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Soliton ratchets induced by excitation of internal modes
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Recently Flactet al. [Phys. Rev. Lett.88, 184101(2002] used a symmetry analysis to predict the appear-
ance of directed energy current in homogeneously spatially extended systems coupled to a heat bath in the
presence of an external ac fidlgt). Their symmetry analysis allowed them to make the right choicg(of
S0 as to obtain symmetry breaking which causes directed energy transport for systems with a nonzero topo-
logical charge. Their numerical simulations verified the existence of the directed energy current. They argued
that the origin of their strong rectification in the underdamped limit is due to the excitation of internal modes
and their interaction with the translational kink motion. The internal mode mechanism as a cause of current
rectification was also proposed by Salerno and ZolotarfRiys. Rev. E.65, 056603(2002]. We use a
rigorous collective variable for nonlinear Klein-Gordon equations to prove that the rectification of the current
is due to the excitation of an internal moli&t), which describes the oscillation of the slope of the kink, and
due to a dressing of the bare kink by the ac driver. The internal m¢des excited by its interaction with the
center of mass of the kink(t), which is accelerated big(t). The external fieldE(t) also causes the kink to be
dressed. We derive the expressions for the dressing and numerically solve the equations of maétion for
X(t), and the momenturR(t), which enable us to obtain the explicit expressions for the directed energy current
and the ac driven kink profile. We then show that the directed energy current vanishes unless thétsispe
a dynamical variable and the kink is dressed by the ac driver.
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I. INTRODUCTION mass of the kink, and the slofdé&t), causes the kink to be
dressed by phonons. The dressing changes the shape of the
In a recent paper Flacét al.[1] studied the appearance of kink and increases the coupling Bft) to X(t). We show that
directed energy currents in homogeneous spatially extendagle nonvanishing of the dressing is a necessary condition for
Systems described by nonlinear field equations Coupled to @reaking time inversion Symmetry of the energy current.
heat bath in the presence of an external ac f&l. As  However, the dressing of the kink alone in the absence of a
pointed out in Ref[1], rectifying energy transform using time dependent collective variabl&t) cannot cause current
fluctuations has been studied in connection with such prObrectiﬁcation_ Consequenﬂy, we prove that the existence of
lems as molecular motors in biological systefi8k electrical  the time dependence #Yt) and the dressing(t) are neces-
currents in superlatticegl—7], voltages in Josephson junc- sary for time inversion symmetry breaking.
tion coupled systemf8-10], and other problems. ~In Sec. Il we derive the equations of motion ft) and
The authors of Reff1] showed by a symmetry analysis r(t) including the terms due to the dressing of the kink by
that the correct choices @ft) lead to directed energy trans- phonons. We present our results for the solutidg and
port for nonlinear Klein-Gordon systems with a nonzero to-p() and for the generation of directed energy currents in
pqloglcal c;harge. They “S?d numerlcal S[mulatlong of thg 8%ec. I, and in Sec. IV and we discuss our results. The
driven Klein-Gordon equation which confirmed their predic- iy ation of the dressing is given in the Appendix.
tions which generalized recent rigorous theories of currents
generated by broken time-space symmetries to the case of
interacting many-particle systenfigl,13. They did this by Il. DERIVATION OF CV EQUATIONS OF MOTION
replacing the fluctuations as a superposition of ac driving
fields and uncorrelated white noise. They also showed the Before deriving the CV equations of motion used in this
persistence of directed currents in the Hamiltonian limit ofpaper, we will make a few remarks about CV treatments of
systems exposed to ac fields but decoupled from the he#fe Klein-Gordon equations. The first approach, which is de-
bath. The authors of Refl] then argued that the origin of rived in Refs.[13,14 and used in this paper, is to treat the
the observed strong rectification in the underdamped limit igenter of mas¥(t) and the slopd'(t) as collective variables
due to the nonadiabatic excitation of internal kink modes andvhich satisfy coupled second-order differential equations,
their interaction with the translational kink motion. which also depend on the dressing of the kink. In this ap-
In this paper we use a rigorous collective variagl®/)  proach the equations of motion fot(t) and I'(t) are not
theory for nonlinear Klein-Gordon equations derived in Refs. manifestly relativistic invariant. What has been proven is that
[13,14 to prove that an external ac field causes the CV's fowhen the solutionsX(t) and I'(t) are inserted in the kink
the center of masX(t) and the slopd’(t) to become time ¢[X(t),I'(t)] ¢ satisfies the relativistic invariant nonlinear
dependent and to interact with each other. The ac driver ilein-Gordon equation. An analogous well-known example
addition to inducing time dependence Xit), the center of of a nonmanifestly relativistic case is the use of the nonrel-
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ativistic Coulomb gauge which leads to the relativistic solu- l-w l+w
tion E(t) and B(t) of Maxwell's equations. The second ap- f(t) = (e1/2)cos wt Bt (1-w)? + Bt (1+w)?
proach would be to consider a single C¥(t). The equation

of motion for X(t) is fourth order in F_ime because the La- + (e2)cod20t + 6)] — 1-20 .
grangian contains the second derivatk(¢). The Lagrangian B+ (1-2w)
of a theory that contains a second derivatﬁb(e) Iea_q_.s to . 1+ 2w }

equations of motion that contain the fourth derivat). B2+ (1 + 2w)?

The fourth-order equation faX(t) has the same number of

degrees of freedom as the equivalent CV theory for two variSincex is an even function of many of the terms in Egs.

ables which consists of two coupled second-order equation®.4g9 and(2.59 of Refs.[13,14 for X andI that depend on

for X(t) and X(t). integrals ofy vanish. The only terms which survive are
We outline the derivation of the equations of motion for

the collective variable(t) and I'(t) which are derived in (1 by )My[X + X(I'/T) + BX] = 2af, + T o’ [)")(1 - X?)

detail in Refs.[13,14. The damped nonlinear sine-Gordon

(SG) equation for the fieldp in the presence of an external = (L)X o' |y - 2(T'IT)
potential V(¢) is . .
X(fIf)(a’|éx) = (TIT)
. oV ! , 6
b= bt sin b B == W xte'leo ©

where My=I{o'|o’)=8", by=(/My}{o”|x)=0 and

where B¢, is the damping due to the heat bath, and wheréVhere(f|g)=[f*(§)g(¢)d¢. The corresponding equation for
we are using dimensionless variables where the velocity of is
the phonons ie=1. We introduce the collective variables by

writing the solutione of Eq. (1) in the form (1 -bp)M[I" = 3T%2I + (My/2I')(1 - X?) + AI]
$x1) = ol &0]+ &), @ = (X2’ [Y'€) + 20X ()€’ [x') + (XIT)
x(&o’'Ix'), (7)

where é=T'(t)[x—-X(t)] and the single kink solutiow{ &(t)]
is where  Mp=I"¥¢0' |0’ )=(2721303) and by

D = (1% Mp) & 1)=0. )
olé(H)] =4 tamexpl (X =XV}, ) We next eliminate th&' term in Eq.(6) and theX term in

Eq. (7) by using the zeroth order ig;, and e, equations for

X andT". The elimination is justified because the correspond-
ing terms are both multiplied by which is already first
order ine;, ande,.

and x[ £(t)] is the dressing of the kink by phonons due to the -
external potentiaV/(¢) which for the applied ac field of this
paper is given by

V() = (,C08 wt + &,c09 20t + 0]) (&(1)) = F,H(&(L)). _ The zeroth-order expression fiiris X=-X(I'/T) and for
@ T is IT'=3I%/2I'-My(2I'M)"Y(1-X?). When we substitute
for X in Eq. (7), we obtain
0 is an arbitrary phase, and ande, are perturbation param- ) _ _ _
eters, i.e., we solve fap to first order ine; ande,. The CV’s I+ Bl = (3T%/2T) + (6/72)3(1 - X?) + (3/27°)
are the center of mas§(t) and the slope of the kink evalu-

ated at its center isIAt). In Ref.[2] a directed kink motion X[8TX(2(¢0’[X") — (&0 |x')) + BIT2X(€0” [x)],
for the SG was obtained numerically for the first time using (8)
V(¢) in Eq.(4) for a wide range of momenta with an analytic

approach for small momenta. and when we substitute fdt in Eq. (6) we obtain

The equations of motion foX andI” each contain many

terms proportional to integrals gf, its time derivatives and R (1= _ ok (T 'l 201 _ 2
spatial derivativesy is a solution of the linearized ac driven MxX+ X(I/I) + pX] = 2ty = 26T o gy + THL =X
SG equation and is proportional égp ande,. In the Appendix XK' X"y = (6172 {0’ |Ex')]

we solve fory. The solution fory is - 5
- (T/)* (o' [€X") = 310" EX")).-

X= %f(t)secﬁg, (5) ©

The momentunP conjugate toX is P=MXX=8FX. Conse-
where quently we can write Eq8) for X in terms ofP, i.e.,
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dpP - P2
op TAP=2mh - 20(T/T) 0" Ex") + (Fz - &) (<0’IX”>

-\ 2
6 r
- ?(U’EX’)) - <f> (a'|&X"y = 310" Ex")),
(10)
and Eq.(8) for I in terms of P becomes
I' - (31%2T) - (6/7AT[1 -T2+ (P/8)2] + AT

= (3127)[PL(2(£0” [Y"y = (éa' X)) + TP(fIF)(é0” [x')].
(1)

Finally after evaluating the integrals and replaci}ﬁ by

P?/64 we obtain the final form of our equations of motion

for P(t) andT'(t):
P+ 8P — 2, = f(1){0.478/m)(L/T)? - (8/3)[f(t)/f(t) |(T/T)
- (8173)[I'% - (PI8)%]} (12)
and
[+ Al - 32/2r - (6/7AI[1 -T2+ (P/8)?]

= f(t)(2m) Y (5/2 - w2116)PT - [f(1)/f(t)]PT}.
(13

Before solving the equations of motion ferand I it is
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FIG. 1. This figure demonstrates symmetry breaking, i.e., the
nonvanishing ofP(t)) as a function off for various values of the
parametersw, €, and 8. Solid curve,w=0.1, ¢,=€,=0.03, andg
=0 (the curve is multiplied by 0.35dashed curve»=0.3, €,=0.3,
€= €/\3, and 3=0.2; dotted curvew=0.1, €;=¢,=0.05, andB
=0.12; dash-dotted curvep=0.25, ¢,=0.16, e,=¢;/v2, and B
=0.15.(P(t)) has the units of momentum artis in radians.

Ill. RESULTS OF SIMULATIONS

In this section we present the computer solutions of Egs.
(12) and(13) for I'(t), P(t), and for the time average of the
energy current. In our units the energy curré(t} is equal to
P(t) because

i =- f o (&)or (£)dx= 8IX = (D),

where of £]=4 tarrlexp(I'(t)[x—-X(t)]). Consequently the
time average ofl(t),(J(t)), is equivalent to the time average

worth making a few remarks about the properties of theof P(t),(P(1)).

coupled equations. In Eql12) the ac driverf,(t) directly
drives P while in Eq.(13) for I the ac driverf,(t) does not
directly drivel” because th& modeda/dl is orthogonal to

the ac driver. However, botR andI" see the ac driver indi-
rectly through the dressing which is proportional tof(t)
[Eq.(A7)], which also depends on the two frequenaiesnd

2w. As long asw < 0.5 the phonon radiation is small. In this
paper we consider only frequencies which are much less th
1, which is the beginning of the lower band edge in the unit
of this paper. Consequently in this paper the emission o

phonons is negligible. Since there are no modeX(of and

I'(t) in the band gap of the SG, there is no excitation of

internal gap modes by the ac driver as there is, e.gptiand
the double sine-Gordon. The dressiggwhich is propor-
tional to € changes the shape modesd@+y x and too -
+xr in addition to changing the frequency BfandI” di-
rectly.

Before discussing the results we discuss the symmetries

of the coupled equationd2) and(13). The first symmetry is
referred to as the shift symmetry of the driver whichAs
——P and t—t+7/2, provided f,(t)=—f,(t+7/2) and f(t)
=—f(t+7/2) are always shift symmetric if and only if a Fou-
rier expansion contains only odd terms. THyd) andf(t) in
Egs.(12) and(13) always violate shift symmetry. A second
symmetry is time inversion symmetry, i.d?——-P whent
——t and 8=0. Equationg12) and (13) satisfy time inver-
sion symmetry wheB=0 and#=0, £n7. When g is small,
time inversion is approximately satisfied.

In Fig. 1 we show the results fdiP(t)) for a range of
valuesw, B, €, and e, which show clearly the directed en-
ergy current as a function @f We see that there is symmetry
breaking for all the sets of parameter values. In Fig. 2 we
show(P(t)) as a function off for fixed values ofw and ¢
=€, and various values 8. If 8+ 0, then time inversion
symmetry is not valid. However ag8 goes to zero, time
inversion symmetry is approximately restoreddatO, +nar.

E;‘f‘hus we observe for smap, as B, decreases, exactly the

?ame behavior as in Fig. 1 of R€L], that is, the smaller the
B the larger is the value gfP(#=0)), but the smaller is the
value of  at which(P(6))=0. The values in Fig. 2 a#=0

02

FIG. 2. (P(t)) as a function off for »=0.1, e;=€,=0.03 for
various values of3 show a monotonic decrease of the amplitude of
(P(t)) as the damping3 increases. Solid curve3=0.02; dashed
curve, 3=0.05; dotted curve=0.12. In this simulatioqP(t)) de-
creases ag increases but the values @(t)) are so small that they
cannot be distinguished on the figuk®(t)) has the units of mo-
mentum and is in radians.
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FIG. 3. The energy currerR(t) and the slope of the kink(t) FIG. 5. P(t) and I'(t) for the parameters»=0.1, 3=0.02, e,
for the parametersn=0.25, 8=0.15, €,=0.16, e,=¢;/12, and =¢,=0.03, andf=7. (P(1))=0 as is required by=m. I'(t) has a
=1.61-=. Both curves show the effect of two driving frequencies. two-frequency oscillation about(t)>I"y with only an amplitude
The time average oP(t) is nonzero and’(t) has a multiple fre-  change ofAT'/(I') ~4%. The relatively weak response Bft) and
quency oscillation aboufl'(t)) greater tharl’y with an amplitude  T'(t) is due to the smallness of the driver P(t) has the units of
changeAT' /(') ~ 20%. P(t) has the units of momentum arddt) momentum and’(t) has the units of inverse length.
has the units of inverse length.

shapes ofl’(t) are qualitatively similar the bare kinks have
are (P(t))=0.0008 whenp=0.12, (P(t))=0.002 whenB  appreciably reduced amplitudes bft).
=0.05, andP(t))=0.005 whens=0.02.

In the three typical examples &f(t) andI'(t) (Figs. 3-5

we have selected the shapes and magnitudes vary consider- IV. DISCUSSION
ably. The shapes of thié(t) andI'(t) curves show the effect )
of being driven by an ac driver with two frequencies which 1€ ac driver causes the center of masand the slopd’
causes the curves to vary in amplitude and shape when wi@ Pecome time dependent and the kink to be dressed by
vary the parameters, €, €,, and. The changes in shape of Phonons given by the expressigiit)=(4/m)f(t)seck &(1).
T'(t) are often striking becaud&(t) is a very nonlinear oscil- The dressingy which is not a CV internal mode can be
lator which has a complicated response to the ac driver angPServed as a modulation of the structure of the kinkVe
the dressingy, whereas in lowest order the equation Rit) proved that Fhe existence olf a directed energy current arises
is linear. Generally the magnitudes of bolfit) and P(t) from Fhe ex!stence of the internal degree of freeQEm)
increase with increases in the strength egfand e,. The combined with the _dressm)g(t). We found that the directed
variable T'(t) oscillates about an average value @f(t)) ~ €nergy current vanished whéhwas set equal t@'. When

which is greater thaii,=1, the unperturbed kink value 8 ~ We sety=0 in Eq.(10) for P the right-hand side vanishes
It usually also takes instantaneous values less than 1. THd we obtain
relative change in slop@I'/T", varies from a few percent to

as much as 100% and is strongly dependent on the magni-

tude of ¢; and e,. Large values ofAT'/T" represent large

distortions of the shape of the kink. When we compaf® S _ _ _
andI'(t) for the kink dressed by with the bare kink we find ~ The infinite time average of this equation vanishes when we
a strong dependence on the phasehich leads to different USe the fact that the thermal average of the initial valu® of
shapes and amplitudes Bft) and I'(t) for different 6. For ~ Vanishes. Thus there is no directed current in the SG unless
example, in Fig. 5 forw=0.1, 3=0.02, ,=¢,=0.03, andg e slope depends drand the kink is dressed by.

nearg=0, £na the slopel(t) of the dressed kink is a pattern Ve observe in the computation (ﬁ(t)) that the klnk.sees

of single peaks while for the bare kink with the same param{Ne heat bath only through the damping terfP(t)), i.e.,
eters['(t) is a pattern of double kinks. On the other hand for(P(t)) does not see the fluctuations of the heat bath. The
6 appreciably different from9=0, +nm, e.g.,6=1.61-7 the  reason is that when we represent the bath as a generalized
differences in shape dP(t) between the bare and dressed Fokker-Planck equation and calculatB(t)) the damping
kinks are relatively minor. At the same time although theterm contributes B(P(t)) because the damping is repre-
sented byBd/JP. However the fluctuation term is propor-
tional to a second derivativé?/ JP 9P and thus gives a van-
ishing contribution to/P(t)). Note a fluctuation such g$2)

or (P(t)P) would see both the damping term and the bath
fluctuations.

In conclusion, we have proven that the symmetry break-
ing that leads to a directed energy current in the ac driven SG
is generated by the existence of the time dependence of the

FIG. 4. P(t) and [(t) for the parameterso=0.3, 8=0.2, ¢,  Slopel'(t) and by the dressing(t). In Ref.[15], Salerno and
=0.3, e,=€/3, and 6=1.61-m. (P(t)) is nonzero and the slope Quintero showed that a double SG showed ratchet behavior.
I'(t) has a multiple frequency oscillation abailit(t))>I', with an  In Ref. [16], Marchesoni obtained a directed kink transport
amplitude changdTI'/(I')~50%. P(t) has the units of momentum by the sin¢ potential for e,=0. Costantiniet al. [17] ob-
andI'(t) has the units of inverse length. served ratchet behavior in ac driven asymmetric kinks.

P+ 8P = 27f,.

P(t)
6

4

3]
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APPENDIX - (w/2)tanh ff dk sin k& sinh(7k/2)]t
We calculate the dressing generated by the ac driven = (2/m)(sechié - tanlté)
f,(t) in the linear approximation, i.e., the lowest orderein 4
€, and by using the Green’s function of the linearized SG = —sech¢, (A5)
equation in the presence of a soliton EG5) of Ref. [14]. ™
The formal solution fory is where we have dropped the irrelevant consi@itr). The

time integral in Eq(A1l) is f(t) where

f(t) = f: dt’sin Q(K)(t - t")e APf (t')

x(é) =2 Ref_ dl{ﬂ(k)]_l‘//k(g)f_ dg’ i (&)

B+0K -l B+ + ol
Q(K) - 2w
B +10K) - 2]

N _ 0K - w QK + o
X f dt’ sin Q(K)(t—t)e PO (t), (A1) = (61/2)COSwt{ }
0

+ (&/2)coq 2wt + 6)

whereQ(k) = (1+k?? and the eigenfunctions of the linear- QK) + 2w
ized SG are TR 00 + 20|

(A6)

In this paper we only consider values af which are

i appreciably less than 1. Whi(k)=(1+k?)2 where in our
(& = (2m) V24 ik - tanh €]. (A2) PP y (k)=(1+k?)

’s in this paper as in Refl], there is essentially no radia-

units the lower band edge has the value 1. Consequently with

tion of SG phonons generated by the ac driver but only a
The &' integral is dressing of the soliton that is localized on the soliton. The
presence of the SG phonons would not qualitatively alter the
symmetry breaking but for the ac driver frequencies used in
this paper the SG phonons would not be observable because

f dé" (&) =_ikf dg’coskg’—J dé¢’sink&'tanh &' . they would occur only in very high orders of perturbation
—o — e theory. SinceF(k) decreases rapidly with increasihgand
(A3) w<1 we can treaff(t) as effectively independent & and
equal to

-w l+w
The first integral is an irrelevant constant which we can ne- f(t) = (ex/2)cos wt{ B+ (1-w)? " B+ (1+ w)z}
glect. Integrating the second integral by parts we obtain

+ (&/2)coq 2wt + 6) ,ﬁ
) * ) 1+ 2w
— (i/k) L coské'sech ¢£'de’ = - (ilF(K), (A4) + m} : (A7)
Finally we have
x = (41m)f(t)seché, (A8)

whereF (k) = 7k 2 sinh(7k/2)]™ which decays rapidly with
largek. Thek integration in Eq(Al) is with f(t) given by Eq.(A7).
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