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Ray and wave instabilities in twisted graded-index optical fibers
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We study ray and wave propagation in an elliptical graded-index optical fiber or lens with a twisted axis and
show analytically the existence of an instability for both ray trajectories and beam moments in a finite range of
axis twist rate embedded within the spatial frequencies of periodically focused rays for the untwisted fiber. By
considering the paraxial ray equations and the paraxial wave dynamics in a rotating frame that follows the fiber
axis twist, we reduce the dynamical problem of ray trajectories to the classical Blackburn’s pendulum, which
shows a dynamical instability, corresponding to classical diverging trajectories, due to the competing effects of
confining potential, Coriolis force, and centrifugal force. A closed set of linear evolution equations for gener-
alized beam moments are also derived from the paraxial wave equation in the rotating reference frame,
revealing the existence of a dynamical moment instability in addition to the trajectory instability. A detailed
analysis of beam propagation is presented in case of a Gaussian beam, and different dynamical regimes are
discussed.
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I. INTRODUCTION periodic, or stochasti¢13,22,26,27. Such instabilities can

The study of ray and wave propagation in confining opti-be u!nmatgly explained in terms of e|t.her a_dlrect or a para-
cal structures, such as optical fibers, waveguides, photonf@€tric forcing of the unforced harmonic oscillator dynamics,
crystals, periodic focusing systems, and resonators plays az?d may persist even in presence of nonlinear effects
major role in the understanding the basic properties of Iigh{ 2,28. . .
guiding underlying the operation of many optical and photo- N this work we study analytically and numerically the
nic components and laser devices. The close analogy of wa naml(':s.of ray a'nd wave propagation in an astigmatic
optics and wave mechanics, and their respective limits oparapolic-index optical fiber or lens with a twisted optical
geometric optics and Newtonian dynamicee, e.g., Refs. axis in the linear propagation regime. The geometric-optic

: : . [imit of ray dynamics in the twisted fiber turns out to be
[1.2), .has continuously brought into the optical r(?se"’mhequivalent to the dynamics of a classical Blackburn’s pendu-
many ideas and concepts drawn from quantum physics, mo m (see, for instance, Ref29]), and shows a dynamical
notably the recent invention and development since the lag X : '

. stability within a finite range of fiber twist rate, corre-
two decades of photonic crystélsee, e.g., Ref3]). Atthe  g,4nding to classical diverging trajectories, due to the com-

same time, guided optical systems may be used to test mamyating effects of confining potential, Coriolis force, and cen-
quantum-mechanical effects including, among others, the isyifugal force. Owing to the parabolic form of the fiber index
sue of tunneling times across a potential barf#e+7], quan-  profile, the motion of the beam center of mass is ruled out by
tum chaos[8], Bloch oscillations in a periodic potential the same geometric-optic ray equations and thus shows the
[9-11], Anderson localizatioi12-14, and wave packet dy- same trajectory instability. A closed set of equations for gen-
namics of atoms in high fieldgl5]. The most simple and eralized mean beam parametéssam momenisis also de-
studied analogy between guided optics and quantum maeived, which show the occurrence of a beam moment insta-
chanics is perhaps the parabolic graded-in@@RIN) fiber  bility in addition to the trajectory instability. Such an
or lens and the quantum harmonic oscillateee, e.g., Refs. instability bears a close connection with the dynamic insta-
[16-21)). This analogy is further attractive in the nonlinear bility of a Bose-Einstein condensate subjected to a rotating
propagation regime, i.e., when the optical Kerr effect is con-harmonic potential30,31], which has been studied in the
sidered, since in this case beam propagation in the gradetltydrodynamic approximatiofi.e., in the strongly nonlinear
index parabolic fiber bears a close connection with the dyregime of the nonlinear Schrodinger equati¢d0,31 and
namics of an attractive Bose-Einstein condensate in aelated to the spontaneous formation of vorti¢ese, for
harmonic potential. Such an analogy stems from the formainstance, Refs[30,32,33). The paper is organized as fol-
equivalence between the nonlinear Schrédinger equation @bws. In Sec. Il the basic model of the graded-index astig-
the optical field and the Gross-Pitaevskii equation for thematic fiber with a linearly twisted axis is presented, and the
macroscopic condensate wave function in the mean-fielthasic beam propagation equation in the paraxial and scalar
limit (see, e.g., Refd22,23). A rather general and well- approximations is derived in a rotating reference frame. Sec-
known phenomenon of ray and wave propagation in paration Il deals with the geometric-optic limit and the classical
bolic graded-index fibergor in periodically focusing sys- Blackburn’s pendulum analogy, revealing the existence of a
tems is the appearance of ray and wave instabilities wherirajectory instability for the optical rays. Section IV is de-
the optical axis deviates from straightn¢®4—2¢ or in pres-  voted to the beam propagation problem. By using a beam
ence of perturbations or modulations, either periodic, quasimoment method, we show analytically that in the dynamical
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region corresponding to geometric-optic ray instability a O , O 172 , O 172
beam moment instability occurs as well. Such an instabilityz= Ezy X' =12k e X, y'=|2k e Y
manifests itself in a growth of beam ellipticity and beam size 0 0 0
even though the beam remains centered on the fiber axis. A (7)
detailed analysis is presented in case of Gaussian beam

propagation. Finally in Sec. V the main conclusions are out-and the ellipticity fiber core parameter

lined. 2
r
B= gz = <ri> , ®)
II. RAY AND WAVE PROPAGATION IN AN ASTIGMATIC Y
GRADED-INDEX OPTICAL FIBER WITH A which we assume to be larger than one for the sake of defi-
TWISTED AXIS: BASIC EQUATIONS niteness. Using Egs3), (7), and(8), the propagation wave

equation(6) takes the scaled form
We consider a graded-index optical fiber or GRIN lens

with an astigmatic parabolic index profile of the form Y

===V V2, 9
n(X,Y) = no = 5(8.X% + g, Y?), &)
where

wheren, is the on-axis fiber refractive indegK:ZnOA/rgx o N " ' -
and g,=2n,A/rZ, are the graded-index parameters in the V(XY 2) = 5(0X "+ ayy' <+ 205Xy"),  (10)
transverseX andY directions,A (A <1) is the relative index
difference between the core and the cladding, mpdndr., 0,(2) = cog0(2) + B sirfo(2), (11
are the semiaxis sizes of the elliptical fiber core. We further
assume that the fiber is twisted around its aend indicate o
by 6=6(2) the twist angle. If we account for the fiber twist, o2 = S 0(2) + B cos'6(2), (12
the refractive index profile of the fiber then reads

ay(2) = (1 - B)siné(z)cosi(2), (13

X,Y,Z) =ng—ny(X,Y,Z 2 . . .
NX.Y.2)=no = m(X,Y,2), @ and the Laplacian acts on the normalized transverse spatial
where variablesx’ andy’. Similarly, the ray equation@}) and(5) in
the dimensionless spatial variables read
n(X,Y,2) = 5[g,(X cos §+Y sin )2+ g,(- X sin 6 @
+Y cos 6)?]. 3) 92 20X+ oy'), (14)

The ray dynamics in the paraxial approximation for the ray a2y’
displacementsX(Z) and Y(Z) is governed by the ray equa- é == 2oyX' +oyy). (15)

tions, as derived from Fermat's principle, which fo|

<n read(see, for instance, Ref34]) Instead of considering the ray or wave dynamics in the

(x",y",2) reference frame, it is worth introducing a rotating

2
d_)é + 1im =0, (4) reference framéx,y,z) that follows the fiber twist, i.e., we
dz® nyadX make the change of variablésee Fig. 1
@ . 1an, o x=x' cos#(z) +y’ sind(z), (16)
> =
dZ= o Y y=-X'sinf(z) +y’ cosA(z). 7

Similarly, the wave dynamics, in the paraxial and scalar apyy the rotating reference frame, the scalar wave equagipn
proximations and assuming that the beam width is suffiigxes the canonical form

ciently smaller as compared tg, andr,, is governed by the

following equation for the wave field/(X,Y,Z) (see, e.g., oYy

Refs.[35-37): i— =My, (19
where

Y 1o K
I&Z - ZkVLlp-'- nonl(X,Y,Z)w’ (6)

# F\ .de ]
. , _ H=-\T3+-3 | tiZ{x— -y | +V(xy)
whereV? is the transverse Laplaciaksnyw/c is the propa- axe  dy dz\ gy “dx
gation constant in the cladding, aadthe angular frequency (19)
of the wave. For the following analysis, it is worth introduc-
ing the dimensionless spatial variables and
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normal-mode frequencies of the pendulum can be easily
found by looking for a solution of Eq$21) and(22) in the

form:
(X(Z) ) = (7) expling) (24)
v/ \y, ’

which yields the following second-order determinantal equa-
tion for A2

AN =21 +B+DPHION2+(2-DP)(28-D?) =0. (25

In absence of rotation, i.e., feb=0, the normal-mode fre-
quencies are given by, =2 and\,= V28, i.e., are those of
the uncoupled harmonic oscillation modes in theand y
directions. In presence of rotation, an inspection of &)
reveals that the frequenedybecomes imaginary, showing the
appearance of an unbound motion, when the angular fre-

quency® of rotation satisfies the condition
FIG. 1. Beam propagation in an astigmatic graded-index optical

fiber. In the figure(x’,y’) is the laboratory reference framé,y) \E <P < \/TB. (26)
is the rotating reference frame that follows the fiber twi$z) is the
twist angle, and is the fiber propagation axis.

In terms of our fiber model, this means that the ray trajecto-
ries are unbounded, i.e., the fiber ceases to trap paraxial rays,
1 when the fiber twist rate falls in between the spatial fre-

— T2 2 quencies\, and\, that define the periodic focusing proper-
Vixy) 2(X +AY): 20 ties along thex ayndy directions of the untwisted graded-
index fiber, i.e., the GRIN fiber “pitch” in the two directions.
Note that the range of ray instability shrinks as the ellipticity
parameterB gets close to one, i.e., when the fiber becomes

Similarly, in the rotating reference frame the ray equation
(14) and(15) take the form

d?x de\? dody circular. From a physical viewpoint, the appearance of the
42 =-|Z- (d_z) dzdz’ (21 instability as the twist ratéd increases abovk, is due to the
increase of the centrifugal force in E@3), which becomes
5 5 larger than the attractive harmonic force in thalirection.
ay__ { 8- (d_e) } - 2d_9d_x (22)  However, asb is increased above, though the centrifugal
dZ dz dzdz force increases, the Coriolis force becomes important to re-

tore the confinement, and paraxial rays are thus again

A particularly simple and important case is that of a constan rapped by the graded-index fiber.

twist rate, i.e.df/dz=®d =const, which corresponds to a lin-
ear increase of the twist angle with propagation distance.
Note that in this case the ray and wave dynamics in the IV. WAVE ANALYSIS
rotating reference frame, as ruled by E¢E3)—(22), is gov-

ered by a set of autonomous equations. In the following, we N this section we study in detail the beam propagation
will limit our analysis to the linear twist case. dynamics in the twisted optical fiber using the beam propa-

gation equatior{18) written in the rotating reference frame.
We will first show that the dynamical equations for the beam
Il RAY ANALYSIS center of mass are the same as those obtained in the

The ray equation§21) and(22) in the rotating reference geome_tric-optic limit. Furthgr in.SightS into_ the d_ynamics of
frame can be written in the compact Newtonian form as an arbitrary beam propagating into the twisted fiber are then
given by deriving a closed system of coupled linear equa-

dr ) dr tions for certain average beam parameters, or beam mo-
md_zz == VV+mQT -2mQ X dz’ (23 ments. Such an analysis reveals the existence of a beam mo-
ment instability in addition to the rayor beam centgr
where r=(x,y) is the ray displacement=(d6#/d2u, instability. A detailed analysis is finally presented for the
=du,, V(x,y) is given by Eq(20), andm=1/2. Inthis form,  dynamics of Gaussian beams, which propagate along the fi-
Eq. (23) describes the Newtonian motion of a massn a  ber maintaining their invariant functional form. For the fol-
noninertial reference frame, rotating at the angular frequenciowing analysis and considering the mechanical analogy out-
Q, subjected to an anisotropic harmonic potenték,y).  lined in the preceding section, it is worth observing that Eq.
Such an equation is discussed in many mechanics textbook8) is the quantum-mechanical Schrodinger equation of the
and, as shown by Lam[R9], it describes the dynamics of classical Blackburn’s pendulum, with=1/2 ands=1. Note
Blackburn’s pendulum, a pendulum with different effective that, since the equation is written in a noninertial reference
lengths in two orthogonal directions on a turntable. Theframe, the Hamiltoniari{, given by Eq.(19), contains the
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additional angular momentum operatof,=-i(xd/dy coupled equation&21) and(22) valid in the geometric-optic
-yalx) (see, for instance, Ref38]). In a different but simi-  limit, i.e., the beam trajectory coincides with the ray trajec-
lar interpretation, Eq(18) can be viewed as a Schrodinger tory. This result, which follows from the quadratic depen-
equation of a charged particle in an inertial reference framelence of the refractive index profile arandy, demonstrates
subjected to an anisotropic harmonic force in presence of that a beam trajectory instability occurs, as in the geometric-
static magnetic field oriented along the fiberaxis [38].  optic limit, when the twist rate satisfies the condition ex-
Since the Hamiltoniari{ given by Eq.(19) is self-adjoint, pressed by Eq.26).

for any z-independent operato, the mean valug(A)

= [dxdy ¢ Ay satisfies the evolution equation B. Beam moment analysis
d{A) , To better characterize the beam propagation properties, it
dz LA HD, (27)is worth considering the dynamics of some mean beam pa-

rameters related to, e.g., the beam spot sizes along the two
which involves the commutatdrAd,H]=AH-HA. Equa- transverse andy directions, beam angular momentum, and
tion (27) will be used to study the dynamics of certain meanhigher-order beam moments. Beam moment analysis has
beam parameters. Without loss of generality, we will assuméeen widely used to study exa¢dbr approximatg beam
in the following the normalization conditiofidxdy]#{>=1  propagation in nonastigmatic optical systems, either in the
for the optical field. linear or nonlinear propagation regimgz2,23,39. In a cir-
cular graded-index fiber, a set of closed equations for few
beam momentéusually threg can be derivedsee, e.g., Ref.

A. Beam trajectory analysis [22]). The introduction of a fiber twist, associated with the
Let us first consider the evolution equations for the bean@istigmatic refractive index profile, leads to a coupling of
center of mass coordinates: beam moments in the orthogonablndy directions, so that

to obtain a set of closed equations one needs to include in the
_ _ Iculations up to ten beam moments, naméls), (y?),
(x) = J dxdy Xy, (y)= J dxdy yy?. (29 %2
W Y (X(a13x)), (9] ay)), (1 ax), (71 ay?), (x(al 3y)), {y(d] ax)),
(Plaxay), and{xy). Indeed, using Eq(27) one can show

Using the commutation rules )
that (see Appendix A

J
[X,H]=2—+idy, (29 d P
9X d—z<x2> =-2 <1 + 2<x0—x>> + 2d(xy), (37
[y, H]= 2(% —idx, (30 ; ;
H 2 = — o A
dZ(y)— 2|<1+z<y&y>> 2d(xy), (39
{a ] AV )
—H|=—+iD—=x+id—, (31
ax dx ay ay d/ o VAN J a
—<x—>:—2|<—2 —|<x2)+d>(<x—>+<y—>>,
dz\ dx X ay ax
[i H]—ﬂ/—icbi—ﬂ il (32) (39
ay T ey T Cax TP T
f_rom Eqg. (27) we obtain the following set of coupled equa- 9 Y o ( 9 9 )
tions: a\Vay) =25z ) i = (s )+ (vl ) ).
) _ (2 (40)
e 2|<(9X>+<I><y), (339
d/ # ] &
M=—2i<i>—<1><x>. (34 d_z<é_x2>__'_2'<xﬂ_x>+2®<&x&y>’ @
dz ay

d/ & 9 &
d/ o , J —( 5 ) =-ig-2ipl y— ) - 20 , (42
d_z<5<>:_'<x>+®<@>’ (39 dz<ay2> '8 'B<y&y> <f9><¢9y> “
d/ o _ J da/f 9 \__. il 7
d_z<5/> =-iBly) - (D<(?_x> (36) dz<xay> ==iB(xy) 2|< axay>

If we eliminate from these equations the mean vali#ésx) +<I)< yi B xi ) (43)
and (d/dy), one easily obtains fofx) and (y) the same ay d '
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0.75 view, the existence of a beam moment instability means the
o divergence of mean beam parameters in addition to beam
‘§ 0.50 trajectory, in particular, of the beam transverse sizes. In fact,
= let us assume for the sake of clearness that the injected beam
% 025 has its center of mass on thaxis, i.e.(x)=(y)=0, so that in
S absence of perturbations the beam center remains on the fiber
axis during propagation. In this case, though the beam re-
0.00 mains centered into the fiber axis, its transverse sizes along
10 0 the x andy directions, given byw,=[{(x—(x))?]*2=(x??2
and wy,=(y?'2, asymptotically grow. This behavior will be
2 S illustrated in detail in the following section in case of a
5 0 Gaussian beam.
=
&
R -5 C. Gaussian beam dynamics

-10

A particular and important case, which also helps us to
clarify the onset of beam moment instability discussed in the
Twist rate @ preceding section is that of Gaussian beams, which propa-
gate in the fiber without changing its functional form. In fact,
let us search for a solution to the beam propagation equation
(18) in the form of an astigmatic Gaussian beam:

FIG. 2. (a) Real part(growth rat¢ of the most unstable eigen-
value of the moment matriX1 vs fiber twist rateb and(b) imagi-
nary parts(frequenciey of the matrix eigenvalues. Fiber ellipticity

parameter3=2. The shaded areas correspond to the ray trajectory W(x,y,2) = A2)exp— v (2)[x - Xo(Z)]Z‘ )’y(Z)[y— YO(Z)]2
instability domainy 2<P<y 2,8

= 2p(2[x = xo(2 Iy - Yo(2 I}, (47
d ) ) P where A is the complex-valued amplitude of the Gaussian
dz y— i(xy) = 2i Ixay beam,x, and y, are the real-valued beam center of mass

coordinates, angy, vy, p are the complex-valued parameters
( 9\ xi ) (44) of the astigmatic Gaussian beam which determine beam

yay ax/] )’ sizes, beam phase front curvatures, and beam rotation angle.
The conditions Rey,) >0, Re ) >0, and

d< P > < (9> < > Re(y,)Re(y,) >[Re(p)]* are assumed to ensure that
=-i iB\y—— i

Jdxdy] ¢{2< . Substitution of Eq(47) into Eq.(18) yields a
set of ordinary differential equations for the beam param-
& &+ eters. In particular, according to the general result of Sec.
+‘I’( _> < >> (45 VA, it is found that the beam center of mass coordinates
Xo(z) andyy(z) satisfy the ray trajectory equatioigi®@l) and

(22), whereas the complex beam parametggsy,, and p
E(xy} - 2i<xi> _ 2i<yi> +D((y2) - (). satisfy the following coupled nonlinear equations:
Jd X

d ) ) i

(46) d—yzxz—m;&—4.p2+§+zq>p, (48)
The previous equations represent a system of nonhomoge-

neous linear equations. The eigenvalues of th& 10 ma- dy, ) .

trix M of the associated linear homogeneous system, whose e div}~ 4ip® + ot 2Pp, (49

elements depend on the fiber twist rdteand ellipticity pa-
rameterB, govern the beam moment stability. For parameter
values where the matrix eigenvalues are purely imaginary, do _ == diyp—diyp+ Dl — ¥ (50)
the imaginary parts of the eigenvalues provide the normal- dz
mode oscillation frequencies of the beam moments. Whe
the real part of at least one eigenvalue becomes positive,
beam moment instability appears. An analysis of the matrix
eigenvalues, whose explicit expression is given in Appendix NE )
B, shows that eigenvalues with a positive real part exist in A2 =A(0)exp[— 2 J dz %(Z) - 2i f dz'/(Z')
the parameter range where the ray trajectory instability oc- 0 0
curs, i.e., when\2<d)\2ﬂ [see Eq.(26)]. As an example,

f dZ’Xo(z)——J dz'y5(Z ]

I&inally, the complex beam amplitud¥z) is then found by
e equation

z

Fig. 2 shows the behavior of the real and imaginary parts of (51)

the matrix eigenvalues as functions of the fiber twist ate
for an ellipticity paramete3=2. From a physical point of Note that the dynamics of the beam parametgrsy,, andp
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W

FIG. 3. Astigmatic Gaussian beam profile, in the rotating refer-
ence framex,y), expressed by Eq47) with xg=y,=0. The rela-
tions between ellipse parameteng, w,, ¢, and complex beam
parametersy,, y,, andp entering in Eq(47) are given in the text

[Egs. (52~55)].

is decoupled from that of the beam center of mass coordi-

natesxq(z), Yo(z), so that we will consider the case of a
Gaussian beam centered on the fiber &xjsy,=0). In this
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FIG. 4. Steady-state Gaussian modes of the twisted fiber in the
rotating reference fram&a) and (b) show the real and imaginary
parts, respectively, of the Gaussian beam parameggrssolid
lines), y, (dashed lines andp (dotted lines vs the fiber twist rate
®. The shaded area represents the instability dom2ia ® < V28,
where the plotted solution does not lead to a confined Gaussian
mode. Fiber ellipticity parametgg=2.

case, one can easily show that the loci of points satisfying

the condition |¢(x,y,2)/4(0,0,2)[>=1/€? is an ellipse of
Cartesian equation Re,)x?+Re(y,)y*+2Rep)xy=1, whose
semiaxes of lengtlwv,;(z) andw,(z) are tilted with respect to
the x axis by an angles(z), given by(see Fig. 3

2Rep)
Rd‘yx) - Rqyy) .

The ellipticity parametee=(w,/w;)? and semiaxesv, and
w, are then given by

tan2¢) = (52)

(53)

(54)

(55)

whereq=Re(y,+ y,)sin(2¢)/[2Rep) ]. We can first look for
steady-state solutions to Eqg8)—50), which correspond to
Gaussian-like beams that follow the fiber twist, i.e., which
are stationary in the rotating reference frarfiey). In
steady-state the beam paramepers found to satisfy the
algebraic cubic equation

Cop’ +Cip*+ Cop+C3=0, (56)
where the coefficients,, c,, andc; are given by
Cr=32d(1-p)+64iP(B-1), (57)

c; = 4(1+ B - 29?2 - 168, (58)
C= - 2AD(1-pB)(1+B- 2P, (59
(1)2
C3:_I(1_,3)2- (60)
The parameters, and y, are then given by

- 8ip?+i+4d

W= \/%, (61)
i

- 8ip’+iB - 4d

e \/ : siﬂ g 62

The solutions to Eq56), (61), and(62) which are physi-
cally acceptable must satisfy the conditions (&> 0,
Re(y,) >0, and Réy,)Re(y,) >[Re(p)]>. A numerical analy-

sis of Egs.(56), (61), and (62) shows that for a twist rate
outside the domain of ray instability, i.e., fab<<\2 or

® > 23, there exists one acceptable branch solution wjth

¥ burely real andp purely imaginary(see Fig. 4 As ®
approaches the boundary of instabilities, eitlgor y, goes

to zero, indicating that the stationary modes degenerate into
a strongly elliptical Gaussian beam. In the domain of ray
instability, i.e., for\f§<d>\s’2ﬂ, there exist two distinct solu-
tions to Egs(56), (61), and(62), with complex values fow,,

%, p and with Réy, ) >0. One of such branch is shown in
Fig. 4 inside the shaded area. However, since for both
branches it turns out that R@)Re(yy)=[Re(p)]2, these so-
lutions do not correspond to localized Gaussian modes. In
summary, the domain of ray and wave instability corre-
sponds to that of nonexistence of stationary Gaussian modes
in the rotating reference frame.

To get further physical insights into the dynamics of
Gaussian beams, we integrated numerically E48)—(50)
using an accurate fourth-order Runge-Kutta algorithm with
variable step; as an initial condition, we chose the astigmatic
fundamental Gaussian mode of the untwisted fiber, which
would propagate without distortion, i.e., we set(0)
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FIG. 5. Gaussian beam dynamics in the adiabatic propagation FIG. 6. Same as Fig. 5, but in the instability propagation regime.
regime.(a) Behavior of elliptical Gaussian beam sizgsandw, vs Parameter values a@=2 and®=1.8.
normalized propagation distanoe zd/(27). (b) Behavior of beam
ellipticity e=(w,/w;)? vs normalized propagation distange) Be- ) o
havior of beam ellipse rotation angté vs n. (d) Behavior of on-  Indeed, for very large twist rates, the beam dynamics is not
axis beam intensitjA(2)|%, normalized to its value a=0, vsn. The ~ able to follow the rapidly varying twist rate, and at leading
Gaussian beam parametevs w,, and ¢ are defined according to Order the beam sees an “average” graded-index fiber with a
Fig. 3. The normalized variable measures the propagation dis- z-independent refractive index profile given by the spatial
tance along the fiber in units of fiber rotational twist. Parameteraverage, with respect ta, of the actual profilen(x,y,z)
values are8=2 and®=0.8. given by Eqs(2) and(3). This averaging leads to an average

circular refractive index profile, and beam propagation is

:1/(2\@), yy(o):\ﬁlé/(z\@), and p(0)=0. Three typical dy- thus ruled out by the equations of a nonastigmatic parabolic
namical regimes have been found from the numerical analydraded-index fibecfor the concept of average guiding see,
sis depending on the value of the twist rabe the “adia-  for instance, Ref[15]).
batic” regime for ®<y2, the instability regime for

V2<d <28, and the “averaging” regime fab > 2. Fig- 2.0 : : : | |

ures 5-7 show a typical evolution of Gaussian beam sizes (a) 20 (b) _
w;(2), Wy(2), beam amplitudé\(z), beam ellipticitye(z), and Q jl\/\vl‘,vl\fm/\v/\v E

tilting angle ¢(z) (with respect to the rotating axis see Fig. 5 B, y
3) for a twist rate® chosen in the three above mentioned &, 1.5 [ A =is

regimes. Note that, for a twist rate below 2 (the adiabatic é WWWWVI\ ;

regime, small quasiperiodic variations of beam parameters § " 1T 8 r

are observedsee Fig. 5; in particular the anglep displays R Lo | | | f-‘ﬂl 0 , ,

small oscillations around zefsee Fig. £)], indicating that 0 5 10 "0 5 10
the elliptical beam adiabatically follows the fiber twist. Con- Normalized propagation distance z®/(27)
versely, inside the instability regiaisee Fig. 6 an exponen-

tial growth of beam ellipticity and beam size is obserygge © 125

Figs. @a) and &b)], with a corresponding decrease of the & © > @' '
on-axis Gaussian beam amplitufiee Fig. 6d)]. Note that = B 12 K )
the angle of elliptical beam stabilizes now to a nonvanishing.g -10 i~ 4 5100 AANANANNN
zero value, i.e., the orientation of the elliptical beam in the g - - E - -
rotating reference frame settles down to a stationary valueg 4 | -4 Bors | -
and the beam then follows the fiber twist. However the fiber &, o

loses inihis case its guiding properties. For a twist rateE | | ©) i | | | |
above V28 (the averaging regime; see Fig), & scenario 30, s TIAT p 10
similar to ® <2 is observed, however here the angie) Normalized propagation distance z®/(27)

does not settle down to a steady-state value but varies almost
linearly with longitudinal distance, i.e., the elliptical Gauss- FIG. 7. Same as Fig. 5, but in the average propagation regime.
ian beam orientation does not follow anymore the fiber twist.Parameter values a@=2 and®=3.
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v.  # (a3
X H| =X +2 5 +id(x—+
dX

V. CONCLUSIONS P 9
dx oy Yax

In this work we have studied analytically and numerically
the ray and wave dynamics of an elliptical graded-index op- _ F
tical fiber with a twisted axis, and we have shown the exis- =X zﬁ e
tence of both a ray and a beam instability. The ray trajecto-
ries, found from Fermat’s principle, turn out to be analogous [ p } 5 ( p >

xi+ i) (A3)
ay yax ’

to the trajectories of a rotating Blackburn's pendulum, the = H :y&_ +2‘7_ —id xi +y—

twist rate playing the same role as the rotational frequency ay’ ay ay° dy "X

(Sec. ll)). The existence of the twist-induced instability is P P P

due to the destabilizing effect of the centrifugal force as the =By?+2— - i<I)<x— + y—), (A4)
rotation frequency increases above the lower oscillation fre- ay dy "Ix

quency of the pendulum. However, as the rotation frequency
becomes larger than the upper oscillation frequency of the { P H} AN 9V a

pendulum, the stability of trajectories is restored due to the 2T g *2

i
o oa _ ax2 Taxax axXay
stabilizing effect of the Coriolis force. The beam propagation 5

equation, in the scalar and paraxial approximation, is gov- _ 9

erned by a Schrddinger-like equation which is the quantum- =1t Zxax ¥ ZI(D&x&y' (AS)
mechanical model of the Blackburn’s pendulum. For a con-

stant twist rate, the dynamics can be made autonomous using P AV 9V 9 P

a noninertial rotating reference frang8€ec. I). Due to the [—ZH] =——S+2—— -2

quadratic form of the refractive index profile, the beam tra- ay ay- dydy axay

jectory coincides with that of optical rays in the geometric- 9

optic limit, and thus any beam suffers from a trajectory in- =p+2 v 2@8“ ; (AB)
stability (Sec. IV A). In addition, by means of a generalized y y

beam moment analysis, we have shown that in the trajectory

instability region a beam moment instability also occurs {xi H] _ ﬂ/+2 & L ( 9 i)

(Sec. IV B). A detailed analysis of the beam dynamics has ay’ B ay IXay yay Y

been provided in case of Gaussian beam propag&fec. 5

IV C). In particular, we have pointed out the existence of = Bxy+2 J +iq)<yi _Xi>, (A7)
basically three distinct dynamical regimes: the adiabatic re- IxXay ay d

gime for low values of the twist rate, the instability regime

for intermediate values of twist rate, and the averaging re- [ 9 } 9 9

gime for high values of the twist rate. We envisage that our y— H|l=y—+2 + (y— - —>
analysis may provide an experimentally accessible system in Ix Ix  IXIX ay X

the optical field to study basic classical and quantum dy- & ) J J

namical behaviors found in other physical systems, in par- =Xxy+ zﬁxay (ya_ ‘ng’ (A8)

ticular, the center-of-mass instability of Bose-Einstein con-
densates in an anisotropic rotating tf&1,40.

{az ] A IV IV _(&2 92)

JH | = +——+——+id

IXay IxXady IXdy dJydx

APPENDIX A: DERIVATION OF THE BEAM MOMENT P P 2 R
EQUATIONS =X—+ By— +i®| — - — |,
Q Xay ,8an I (ay2 ax2>

The set of closed equations for the beam moments given

by Egs.(37)—(46) in the text are the evolution equations of d a s,

mean values for the operatos, y2, x(d/dx), y(dlay), [XV*H]ZZV&_XJ’ZXE*"CD(V =), (A10)

Plox?, Play?, x(alay), y(alax), &#*1axdy, and xy. Such

equations are easily obtained from Eg7) once the follow- where the potentiaV/(x,y) is expressed by E¢20) given in

ing commutation rules are used: the text.

P APPENDIX B: BEAM MOMENT STABILITY—MATRIX
X2 H]=2+ 4X(9_x + 2idxy, (A1) EIGENVALUES
The eigenvaluea. of the 10X 10 matrix M associated

with the linear part of EQ37)—(46) given in the text can be
calculated analytically and read explicitly:

201 9
[y ’H]_2+4yay 2idxy, (A2) \1,=0, (B1)
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N3a= £\-1-B-D2—(1-28+ B2+ 402+ 4BD2)2, N7g= 2= 1-p-D2-[(D?-2B)(d? - 2)]72,
(B2) (B4)
Nsg= t\—1-B- D>+ (1-28+ 2+ 4D? + 4pD%)'2, o 10= +\2\= 1 -~ %+ [(®? - 28) (D2~ 2)]*2.
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