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We study ray and wave propagation in an elliptical graded-index optical fiber or lens with a twisted axis and
show analytically the existence of an instability for both ray trajectories and beam moments in a finite range of
axis twist rate embedded within the spatial frequencies of periodically focused rays for the untwisted fiber. By
considering the paraxial ray equations and the paraxial wave dynamics in a rotating frame that follows the fiber
axis twist, we reduce the dynamical problem of ray trajectories to the classical Blackburn’s pendulum, which
shows a dynamical instability, corresponding to classical diverging trajectories, due to the competing effects of
confining potential, Coriolis force, and centrifugal force. A closed set of linear evolution equations for gener-
alized beam moments are also derived from the paraxial wave equation in the rotating reference frame,
revealing the existence of a dynamical moment instability in addition to the trajectory instability. A detailed
analysis of beam propagation is presented in case of a Gaussian beam, and different dynamical regimes are
discussed.
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I. INTRODUCTION

The study of ray and wave propagation in confining opti-
cal structures, such as optical fibers, waveguides, photonic
crystals, periodic focusing systems, and resonators plays a
major role in the understanding the basic properties of light
guiding underlying the operation of many optical and photo-
nic components and laser devices. The close analogy of wave
optics and wave mechanics, and their respective limits of
geometric optics and Newtonian dynamics(see, e.g., Refs.
[1,2]), has continuously brought into the optical research
many ideas and concepts drawn from quantum physics, most
notably the recent invention and development since the last
two decades of photonic crystals(see, e.g., Ref.[3]). At the
same time, guided optical systems may be used to test many
quantum-mechanical effects including, among others, the is-
sue of tunneling times across a potential barrier[4–7], quan-
tum chaos[8], Bloch oscillations in a periodic potential
[9–11], Anderson localization[12–14], and wave packet dy-
namics of atoms in high fields[15]. The most simple and
studied analogy between guided optics and quantum me-
chanics is perhaps the parabolic graded-index(GRIN) fiber
or lens and the quantum harmonic oscillator(see, e.g., Refs.
[16–21]). This analogy is further attractive in the nonlinear
propagation regime, i.e., when the optical Kerr effect is con-
sidered, since in this case beam propagation in the graded-
index parabolic fiber bears a close connection with the dy-
namics of an attractive Bose-Einstein condensate in a
harmonic potential. Such an analogy stems from the formal
equivalence between the nonlinear Schrödinger equation of
the optical field and the Gross-Pitaevskii equation for the
macroscopic condensate wave function in the mean-field
limit (see, e.g., Refs.[22,23]). A rather general and well-
known phenomenon of ray and wave propagation in para-
bolic graded-index fibers(or in periodically focusing sys-
tems) is the appearance of ray and wave instabilities when
the optical axis deviates from straightness[24–26] or in pres-
ence of perturbations or modulations, either periodic, quasi-

periodic, or stochastic[13,22,26,27]. Such instabilities can
be ultimately explained in terms of either a direct or a para-
metric forcing of the unforced harmonic oscillator dynamics,
and may persist even in presence of nonlinear effects
[22,28].

In this work we study analytically and numerically the
dynamics of ray and wave propagation in an astigmatic
parabolic-index optical fiber or lens with a twisted optical
axis in the linear propagation regime. The geometric-optic
limit of ray dynamics in the twisted fiber turns out to be
equivalent to the dynamics of a classical Blackburn’s pendu-
lum (see, for instance, Ref.[29]), and shows a dynamical
instability within a finite range of fiber twist rate, corre-
sponding to classical diverging trajectories, due to the com-
peting effects of confining potential, Coriolis force, and cen-
trifugal force. Owing to the parabolic form of the fiber index
profile, the motion of the beam center of mass is ruled out by
the same geometric-optic ray equations and thus shows the
same trajectory instability. A closed set of equations for gen-
eralized mean beam parameters(beam moments) is also de-
rived, which show the occurrence of a beam moment insta-
bility in addition to the trajectory instability. Such an
instability bears a close connection with the dynamic insta-
bility of a Bose-Einstein condensate subjected to a rotating
harmonic potential[30,31], which has been studied in the
hydrodynamic approximation(i.e., in the strongly nonlinear
regime) of the nonlinear Schrödinger equation[30,31] and
related to the spontaneous formation of vortices(see, for
instance, Refs.[30,32,33]). The paper is organized as fol-
lows. In Sec. II the basic model of the graded-index astig-
matic fiber with a linearly twisted axis is presented, and the
basic beam propagation equation in the paraxial and scalar
approximations is derived in a rotating reference frame. Sec-
tion III deals with the geometric-optic limit and the classical
Blackburn’s pendulum analogy, revealing the existence of a
trajectory instability for the optical rays. Section IV is de-
voted to the beam propagation problem. By using a beam
moment method, we show analytically that in the dynamical
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region corresponding to geometric-optic ray instability a
beam moment instability occurs as well. Such an instability
manifests itself in a growth of beam ellipticity and beam size
even though the beam remains centered on the fiber axis. A
detailed analysis is presented in case of Gaussian beam
propagation. Finally in Sec. V the main conclusions are out-
lined.

II. RAY AND WAVE PROPAGATION IN AN ASTIGMATIC
GRADED-INDEX OPTICAL FIBER WITH A

TWISTED AXIS: BASIC EQUATIONS

We consider a graded-index optical fiber or GRIN lens
with an astigmatic parabolic index profile of the form

nsX,Yd = n0 − 1
2sgxX

2 + gyY
2d, s1d

wheren0 is the on-axis fiber refractive index,gx=2n0D / rcx
2

and gy=2n0D / rcy
2 are the graded-index parameters in the

transverseX andY directions,D sD!1d is the relative index
difference between the core and the cladding, andrcx andrcy
are the semiaxis sizes of the elliptical fiber core. We further
assume that the fiber is twisted around its axisZ and indicate
by u=usZd the twist angle. If we account for the fiber twist,
the refractive index profile of the fiber then reads

nsX,Y,Zd = n0 − n1sX,Y,Zd, s2d

where

n1sX,Y,Zd = 1
2fgxsX cosu + Y sin ud2 + gys− X sin u

+ Y cosud2g. s3d

The ray dynamics in the paraxial approximation for the ray
displacementsXsZd and YsZd is governed by the ray equa-
tions, as derived from Fermat’s principle, which forun1u
!n0 read(see, for instance, Ref.[34])

d2X

dZ2 +
1

n0

] n1

] X
= 0, s4d

d2Y

dZ2 +
1

n0

] n1

] Y
= 0. s5d

Similarly, the wave dynamics, in the paraxial and scalar ap-
proximations and assuming that the beam width is suffi-
ciently smaller as compared torcx andrcy, is governed by the
following equation for the wave fieldcsX,Y,Zd (see, e.g.,
Refs.[35–37]):

i
] c

] Z
= −

1

2k
¹'

2 c +
k

n0
n1sX,Y,Zdc, s6d

where¹'
2 is the transverse Laplacian,k=n0v /c is the propa-

gation constant in the cladding, andv the angular frequency
of the wave. For the following analysis, it is worth introduc-
ing the dimensionless spatial variables

z=Î gx

2n0
Z, x8 = S2kÎ gx

2n0
D1/2

X, y8 = S2kÎ gx

2n0
D1/2

Y

s7d

and the ellipticity fiber core parameter

b =
gy

gx
= S rcx

rcy
D2

, s8d

which we assume to be larger than one for the sake of defi-
niteness. Using Eqs.(3), (7), and (8), the propagation wave
equation(6) takes the scaled form

i
] c

] z
= f− ¹'

2 + V8sx8,y8,zdgc, s9d

where

V8sx8,y8,zd = 1
2ssxxx82 + syyy82 + 2sxyx8y8d, s10d

sxxszd = cos2uszd + b sin2uszd, s11d

syyszd = sin2uszd + b cos2uszd, s12d

sxyszd = s1 − bdsinuszdcosuszd, s13d

and the Laplacian acts on the normalized transverse spatial
variablesx8 andy8. Similarly, the ray equations(4) and(5) in
the dimensionless spatial variables read

d2x8

dz2 = − 2ssxxx8 + sxyy8d, s14d

d2y8

dz2 = − 2ssxyx8 + syyy8d. s15d

Instead of considering the ray or wave dynamics in the
sx8 ,y8 ,zd reference frame, it is worth introducing a rotating
reference framesx,y,zd that follows the fiber twist, i.e., we
make the change of variables(see Fig. 1)

x = x8 cosuszd + y8 sinuszd, s16d

y = − x8 sinuszd + y8 cosuszd. s17d

In the rotating reference frame, the scalar wave equation(9)
takes the canonical form

i
] c

] z
= Hc, s18d

where

H ; − S ]2

] x2 +
]2

] y2D + i
du

dz
Sx

]

] y
− y

]

] x
D + Vsx,yd

s19d

and
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Vsx,yd =
1

2
sx2 + by2d. s20d

Similarly, in the rotating reference frame the ray equations
(14) and (15) take the form

d2x

dz2 = − F2 −Sdu

dz
D2Gx + 2

du

dz

dy

dz
, s21d

d2y

dz2 = − F2b − Sdu

dz
D2Gy − 2

du

dz

dx

dz
. s22d

A particularly simple and important case is that of a constant
twist rate, i.e.,du /dz=F=const, which corresponds to a lin-
ear increase of the twist angle with propagation distance.
Note that in this case the ray and wave dynamics in the
rotating reference frame, as ruled by Eqs.(18)–(22), is gov-
erned by a set of autonomous equations. In the following, we
will limit our analysis to the linear twist case.

III. RAY ANALYSIS

The ray equations(21) and (22) in the rotating reference
frame can be written in the compact Newtonian form as

m
d2r

dz2 = − = V + mV2r − 2mV 3
dr

dz
, s23d

where r =sx,yd is the ray displacement,V=sdu /dzduz

=Fuz,Vsx,yd is given by Eq.(20), andm=1/2. In this form,
Eq. (23) describes the Newtonian motion of a massm in a
noninertial reference frame, rotating at the angular frequency
V, subjected to an anisotropic harmonic potentialVsx,yd.
Such an equation is discussed in many mechanics textbooks
and, as shown by Lamb[29], it describes the dynamics of
Blackburn’s pendulum, a pendulum with different effective
lengths in two orthogonal directions on a turntable. The

normal-mode frequenciesl of the pendulum can be easily
found by looking for a solution of Eqs.(21) and (22) in the
form:

Sxszd
yszd

D = Sx̄

ȳ
Dexpsilzd, s24d

which yields the following second-order determinantal equa-
tion for l2:

l4 − 2s1 + b + F2dl2 + s2 − F2ds2b − F2d = 0. s25d

In absence of rotation, i.e., forF=0, the normal-mode fre-
quencies are given bylx=Î2 andly=Î2b, i.e., are those of
the uncoupled harmonic oscillation modes in thex and y
directions. In presence of rotation, an inspection of Eq.(25)
reveals that the frequencyl becomes imaginary, showing the
appearance of an unbound motion, when the angular fre-
quencyF of rotation satisfies the condition

Î2 , F , Î2b. s26d

In terms of our fiber model, this means that the ray trajecto-
ries are unbounded, i.e., the fiber ceases to trap paraxial rays,
when the fiber twist rateF falls in between the spatial fre-
quencieslx andly that define the periodic focusing proper-
ties along thex and y directions of the untwisted graded-
index fiber, i.e., the GRIN fiber “pitch” in the two directions.
Note that the range of ray instability shrinks as the ellipticity
parameterb gets close to one, i.e., when the fiber becomes
circular. From a physical viewpoint, the appearance of the
instability as the twist rateF increases abovelx is due to the
increase of the centrifugal force in Eq.(23), which becomes
larger than the attractive harmonic force in thex direction.
However, asF is increased abovely, though the centrifugal
force increases, the Coriolis force becomes important to re-
store the confinement, and paraxial rays are thus again
trapped by the graded-index fiber.

IV. WAVE ANALYSIS

In this section we study in detail the beam propagation
dynamics in the twisted optical fiber using the beam propa-
gation equation(18) written in the rotating reference frame.
We will first show that the dynamical equations for the beam
center of mass are the same as those obtained in the
geometric-optic limit. Further insights into the dynamics of
an arbitrary beam propagating into the twisted fiber are then
given by deriving a closed system of coupled linear equa-
tions for certain average beam parameters, or beam mo-
ments. Such an analysis reveals the existence of a beam mo-
ment instability in addition to the ray(or beam center)
instability. A detailed analysis is finally presented for the
dynamics of Gaussian beams, which propagate along the fi-
ber maintaining their invariant functional form. For the fol-
lowing analysis and considering the mechanical analogy out-
lined in the preceding section, it is worth observing that Eq.
(18) is the quantum-mechanical Schrödinger equation of the
classical Blackburn’s pendulum, withm=1/2 and"=1. Note
that, since the equation is written in a noninertial reference
frame, the HamiltonianH, given by Eq.(19), contains the

FIG. 1. Beam propagation in an astigmatic graded-index optical
fiber. In the figure,sx8 ,y8d is the laboratory reference frame,sx,yd
is the rotating reference frame that follows the fiber twist,uszd is the
twist angle, andz is the fiber propagation axis.
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additional angular momentum operatorLz=−isx] /]y
−y] /]xd (see, for instance, Ref.[38]). In a different but simi-
lar interpretation, Eq.(18) can be viewed as a Schrödinger
equation of a charged particle in an inertial reference frame
subjected to an anisotropic harmonic force in presence of a
static magnetic field oriented along the fiberz axis [38].
Since the HamiltonianH given by Eq.(19) is self-adjoint,
for any z-independent operatorA, the mean valuekAl
;edxdyc*Ac satisfies the evolution equation

dkAl
dz

= − ikfA,Hgl, s27d

which involves the commutatorfA ,Hg=AH−HA. Equa-
tion (27) will be used to study the dynamics of certain mean
beam parameters. Without loss of generality, we will assume
in the following the normalization conditionedxdyucu2=1
for the optical field.

A. Beam trajectory analysis

Let us first consider the evolution equations for the beam
center of mass coordinates:

kxl =E dxdy xucu2, kyl =E dxdy yucu2. s28d

Using the commutation rules

fx,Hg = 2
]

] x
+ iFy, s29d

fy,Hg = 2
]

] y
− iFx, s30d

F ]

] x
,HG =

] V

] x
+ iF

]

] y
= x + iF

]

] y
, s31d

F ]

] y
,HG =

] V

] y
− iF

]

] x
= by − iF

]

] x
s32d

from Eq. (27) we obtain the following set of coupled equa-
tions:

dkxl
dz

= − 2iK ]

] x
L + Fkyl, s33d

dkyl
dz

= − 2iK ]

] y
L − Fkxl, s34d

d

dz
K ]

] x
L = − ikxl + FK ]

] y
L , s35d

d

dz
K ]

] y
L = − ibkyl − FK ]

] x
L . s36d

If we eliminate from these equations the mean valuesk] /]xl
and k] /]yl, one easily obtains forkxl and kyl the same

coupled equations(21) and(22) valid in the geometric-optic
limit, i.e., the beam trajectory coincides with the ray trajec-
tory. This result, which follows from the quadratic depen-
dence of the refractive index profile onx andy, demonstrates
that a beam trajectory instability occurs, as in the geometric-
optic limit, when the twist rate satisfies the condition ex-
pressed by Eq.(26).

B. Beam moment analysis

To better characterize the beam propagation properties, it
is worth considering the dynamics of some mean beam pa-
rameters related to, e.g., the beam spot sizes along the two
transversex andy directions, beam angular momentum, and
higher-order beam moments. Beam moment analysis has
been widely used to study exact(or approximate) beam
propagation in nonastigmatic optical systems, either in the
linear or nonlinear propagation regimes[22,23,39]. In a cir-
cular graded-index fiber, a set of closed equations for few
beam moments(usually three) can be derived(see, e.g., Ref.
[22]). The introduction of a fiber twist, associated with the
astigmatic refractive index profile, leads to a coupling of
beam moments in the orthogonalx andy directions, so that
to obtain a set of closed equations one needs to include in the
calculations up to ten beam moments, namelykx2l, ky2l,
kxs] /]xdl, kys] /]ydl, k]2/]x2l, k]2/]y2l, kxs] /]ydl, kys] /]xdl,
k]2/]x]yl, and kxyl. Indeed, using Eq.(27) one can show
that (see Appendix A)

d

dz
kx2l = − 2iS1 + 2Kx

]

] x
LD + 2Fkxyl, s37d

d

dz
ky2l = − 2iS1 + 2Ky

]

] y
LD − 2Fkxyl, s38d

d

dz
Kx

]

] x
L = − 2iK ]2

] x2L − ikx2l + FSKx
]

] y
L +Ky

]

] x
LD ,

s39d

d

dz
Ky

]

] y
L = − 2iK ]2

] y2L − ibky2l − FSKx
]

] y
L +Ky

]

] x
LD ,

s40d

d

dz
K ]2

] x2L = − i − 2iKx
]

] x
L + 2FK ]2

] x ] y
L , s41d

d

dz
K ]2

] y2L = − ib − 2ibKy
]

] y
L − 2FK ]2

] x ] y
L , s42d

d

dz
Kx

]

] y
L = − ibkxyl − 2iK ]2

] x ] y
L

+ FSKy
]

] y
L −Kx

]

] x
LD , s43d
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d

dz
Ky

]

] x
L = − ikxyl − 2iK ]2

] x ] y
L

+ FSKy
]

] y
L −Kx

]

] x
LD , s44d

d

dz
K ]2

] x ] y
L = − iKx

]

] y
L − ibKy

]

] x
L

+ FSK ]2

] y2L −K ]2

] x2LD , s45d

d

dz
kxyl = − 2iKx

]

] y
L − 2iKy

]

] x
L + Fsky2l − kx2ld.

s46d

The previous equations represent a system of nonhomoge-
neous linear equations. The eigenvalues of the 10310 ma-
trix M of the associated linear homogeneous system, whose
elements depend on the fiber twist rateF and ellipticity pa-
rameterb, govern the beam moment stability. For parameter
values where the matrix eigenvalues are purely imaginary,
the imaginary parts of the eigenvalues provide the normal-
mode oscillation frequencies of the beam moments. When
the real part of at least one eigenvalue becomes positive, a
beam moment instability appears. An analysis of the matrix
eigenvalues, whose explicit expression is given in Appendix
B, shows that eigenvalues with a positive real part exist in
the parameter range where the ray trajectory instability oc-
curs, i.e., whenÎ2,FÎ2b [see Eq.(26)]. As an example,
Fig. 2 shows the behavior of the real and imaginary parts of
the matrix eigenvalues as functions of the fiber twist rateF
for an ellipticity parameterb=2. From a physical point of

view, the existence of a beam moment instability means the
divergence of mean beam parameters in addition to beam
trajectory, in particular, of the beam transverse sizes. In fact,
let us assume for the sake of clearness that the injected beam
has its center of mass on thez axis, i.e.,kxl=kyl=0, so that in
absence of perturbations the beam center remains on the fiber
axis during propagation. In this case, though the beam re-
mains centered into the fiber axis, its transverse sizes along
the x and y directions, given bywx=fksx−kxld2lg1/2=kx2l1/2

and wy=ky2l1/2, asymptotically grow. This behavior will be
illustrated in detail in the following section in case of a
Gaussian beam.

C. Gaussian beam dynamics

A particular and important case, which also helps us to
clarify the onset of beam moment instability discussed in the
preceding section is that of Gaussian beams, which propa-
gate in the fiber without changing its functional form. In fact,
let us search for a solution to the beam propagation equation
(18) in the form of an astigmatic Gaussian beam:

csx,y,zd = Aszdexph− gxszdfx − x0szdg2 − gyszdfy − y0szdg2

− 2rszdfx − x0szdgfy − y0szdgj, s47d

where A is the complex-valued amplitude of the Gaussian
beam,x0 and y0 are the real-valued beam center of mass
coordinates, andgx, gy, r are the complex-valued parameters
of the astigmatic Gaussian beam which determine beam
sizes, beam phase front curvatures, and beam rotation angle.
The conditions Resgxd.0, Resgyd.0, and
ResgxdResgyd. fResrdg2 are assumed to ensure that
edxdyucu2,`. Substitution of Eq.(47) into Eq.(18) yields a
set of ordinary differential equations for the beam param-
eters. In particular, according to the general result of Sec.
IV A, it is found that the beam center of mass coordinates
x0szd and y0szd satisfy the ray trajectory equations(21) and
(22), whereas the complex beam parametersgx, gy, and r
satisfy the following coupled nonlinear equations:

dgx

dz
= − 4igx

2 − 4ir2 +
i

2
+ 2Fr, s48d

dgy

dz
= − 4igy

2 − 4ir2 +
ib

2
+ 2Fr, s49d

dr

dz
= − 4igxr − 4igyr + Fsgy − gxd. s50d

Finally, the complex beam amplitudeAszd is then found by
the equation

Aszd = As0dexpF− 2iE
0

z

dz8gxsz8d − 2iE
0

z

dz8gysz8d

−
i

2
E

0

z

dz8x0
2sz8d −

ib

2
E

0

z

dz8y0
2sz8dG . s51d

Note that the dynamics of the beam parametersgx, gy, andr

FIG. 2. (a) Real part(growth rate) of the most unstable eigen-
value of the moment matrixM vs fiber twist rateF and(b) imagi-
nary parts(frequencies) of the matrix eigenvalues. Fiber ellipticity
parameterb=2. The shaded areas correspond to the ray trajectory
instability domainÎ2,F,Î2b.
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is decoupled from that of the beam center of mass coordi-
natesx0szd, y0szd, so that we will consider the case of a
Gaussian beam centered on the fiber axis(x0=y0=0). In this
case, one can easily show that the loci of points satisfying
the condition ucsx,y,zd /cs0,0,zdu2=1/e2 is an ellipse of
Cartesian equation Resgxdx2+Resgydy2+2Resrdxy=1, whose
semiaxes of lengthw1szd andw2szd are tilted with respect to
the x axis by an anglefszd, given by(see Fig. 3)

tans2fd =
2Resrd

Resgxd − Resgyd
. s52d

The ellipticity parametere=sw2/w1d2 and semiaxesw1 and
w2 are then given by

e =
q + 1

q − 1
, s53d

w2 =Î e + 1

Resgx + gyd
, s54d

w1 =
w2

Îe
, s55d

whereq=Resgx+gydsins2fd / f2Resrdg. We can first look for
steady-state solutions to Eqs.(48)–(50), which correspond to
Gaussian-like beams that follow the fiber twist, i.e., which
are stationary in the rotating reference framesx,yd. In
steady-state the beam parameterr is found to satisfy the
algebraic cubic equation

c0r3 + c1r2 + c2r + c3 = 0, s56d

where the coefficientsc1, c2, andc3 are given by

c0 = 32iFs1 − bd + 64iFsb − 1d, s57d

c1 = 4s1 + b − 2F2d2 − 16b, s58d

c2 = − 2iFs1 − bds1 + b − 2F2d, s59d

c3 = −
F2

4
s1 − bd2. s60d

The parametersgx andgy are then given by

gx =Î− 8ir2 + i + 4Fr

8i
, s61d

gy =Î− 8ir2 + ib − 4Fr

8i
. s62d

The solutions to Eqs.(56), (61), and (62) which are physi-
cally acceptable must satisfy the conditions Resgxd.0,
Resgyd.0, and ResgxdResgyd. fResrdg2. A numerical analy-
sis of Eqs.(56), (61), and (62) shows that for a twist rate
outside the domain of ray instability, i.e., forF,Î2 or
F.Î2b, there exists one acceptable branch solution withgx,
gy purely real andr purely imaginary(see Fig. 4). As F
approaches the boundary of instabilities, eithergx or gy goes
to zero, indicating that the stationary modes degenerate into
a strongly elliptical Gaussian beam. In the domain of ray
instability, i.e., forÎ2,FÎ2b, there exist two distinct solu-
tions to Eqs.(56), (61), and(62), with complex values forgx,
gy, r and with Resgx,yd.0. One of such branch is shown in
Fig. 4 inside the shaded area. However, since for both
branches it turns out that ResgxdResgyd=fResrdg2, these so-
lutions do not correspond to localized Gaussian modes. In
summary, the domain of ray and wave instability corre-
sponds to that of nonexistence of stationary Gaussian modes
in the rotating reference frame.

To get further physical insights into the dynamics of
Gaussian beams, we integrated numerically Eqs.(48)–(50)
using an accurate fourth-order Runge-Kutta algorithm with
variable step; as an initial condition, we chose the astigmatic
fundamental Gaussian mode of the untwisted fiber, which
would propagate without distortion, i.e., we setgxs0d

FIG. 3. Astigmatic Gaussian beam profile, in the rotating refer-
ence framesx,yd, expressed by Eq.(47) with x0=y0=0. The rela-
tions between ellipse parametersw1, w2, f, and complex beam
parametersgx, gy, andr entering in Eq.(47) are given in the text
[Eqs.(52)–(55)].

FIG. 4. Steady-state Gaussian modes of the twisted fiber in the
rotating reference frame.(a) and (b) show the real and imaginary
parts, respectively, of the Gaussian beam parametersgx (solid
lines), gy (dashed lines), andr (dotted lines) vs the fiber twist rate
F. The shaded area represents the instability domainÎ2,F,Î2b,
where the plotted solution does not lead to a confined Gaussian
mode. Fiber ellipticity parameterb=2.
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=1/s2Î2d, gys0d=Îb / s2Î2d, andrs0d=0. Three typical dy-
namical regimes have been found from the numerical analy-
sis depending on the value of the twist rateF: the “adia-
batic” regime for F,Î2, the instability regime for
Î2,F,Î2b, and the “averaging” regime forF.Î2b. Fig-
ures 5–7 show a typical evolution of Gaussian beam sizes
w1szd, w2szd, beam amplitudeAszd, beam ellipticityeszd, and
tilting anglefszd (with respect to the rotating axisx; see Fig.
3) for a twist rateF chosen in the three above mentioned
regimes. Note that, for a twist rateF belowÎ2 (the adiabatic
regime), small quasiperiodic variations of beam parameters
are observed(see Fig. 5); in particular the anglef displays
small oscillations around zero[see Fig. 5(c)], indicating that
the elliptical beam adiabatically follows the fiber twist. Con-
versely, inside the instability region(see Fig. 6) an exponen-
tial growth of beam ellipticity and beam size is observed[see
Figs. 6(a) and 6(b)], with a corresponding decrease of the
on-axis Gaussian beam amplitude[see Fig. 6(d)]. Note that
the angle of elliptical beam stabilizes now to a nonvanishing
zero value, i.e., the orientation of the elliptical beam in the
rotating reference frame settles down to a stationary value
and the beam then follows the fiber twist. However the fiber
loses in this case its guiding properties. For a twist rate
aboveÎ2b (the averaging regime; see Fig. 7), a scenario
similar to F,Î2 is observed, however here the anglefszd
does not settle down to a steady-state value but varies almost
linearly with longitudinal distance, i.e., the elliptical Gauss-
ian beam orientation does not follow anymore the fiber twist.

Indeed, for very large twist rates, the beam dynamics is not
able to follow the rapidly varying twist rate, and at leading
order the beam sees an “average” graded-index fiber with a
z-independent refractive index profile given by the spatial
average, with respect toz, of the actual profilensx,y,zd
given by Eqs.(2) and(3). This averaging leads to an average
circular refractive index profile, and beam propagation is
thus ruled out by the equations of a nonastigmatic parabolic
graded-index fiber(for the concept of average guiding see,
for instance, Ref.[15]).

FIG. 5. Gaussian beam dynamics in the adiabatic propagation
regime.(a) Behavior of elliptical Gaussian beam sizesw1 andw2 vs
normalized propagation distancen=zF / s2pd. (b) Behavior of beam
ellipticity e=sw2/w1d2 vs normalized propagation distance.(c) Be-
havior of beam ellipse rotation anglef vs n. (d) Behavior of on-
axis beam intensityuAszdu2, normalized to its value atz=0, vsn. The
Gaussian beam parametersw1, w2, andf are defined according to
Fig. 3. The normalized variablen measures the propagation dis-
tance along the fiber in units of fiber rotational twist. Parameter
values areb=2 andF=0.8.

FIG. 6. Same as Fig. 5, but in the instability propagation regime.
Parameter values areb=2 andF=1.8.

FIG. 7. Same as Fig. 5, but in the average propagation regime.
Parameter values areb=2 andF=3.
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V. CONCLUSIONS

In this work we have studied analytically and numerically
the ray and wave dynamics of an elliptical graded-index op-
tical fiber with a twisted axis, and we have shown the exis-
tence of both a ray and a beam instability. The ray trajecto-
ries, found from Fermat’s principle, turn out to be analogous
to the trajectories of a rotating Blackburn’s pendulum, the
twist rate playing the same role as the rotational frequency
(Sec. III). The existence of the twist-induced instability is
due to the destabilizing effect of the centrifugal force as the
rotation frequency increases above the lower oscillation fre-
quency of the pendulum. However, as the rotation frequency
becomes larger than the upper oscillation frequency of the
pendulum, the stability of trajectories is restored due to the
stabilizing effect of the Coriolis force. The beam propagation
equation, in the scalar and paraxial approximation, is gov-
erned by a Schrödinger-like equation which is the quantum-
mechanical model of the Blackburn’s pendulum. For a con-
stant twist rate, the dynamics can be made autonomous using
a noninertial rotating reference frame(Sec. II). Due to the
quadratic form of the refractive index profile, the beam tra-
jectory coincides with that of optical rays in the geometric-
optic limit, and thus any beam suffers from a trajectory in-
stability (Sec. IV A). In addition, by means of a generalized
beam moment analysis, we have shown that in the trajectory
instability region a beam moment instability also occurs
(Sec. IV B). A detailed analysis of the beam dynamics has
been provided in case of Gaussian beam propagation(Sec.
IV C). In particular, we have pointed out the existence of
basically three distinct dynamical regimes: the adiabatic re-
gime for low values of the twist rate, the instability regime
for intermediate values of twist rate, and the averaging re-
gime for high values of the twist rate. We envisage that our
analysis may provide an experimentally accessible system in
the optical field to study basic classical and quantum dy-
namical behaviors found in other physical systems, in par-
ticular, the center-of-mass instability of Bose-Einstein con-
densates in an anisotropic rotating trap[31,40].

APPENDIX A: DERIVATION OF THE BEAM MOMENT
EQUATIONS

The set of closed equations for the beam moments given
by Eqs.(37)–(46) in the text are the evolution equations of
mean values for the operatorsx2, y2, xs] /]xd, ys] /]yd,
]2/]x2, ]2/]y2, xs] /]yd, ys] /]xd, ]2/]x]y, and xy. Such
equations are easily obtained from Eq.(27) once the follow-
ing commutation rules are used:

fx2,Hg = 2 + 4x
]

] x
+ 2iFxy, sA1d

fy2,Hg = 2 + 4y
]

] y
− 2iFxy, sA2d

Fx
]

] x
,HG = x

] V

] x
+ 2

]2

] x2 + iFSx
]

] y
+ y

]

] x
D

= x2 + 2
]2

] x2 + iFSx
]

] y
+ y

]

] x
D , sA3d

Fy
]

] y
,HG = y

] V

] y
+ 2

]2

] y2 − iFSx
]

] y
+ y

]

] x
D

= by2 + 2
]2

] y2 − iFSx
]

] y
+ y

]

] x
D , sA4d

F ]2

] x2,HG =
]2V

] x2 + 2
] V

] x

]

] x
+ 2iF

]2

] x ] y

= 1 + 2x
]

] x
+ 2iF

]2

] x ] y
, sA5d

F ]2

] y2,HG =
]2V

] y2 + 2
] V

] y

]

] y
− 2iF

]2

] x ] y

= b + 2by
]

] y
− 2iF

]2

] x ] y
, sA6d

Fx
]

] y
,HG = x

] V

] y
+ 2

]2

] x ] y
+ iFSy

]

] y
− x

]

] x
D

= bxy+ 2
]2

] x ] y
+ iFSy

]

] y
− x

]

] x
D , sA7d

Fy
]

] x
,HG = y

] V

] x
+ 2

]2

] x ] x
+ iFSy

]

] y
− x

]

] x
D

= xy+ 2
]2

] x ] y
+ iFSy

]

] y
− x

]

] x
D , sA8d

F ]2

] x ] y
,HG =

]2V

] x ] y
+

] V

] x

]

] y
+

] V

] y

]

] x
+ iFS ]2

] y2 −
]2

] x2D
= x

]

] y
+ by

]

] x
+ iFS ]2

] y2 −
]2

] x2D , sA9d

fxy,Hg = 2y
]

] x
+ 2x

]

] y
+ iFsy2 − x2d, sA10d

where the potentialVsx,yd is expressed by Eq.(20) given in
the text.

APPENDIX B: BEAM MOMENT STABILITY—MATRIX
EIGENVALUES

The eigenvaluesl of the 10310 matrix M associated
with the linear part of Eqs.(37)–(46) given in the text can be
calculated analytically and read explicitly:

l1,2= 0, sB1d

LONGHI, DELLA VALLE, AND JANNER PHYSICAL REVIEW E 69, 056608(2004)

056608-8



l3,4= ± Î− 1 −b − F2 − s1 − 2b + b2 + 4F2 + 4bF2d1/2,

sB2d

l5,6= ± Î− 1 −b − F2 + s1 − 2b + b2 + 4F2 + 4bF2d1/2,

sB3d

l7,8= ± Î2Î− 1 −b − F2 − fsF2 − 2bdsF2 − 2dg1/2,

sB4d

l9,10= ± Î2Î− 1 −b − F2 + fsF2 − 2bdsF2 − 2dg1/2.

sB5d
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