from 1 to +̀ andm from −n to
+n for eachn. The implication ofov,u is similar. The pref-

actor Ēmn= inE0Cmn with [24]

Cmn= F 2n + 1

nsn + 1d
sn − md!
sn + md! G1/2

, s8d

whereE0 characterizes the amplitude of electric field of the
incident wave. With the use of the properties of VSWF’s, it
can be worked out that(see Appendix B)

msmJ
−1 ·M mn= o

v=0

+`

o
u=−v

+v

fg̃uv
mnM uv + ẽ uv

mnNuv + f̃ uv
mnL uvg,

msmJ
−1 ·Nmn= o

v=0

+`

o
u=−v

+v

fḡuv
mnM uv + ēuv

mnNuv + f̄ uv
mnL uvg, s9d

where, withm̄r8=mr8−1,

g̃ uv
mn= dnvdmu+

fsn2 + n − m2dm̄r8 + mmk8gdnvdmu

nsn + 1d
,

s10ad

ẽuv
mn=

isn + mdfmm̄r8 − sn + 1dmk8gdn−1,vdmu

ns2n + 1d

+
isn − m+ 1dfmm̄r8 + nmk8gdn+1,vdmu

sn + 1ds2n + 1d
, s10bd
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f̃ uv
mn=

− isn + mdfmm̄r8 − sn + 1dmk8gdn−1,vdmu

s2n + 1d

+
isn − m+ 1dfmm̄r8 + nmk8gdn+1,vdmu

s2n + 1d
, s10cd

ḡ uv
mn= −

isn + mdsn + 1dfmm̄r8 + sn − 1dmk8gdn−1,vdmu

nsn − 1ds2n + 1d

−
isn − m+ 1dnfmm̄r8 − sn + 2dmk8gdn+1,vdmu

sn + 1dsn + 2ds2n + 1d
,

s10dd

ē uv
mn= dnvdmu+

hfs2n2 + 2n + 3dm2 + s2n2 + 2n − 3dnsn + 1dgm̄r8 + s4n2 + 4n − 3dmmk8jdnvdmu

nsn + 1ds2n − 1ds2n + 3d

−
sn + 1dsn + m− 1dsn + mdm̄r8dn−2,vdmu

sn − 1ds2n − 1ds2n + 1d
−

nsn − m+ 1dsn − m+ 2dm̄r8dn+2,vdmu

sn + 2ds2n + 1ds2n + 3d
, s10ed

f̄ uv
mn= −

fsn2 + n − 3m2dm̄r8 − ms2n − 1ds2n + 3dmk8gdnvdmu

s2n − 1ds2n + 3d

+
sn + 1dsn + m− 1dsn + mdm̄r8dn−2,vdmu

s2n − 1ds2n + 1d

−
nsn − m+ 1dsn − m+ 2dm̄r8dn+2,vdmu

s2n + 1ds2n + 3d
. s10fd

Therefore, one has

msmJ
−1 ·BI = o

n,m
Ēmnfd̄mnM mn

s1dsk,r d + c̄mnNmn
s1dsk,r d

+ wmnL mn
s1dsk,r dg + w00L 00

s1dsk,r d, s11d

where

d̄mn= o
v,u

Ēuv

Ēmn

fg̃ mn
uv duv + ḡ mn

uv cuvg, s12ad

c̄mn= o
v,u

Ēuv

Ēmn

fẽ mn
uv duv + ē mn

uv cuvg, s12bd

wmn= o
v,u

Ēuv

Ēmn

f f̃ mn
uv duv + f̄ mn

uv cuvg, s12cd

w00 = −Î2

3
mk8d01 −Î 2

15
m̄r8c02. s12dd

Inserting Eqs.(7) and (11) into the wave equation(4), and
noticing the following equations satisfied by the VSWF’s

= 3 = 3 M mn
s1d − k2M mn

s1d = 0,

= 3 = 3 Nmn
s1d − k2Nmn

s1d = 0,

= 3 L mn
s1d = 0 s13d

one gets

o
n,m

Ēmnfd̃mnM mn
s1dsk,r d + c̃mnNmn

s1dsk,r dg = 0, s14d

with

d̃mn= k2o
v,u

Ēuv

Ēmn

fg̃ mn
uv duv + ḡ mn

uv cuvg − ks
2dmn,

c̃mn= k2o
v,u

Ēuv

Ēmn

fẽ mn
uv duv + ē mn

uv cuvg − ks
2cmn. s15d

Equations(14) and(15) imply an eigensystem governing the
value ofk for expansion(7),

SG̃ Ḡ
Ẽ Ē DSd

c
D = lSd

c
D , s16d

wherel=ks
2/k2, and the matricesG̃, Ḡ, Ẽ, andĒ are given by

G̃mn,uv =
Ēuv

Ēmn

g̃ mn
uv , Ḡmn,uv =

Ēuv

Ēmn

ḡ mn
uv ,

Ẽmn,uv =
Ēuv

Ēmn

ẽ mn
uv , Ēmn,uv =

Ēuv

Ēmn

ēmn
uv , s17d

with mn and uv denoting the row and column indices, re-
spectively. Letll and sdmn,l ,cmn,ldT denote, respectively, the
eigenvalues and the corresponding eigenvectors of eigensys-
tem (16), with l representing the index of eigenvalues and
corresponding eigenvectors. One can then construct a new
set of vector functionsV l based on the eigenvectors,
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V l = −
kl

v
o
n,m

Ēmnfdmn,lM mn
s1dskl,r d + cmn,lNmn

s1dskl,r dg s18d

with kl =ks/Îll. It follows directly from

= ·M mn= = ·Nmn= 0 s19d

that V l are divergenceless

= ·V l = 0. s20ad

In addition, they satisfy the wave equation forBI field (4),

= 3 = 3 smsmJ
−1 ·V ld − ks

2V l = 0. s20bd

Thus, they form a new set of vector basis functions forBI,
namely,BI can be expanded in terms ofV l,

BI = o
l

alV l , s21d

where the expansion coefficientsal are to be determined by
matching the boundary conditions at the surface of sphere.
With BI given by Eq.(21), it follows from Eqs.(2b) and(3)
that H I andEI fields can be written as

H I = mJ−1 ·BI

= − o
n,m

Ēmno
l

ves

kl
alFdmn,lM mn

s1dskl,r d + cmn,lNmn
s1dskl,r d

+
wmn,l

ll
L mn

s1dskl,r dG+ o
l

ves

kl
alFw00,l

ll
L 00

s1dskl,r dG ,

s22ad

EI =
i

ves
= 3 H I

= − o
n,m

iĒmno
l

alfcmn,lM mn
s1dskl,r d + dmn,lNmn

s1dskl,r dg s22bd

where use has been made of Eqs.(11), (12), and (15),
whereas

wmn,l = o
v,u

Ēuv

Ēmn

f f̃ mn
uv duv,l + f̄ mn

uv cuv,lg, s23ad

w00,l = −Î2

3
mk8d01,l −Î 2

15
m̄r8c02,l . s23bd

Notice that, since= ·H I Þ0, its expansion includesL mn
terms that are absent in the isotropic case.

B. Expansion of the scattered and incident fields

The scattered fieldsEs, Hs, and incident fieldsEinc, H inc in
the isotropic surrounding medium have the same form as in
Mie solution [26,27]. Notice, however, that the form of the
permeability tensor(1) we have used implies that the mag-
netization direction of the magnetic particle is along thez
axis. For arbitrary directions of propagation and polarization
of the incident plane waves, the expansions of the field are
not limited tom= ±1 modes.

In terms of VSWF’s, the scattered fieldssEs,Hsd are ex-
panded as

Es = o
n,m

iĒmnfamnNmn
s3dsk0,r d + bmnM mn

s3dsk0,r dg,

Hs =
k0

vm0
o
n,m

ĒmnfbmnNmn
s3dsk0,r d + amnM mn

s3dsk0,r dg, s24d

where k0
2=v2e0m0 with e0 and m0 being, respectively, the

scalar permittivity and permeability of the surrounding me-
dium. The expansion coefficientsamn andbmn are to be de-
termined by matching boundary conditions.

Suppose that the particle is illuminated by a plane wave
characterized byk0, with

k0 = k0ssin ukcosfkex + sin uksin fkey + cosukezd,

s25d

whereex, ey, andez are three unit base vectors of the Carte-
sian coordinate system anduk (fk) is the polar(azimuthal)
angle ofk0, as shown in Fig. 1. The electric and magnetic
fields of the incident plane wave are then

Einc = E0spuûk + pff̂kdeik0·r ,

H inc =
k0

vm0
E0spuf̂k − pfûkdeik0·r , s26d

wherep̂=spuûk+pff̂kd is the normalized complex polariza-

tion vector, with up̂u=1, and the unit vectorsûk and f̂k are
defined in the direction of increasinguk and fk such as to

constitute a right-hand base system together withk̂0=k0/k0,
as shown in Fig. 1, namely,

k̂0 3 ûk = f̂k, ûk 3 f̂k = k̂0, f̂k 3 k̂0 = ûk. s27d

With the use of the mathematical identity[28]

FIG. 1. Geometry of the scattering problem.
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IJeik0·r = o
n,m

fAmnNmn
s1dsk0,r d + BmnM mn

s1dsk0,r d + CmnL mn
s1dsk0,r dg

+ C00L 00
s1dsk0,r d, s28d

whereIJ is the unit dyad, and

Amn=
2n + 1

nsn + 1d
sn − md!
sn + md!

in−1f− ipmnscosukdf̂k

+ tmnscosukdûkge−imfk,

Bmn=
2n + 1

nsn + 1d
sn − md!
sn + md!

inf− ipmnscosukdûk

− tmnscosukdf̂kge−imfk,

Cmn= s2n + 1d
sn − md!
sn + md!

in−1Pn
mscosukdk̂0e

−imfk, C00 = − ik0,

s29d

with Pn
mscosud the associated Legendre function of the first

kind, the incident fieldssEinc,H incd can be expanded as

Einc = − o
n,m

iĒmnfpmnNmn
s1dsk0,r d + qmnM mn

s1dsk0,r dg,

H inc = −
k0

vm0
o
n,m

ĒmnfqmnNmn
s1dsk0,r d + pmnM mn

s1dsk0,r dg.

s30d

The expansion coefficientspmn andqmn are

pmn= fput̃mnscosukd − ipfp̃mnscosukdge−imfk

qmn= fpup̃mnscosukd − ipft̃mnscos ukdge−imfk s31d

where the regular angular functionsp̃mnscosud and
t̃mnscosud are defined by[24]

p̃mnscosud = Cmn
m

sin u
Pn

mscosud,

t̃mnscosud = Cmn
d

du
Pn

mscosud, s32d

with Cmn given by Eq.(8).

C. Matching boundary conditions

With the internal fields, scattered fields, and incident
fields given, respectively, by Eqs.(22), (24), and (30), all
expressed in terms of the usual VSWF’s, one is ready to
apply the standard boundary conditions

fEinc + Esg 3 er = EI 3 er ,

fH inc + Hsg 3 er = H I 3 er . s33d

After some algebra, one gets the equations to determine the
expansion coefficientsal, amn, and bmn, based onpmn and
qmn,

F jn8sxd
cn8sxdGamn+ o

l
F 1

msk̄l

cn8sk̄lmsxd
cn8sxd

dmn,lGal = pmn,

s34ad

F jnsxd
cnsxdGbmn+ o

l
F 1

msk̄l

cnsk̄lmsxd
cnsxd

cmn,lGal = qmn,

s34bd

F jnsxd
cnsxdGamn+ o

l
Fm0ll

ms

cnsk̄lmsxd
cnsxd

dmn,lGal = pmn,

s34cd

F jn8sxd
cn8sxdGbmn+ o

l
Fm0ll

ms

cn8sk̄lmsxd
cn8sxd

cmn,lGal

+ o
l
Fm0

ms

jnsk̄lmsxd
cn8sxd

wmn,lGal = qmn, s34dd

where the size parameterx=k0rs, with rs the radius of sphere,
and

ms =
ks

k0
, k̄l =

kl

ks
.

kl = msk̄lk0, ll =
ks

2

kl
2 =

1

k̄l
2
. s35d

The Riccati-Bessel functionscnszd and jnszd are given by
[27]

cnszd = zjnszd, jnszd = zhn
s1dszd, s36d

with jnszd andhn
s1dszd being, respectively, the spherical Bessel

functions of the first and third kinds. The last term on the
left-hand side of Eq.(34d) originates from theL mn terms in
the expansion ofH I field (22). Equations(34) can be rewrit-
ten in matrix form

SL̄ 0

0 L
DSa

b
D + SŪ

U
Dã = Sp

q
D , s37ad

SL 0

0 L̄
DSa

b
D + SV

V̄
Dã = Sp

q
D . s37bd

The matrices are given by

Lmn,uv = Snsxddnvdmu,

L̄mn,uv = S̄nsxddnvdmu,
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Umn,l =
1

msk̄l

Tnsx,msk̄lxdcmn,l ,

Ūmn,l =
1

msk̄l

T̄nsx,msk̄lxddmn,l ,

Vmn,l =
m0ll

ms
Tnsx,msk̄lxddmn,l ,

V̄mn,l =
m0ll

ms
T̄nsx,msk̄lxdcmn,l + Wmn,l ,

Wmn,l =
m0

ms

1

msk̄lx

T̄nsx,msk̄lxd

Dn
s1dsmsk̄lxd

wmn,l , s38d

where

Snsxd =
jnsxd
cnsxd

, S̄nsxd =
jn8sxd
cn8sxd

,

Tnsx,zd =
cnszd
cnsxd

, T̄nsx,zd =
cn8szd
cn8sxd

, s39d

and the logarithmic derivatives of the Riccati-Bessel function

Dn
s1dszd =

cn8szd
cnszd

.

Equations(37a) and (37b) can be solved to give

ã = RSp

q
D s40ad

Sa

b
D = SSp

q
D s40bd

where

R = FSŪ

U
D + SL̄ 0

0 L
DZG−1

, s41ad

Z = SY 0

0 − Y
D−1SV − Ū

V̄ − U
D , s41bd

S = ZR, s41cd

Y = L̄ − L. s41dd

D. Scattering properties

With the expansion coefficientsamn andbmn that charac-
terize the scattered fields obtained from Eq.(40b), it is
straightforward to evaluate fields outside the particle as a
sum of the scattered fields(24) and the incident fields(30).

The efficiency factors for scatteringQsca, extinctionQext, and
absorption Qabs, as well as the asymmetry parameterg
=kcosul [27] can be expressed based onamn and bmn. The
only difference from the Mie theory is that one should in-
clude all terms instead of only them= ±1 terms. Explicitly,
they are given by[24]

Qsca=
4

x2o
n,m

suamnu2 + ubmnu2d, s42ad

Qext =
4

x2o
n,m

Respmn
* amn+ qmn

* bmnd, s42bd

Qabs= Qext − Qsca, s42cd

g =
4

x2Qsca
o
n,m

Resamn
* ãmn+ bmn

* b̃mnd, s42dd

where the superscript * stands for the complex conjugate,
and

ãmn= f1bmn+ f2amn+1 + f3amn−1,

b̃mn= f1amn+ f2bmn+1 + f3bmn−1, s43d

with

f1 =
m

nsn + 1d
,

f2 =
1

n + 1
Fnsn + 2dsn − m+ 1dsn + m+ 1d

s2n + 1ds2n + 3d G1/2

,

f3 =
1

n
F sn − 1dsn + 1dsn − mdsn + md

s2n − 1ds2n + 1d G1/2

. s44d

The fields inside the particle are evaluated based on Eq.(22),
with al given by Eq.(40a).

III. NUMERICAL RESULTS

The general formulation in the preceding section applies,
in principle, to the case with arbitrarily anisotropic perme-
ability, provided that the expansion coefficients ofmJ−1·M mn
and mJ−1·Nmn in terms of VSWF’s such as Eq.(9) can be
worked out. In Sec. III A, we exploit the axial symmetry of
the permeability tensor to simplify the eigensystem(16) and
the linear system(37). Algorithms for computing some vari-
ables appearing in matrix elements are described in Sec.
III B. In Sec. III C, we present some numerical results that
demonstrate the effect due solely to optical anisotropy on
scattering properties. In Sec. III D, we address the issue of
the magnetotransverse anisotropy in light scattering, the so-
called photonic Hall effect, for a single Mie scatterer.

A. Simplification of the eigensystem and the linear system

As in Mie scattering, in practical calculation, the series
expansion of Eq.(22) is supposed to be uniformly conver-
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gent and can be truncated at somen=nc. The resultant error
incurred due to truncation is assumed to be insignificant. The
criterion for the determination of the required scattering
terms for Mie scattering is well established[27,29], which is

nc = x + 4x1/3 + 2, s45d

wherex=k0rs is the size parameter. In the present case, the
value of nc depends also on degree of anisotropy, usually
requiring a greater value ofnc for a greater anisotropy.

If one terminates the series expansion at some degreen
=nc and adopts the usual combined indexj to represent the
two indicesmn [28]

j = nsn + 1d + m, s46d

then G̃, Ḡ, Ẽ, and Ē in the eigensystem(16) are all nd3nd
matrices, withnd=ncsnc+2d, while in the linear system(37),

L andL̄ arend3nd diagonal matrices,U, Ū, V, V̄, andW are
nd3nt matrices, whileã is ant31 matrix. Herent=2nd. The
solution requires computing the inverse ofnt3nt matrices as
shown in Eq.(41a)–(41d), as well as calculating all eigen-
values and eigenvectors of annt3nt matrix (16).

The axial symmetry of permeability(1) suggests two
characteristics that, corresponding to two Kroneckerd sym-
bols in Eq.(10), may greatly simplify the calculation. The
first Kronecker symboldmu indicates that one may solve for
the eigensystem(16) and linear system(37) for each value of
m separately, withm=−nc,−nc+1, . . . ,nc−1,nc. For eachm,
Eq. (16) reduces to

SG̃smd Ḡsmd

Ẽsmd Ēsmd Dcsmd = lsmdcsmd, s47d

where G̃smd, etc., arend
smd3nd

smd matrices given by Eq.(17)
with u=m andn,v=m1,m1+1, . . . ,nc. Here,

nd
smd = nc + 1 −m1 with m1 = maxs1,umud. s48d

The column vectorcsmd in Eq. (47) is

cv
smd = dmv,

cv+nd
smd

smd = cmv s49d

with v=m1,m1+1, . . . ,nc. The linear system(37) is simpli-

fied similarly so thatLsmd, L̄smd, arend
smd3nd

smd diagonal ma-

trices, andUsmd, Ūsmd, Vsmd, V̄smd are allnd
smd32nd

smd matrices.
The calculation is much simplified by solving 2nd

smd32nd
smd

eigensystem and computing the inverse of 2nd
smd32nd

smd ma-
trix for each m, instead of dealing with matrices of much
greater dimensionnt.

Further simplification can be made by taking advantage of
the second Kronecker symboldn,v, dn±1,v, anddn±2,v appear-
ing in Eq. (10). Instead of solving the eigensystem(47), one
can reorder the column vectorcsmd into csm,sd given by

cv
sm,sd = Hdmv if v − m1 is even

cmv if v − m1 is odd,
s50d

cv+nd
smd

sm,sd = Hcmv if v − m1 is even

dmv if v − m1 is odd,
s51d

where, again,v=m1,m1+1, . . . ,nc. Let Tsmd denote the
2nd

smd32nd
smd transformation matrix betweencsm,sd and csmd,

i.e.,

csm,sd = Tsmdcsmd. s52d

After the transformation, the eigensystem(47) becomes

E csm,sd = lsmdcsm,sd, s53d

where

E = TsmdSG̃smd Ḡsmd

Ẽsmd Ēsmd DfTsmdg−1 s54d

is of block-diagonal form and can be decomposed to two
nd

smd3nd
smd submatrices. The same procedure applies to the

linear system(37), resulting in the computation of the in-
verse of two nd

smd3nd
smd matrices instead of one 2nd

smd

32nd
smd matrix.

As a result, due to the axial symmetry of Eq.(1), one
finally needs to solve a series of eigensystems and compute
the inverse of a series of matrices. The dimension of these
matrices arend

smd3nd
smd, with nd

smd given by Eq.(48) and m
=−nc,−nc+1, . . . ,nc−1,nc. The maximum matrix dimension
is limited to nc, while solving Eqs.(16) and (41) directly
requires operating with matrix of dimensionnt=2ncsnc+2d
@nc.

B. Evaluation of Sn„x…, Tn„x ,z…

Solution of Eq.(40) requires the evaluation ofSnsxd and
Tnsx,zd, etc., appearing in Eq.(38). To obtain reliable nu-
merical values,Snsxd andTnsx,zd are evaluated based on the
following recurrence relations:

Snsxd =
jnsxd
cnsxd

= Sn−1sxd
fDn

s1dsxd + n/xg
fDn

s3dsxd + n/xg
,

Tnsx,zd =
cnszd
cnsxd

= Tn−1sx,zd
fDn

s1dsxd + n/xg
fDn

s1dszd + n/zg
, s55d

starting with the following initial values

S0sxd =
2e2ix

e2ix − 1
, s56ad

T0sx,zd =
e2iz − 1

e2ix − 1
eisx−zd, s56bd

for nonmetallic sphere. For metallic particle that has a large
imaginary part ines, on the other hand, the initial value(56b)
can be replaced by
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T0sx,zd =
e2iz − 1

e2ix − 1
eix s57d

to avoid numerical overflow, while the resultantal obtained
from Eq. (40) for the internal fields have to be multiplied by

emsk̄lx accordingly. The remaining two quantities in Eq.(39),
S̄nsxd and T̄nsx,zd, are computed using

S̄nsxd =
jn8sxd
cn8sxd

= Snsxd
Dn

s3dsxd
Dn

s1dsxd
,

T̄nsx,zd =
cn8szd
cn8sxd

= Tnsx,zd
Dn

s1dszd
Dn

s1dsxd
, s58d

where the logarithmic derivatives of the Riccati-Bessel func-
tions are defined by

Dn
s1dszd = cn8szd/cnszd, Dn

s3dszd = jn8szd/jnszd. s59d

In our calculation,Dn
s1dszd is evaluated based on the down-

ward recurrence relation[27]

Dn−1
s1d szd =

n

z
−

1

Dn
s1dszd +

n

z

s60d

starting from an asymptotic valueDnst
=0.0+i0.0 with nst

=maxsuzu ,nc+15d. For Dn
s3dszd, we found that a simple up-

ward recurrence,

Dn
s3dszd = −

n

z
+

1

n

z
− Dn−1

s3d szd
, s61d

starting withD0
s3d= i yields results with a satisfactory numeri-

cal accuracy.

C. Effect of anisotropy

We are now ready to present some numerical examples
demonstrating the effect of the anisotropy. Due to the aniso-
tropy in the permeability, the scattering depends on the angle
of incidence, denoted byuk as shown in Fig. 1, as well as the
polarization of the incident wave. The axial symmetry of the
permeability implies that the scattering is independent of the
azimuthal anglefk. In this section, without loss of general-
ity, we setfk=0, which impliesf̂k=ey, and the efficiency of
scatteringQscasukd is a function of incident angleuk.

To concentrate on the effect of anisotropy solely, we study
two simple matching cases. Case I is the uniaxially aniso-
tropic particle withes=e0 and

mJ = m011 0 0

0 1 0

0 0 1 + u
2 , s62d

such that the refractive indices of the particle and the sur-
rounding medium are matched when the uniaxial anisotropy
parameteru=0. This case is called uniformly anisotropic in
Ref. [25], with u.0 andu,0 corresponding, respectively,

to positive and negative uniaxial particles. Case II is the
gyromagnetic anisotropic particle withes=e0 and

mJ = m01 1 − imk 0

imk 1 0

0 0 1
2 . s63d

The refractive indices of particle and the surrounding me-
dium are also matched if the gyromagnetic anisotropy pa-
rametermk=0. In both cases, the scattering is due solely to
the anisotropy, differing from those where the isotropic op-
tical contrast dominates[27].

For case I, it is noted that they component ofH field of
the incident wave is not affected by the scatterer[25], lead-
ing to a vanishing scattering efficiency for an incident wave
with spu ,pfd=s1,0d [see Eq.(26)]. So for case I, we limit to
the scattering of the incident plane wave with linear polar-
ization given byspu ,pfd=s0,1d. For case II, on the other
hand, we focus on the circularly polarized incident wave,
with spu ,pfd=1/Î2s1,id and spu ,pfd=1/Î2s1,−id, corre-
sponding, respectively, to left circular polarization(LCP) and
right circular polarization(RCP).

The dependences of the scattering efficiency on the inci-
dent angle is shown in Fig. 2 for cases I and II, at different
values ofu andmk. It is found that if the size parameterx is

FIG. 2. (a) Scattering efficiencyQsca as a function of incident
angleuk for case I with the size parameterx=k0rs=4.0 at various
values ofu. The incident wave is linearly polarized withspu ,pfd
=s0,1d. (b) Scattering efficiencyQscaas a function ofuk for case II
with x=4.0 at various values ofmk. LCP and RCP denote the left
and right circularly polarized incident waves, withspu ,pfd
=1/Î2s1,id and spu ,pfd=1/Î2s1,−id, respectively.
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not very large, the scattering efficiencyQscafor case I mono-
tonically increases with the incident angleuk in the region
from 0 to p /2, while it decreases withuk in the region from
p /2 to p due to symmetryQscasukd=Qscasp−ukd. For case II,
on the other hand,Qsca decreases with theuk for 0øuk
øp /2 for small mk, whereas it increases forsp /2døuk

øp owing to the symmetryQsca
s sukd=Qsca

−ssp−ukd. Here s
= ±1, with s= +1 (s=−1) denoting the incident wave of
LCP (RCP). For bigger mk, the dependence onuk is no
longer monotonical, as shown in Fig. 2(b) for mk=0.8 and
LCP incidence.

Figure 3 showsQsca versusuk for different values of the
size parameterx, with u=0.4 for case I andmk=0.4 for case
II. It is seen that the dependence onuk is no longer mono-
tonic for relatively largex. For x=20, e.g.,Qsca reaches
maximum atuk=53° for case I, and atuk=49°, and 73° for
case II with LCP and RCP incidence, respectively.

Qscas0d versusx for case II withmk=0.4 exhibits oscilla-
tory behavior as shown in Fig. 4 for both LCP and RCP
incidences.Qscasp /2d versusx for case I with u=0.4 su
=−0.4d is found coincide withQsca

LCPs0d versusx [Qsca
RCPs0d

versesx] for case II with mk=0.4. The reasons for these
coincidences are as follows. For case II withuk=0, the ef-
fective permeability for incident wave of LCP(RCP) is,
for mk=0.4, mef f

LCP=s1+mkdm0=1.4m0, fmef f
RCP=s1−mkdm0

=0.6m0g, as inferred from Eq.(63). For case I withuk

=p /2 and H inc polarized in z direction [corresponding to
spu ,pfd=s0,1d], the effective permeability ismef f

Hz =ms=s1
+udm0=1.4m0 and 0.6m0 for u=0.4 and −0.4, respectively.

This leads to the coincident overlap of theQsca versusx
curves. Such coincident overlap of theQscaversusx curves is
found to be unique for matching cases in which the scatter-
ing is due solely to the optical anisotropy. For the mismatch-
ing case with isotropic optical contrast between the particle
and surrounding medium, no such coincidence behavior is
observed.

Qscasp /2d fQscas0dg as a function ofu smkd is shown in
Fig. 5(a) [Fig. 5(b)] for case I(case II) with −0.4øuø1.0
s0ømkø0.8d, at different values ofx. Different oscillatory
behaviors are observed for largex, leading to the appearance
of peaks in the range ofu smkd studied.

D. Photonic Hall effect

We now turn to more general scattering problems. Of par-
ticular interest is the so-called photonic Hall effect, a mani-
festation of a magnetic field induced transverse current in the
light transport, which bears a strong phenomenological re-
semblance to the electronic Hall effect. The photonic Hall
effect finds its origin in the magnetically induced changes of
the optical parameters. Based on perturbation theory, Lacoste
et al. [20] have addressed the issue whether or not there is a
photonic Hall effect for one single Mie scatterer. Here, as the
second numerical example, we present our results based on
the exact Mie-type solution[30].

Figure 6 is a polar plot of the magnetotransverse scatter-
ing cross sectionFsu ,fd at u=p /2, for the case with size
parameterx=3, es=e0, ms=1.5m0, mr =1, andmk=0.001[Fig.
6(a)], mk=0.01 [Fig. 6(b)]. Here u sfd denotes the polar
(azimuthal) angle ofr . The incident wave vector is inx di-
rection, given byuk=p /2 andfk=0, and normal to the di-
rection of the applied magnetic field inz direction. This cor-
responds to the maximum effect of the transverse scattering
[20]. The magnetotransverse scattering cross sectionFsu ,fd
is defined by the difference of differential scattering cross
sections for the cases withmkÞ0 andmk=0, corresponding
to the cases in the presence and in the absence of the exter-
nally applied magnetic field, respectively[30],

FIG. 3. (a) The same as Fig. 2(a), with u=0.4 at various values
of the size parameterx. (b) The same as Fig. 2(b), with mk=0.4 at
various values ofx.

FIG. 4. Scattering efficiencyQscas0d vs the size parameterx for
case II withmk=0.4. LCP and RCP denoting, respectively, left and
right circularly polarized incident waves.
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Fsu,fd = Udssu,fd
dV

U
mkÞ0

− Udssu,fd
dV

U
mk=0

. s64d

The differential scattering cross section is given by

dssu,fd
dV

= ufsu,fdu2 s65d

with the scattering amplitudefsu ,fd defined by

Es = E0fsu,fd
eik0r

r
, r = ur u → `. s66d

From Fig. 6, it is seen that a net magnetotransverse scattering
is expected because the projections onto they axis ofFsu ,fd
do not cancel, confirming the possibility of photonic Hall
effect for a single Mie scatterer[20]. In addition, it is found
that for small mk, Fsp /2 ,2p−fd=−Fsp /2 ,fd, exhibiting
antisymmetry with respect to the incident direction, in agree-
ment with the results based on the perturbation approach
[20]. For biggermk, the antisymmetry is ruined, as displayed
in Fig. 6(b), suggesting the possible failure of the perturba-
tion theory.

To quantitatively describe the anisotropy of light scatter-
ing, one usually associates the transverse light currentI with
an integration of magnetotransverse scattering cross section
Fsu ,fd over outgoing wave vectors,

I =E
0

p

sin u duE
0

2p

df Fsu,fdsin u sin f, s67d

where the factor sinu sin f represents a projection onto the
magnetotransverse direction, which is they direction if we
assume that the applied externalB0 field is in z direction and
the incident wave vector is inx direction. Lacoste[20] pro-
posed to normalizeI by the total transverse light current
when mk=0 (corresponding to the case in the absence of

FIG. 5. (a) Scattering efficiencyQscasp /2d vs u for case I at
various values of the size parameterx. The incident wave is linearly
polarized withspu ,pfd=s0,1d. (b) Scattering efficiencyQscas0d vs
mk for case II at various values ofx. The incident wave is either left
or right circularly polarized, denoted by LCP and RCP, with
spu ,pfd=1/Î2s1,id and 1/Î2s1,−id, respectively.

FIG. 6. Polar plot of magnetotransverse cross sectionFsu ,fd at
u=p /2 for a Mie scatter of size parameterx=3 with mk=0.001(a)
and mk=0.01 (b). The curves have been normalized bymk. Solid
line (dotted line) denotes positive(negative) values forFsu ,fd. The
applied magnetic field is inz direction (normal to the plot) and
incident wave vector inx direction. A net magnetotransverse scat-
tering is expected for both cases, because the projections ontoy axis
of Fsu ,fd do not cancel. For biggermk, the antisymmetry
Fsp /2 ,fd=−Fsp /2 ,2p−fd is ruined.
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applied magnetic fieldB0) [30], which leads to

h =
I

E
0

p

sin u duE
0

2p

df ufsu,fdu2usin u sin fu
. s68d

If one chooses a coordinate system such that the appliedB0
field is in thex direction and incident wave is along they
direction, then the transverse light currentI becomes

I = gCsca s69d

with the asymmetry parameterg given by Eq.(42d). When
normalized by the total scattering cross section, the trans-
verse light current reduces actually to the asymmetry param-
eterg that is readily available from Eq.(42d), avoiding the
integration over outgoing wave vectors(68).

Figure 7 shows bothh and g as a function of the size
parameterx for the case withes=e0, ms=1.5m0, mr =1.0, and
different values ofmk. The transverse light current due to
nonvanishingmk is clearly observed, confirming the possibil-
ity of a photonic Hall effect for a single Mie scatterer. It is
also noted that, when normalized bymk, the results formk

=0.005 andmk=0.05 show no graphically discernable differ-
ence, suggesting the linear dependence ofh on mk, in agree-
ment with the linear magnetic field dependence of the mag-
netotransverse photon flux[13–17,30]. When mk is big
enough, the linear dependence is found to be ruined. In ad-
dition, a change of sign inh is observed at certainx that
depends on the value ofmk.

IV. SUMMARY

We have extended the Mie theory for electromagnetic
scattering by spherical particle to the case of a magnetic
particle that possesses the gyromagnetic form of permeabil-
ity (1), which includes the uniaxial anisotropy as a special
case. This is done by first constructing for the magnetic in-
ductionBI inside the particle a new set of vector basis func-
tions in terms of the usual VSWF’s with different values of
wave vectorkl. The values ofkl are the eigenvalues of an
eigensystem determined by the permeability tensor. The new
set of vector basis functions are divergenceless and satisfy
the wave equation forBI. With theBI field expanded in terms
of the new set of vector basis functions(21), EI andH I fields
can then be written based on VSWF’s with the different val-
ues of wave vectorkl, instead of a single value in isotropic
case. The difference from isotropic sphere lies also in that the
expansion ofH I field includes the third set of VSWF’sL mn
in addition to the usualM mn and Nmn, becauseH I is no
longer divergenceless. The incident and scattered fields are
expanded as usual in terms of the VSWF’s. By matching the
boundary conditions, a linear set of coupled equations for the
expansion coefficients are obtained and then solved for the
solution to the scattering problem.

The formulation can be applied to the case with arbitrarily
anisotropic permeability tensormJ, provided that the expan-
sion coefficients ofmJ−1·M mn and mJ−1·Nmn in terms of
VSWF’s such as Eq.(9) can be worked out. The particular
axial symmetry of Eq.(1) greatly reduces numerical com-
plexity and thus avoids numerical errors in dealing with ma-
trices of large dimensions.

As the first application of the formulation, we present
some numerical results for scattering due solely to the optical
anisotropy within the particle. The scattering efficiency ex-
hibits miscellaneous dependence behaviors on the incident
angle, the polarization, the anisotropy parameter, as well as
the size parameter. In the second example, we study the
transverse electromagnetic scattering effect. Our results con-
firm the possibility of the photonic Hall effect for one single
Mie scatterer.

Apart from magnetic particles, the formulation presented
here is also expected to find applications in electromagnetic
scattering by plasma sphere in external dc magnetic field,
with some minor revisions to take into account the gyroelec-
tric characteristics.
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APPENDIX A: VECTOR SPHERICAL WAVE
FUNCTIONS

The VSWF’sM mn
sJd, Nmn

sJd, andL mn
sJd are given by[24,26]

M mn
sJdsk,r d = fipmnscosudeu − tmnscosudefgzn

sJdskrdeimf,

FIG. 7. Asymmetry parameterg (a) and normalized magne-
totransverse light currenth vs the size parameterx=k0rs at various
values ofmk. The curves have been normalized bymk. Results for
mk=0.005 andmk=0.05 show no graphically discernible difference,
suggesting the linear dependence ofh on mk and thus on the exter-
nally appliedB0 field. For biggermk, the dependence ofh on mk is
no longer linear. In addition, a change of sign inh is observed.
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Nmn
sJdsk,r d = ftmnscosudeu + ipmnscosudefg

1

kr

d

dr
frzn

sJdskrdg

3eimf + ernsn + 1dPn
mscosud

zn
sJdskrd

kr
eimf,

L mn
sJdsk,r d = ftmnscosudeu + ipmnscosudefg

zn
sJdskrd
kr

eimf

+ erPn
mscosud

1

k

d

dr
fzn

sJdskrdgeimf, sA1d

whereer, eu, andef are three unit base vectors in spherical
coordinate system, andPn

msxd is the first kind associated Leg-
endre function[26,27]. The radial functionzn

sJd is given by

zn
s1dsxd = jnsxd,zn

s3dsxd = hn
s1dsxd sA2d

with jnsxd the first kind of spherical Bessel function and
hn

s1dsxd the first kind spherical Hankel functions. Two auxil-
iary functions,pmnscosud andtmnscosud, are defined by

pmnscosud =
m

sin u
Pn

mscosud,

tmnscosud =
d

du
Pn

mscosud. sA3d

The VSWF’s satisfy

= 3 = 3 M mn
sJd − k2M mn

sJd = 0, sA4ad

= 3 = 3 Nmn
sJd − k2Nmn

sJd = 0,

M mn
sJd =

1

k
= 3 Nmn

sJd,M mn
sJd =

1

k
= 3 Nmn

sJd , sA4bd

= ·M mn
sJd = 0, = ·Nmn

sJd = 0, = 3 L mn
sJd = 0. sA4cd

They are orthogonal in the sense that[26],

E
0

2p E
0

p

M uv
! ·Nmn sin u du df = 0,

E
0

2p E
0

p

L uv
! ·M mn sin u du df = 0,

E
0

2p E
0

p

M uv
! ·M mn sin u du df

=
4pnsn + 1d

2n + 1

sn + md!
sn − md!

zn
2skrddmudnv,

E
0

2p E
0

p

Nuv
! ·Nmn sin u du df

=
4pnsn + 1d
s2n + 1d2

sn + md!
sn − md!

3fsn + 1dzn−1
2 skrd + nzn+1

2 skrdgdmudnv,

E
0

2p E
0

p

L uv
! ·L mn sin u du df

=
4p

s2n + 1d2

sn + md!
sn − md!

fnzn−1
2 skrd + sn + 1dzn+1

2 skrdgdmudnv,

E
0

2p E
0

p

L uv
! ·Nmn sin u du df

=
4pnsn + 1d
s2n + 1d2

sn + md!
sn − md!

fzn−1
2 skrd − zn+1

2 skrdgdmudnv,

sA5d

where the superscript! denotes the complex conjugate on
angular functions, differing from the superscript * that stands
for the complete complex conjugate, e.g.,

M mnsk,r d = fipmnscosudeu − tmnscosudefgznskrdeimf,

M mn
! sk,r d = f− ipmnscosudeu − tmnscosudefgznskrde−imf,

M mn
* sk,r d = f− ipmnscosudeu − tmnscosudefgzn

*skrde−imf.

APPENDIX B: EXPANSION OF mJ−1·Mmn and mJ−1·Nmn

In this appendix, we outline the derivation of the expan-
sions(9) for mJ−1·M mn andmJ−1·Nmn. In dyadic form, Eq.(5)
can be rewritten as

msmJ
−1 = mr8exex − imk8exey + imk8eyex + mr8eyey + ezez

=m+8e+
* e+ + m−8e−

* e− + e0e0, sB1d

where the superscript * denotes, as usual, the complex con-
jugate,

e+ =
1
Î2

sex + ieyd,

e0 = ez,

e− =
1
Î2

sex − ieyd, sB2d

and m±8=mr87mk8. Rewritten in terms ofe± and e0 the
VSWF’s Eq.(A1) become
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M mn
sJdsk,r d =

i
Î2

sn + mdsn − m+ 1dXn
m−1zn

sJde−
*

+
i

Î2
Xn

m+1zn
sJde+

* − imXn
mzn

sJde0, sB3ad

Nmn
sJdsk,r d =

1
Î2
F sn + 1dsn + mdsn + m− 1d

2n + 1
Xn−1

m−1zn−1
sJd

−
nsn − m+ 1dsn − m+ 2d

2n + 1
Xn+1

m−1zn+1
sJd Ge−

*

+
1

Î2s2n + 1d
fnXn+1

m+1zn+1
sJd − sn + 1dXn−1

m+1zn−1
sJd ge+

*

+ Fnsn − m+ 1d
2n + 1

Xn+1
m zn+1

sJd

+
sn + 1dsn + md

2n + 1
Xn−1

m zn−1
sJd Ge0, sB3bd

L mn
sJdsk,r d =

1
Î2
F sn + mdsn + m− 1d

2n + 1
Xn−1

m−1zn−1
sJd

+
sn − m+ 1dsn − m+ 2d

2n + 1
Xn+1

m−1zn+1
sJd Ge−

*

−
1

Î2s2n + 1d
fXn+1

m+1zn+1
sJd + Xn−1

m+1zn−1
sJd ge+

*

− F sn − m+ 1d
2n + 1

Xn+1
m zn+1

sJd −
sn + md
2n + 1

Xn−1
m zn−1

sJd Ge0

sB3cd

with Xn
m=Pn

mscosudeimf satisfying

E
0

2p E
0

p

X̄v
u Xn

m sin u du df =
4p

2n + 1

sn + md!
sn − md!

dnvdmu,

sB4d

whereX̄v
u=Pv

uscosude−iuf. Multiplying (B3a) by dyadmsmJ
−1

gives

msmJ
−1 ·M mn=

i
Î2

sn + mdsn − m+ 1dm−8Xn
m−1zne−

*

+
i

Î2
m+8Xn

m+1zne+
* − imXn

mzne0

=o
q=0

+`

o
p=−q

+q

fg̃pq
mnM pq + ẽpq

mnNpq + f̃ pq
mnL pqg,

sB5d

where use has been made of Eq.(B1) and the second equality
follows from the expansion of any vector field in terms of the
VSWF’s. Taking the scalar product of Eq.(B5) with M uv

!

given by

M uv
! sk,r d = −

i
Î2

sv + udsv − u + 1dX̄v
u−1zvskrde−

−
i

Î2
X̄v

u+1zvskrde+ + iuX̄v
uzvskrde0 sB6d

leads to

o
q=0

+`

o
p=−q

+q

M uv
! · fg̃ pq

mnM pq + ẽ pq
mnNpq + f̃ pq

mnL pqg

= Fg

2
m−8Xn

m−1X̄v
u−1 +

1

2
m+8Xn

m+1X̄v
u+1 + muXn

mX̄v
uGznzv

sB7d

with g=sn+mdsn−m+1dsv+udsv−u+1d. Integrating both
sides of Eq.(B7) over the solid angle and taking into account
the orthogonality relations(A5) and (B4) yield Eq. (10a).
Similarly, taking the dot product of Eq.(B5) with Nuv

! and
L uv

! , respectively, and integrating over solid angle results in
two linear equations, which can be easily solved to give Eqs.
(10b) and (10c).

In a similar way, by taking the posterior scalar product of
dyadmsmJ

−1 and vectorNmn given by Eq.(B3b) and expand-
ing the resulting vectormsmJ

−1·Nmn in terms of the VSWF’s,
one gets an equation analogous to Eq.(B5). Taking the scalar
product of this equation withM uv

! , Nuv
! , and L uv

! , respec-
tively, and integrating over solid angle give rise to three lin-
ear equations, which can be solved to produce Eqs.
(10d)–(10f).
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