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Radiation reaction and relativistic hydrodynamics
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By invoking the radiation reaction force, first perturbatively derived by Landau and Lifschitz, and later
shown by Rohrlich to be exact for a single particle, we construct a set of fluid equations obeyed by a relativistic
plasma interacting with the radiation field. After showing that this approach reproduces the known results for
a locally Maxwellian plasma, we derive and display the basic dynamical equations for a general magnetized
plasma in which the radiation reaction force augments the direct Lorentz force.
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I. INTRODUCTION in fact, the acceleration of a plasma by radiation pressure has

In recent years relativistic plasmas have attracted consicR€en considered as a possible mechanism for producing rela-
erable attention, primarily in connection with their possibletivistic outflows(jets) from very luminous radiation sources,
role in a variety of astrophysical phenomena. Observationsuch as the active galactic nuclei or compact galactic objects
strongly suggest the existence of relativistic plasmas in th¢11-13.
early universe, in active galactic nuclei, relativistic jets, Through Compton scattering of external photons, indi-
black hole magnetospheres, eft-3]. In addition to these vidual particles in a plasma lose energy and at the same time
astrophysical settings, the advances in short petawatt puldbere is momentum transfer to the plasma. The bulk flow can
laser technology have been harnessed to create laboratdpg either accelerated or decelerateel., radiative drag The
relativistic plasmas by irradiation on gagés. radiative drag force is derived by resorting to a phenomeno-

Akinetic description of relativistic plasmas is difficult and logical, test-particle approach. In this approach the energy-
sometimes not even possible. The relatively less detailed andomentum conservatioin the Thompson or the Klein-
simpler hydrodynamic description, however, may be an adNishina regimg is invoked to treat the particle-photon
equate framework for modeling the most significant andinteraction with subsequent integration of the obtained force
complex phenomena which take place in relativistic plasmasover the distribution functiorisee, for instance, Ref14]).
Different kinds of extant hydrodynamic modelS—7] are It is interesting to remark that Landau and Lifshjti5]
based on the integration of relativistic kinetic equation todemonstrated that the radiation drag force acting on an elec-
derive moment equations with a subsequent recipe for clogron which scatters photons can be deriyiedthe Thompson
ing the moment chain. Ideology and practice of the proceregime not only through energy-momentum considerations
dure is relatively simple in the collisional limit while in the but also by averaging the radiation reaction force. Similarly
collisionless case, it becomes less straightforward. The sdsun and Ostrikef16] found that in the field of electromag-
called Maxwellian or thermodynamic closure, in which the netic(EM) radiation, the radiative losses will ultimately lead
chain of moment equations is truncated by assuming a Maxo an increase in particle energy. The drag appears due to the
wellian distribution function(with varying parameters, such appropriate phase lag between velocity and the field. The
as density, temperature, and fluid element velgcisythe  situation turns out to be similar to what is known in the
most popular choice. Recently, however, a different closureollisional case, i.e., despite the fact that collisions are dissi-
approach has been developed for magnetized plasmas jpative, the particles acquire energy due to inverse brems-
which important physics associated with pressure anisotropgtrahlung.
and parallel heat flow has been inclug&d-10. The latter is Thus the fluid equations, derived from the relativistic ki-
not accessible in a Maxwellian closure. netic equation in which the radiation reaction force is in-

The closure problem in a relativistic plasma is furthercluded, provide not only a proper description of hot plasma
exacerbated by the fact that such a plasma is strongly radiaynamics on the long scale, but also contain self-consistent
tive, and in the bulk of astrophysical situations it is embed-expression of the drag force acting on a plasma embedded in
ded in the intense incoherent radiation field of other astrothe radiation field of other hot objects. Our aim here is to
physical objects[1,2]. In most publications devoted to construct the relativistic hydrodynamics taking into account
relativistic plasmas, the radiation reaction force is neglectedthe radiation reaction in magnetized plasmas. This theory is
it is ordered small compared to the Lorentz force and is nothe natural generalization of the recently developed relativ-
expected to be a major determinant of plasma dynamics. Thistic theory of magnetized plasmgg-10 and will consider-
assumption may not be correct in astrophysical conditiongbly extend its domain of applicability. Naturally the nota-
where spatiotemporal scales of plasma motion are suffition and definitions used in these references will be closely
ciently large. The radiation pressure could also be importantfiollowed here.
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Before deriving the equations for the magnetized case, we 2e3 \ e \
study the role played by the radiation reaction force in two = 3| Uy HFHE+ E(F”KFKAU +Uuu U FF ) |
elementary but important physical probleng$) in the dy-
namics of a single charged particle, a2jithe hydrodynam- )
ics of ane-p plasma in the Maxwellian unmagnetized case
(derived in Appendix A We will compare our results with The main assumption in deriving E®) (let us call it the LL
the old results obtained by the standard test-particle apequation is the smallnesgéas compared to the Lorentz fojce
proach. of the radiation reaction force in the particle’s rest frame.
Note that under certain conditions the radiation reaction
IIl. RADIATION REACTION FORCE AND KINETIC force (even when it is small in the particles rest frgnoan
EQUATIONS become larger than the Lorentz force in the Lab frdiits.

There have been a few attempts in the past to construct ThiS “problem-free” expression fa* prompted Rohrlich
the kinetic theory of plasmas that encompasses effects réencouraged by the results obtained by Sp¢2d]) into
lated to radiation reactiof.7]. The construction of a kinetic Making a very strong statement. He claims that the LL equa-
theory of classical charged particles is based on the equatidiP™. despite the fact that it was derived as an approximation
of motion for a single particle. Although, the methodology PY Landau and Lifshitz, is exact for a point particle. Though
for deriving the kinetic equation obeyed by the one-particletNiS claim needs careful examination, Rohrlich has made a
distribution function when Lorentz force dominates theSufficiently convincing case that the LL equation could be
charged particle dynamics is standard, the inclusion of th&ised with little risk to describe the radiation reaction in most
radiation reaction force in the system, in general, is problemProblems of interest. The Landau-Lifshitz-Rohrlich prescrip-
atic. Several questions about the radiation reaction force—itdOn not only corrects the defects of the LAD equation, it also
physically correct derivation, realm of validity, its “defects,” Yi€lds a dynamic equation that is a conventional second or
etc., have been a “permanent” topic of active discussion fofler differential equation for the particle position. From our
more than a century. Interested readers can find it in Refurrent perspective this feature of the LL equation is, per-
[18]. For all their differences, every investigation begins with haps, the most attractive of all; it allows the construction of a

the following equation of motion for a single charged par- relativistic kinetic theory in the conventional phase space.
ticle (speed of lightc=1): Before going to the kinetic formulation, we would like to

explicitly demonstrate the role of the radiation reaction force
mdl” —eFy + (1) in the scattering processes. In the Thompson regime, the
=eru, : equation of motion of the particle exposed to a photon source

ds
) ) has been suggested by Phinriég], and by Sikora and Wil-
Hereu® is the ath component of the contravariant reduced son[13). In the current notation, the equation reads

four-momentumu“=[y, yu], y=(1-u®~*2 whereu is the

particle velocity,s is the proper timeds=dt/y, F*" is the do* - o

electromagnetic tensqu*u,=-1 consistent with the time- aw__ U(TaBuﬁJ, T/”u“uﬁu ) (4)
like metric »*’=diag-1,1,1,1] used throughout this ds ’

study, ands* is the contravariant radiation reaction force:

where p*=mu* is the particle four-momentum,o
2e2<d2u” d?u, ) n o =
=—|—+ utu” . (2) =8me*/3m? is the Thompson cross section, amtf is the
3\dsg  d¢ energy-momentum tensor of the averageéd high fre-
Equation(1), with the radiation reaction force in the form duency radiation field. According to Phinney this equation
Eq. (2), is known as the Lorentz-Abraham-DirdtAD) provides th_e most elegant derivation of the_Compton energy
equation. The LAD equation is of third order implying that losses(cooling (see Blumenthal and Gould in R¢i.4]); in
the initial position and velocity do not uniquely determine Particular, for an isotropic radiation field with energy density
the particle dynamics; initial acceleration is also needed. IT%°=U, we havedp’/dt=—(4/3)cv*(u)U. At this stage,
would appear that relativistic kinetic equation for the distri-we would like to remark that Eq4) was constructed even
bution function would have to be constructed in 12- ratherearlier by Landau and Lifshitgl 5] for the particle energy
than eight-dimensional phase spdcde’]. Such a theory, loss in the field of an isotropic distribution of EM waves
however, cannot be free from the “defects” which already ar€photong. However, in that treatment, the relation be-
contained in the LAD equation. A particularly damaging de-tween the derived expression for force, and the radiation
fect is the existence of the so called runaway solutiongeaction force was not worked out explicitly. It is straight-
[15,18—the exponential growth of velocity in the absenceforward to show that the radiation reaction force of the LL
of an external Lorentz force. According to Rohrlictg], the  equation, Eq(3), can be rewritten as
most basic defect in LAD equation is that the radiation reac-

tion force does not vanish when the external foiibe cause 263 g B _ _

of acceleration and of corresponding radiajigoes to zero. =— ugu” - a(T“'BuB + Tﬂyu“ulguy), (5)
This serious defect seems to disappear in the form of Eq. 3m Jx”

(1) suggested by Landau and Lifshitz5] in which the ra-

diation reaction force reads as follows: where
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_ 1 d®p as'f
af = — [_ paypB 4 lyaB ¥é By= | ZEnanB...H7
T 41T[ FFE + 39°PF 7] (6) S f L

is the EM field energy-momentum tensor; E@S) and(6)  Qpserve that
are entirely equivalent to Ed4) for the problem solved by
Landau and Lifshitz. PP
After providing a perspective for the LL equation, we turn Pu| 7 * m =0.
to the kinetic description of a radiating plasma. Incorporating
the LL equation, the generalization to the hierarchy of|t follows (in view of the antisymmetry of the Faraday ten-
Bogolyubov equations for a radiating plasma has been cagor that
ried out by Kuzmenkov21]. Neglecting correlations, the
kinetic equation for a one-particle distribution turns out to be p,s’'=0.
the appropriately modified Vlasov-Boltzmann equation o )
which will be systematically treated in the following section Therefore, one can rearrange the denv_auve aBHp%(p)
on magnetized plasmas. Realizing, however, that there aM€ere constant. In particular, we may write
problems of interest in which the plasmas may not satisfy the 3
“conditions for magnetization,” we derive in Appendix A the By = _f ﬂsufi(papﬁ e pY)
radiation-modified equations pertinent to a plasma with Max- E odp”

wellian closure.
or

d3
ll. MAGNETIZED PLASMA SFr= _J ?pfs{apﬁ_” o7,
A. General formalism

In this section we wish to introduce the effects of radia-where the curly brackets indicate indicial symmetrization as
tion missing in the fluid description of magnetized relativis- usual. It is convenient to introduce
tic plasmas presented in Ref8~10. For notational as well
as other details the reader is requested to consult these ref- By — f d°p anB

) A . o Y= - —fsp ...p')/’

erences. For an optically thick plasma, radiation enters the E
fluid dynamics in two ways. First, the equilibrium photon
bath contributes to the total energy-momentum te@saia-  whence
tion pressurg This effect is relatively easy to include, essen- .
tially by adding the photon pressure to that of the plasma, but By = geBn, 9)
for clarity and simplicity it is omitted here. We focus atten- o
tion on the radiation reaction, whose inclusion is not trivial L&t M{iy 7 denote thenth moment of the distributiora

even in the optically thick case. tensor of rankn). Then we have shown that tith moment
We start with the kinetic equation of radiative reaction is given by E@9) with
p d(fF*) _ — 2(e)? .
H(?Mf'i' &p'”“ =C, (7) B ‘}’:_é ;] [(&RFQK)MZ\rﬁl)Z_eWe)\M?rg Y
whereC is a collision operator, anB* is the total force, +em M &ﬁg)"'j)]_ (10)
Fr=eF"p,+¢, There are two moments of primary interest: the energy-

consisting of the Lorentz foroeF“’p, to which the radiative MOmentum conservation law

reaction force of Landau, Lifshitz, and Rohrlich,

a9, T —ePT ,=CH-S* (12)
283 I K e K A KO . -
=3m| U NFHe+ E(F# Fal® + U U uLFF,) |, requires the first moment,
. _— 3
has been added. Using the definititi“F,, =-We, where _ 2 E) TR KITN 4 =20 N
W=B2-E? s the first relativistic invariant of the electromag- ¥'= 3\m [(GFITS = eWea (77T + m =M= 5],
netic field, the radiative reaction force is expressed as (12)
2(e\’ \ p.p* . ; ap
s“=§ - p.p \F — eWEp*| 7k + | (8)  while the evolution ofM“/"VEM(S)V depends upon the sec-
ond moment,
To find a fluid description of the radiative plasma that in- o
cludes this radiative effect, we need to find the moments of B = B Pa
the force.
We define the general moment with
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4e

2( e
gr=- 5(5) [(FHM™™ + (3, FH)MH — eWey, (T 5 = SWIeH P, + Mg M), (20)
+ THA Y 4+ 2mm2MAVN ], (13)  The remaining unknowns, the fourth-rank tensor contribu-

These results are fully general. However, fluid closure mlghtlons to Eq.(20), are computed in Appendix B.

require knowledge of higher momentsofWe next special-
ize to a situation in which the above two moments are suffi- IV. MODIFIED FLUID EQUATIONS

cient for a closed description. . . . .
P The new radiation reaction terms enter the fluid closure in

simple combination with moments of the collision operator
B. Small gyroradius limit as seen in Eq(11). Hence the necessary radiation reaction
The evolution of a magnetized plasma will be affected bymoments are the same as the needed momertts of
radiation reaction force as well as other radiative processes. S=b- (21)
However, magnetization of the plasma requires that the :
dominant electromagnetic field vary slowly on the gyroscale,

and in that case théorms of the various moments are not §=¢ (22)

changed by radiation. Thus a description in terms of the fa-

miliar variables, Se=—5(U kg +k,Up S, (23
R Vi P PGy S, =e,z5%. (24

remains possible; only the evolution equations are change
As remarked previously, the parallel and perpendicular pres-
sures appearing here will, in general, include radiation pres-

%ach of these quantities enter the closed set of fluid equa-
tions by means of the replacement

sure (which is by itself isotropit along with plasma pres- C—C-S. (25)
sure.
Using the known, magnetized forms of the tensbfs The two first-order moments are found from E#9):
T8, andM*A” we find that 4
_ae AL
e\, =0, (14) S= 3 m5W( MYV + Mgy Bz) , (26)
e T =e"p,, (15 4 e4 B?
SE— s Myt Mgy [TV (27)
e, = 2(m U, + mgk,,), (16)

) o To compute the second-order moments, we first note the
wherek, is a four-vector orthogonal td,, [8]. The radiation  jyentities

reaction moments, then, reduce to
e, =e,e*"=2,
2(e\? . 2eW w6
S==={ =] | (FHT* - F(mluf‘ + mgk*)

3\m e, UM =0,
(17)
and eﬂy(k/—LUV.p UMkV) = 77/.LV(kIuUV + UMkV) =0,
2(e)3 HUY + UMKY) =
SuV:_é(E) [(aAFfj)MVK)\"'((?)\FDMMK)\ UMUVb(k u’+uU k) O,
- 2eW(e"p, +mi e, M), (18) (kU + U (KU, + U k) == 2.
A stronger simplification is possible, although perhaps Then Eq.(B6) (see Appendix Bcan be seen to yield

questionable. We have already assumed that the Faraday ten- 4 &

sor is dominated by its slowly varying part. If the rapidly Se= éﬁWQ@, (28)

varying part, corresponding to radiation, is neglected on the
right-hand sides of Eq$17) and(18), then the terms involv-

. . 3 4
ing gradients of the Faraday tensor become small, of afder S, = 3W(Qo+ Qi+p.L). (29
compared to the remaining terms. In that case the lowest 3m
d-order moments are simply Finally we substitute these expressions for the radiative
4 reaction into the appropriate set of closed moment equations.
§= 5—5W(m1U“+ mgk*) (190 For a magnetized plasma, such a closed system is available
m ) S ;
[8]; we need only add the radiative reaction terms computed
and here. As we have noted, the new terms do not introduce new
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moments and therefore do not require additional equations. . 1 u—py,
The covariant form of the closed fluid system for each fo(p):(zwh)ex T :
plasma species has a compact expression

(A3)

has the following local parameters; the chemical potential;

F (‘ﬂw S Ca) =eEBl, (30) T, the temperature; and®, the hydrodynamic four velocity:

R axx ” Ue=(y,yJ), y=(1-U?d12 (U*U,=-1). This distribution

yields the flux four-vectorI'*=nU®, whereng is the rest

JMKaB frame densit
eaﬁ< +SY- C“B) =0, (31) g
o o2 AT (r_n)p@) ad)
<o R™ (2mh)® A\ T T
B_CoB|=— . - .
(Uakg+ UBka)( X< +5¥-C ) =-2gh. (32 gpg K, is the modified Bassel function of order

_ _ _ The energy-momentum tensor for the Maxwellian is
The set of Egs(30)—(32), in tensor notation, or their

equivalent three-vector expression, E¢S1)—«(C4) of Ap- T#=hu*U”f + P, (A5)
pendix C, constitutes the main result of this paper. Futur _ _ :
work will deal with laboratory and astrophysical applications%\l:f{ﬁ“r; Vr;f;[gséﬁéfﬁ(;)]rézssgaf the total enthalpy
of this basic system, in which the radiation reaction force is? The third mor’nen(stresg flow tenso.rfor this distribution
a codeterminantwith the direct Lorentz forceof the dy- mav be exoressed as

namics of a magnetized plasma. y P

MBY = A, UCUPUY - A, 5B U (AB)
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_ a3 — o
APPENDIX A: MAXWELLIAN CLOSURE IxP eF nuﬁ_ Fraa (A7)
In this appendix we derive the radiation-modified hydro-yhere

dynamic equations for systems for which the local Maxwell- . 5
ian (thermodynamig closure can be invoked. These equa- o _ 2 dF B
tions, unlike the equations derived in Secs. lll and IV, are rad~ g2 oy Tj—on{[1+2G(@2)Z"]T*U,
valid for arbitrary magnetic fields. In addition, Maxwellian _
closure allows us to compare our results with what is already +[1+ 6G(z)z'1]T57UBUyU"‘} (A8)

known—much of which pertains to precisely this case. .
We shall concentrate on a collisionless plasma, i.e., wheW'th G(2)=K4(2)/KA2). .

particles are correlated with themselves due to the delaye The entropy four-flow may be written ﬁanU",' where

interaction, while correlations with other particlgsolli- :In[l_<2exp(zG)/P22]+cl IS the gntropy per particle. The

siong are neglected. Usually by collisions we mean the cor-£duation forS can be obtained directly from E@L6), or by

relations between particles where interactions over longontracting Eq(21) with U

times are replaced by effective short-time interactions. For a

S  z

relativistic plasma this procedure leads to the collisional in- “—=—U,Flag (A9)
tegral (or generalized Landau integyaif Beliaev and Bud- Jx* nm
ker [22]. _ o _ One can see that without the radiation reaction force the

The procedure is absolutely similar to but simpler than thgylasma dynamics is isentropic with a corresponding adiabatic
one carried out in Sec. lll. In addition to the standard mo-gquation of state.
ments defined in the main text, it is convenient to introduce | the cold plasma limi{z—«,G— 1), Eq. (21) reduces
the entropy four-flow vector to

- — @ a 3¢ — du
S'= po p f{ln[(ZWﬁ) f] 1}1 (Al) m—=a= eFaBUB+ s (AlO)
ds ’

which will be found 1o obey wheres® has the same form as the single particle, @g.but

Yol dc®p of with u® replaced byU¢, and the “time” derivative replaced
Pl f Fsaa_p“' (A2) by the convective derivative/ds=y(d,+U- V). Thus, as ex-

pected, the cold plasma fluid equation has a form similar to
The local Maxwellian distribution functiof], the one for particle motion. However, for high temperatures,
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the fluid equations turn out to be considerably more com- APPENDIX B: THE FOURTH MOMENT
. Vistic limit(z< _ _ . .
plex. In the ultrarelativistic limit(z<1,G=4/z), for ex The tensor needed in EQO) is
ample, the force balance reads
Qaﬂ = m—ZGK}\MaBK)\.

50 w 1oP o oTFY o oT , o
U ﬁ(‘lTU )+ o =eF*Ug-— P UfU, - —J In a magnetized plasma, any second-rank tensor involving
X NoXa e IX € moments will have the form
T — —
+ 80?[T“ﬁu g+ 3TA7U U U“]. Q¥ = Qun™ + Q8™ + QU UP + Qy(k*UP + kPU“).

(B1)
(A11)
Here theQ, are scalars. By considering E@®1) in the rest
Here J%, the four-currentJ*=Xel'*, summed over particle frame (subscriptR), we see that
spiceg, satisfies the Maxwell equation: JFA/xP ;3
=—(4m/c)Jd* It is interesting to note that the last term in the Qo=QR
right-hand side of the equation is proportionalT imply-
ing that, for the ultrarelativistic case, it could dominate the Q1= %zl‘ §3,
flow dynamics.
We now apply the formalism to an electron-positron fluid. Q,= g°+ Qo,
For a one fluid description of theep plasma, we assume that
the temperaturé,=T,, the densityn,=ny/2 and the velocity Q,=Q%
Ug=Ug, and by implication|J% <en,, an assumption valid 3T <R
for flows with large spatiotemporal scalgz3]. The equation Because of the simple form of the perpendicular quasiprojec-
describing the dynamics of the electron-positron fluid cartor in the rest frame, it is also easy to expregsin terms of
now be written agomitting the subscript O for simplicijy Mg; for example,

I rap , Tap) — pa MPQR° = Mg+ MEZ°= 2Mg™,
W(T +TH) =F, (A12) i1 view of the obvious symmetry. We also use the symmetry,

1111 1122
where Mg "= 3Mg™,

to conclude that

Fo= - on{[1 + 2G(2)Z L] T*fU
B M2Q, = 2M é133,

+[1+6G(2)2 JTAU U U, (A13)
o . mZQl =4IM ]R.122_ M ]R.133,
and T*8 and T*# have already been defined.

To compare our results with Phinney, we evaluate the m2Q2:2(M%Oll+ Mé”%,
forces in the rest frame of the fluid elemenE>,
=—4onGZT%, andF =on(1+2GZHT (i=1,2,3. We MPQ, = 2ML1%3
also notice thaty'?-1y=(y'?B'?=3GZz 1, where(---) de- o _
notes averaging over the distribution function, ayid and Next we use the knowgmode) distribution f.unctlon to
B'c are, respectively, the particles’ relativistic factor and ve-compute directly the four necessary moments:
locity. Using the notatioriy=Tre, J; = Tow), We arrive at the RT3 2K?2
equations M= . K+ Al 4K, - K_3 : (B2)
2 2
Fo.=—ong Ji(y'28'), (A14) 2 2
1122_ NRT 2K3
ML22= RO o+ Al K, - =2 |, (B3)
z ’ 2 212 R KZ Kz
Flest™ UnJl(l +§<7, B’ >)' (A15)

3 2
in agreement with Phinnej12] (see also Ref[14]). Note MM = %{Zsz +50K5+ A(2§K3 + 28K, + 12(3” ,
also that in Phinney’s equations, the tefitf present in the 2 2

current force equation is absent. (B4)
We find that the formalism developed here reproduces, in

the appropriate limit, the results obtained in past publica- 1103 g, K, 7K,

tions. This increases our confidence in the framework we are Mg =- 1+K + K, + ") (BS)

employing to describe the general dynamics of a magnetized
plasma evolving under the combined influence of the Lor- We combine these results with E&0O) and conclude that
entz and radiation-reaction forces. the second radiation reaction moment is given by
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W

S= [ﬂ”VQo+e”V(IOL+Q1)+U”UVQz
+(k“U” + U"K")Qs], (B6)
where
2p, ( _ K_Z)}
Qo= §2K2{§K3+ 2A( 2K, K, (B7)
Q= 2p {gK +2A<4K —K—zﬂ (B8)
TAK, P YK,
2
Q=2 [,;sz+ 60K+ 2A(16K4+ K- 6K—)}
Ky K2
(B9)
_ ~ 2 ( Ky 7K4>
Q=7 +K 1+ Ky (Ks (810

APPENDIX C: THE SYSTEM IN THREE-VECTOR
FORM

To write the fluid equations in terms of conventional

three-vectors, we substitute our results for the various com-

PHYSICAL REVIEW E 69, 056406(2004)

\rW P —_ nR__ —_ —_— e —
dt\w 2 dt dtng Cdt y
(2 e B}
at q|= 3me h + Mgy Y I
(C2
a perpendicular-energy evolution law,
— d [mgk’+mu”\ 4¢*
W = | = - WQy+ Qs + C3
! ax”( W ) Py (Qo+Q1+py); (CI
and a law for the evolution of heat flow,
d In(mgn=¥’®) dV dTh
———= < 4 (mPng + 5Th-2m,) Yk -
Y dt +( R 2)72 ds
dlin JW dv_4¢e'
- + K- — —WQ;+eh C4
my ds My dS 3 3 Q; + ehE,. (CH

Here theQ; are given by Eqs(B7)—(B10) and we use abbre-

ponents of the radiative reaction into known equations for/ations introduced previoushg]:

the magnetized, relativistic plasma flJi@]. Here we neglect
collisions for simplicity. The corresponding equations of mo-
tion are given by a parallel acceleration law,

P p d(hyw+q
wvv( /V_V>+—ivm W+ yngb - d—( o )
dyw aq°
+qb- ds 7V||( +V. Q>

4 ¢ W
= 5_5W MYV + mgy B2 +eyngE;; (CY)

a parallel-energy evolution law,

K
m; = sz[Kspﬁ (P - pl)(KS_ ZK_:Kz)] (CH

K
my =m(p, - PL)K_' (Co)
miC
mg = q\\m- (C7)
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