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Parametric instabilities in magnetized multicomponent plasmas
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This paper investigates the excitation of various natural modes in a magnetized bi-ion or dusty plasma. The
excitation is provided by parametrically pumping the magnetic field. Here two ionlike species are allowed to be
fully mobile. This generalizes our previous work where the second heavy species was taken to be stationary.
Their collection of charge from the background neutral plasma modifies the dispersion properties of the pump
and excited waves. The introduction of an extra mobile species adds extra modes to both these types of waves.
We first investigate the pump wave in detail, in the case where the background magnetic field is perpendicular
to the direction of propagation of the pump wave. Then we derive the dispersion equation relating the pump to
the excited wave for modes propagating parallel to the background magnetic field. It is found that there are a
total of twelve resonant interactions allowed, whose various growth rates are calculated and discussed.
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[. INTRODUCTION the oppositely traveling pair of waves are modified, with the
) ) presence of a cutoff frequency in the fast Alfvén wave. Fur-
The basic natural modes of magnetized plasmas such ggermore, an interaction between a pair of fast waves or a
those that occur in molecular clouds, cometary plasmas, anghir of slow waves was found to exist. The corresponding
stellar atmospheres are of great interest. When the frequegrowth rates of the slow-fast and fast-fast pairs were maxi-
cies are low then a class of linear waves, referred to collecmized as a function of the dust concentration.
tively as Alfvén waves, are known to exist and are of impor- Many space and laboratory plasmas are multicomponent,
tance to the understanding of many basic plasma phenomemna., contain multiple ion species. It is therefore of great in-
[1,2]. The linear approximation to these waves breaks dowrterest to investigate the effects of the additional species on
at large amplitudes where nonlinear effects become impoithe linear and nonlinear properties of the waves in the
tant in their propagation. One such large amplitude wave is &lasma. For instance, it is often the case that in the presence
magnetoacoustic wave, which modifies the background magf an additional ion component an extra mode is excited or
netic field in an oscillatory fashion, and so can be considereéPrbidden regions of frequency are introduced. One area of
as a pump wave that drives other waves nonlinearly. Suchtudy of multi-ion plasmas is the bi-ion plasma. The inclu-
large-amplitude pump waves may occur in conditions suct§ion Of one extra ion species often captures the basic infor-
as seen in solar and space plasmas. For example, solar shdBRtion of several extra species. The bi-ion plasma has par-

waves can set up large amplitude standing magnetoacouslti'gUIar impor'gance in_plasma, fusiqn, laboratory p'asmas’ and
waves in coronal loops or magnetic flux tu&s5] in astrophysical environments, with the secondary ion usu-

By considering perturbations of this large amplitudeaIIy positively charged.

ump, we can investigate the possibility of exciting natural A dusty plasma adds another level of interest to the topic
pump, 9 POSSIDIILY 9 of multicomponent plasmas, due to the dust properties. Dust
modes of the system, such as Alfvén waves, due to a res

; on b h d th % an additional impurity of large mass and often of negative
hant interaction between the pump wave and the naturgly, e ynder the simplest approximation, all the dust grains

waves. In the single ion species case this basic phenomengn, “he considered to have the same mass and equilibrium
was predicted by Ref[6,7], and subsequently pursued by .po.qe and so are equivalent to a second ion species. This is

several authorg3-10. qu apump mggnetﬁc field pgrallel 0 ihe case considered in this paper. It is known that the inclu-
the background magnetic field in a single ion species plasm@ion of dust in a plasma may introduce cutoff frequencies

the excited waves are Alfvén waves ftraveling in oppositgy, the pasic Alfvén waves, and introduce a low frequency
directions along the magnetic fiel8,7]. If ion-cyclotron ef- 4o "\yhose nature is different from that in a bi-ion plasma
Wue to the dust grain's extremely high md4s8,14. Quali-
tative differences to the bi-ion case arise when charge per-
urbations of the grains are included, leading to an additional
‘damping mechanisrfil5], or when a spectrum of dust grain

izes and charges is allowed fd6]. Dust is found, in vary-

ng amounts, in many astrophysical and space environments
such as molecular clouds and the rings of Saturn. Dusty plas-
fnas have also been studied closely experimentally, since the
heavy grain mass introduces low frequency effects that may
be studied in real time.

*Electronic address: S.Vladimirov@physics.usyd.edu.au; An immediate consequence of the presence of an addi-
URL:http//www.physics.usyd.edu.aufadimi tional ion species is its modification of the background free-

(ion-cyclotron Alfvén waves traveling in opposite directions
[8]. More general behavior is allowed in the case where th
excited waves are permitted to travel obliquely to the mag
netic field[11].

The parametric excitation of waves in a dusty magnetize
plasma has been investigated in R&g], but in the approxi-
mation where the dust is taken to be immobile. In that cas
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electron number density. This influences the _propagation of J=Z,emV, + ZenV, — enwVe, (2
plasma and electromagnetic wa\é$,17,18. If in the case _ . N

of a dusty plasma we fix the grain charge, then the grairvhere the two ion species and electrons have velocities de-
becomes entirely defined in terms of its mass and charge, arf®ted byvy, v, andv,, respectively. We employ the param-
as such acts just like another ion in the plasfatbeit of ~ etersé;=ne/Z;n; and 6,=ne/Z;n,, which measure the distri-

negative charge The state of charge neutrality may be writ- bution of charge in the plasma amongst the ions. Employing
ten as the total charge neutrality condition, given in Ed), we

may write this as

-en+ezn, +ezn,=0. (1) 1.1 3)
58

Herene , is the number density of plasma electrdmsth  jn terms of these parameters. Note that in the limit of a single
the charge €), and the two ion specig®f signed charg&, (primary) ion species, we havé,— 1 and|&,| — .

andZ,), respectively. For laboratory dusty plasmas, the grain' |gnoring collisions, but including the effects of pressure,
charge is negativéi.e., Z,<0) and large(|Z,| ~10°-10%),  the starting equations for the velocities, electric and magnetic
so that an appreciable proportion of the negative charge ifields and each number density are the momentum equations,
the plasma may reside on the dust particles. For astrahe two ion continuity equations, and Ampere’s law neglect-

physical dusty plasmasZ,| may only be of the order of ing the displacement current:
unity, which is often the case for a canonical bi-ion

plasma. In environments such as the interstellar medium, dv;

where the dust grain is in an electron-proton plasma with mlnla =-Vpi+Ziem(E+v, X B), 4)
little ultraviolet radiation present, the dust grains acquire a

negative charge. On the other hand, exposure to ultravio-

let light from nearby stars can cause ionization of the mznz% =-V p,+ Z,em(E + v, X B), (5)
grains, leaving a residual positive charge. dt

In this paper, we investigate the propagation of plane hy-
dromagnetic wavegAlfvén waves and magnetoacoustic 0=-V p,—en(E +v, X B), (6)

waves modified by the presence of a secondary ion or dust

species in a bi-ion plasmapropagating parallel to the an
1

pumped magnetic field of a large amplitude magnetoacoustic —=-V -(nvy), (7)
wave. We generalize RefL2] where the second heavy space at

was assumed immobile, to the case where both ions are fully

mobile. A further generalization is the inclusion of pressure. an,

The background magnetic field and plasma density are taken ot =V - (nvy), (8)

to be uniform, at frequencies well below the electron plasma
and cyclotron frequencies. First, we find the dispersion equa-
tion of the pump wave, and then concentrate on pump waves
of large wavelength. We then obtain a coupled pair of equa
tions of motion governing the perturbed plasma. Resona ndm, , are the heavy masses. The magnetic fizidcludes
interactions are sought and growth rates of the waves pargre babkground magnetic fiell.

metrically excited by the pump are calculated and discussed. Finally, by assuming either an isothermal or an adiabatic

equation of state, we have

V X B = uge(Z1nVy + ZonpV,o = NeVe) . 9

Here,p; . are the two heavy species and electron pressures

IIl. MULTIFLUID MODEL Vp,=U?m,Vn, (10)

The most general set of equations used to describe twfor each species, whetg, are the individual sound speeds.
mobile ionlike species, plus electrons, is a three-fluid modelThough it is not imperative, we shall assume isothermal
In this picture we employ three momentum equations for thechanges, which permits us to write dow, in terms of the
electrons and the two ion species, where we include both thelasma temperatures, i.&12=kgT,/m, is the square of each
ions’ inertia terms, while ignoring the electron inertia. This is thermal speed, wherg, is each temperature arg is Bolt-
valid if the frequencies of interest are well below the electronzmann’s constant.
cyclotron frequency. In addition we use Maxwell’'s equations At this point we choose to eliminate the electron variables
and two mass continuity equations for each of the ion spefrom Eqgs.(4)«9), and use Faraday’s law to eliminate the
cies, ignoring Maxwell’s displacement current. electric fieldE. There are then two choices for the way to

The primary specie@ssumed positively chargeshall be  proceed. We can add and subtract the momentum equations
denoted with a “1” subscript and the secondary spe@és and deal with a total fluid velocity and the current density
ther positively or negatively charggesdhall be denoted with a Instead we shall employ the most direct method, which is to
“2” subscript. In this notation we may write the current den-deal with the ion velocitiey; and v, separately, since our
sity as equations will exhibit the most symmetry this way. By em-
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ploying the charge neutrality condition to all orders, the fol- w v, w Uiy
lowing system of nonlinear partial differential equations is 6> 75, [&l>——73, (16)
found: e Q2]
where w is the wave frequency angh,,v, are the Alfvén
apy _ speeds associated with each ion. The charge neutrality con-
ot V- (pvy), (11 dition implies that the wave frequencies are restricted to the
regime w < wpe, Which may be restated as
702 , [01d (Lfilz
H__V (paVy), (12 |81,0 > 0\, & (17)
There exists a wide range of physical environments for
JB Bo dv, which all of the above mentioned conditions are met.
— =V XV XB)-—V X—=V X (v, XB)
at 0, dt
I1l. MAGNETOACOUSTIC PUMP WAVE
Bo dv,
B Q_Z VX dt (13) Suppose there is a constant background magnetic field in
the z direction, given byBy,z. We now periodically pump the
g 0 field, with a periodic modulation:
v
51P1d_t1 == (8Ui+a}) Vp— a5V po + PE_Oz(Vl —Vy) Bo[1 +eb codwqt)]z, (18
1 wherewy, is the pump frequency. Hekeis a constant dimen-
X B+—(VXB)XB, (14 sjonless quantity which determines the amplitude of the
o pump. More preciselys is an expansion parameter, which
permits us to keep track of our terms, by matching powers of
dv, 5. 9 5 p1Qy e. The parameteb on the other hand is a dimensionless
52/’2E == (U + @) Vo= aiVp, + . (Vo-vy) quantity that we include to capture any necessary frequency
information, i.e.b=Db(w,), such that the average bfover w,
¥ B+ i(V X B) X B. (15) is O(1). By specifying a particular choice of normalization
Mo condition, we may solve fob. We later in fact impose the

condition that the energy density in the pump system is a
In Egs.(11)—~15) p; ,=my o0 , are the densities of each mas- constant ovew, and calculate the resultiny Since we are
sive component of the plasma afid ,=7, ,.eB,/my , are the interested in a large amplitude pump wawewill typically
correspondingsigned cyclotron frequencies, witB,=|By|.  be O(102-101).
Also a2=Z,U2m./m, and a3=Z,U2m/m, are pseudo- However, since this field has no spatial dependence, it
squared thermal speeds associated with the electron pressiees not satisfy our wave equations. Hence this is an ap-
(if Z,<0 we allowa; to be imaginary. The presence of both proximation to a wave with a large wavelength. We must
Vp;, andVp, in both equations of motion is a consequence oftherefore modify the pump with an envelope of some wave-
the elimination of the electron variables from the equationslength. Since the pump wave magnetic field points in zhe
To be more explicit, the electron density fluctuations generdirection, the wave vector should point perpendicular to this
ate fluctuations in both the ion densities through the chargeo satisfyV-B=0. For a planar geometry plasma, we choose
neutrality condition, which produces this coupling in the mo-the axes such that the wave varies in thdirection, with
mentum equations. The second term on the right hand side efave numbek,. By denoting the pump magnetic fiefend
Eq. (13) is the Hall term; it is important when the wave all subsequent pump fielgdsvith a “0” superscript, we have
frequency is comparable to either of the cyclotron frequen- .
cies. Also, we see that the two species are strongly coupled B =By[1 +&b cogkex)cogwt)]Z. (19
through the momentum equations, via the third term on thefn a cvlindrical pl ith denoting th dial dist
right hand side in each. This is an additional Hall-type term]c Y ca’ plasma, wi enoting the radial distance
. . . . . rom the cylindrical axis, we have

associated with the relative motion of the two species. Note
Egs.(11)~(14) reduce, in the case of a single species plasma B = By[1 + ebJy(kor )COS wt) ]2, (20)
(6,—1,|8,] — <, assuming local charge neutrality is main-
tained, to the equations used in R¢.9-23 where nonlin-  whereJ, is the Oth order Bessel function of the first kind.
ear Alfvén waves were investigated. They are then known ablote thatb=b(ky, wp) in Egs.(19) and (20).
the (collisionlesy Hall-MHD (magnetohydrodynamits In the absence of a wave, we shall suppose that the
equations. plasma is stationary, with ion densitipg , and charge ratios

The neglect of the displacement current in Maxwell’s of &, » The effect of pumping will be to modify the velocity,
equation is justified when the electron current is muchdensity, and charge imbalance to orderso that

greater than the displacement current, which leads to the con- © _— 0 _—
ditions VP =8y, v ey, (21)
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0= portepn  pY = poateps, (22 05 @) ' ' ' ' ' '
O s = A s <.l
&) =6u+ed, & =dpted. (23) g 04r 7
>
These quantities define the pump wave, and we now procee'é
to solve Egs(11)—(15) to ordere (i.e., the linear solution 2 03 4
By inspecting the form of the magnetic field in E4.9) E
[or Eq.(20)], and Eqgs(14) and(15), we note that the veloc- o J—
i i E 02} et S
ity cannot have & component. Hence, the velocities of the H
ion species must be of the form B
_ _ _ — N i
V1= (0x1,091,0), V2= (0yp,042,0) (24) g 0.1 T
for planar waves. From the resulting pair of equations weg 7
H H . 0.0 2 . 1 R 1 . 1 .
ascertain the form of each velocity component and density: 00 o 02 03 0.4
Uy1.2= Axt 2 SIN(kgX)sin(wqt) , (25 Normalized Pump Wavenumber v, k /Q.
_ ) 0.5 . , , . : .
Uy1,2= A1 2 Sin(kpx) cog wot) (26) | (b)
o
— 04 4
p1,2= Ry 2 cosgkox)cog wot), (27) s
[5)
where A, 5,Ay1 , and R, , are amplitudes independent of §
space and time, to be determined. Then, from the continuityg -3
equations, we have i
Q.
£
ko Ko E 02
Ri=por—Aaw  Re=po—Ae. (28) a
(O] [O) 8
N
For the cylindrical plasma case, we make the substitutionsTEu 0.1
X—Tr, y— ¢, cos—Jy, and sin—J;, where ¢ is the azi- 5
muthal angle and, is the 1st order Bessel function of the < 0.0 L=

first kind. Then it is found that all the relationships
(24)—(28) still hold. It follows that the modes in the planar
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1 2 1 1 1 1
0.1 0.2 0.3 04
Normalized Pump Wavenumber v, k /Q,

e
[=}

and cylindrical plasmas satisfy the same dispersion equa-

tion.

Upon substitution of Eq25—(28) into Egs.(11)—(15),
written to first order ine, the following dispersion equation
of the pump wave is obtained:

w3(wh = 02) = WK(w§ = X = YI§). (29)
Here, we have defined
We = 91/502 + 92/501, (30)

W=02,(1 + 85181 + 001B1)/ 5y + vian(L + 85582+ 305B2) 55,
(31

X = (v Qa1 + By + 801B1)! So1 + Va2 Bl S W,
(32

Y = vA0aa(Ba(1 + 81B)/ 851 + Br(L + 805B2) S50+ B1B2) W,
(33

where |w| is a hybrid cutoff frequency ak,— 0. Also we
have introducedB;: =U3/va,, By:=U5/va, Bi:=dilva,
and B,: :ag/viz which allow us to specify the cold/warm
plasma regimes, wittB; and B, related through:&5y:B,
= 8yoB,. Note that asdy;— 1,80 — = (i.e., a single spe-

FIG. 1. The normalized pump frequenay/ ), vs normalized
pump wave numbevaiKy/ Qg with §;=1.1 andQ,/Q,=0.1. (a)
The warm plasma, witt8;=0.8,B;=1.5, andU,/U;=1/2.(b) The
cold plasma, with3;=B;=U,=0.

cies we are left with the nondispersive relation

wo = \C2+ 3, Ko, (34)

wherec?=U?+ 42 is the combined sound speed in this limit.
This is the familiar fast magnetoacoustic wave characteristic
for k L By. However, in the presence of a secondary ion spe-
cies the fast magnetoacoustic wave gains an additional mode
and the relationship is dispersive, see Fig. 1.

It is easy to show that the parametrandW are always
positive, whileY=0 for the cold plasma and is positive if any
of B1,8,,B1,B, are nonzero. Although Fig. 1 is for a plasma
in which the secondary ion species is positive, the same basic
qualitative features are present when the second ion species
is negative. For the warm plasma the effect of‘rhdsé term
in the dispersion relation is to cause the lower branch to
increase without bound dg— o, as indicated in Fig. (B).
Physically, it can be thought of as the fast magnetoacoustic
mode being converted into an acoustic mode for ld&gpeue
to the inclusion of pressure. However, if the plasma is cold
(i.e., Y=0) then the lower branch experiences a resonance as
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ko— o, as indicated in Fig. (b). In this limit X becomes the R 4
square of a resonance frequency given by ey
2 z
w021 )26 >
X—>a)r2= - cYA1* %2 022 ' (35) % 3
S0V a1/ o1+ S0 a2l So2 5
(TR
which gives rise to a forbidden frequency region betweeng
|| and|w|, since|w,| <|w] wheneverdy, # 1. 2 2
The ratio of thex-velocity amplitudesA,; , to the mag- &
netic field parameteb are of particular importance to our E
later discussion, so we briefly discuss them here. In terms 02 ;
the frequency and wave number, we find 5
o
Aa _ o Ac _ o §
bk b IeA R
! 2 g 00 0.1 0.2 0.3 0.4
where Normalized Pump Wavenumber v, k /Q
1 1 QUiE+ 00— f . . . .
A15:_+__2Ma FIG. 2. The ratio of normalizeck-velocity amplitude and
Bo1 G021 Ukg + Qoo = @ y-velocity amplitude to magnetic fieldy, ,,/bva; vs normalized
(37) pump wave numbervako/Qq, with §;=1.1,0,/0,=0.1,8;
=0.8,B;=1.5, andU,/U;=1/2. Thesolid curve is for the upper
1 1 0, UAE+ Qpw, — 0l ranch of the dispersion relation, the dashed curve is for the lower
2,2 2 branch of the di i lation, the dashed is for the |
Ay=— FYGNIEE 5 branch of the dispersion relation. Note that on the vertical axis we
S0z G012 UTko + Qo — wyp plot the absolute value of this ratio, since we are interested here in

ithe ratio ofamplitudes Consequently one of the two dashed curves
experiences a discontinuity in its first derivative when it touches the
horizontal axis.

Finally, to complete the set of pump quantities, we find tha
the velocity in they direction is given by

An_(UFG- 001 = (UIG-0DQ . a0
Ay Sop00(UAE + Qprg = @) =Fi.. (39 ergy. By switching to dimensionless units and setting

. . o - . uoEp/B3=1, then all our variables are given uniquely in
with Ay, given similarly. This is quite different to the single terms of the basic plasma parameters. By using the expres-

ion species case, whefg=0. sions forAy; y, andA,, ,, we may solve folb. The result is
The behavior of|A,,|/b is dramatically altered by the ' ' —

choice of branch from the dispersion relation; see Fig. 2 _ V2

where for brevity we plotA;,; only. We see that a&, b= \/ wg(l +F§) wé(l +F§) B, B

— o, the x component approaches a finite positive value 3 5 23 3 T 5t 5+Bidn

while they component approaches zero for the upper branch kvmAL  kvaoho AL A

of the dispersion relation. On the other handxfmmponent (40)

hes | I d t th h
approaches large values and jheomponent passes throug [usingF, , from Eq.(38)]. A plot of b versus wave number

zero for the lower branch of the dispersion relation. L 20 o
Note that the two branches stemming from the uppefS 9iven in Fig. 3 for each branchg(ko). It is important to

branch of the dispersion relation become singulakas 0.  Note thatb=0(vaiko/ Q1) asko— 0 for the upper branch. It
This motivates the need for a normalization condition relatfollows that all the velocity amplitudes are well behaved near
ing the pump field amplitudes of the velocitiég; 5, Ay 5, =Y . .

magnetic fieldb, and densityR; ,. A reasonable way to pro- The ro?mammg pump quantities to solve for are the charge
ceed is to assume that as we vagythe energy densitf, in ~ ratios 85 These may be obtained by imposing the charge
the pump system is fixed. The appropriate relation in a fluid’@utrality condition on both the background plasma and on

description for general magnetoacoustic wavegig., Ref.  the perturbations to the equilibrium. This is justified since we
[24)), are interested only with frequencies that are much less than

o o that of the electron plasma frequency. This means the elec-
B2 FE? 1 ) ,o 1 5 ) trons have sufficient time to respond to the perturbations
Bo=o 4+ §Po1(Ax1 +Ap) + EPoz(sz +Ap) from the equilibrium and neutralize the plasma at each point
Ho in space. Thus, on the perturbed plasma we impose the con-
1w U2, dition,
+=> R, (39
2% Poa —en+z.en +Z,emn=0, (41)

whereB= Bgb, and the summation in the final term is over where we have ignored the effects of d(st ion) charging,
each plasma species. In our approximations the electric erthat is,Z, is constant. It is then straightforward to obtain the
ergy term may be neglected compared to the magnetic ercharge ratios in terms of the densities, and subsequently in
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0.6 . . - distances and excited wavelengths, and we can apply wave
number matching of the excited wave fields in that direction,
05 o - as discussed in Sec. VI.
P AN Then in the region near theaxis we have
T \\ —
204r \ ] [B'% )= Bo[1 + &b coswqt) 12, (43
£ N
< o3t N -
E \\\ [Vg_O)]kOXNS_: 01 [V(ZO)]k0X~;: 01 (44)
' AN
o 02} §
B Tl —ko
5 el [P(f)z]kox~§: por2| 1 +&—Ax > CoSwot) |, (45)
S 0.1 @o
S o1f .
1 1 1 kO
0'00.0 0.1 0.2 0.3 04 [5(1?)2]k0x~?: 501,2|:1 +E(b - ZOAXJ_,Z Coiwot) ’ (46)

N lized P W b k /Q — L .
ormalized Fump Favenumber v, 't correct toO(e). Since the magnetic field has now simply a

FIG. 3. The magnetic field amplitude vs normalized pump periodic variation in time it resembles a canonical parametric
wave numbervaky/Q; due to the normalization conditiot0), ~ PUMP- The problem then resembles a parametric amplifier,
with 85,=1.1,0,/Q,=0.1, 8,=0.8B;=1.5, andU,/U,=1/2. The  Such as a harmonic oscillator with a time-varying spring con-
solid curve is for the upper branch of the dispersion relation, theStant. For use in th? excited wave equations we must also
dashed curve is for the lower branch of the dispersion relation. compute the derivatives near thexis, given here

oBO
=0 ,
kox~&

terms of the velocity amplitudes arx as follows: (47)

ax

&)= 501{1 +%b - ﬁAu) COE(koX)COS(wot)} : v | _ .
o w) % = ekg[Adq sin(wgt),Ayy codwgt), 0], (48)
42 Jkgx~e
5<20) = 502[1 +E<b - ﬁA,Q) cos(kox)cos(wot)} . v O]
“o {a_)z( = sko[Ag sin(wgt), Ay, cogwqt), 0], (49)
. X~ &
This implies that the amount of charge that resides on each 0
species is temporally coupled to the other. [ 5,0 589
Using the derived set of quantities characterizing the P12 = | —%2 =0. (50)
pump wave we may, in principle, investigate the possibility L X Jkpz IX kx~%

of excited modes propagating at arbitrary angles with respe . - o
to the z axis, as in Ref[11]. However, by removing the %ote _thaﬁ the \'/elocny.has a flnlt_e derivative, even though the
velocity itself is zero in this regime.

dependence in the pump waves our calculations become
much more tractable, with the requirement that our excited
waves are restricted toarallel propagation along the axis,
see Ref[8].

For an infinitely extended medium, the perpendicular,

IV. PERTURBATION METHOD

Next we wish to test the stability of the self-consistent

wave number of the excited waves is then zero. However.
this would clearly be inconsistent with wave number matc
ing of a propagating pump with finite perpendicular wav
number. We therefore envisage this analysis to apply to
standing wavegin the transverse directigrppump in a finite
geometry system, such as a cylindrical or toroidal laborator
plasma, or an astrophysical magnetic flux tube; by seekin
localized solutions for distances transverse to the magnet
field such thakyx=0(g) in a planar plasma dgr=0(¢) in a
cylindrical plasma, we can recover the initially proposed
form for the magnetic field, Eq18). In other words, we are

near solution given in Eqs43)—(50), now regarded as a

h_1’inite-amp|itude pump wave, to the excitation of waves
epropagating along the magnetic field direction. We must

%
%(

an expansion parameter. For example, take an arbitrary
field, sayX, with a known linear representation of the pump

field: X©@=X,+sX. Then Refs[7,8] proceed by perturbing

owever be careful since this is only a linearized pump so-
tion. To proceed we will adopt the basic methodology of
efs.[7,8], but shall attempt to refine the argument.

The basic technique is to perturb each quantity, BE),

9, p©@ &9 by an arbitrarily small amount as measured by

taking x small rather thark, small, to ensure that the fields this quantity in the following way:

will look approximately uniform in the perpendicular direc-
tion, i.e., that the wavelength is effectively very long on the

X=XO+g'X". (51)

length scale of interest. In the parallel direction, however, thedowever, sinceX® has neglected terms @(?), the term
pump fields are uniform, we place no such restriction onof O(¢’) is even more so negligible in this expansigacall
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thate’ is arbitrarily small. The problem lies in the fact that By taking the derived expressions Bt v, p, and § and
we are ultimately interested in the stability of teactpump  substituting into Eqs(13) and (14), and using the stability

solution, sayY©= x0+;7, with analysis procedure conveyed in E§6), we obtain
Vv B’ V]
Y=X+0(s). (52) ﬁa—t—Vx(vixBOH%OV x%
Thus, we shall perform the following expansion instead: !
! s ! B ! (?V'
X=YO+g'X". (53 :E[VX <V1XB+V1XB _Q_vala_l)] K
1 X ) Jkgx~e
Upon substitution into our set of nonlinear differential equa- (59)
tions(11)—(15), we obtain a set of equations of the following
structure(no approximations ! 1
_ - — _ = So1—= = Vi-Vh) X2-—(V XB')XB
eA(Y) +82B(Y) + &'C(X') + e5D(X’) =ze E(Y,X), Pordor 7"~ Pozllo(V = Vo) Mo( ) X Bo
(54) v, _ N
] , ] ) =gl - 501901U§1ﬂ +Qppp(Vy = Vy) X Z . (60
whereA,B,C,D,E are differential operators acting on their 24 kox~&

respective arguments which we may treat as functidos
brevity we have suppressed their dependence on fields oth
than X). Now sA(Y)+e?B(Y)=0 by definition of an exact
pump solution. Also, the term d(e;) can certainly be ne-

Elere the terms 0O(e), which occur on the right hand side,
should be thought of as driving terms from the pump wave.
Note that there exist two further equations of motion under
the index interchange <t 2. Note also that there are no

glected. Next, we Taylor expar@(Y,X’) and write acoustic terms on the left hand sides of these equations be-
_ _ cause of the decoupling of the longitudinal motions: however
E(Y,X') =E(X,X") + O(¢). (55) there are still acoustic influences in the pump fields on the

. . right hand sides of the equations.
We are then permitted to neglect this term @fs) when Now in order to treat th& andy components of th8 and

inserted back into Eq54). This gives us a set of equations , yectors on an equal footing we form a complex vector out
for the perturbatiorX’, in terms of theX, to sufficient accu-  of each component of these partial differential equations, uti-
racy, i.e., lizing the variablesy,=v,+iv,. The spatial variation is as-
o sumed to be periodic in thedirection with wave numbek,
C(X") = eE(X,X"). (56)  as follows: exfikz). Given this, the following pair of linear

— _ o ordinary differential equations are obtained:
Note thatX has served two purposes. First, it gives us an

approximate description of the corresponding exact solution 9B, _ kBydvq
Y©=X,+¢Y, and second, it allows us to investigate its sta- gt IkBov+1 + O, at
bility without ever having to findy. _ BokoA, 1
= |§{ (Bobkvil + kTLu;l + kOAle)’() cog wpt)
V. EQUATIONS OF MOTION AND NATURAL MODES B '
Our task then is to ascertain the primed variables which + x1<koB§+ iké—to)sin(wot)] (61)

are the excited fields. As stated previously, we are interested
only in plane waves that travel parallel to thaxis. In this

case, any longitudinal components will decouple completely " V4 +posal(vsr — 01p) - iki'oB

and merely describe a linear acoustic wave, so we may set 0V Ot gt T T02TATEL Fe2l T T

the z component of the primed velocity to zero. Hence, both

primed velocities have the following form: :;{_ S01P01Kav e[ At Sin(wqt) * iAy; cogwet)]
VLZ: [U),(llz(zlt)yv),/l,z(zit)! o] . (57) kO

Thus,V-v,=V -v,=0, and from each of the two continuity - lﬂzpozw—Osz Codwol) (V11 = V2 | (62)

equations we have ] S
Let us define the sense of polarization in reference to the

Ipr, —, _ screw sense of the fields in the direction of propagation in
P —ep1 AV Vil xe (58)  the z direction. Thenv,=v,+ivy corresponds to a left hand
circularly polarized wave for positive frequencies and a right
where we have imposed thgx=0(e) [or kyr =O(e)] condi-  hand circularly polarized wave for negative frequencies,
tion. Hence we have;=p,=0, i.e., there are no perturba- while v_=v,—iv, corresponds to a right hand circularly po-
tions in the densities of the excited fields. From this it alsolarized wave for positive frequencies and a left hand circu-
follows that 6;=8,=0. larly polarized wave for negative frequencies. Al&, is
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defined similarly. With these definitions;,vy,B,, B may

be eliminated entirely from these expressions. Note that the

PHYSICAL REVIEW EG69, 056402(2004)

Mi(Al! Dlvgvs):

presence of a second moving ion species intro_d_uces coupling —_ ko (501wi v/zukz)(Alir AD
through terms of the fornw.,—v., and an additional term 4 i
on the right hand side in E¢62) due to density variations.
In an analogous way to the classic driven pendulum prob-
lem[25], we have found that the velocities of the two species [ So1€ + e(1 = 5o 4]
satisfy a pair of generalized Mathieu equations. Furthermore, 1
the two species and magnetic field are strongly coupled. To X[ 1= (D1+A) |, (67)
proceed, we move from the time domain to the frequency 502<1: ﬂ)
domain, under the Fourier transform: 0,
Vat)= = [ wavean N,(Aa Dy, ;= & “0e(1 = 3,)0(D; + Ay)
N2 —»
(63 _ ko510 A £ Ay 68)
Vao@) = == | vaoltieit 4ol o
N2 —»

2

andw,: =w* wy. Equation(64) is obviously not an algebraic

where w is the frequency of the excited waves. Using thegynression from which we can uniguely obtain the dispersion
linearity of our pair of differential equations, we compute theequation betweeno and k. Instead it provides us with a

Fourier transform of both. Upon eliminatirg, and V. (w)
in favor of V,,(w), we obtain

F2(0)Vai() = 2] = 3[buAk? + Pu(@)][Vaa(@,) + Vay(w))]
+ 3P(@)[Vio(@,) + Vip(@ )]+ My(= Ay,
+ A, @4~ DV,g(w,)
+No(- A, +Ag,— DVip(w,)
+M.(+ Ay~ Ag, 0, — DViq(wo)
+No(+ A, = A, — DVip(w-) + Mo(= Ay,
= A 04, + DV_g(0,) + No(= Ao, = Ay,
+ DV_p(w,) + Mo(+ Ay, +Ag, 0,
+ DVog(w) + Na(+ Ag, + Ay, + DVp(w)],

(64)
where
e 2,.212[1 =@
Fu(w): == o +oyk| 1+
0
w
0,6 S
+ 20l 1-—2, (65)
502 . w
1¥ —
Q,
Pi(w)
046 V. b
R 101wk0X2— ' (66)
502 (J)o . w
1% —
Q,

functional relationship between the Fourier transforms with
argumentsw, w—wg, and w+ wg.

Nevertheless, we may proceed by noting that the right
hand isO(e), which is small. For the left hand side to be
small we must ensure that the frequency is near a root of the
polynomial on this side with a correction &f(¢), i.e.,

w=x+0(e), (69
wherey is defined to satisfy
F.(x)=0. (70

These define the naturally occurring modes in the absence of
pumping (i.e., if e=0 then w=Y). The solutions of these
algebraic expressions give the dispersion relations character-
izing plane transverse waves propagating parallel to the
background magnetic field in a two species plasma. The last
term of F.. is only present when a secondary moving ionlike
species resides in the plasma. It is an additional Hall-type
term, associated with the relative motion of the two charged
species. In the one species limit this relation simplifies to

—X2+U,§1k2(1: i) =0, (71)
0
and we are left with the familiar fast and slogon-
cyclotron transverse waves].

The important feature of the two-species result in &)
is that it is a cubic iny and hence another mode of excitation
has been added. Moreover, since we may chéqser F_ it
follows that there are a total of six solutions; three are left
hand circularly polarized and three are right hand circularly
polarized. However, only three of these are physically differ-
ent. This is because j§ satisfiesF,(x)=0, then - satisfies
F_(-x)=0, and vice versa. We may then concentrate on the
positive frequency solutions.
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. . . . . , . . FIG. 5. A representation of the Fourier transfokftw) vs fre-
0.1 0.2 0.3 0.4 0.5 quencyw. (&) No pump, giving three Dira@ functions.(b) The
Normalized Excited Wavenumber v _k/Q effect of a pump, broadenin@nd shifting the spectrum. Note that
AT we have chosen to illustrate the idea using only the right hand
FIG. 4. The normalized excited wave frequencig€); vs nor- modgs(i.e., V._) for a plasma with a negatively charged secondary
malized wave number,,k/Q; of the three natural modeg) The  SPECI€S.
second species is positively charged, wigy=1.1 and Q,/Q,
=0.1. (b) The second species is negatively charged, wij{+0.9 VI. GROWTH RATES OF PARAMETRIC INTERACTION
andQ,/Q,=-0.1.

o
oo
=)

From the above analysis we see tlyahay be any one of
If the secondary species is positively charged then there, s, w , wg for a positively charged secondary species, or
are two left hand modes of excitatigh4]. These we denote wgs wgs, w, for a negatively charged secondary species.
by w s andw s, where '§” denotes slow andf” denotes fast.  Since the frequency describing the excited wave is a pertur-
There is also a single right hand mode, denotedvhyThe  bation of a natural mode frequency, we denote the change by
corresponding dispersion relations are plotted in Fi@) 4 ¢ which is allowed to be complex, where
Note that the right hand mode intersects with the fast left

hand. Also, the two left hand modes both experience reso- w=x+ed. (72)
nancek— . For w ¢ it is given by()4, and forw, 4 it is given
by Q, (where we have assumé, > (),). Now by returning to the Fourier transform relationship in Eq.

For a negatively charged secondary species there are al$o4) we can see what effees (i.e., pumping will have on
three modes of excitation, however the combination of poV.. Without any pumping(i.e., e=0) the spatial solutions
larizations has changed. In this case there are two right hanslould be a linear superposition of three pure monochromatic
modeswg; and wgs and a single left hand mode ; see Fig.  exponentials. Hence the Fourier transform would be a sum of
4(b) Here wgs has a resonance af);, and w,_ has a reso- three Diracé functions; see Fig. @) for a representation.
nance af),. In the dusty plasma case, further properties ofThe effect of pumping is to modify this and provide fre-
these modes were investigated in R¢is3,26,27. quency shifts. The modified solution will have some broad-

Note that the upper curvéfast modey regardless of the ened frequency spectrum, since it is the case that Dirac-
sign of the species, experience a nonzero cutoff frequenciunctions do not solve the Fourier transformed equations in
which coincides with that of the pump frequency, see Eqthe presence of a pump. These types of modifications will
(30). occur near each natural frequency; see Figp) for a sim-
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plified representation of this effect. In fact an exact solution  With the above framework we now proceed to solvedor
would be more complicated with the identification of har- from the Fourier transform relationship. We discuss the
monics, etc., but this figure should illuminate the key featuremethod involved in obtainingp in the case where a left
of the interaction. handed wave interacts with a right handed wave, denoted
This is described as parametric interactiorbetween the ¢ g Here we may assume, without loss of generality, that
excited fields due to the pump fields. In order to proceed wey=y, in Eq. (72), wherey, is any one ofw ,w g, w ;. This
consider the case in which the interaction is greatest, as iwill interact with —yg (i.e., xy—wg may be any one of
Refs.[7,8]. It is clear that this effect will be greatest when —wgs, —wgs, —@R).
the right hand side of Eq64) is large, which is the reso- Following the methodology of Ref28] we form another
nance condition. This occurs when one of the Fourier transequation corresponding to E¢4) under the transformation
forms on the right hand side is resonant, in other words whew — w—wq. In the resulting two equations, we neglect the
their arguments are near one of thils, as conveyed in Fig. obviously nonresonant termé(w,) and V(w—2wg). Addi-
5. Since the right hand side of E@4) involves terms of the tionally, due to our particular choice of interaction, i.e., left-
form: V(w,) andV(w.), it follows that there will be a large right, we neglectV,(w_) andV_(w), and retain only,(w)
parametric interaction whem+wy Or w—wq satisfies this. andV,(w_). We find the following:
Now, as mentioned earlier we are restricting our attention to

positive w (without loss of generality Under this condition, = +od oF =
it is found that onlyw—wq can satisfy this. Moreover, there bt 2 ARF-Or - odie)
are three choices for this interaction: a left hand mode inter- =Y. (- xp) + Ji(+ A, + Ao — A~ Xr— D]

acting with a right hand mode, a left hand mode interacting _ _ _

with a left hand mode, or a right hand mode interacting with XX+ 05 A= A + A, X0~ DI

a right hand mode. (75)
To illustrate, suppose the secondary species is negatively

charged andv= w, (i.e., y=w_). Then we can have-w,  Where

~-wRs OF w—wy=—wg; (left hand mode interacting with

right hand modgor w— wy=~ -, (left hand mode interacting &
with left hand modg In other words, the resonance condi- 1 115
tion is that the pump frequency satisfies Y. (&):=- 5 b2, k? + Py(w)| 1- gl , (76)
Wy = W + WRg Wy = W + WRf or wo = 2(L)|_, (73) 1+ 62
respectively, which is a statement of conservation of energy.
That is, the resonance condition describes the coupling of a ¢
pump wave with two daughter waves. 1% o
Moreover, if o= wrs then we can have—wy~-w,, o J.(A,A,,Dy1, & €)= INL(As, D1, €) + My (A, Dy, & €).
—wp=—wR;, OF w—wy=—wgs and the same conditions for 15 &
resonance apply. Similar rules apply fer< wg; and for a Q,
plasma where the secondary species is positive. 77

Let us now address the issue of the treatment of the wave
numberk in our pair of interacting waves. First, note that in
the z direction thepumpwave numberk, is zero. For the
natural modes we have that a wave givenky-y) is physi-
cally equivalent to a wave given bk, x). Thus our two
interacting waves will be given bk, x;) and(=k, x»), where
X1.X2 are any combination ofw ,w s, ;,wR, Wrs Ors
Hence the wave numbers associated with each interacti
wave are equal and opposite, i.e.,

In these expressions we implicitly have thatand o are
related by:é— x 0 w——xg and é— g0 o——x,.

In the one ion species analysis, it is at this point that the
conservation of energy and momentum rules are used to ex-
plicitly obtain x, , xr,k. The procedure is to ude, to solve

nfor XLR in terms ofk. These solutions are then added to-
gqether and equated t@,. The resultant expression is then
solved fork and subsequently substituted into the expres-
k +k,=0, (74) sions for XLR- This process explicitly shows that the reso-
nance condition, for a given value of pump frequengy
which is a statement of conservation of momentum inzhe uniquely determines the frequencies and wave numbers of
direction. The fact that the right hand side is zero reflects théhe excited waves. Now, this is all possible since the solution
spatial uniformity of the pump wave. This tells us that if the of F.. in the one species limit is merely a quadratic, see Eq.
approximately spatially uniform standing pump wave de-(71). However, in our case we must solve a cubic. As such,
cays, then it does so into two daughter waves of equal wavehe resulting expressions faf , xg,k are too complicated to
length traveling in opposite directions. Since the wave numbe reproduced here. Let us just note that it is still true that
ber magnitudes are equal we may just consider the wavdetermines them uniquely.
numberk without referring to the sense of polarization. This  In order to solve for¢, g in Eq. (75 we Taylor-expand
is a direct generalization of the previous investigations inF.(x,+e¢.g) aroundy, to ordere, then use the fact that
Refs.[7,8,14. F.(x.)=0 to obtain
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F+(XL + gd)LR) = 8_(bLRH (XL) ’ (78) N’g\‘_ 0.001 . | ] : i
where <  (a) N 8,=1.02 |
2 2 B 0.000
LS (Q;-Q,)(2Q0,-X) ) =
H(x):=- -4 x<2+ , (79
o, 5002 = )* g

_ -0.001
while F_(xygr—e¢ ) can be treated similarly. Henag  is

obtained from
¢ER = [Y+(_ XR) + J+(+ Axla + Ax2: - Axly “XR T 1)]
><[Y+(+ XL) + ‘]+(_ Axla - Ax2; + Ax]_y + XL! - 1)]
X[H()H(= xp) 1™ (80)

Although this was derived assuming we were near a natura
frequency of a left hand mode, we obtain the same expres
sion for ¢? for the right hand cas@viz. ¢3,) with the modi-

-0.002

-0.003

-0.004 ' - : L '
0.0 0.2 0.4 0.6

Normalized Pump Frequency o /Q,

Normalized Frequency Change

fication that¢g, is of the opposite sign. e

This technique may also be applied to both the left-left & - -
interactions and the right-right interactions. This includes the £ () 8,,=1.002
possibility of a slow wave interacting with a fast wageg., T 0.0000
w s and w ) and waves of equal frequency interacting. s
These sorts of interactions occur only because of the velocity g
derivative terms in Eqs(48) and (49). In obtaining ¢ we Té)

must retain and neglect the appropriate selection of Fouriel §
transforms according to the choice made. Here we introduces _ggoos

X1 andy, » as two(possible equalleft hand modes, angg; §
and yg, as two(possible equalright hand modes. The cor- &
responding frequency changes are obtained from g
w
=+ Ag H Ao tAe - X2 DIXDCAw~Ae §
+ A, + xin— DI X HOWHCE xi 1™ (81 g o0 0.1 0.2 03 04
2 Normalized Pump Frequency o /Q,

2

=+ A AL A~ Xr— D] X (= A, — Ao,
=l Ag 2 A e T DIX = Aa = Ae FIG. 6. The squared normalized frequency chatggs/Q,)?
= A * xre + D] X [H(xroH(= xr2) 17 (82)  for the left-right interaction plotted against pump frequengy();.

. . . . . In both plots the second species is positive, wit=0.8,B;=1.5,
for the left-left and right-right interactions, respectively. U2/U1=g/2 andQZ/QfO.E. The nufnber den‘g&es Varylaa b

| Itis Wor:th ”Ot'”(? }hf.‘t '”IOthzrgypeS of f%.?[netr'c pmb;‘with 81=1.02 in (@), and 6,;=1.002 in(b). Also, “Us, Uf, Ls, L’
ems, such as modulational and beam Instablliilies, a graphye,sieg the upper-slow, lower-slow, upper-fast, and lower-fast com-

cal approach is useful in CIaSS|fy_|ng the instabilities; theybinations, respectively. HereN” denotes the single species result.
occur where two normal mode lines cross and reconnect

[29,30. In those cases the number of interacting modes is
finite and the nonlinear dispersion relation can be obtained idaughter waves will either undergo exponential growth or
closed form. In our case, however, we cannot obtain the nordecay. Moreover, since there will exist both a positive and a
linear dispersion relation in closed form, due to the infinitenegative imaginary frequency solution and since the fre-
number of interacting modes; the decay interaction of theyuency is conserved, this implies that one of the daughter
two excited modes with the pump is postulated in the firsivaves will grow and the other will decay. In such cases the
approximation and the classification of the instability is rela-presence of one exponentially growing daughter wave im-
tively straightforward. plies that anywhere in whicl?< 0 is a region of instability.
In this caseg is the growth rate.
In Fig. 6 we plot the full complement ofnormalized
squared frequency changes. That is, we pligtz/Q,)? ver-
From the expressions fap’s, ¢7, , $2g it is easy to see sus pump frequency,/Q, for the upper U” and lower L”
that these quantities are real valued when we are in aranches of the pump dispersion relation for each mode of
frequency—wave number regime such that a pump wave canteraction. This figure is for a warm plasma in which the
propagate. Hence is either purely real or purely imaginary. second heavy species is positively charged. The same basic
If ¢ is real then what we have found is a correction to thefeatures are present in the negatively charged case. All
natural mode frequency which adds an extra Fourier compasurves labeled 8" i.e., “Us” and “Ls,” correspond to the
nent to the field expansions. kp is imaginary then the combination betweemwg and w g, that is, the slow interac-

VII. NUMERICAL ANALYSIS
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tion. The curves labeledf,” i.e., “Uf” and “Lf,” are for the

. : o 0002 . . ; . ; .
fast interaction betweeng and w ;. = 5. 1002
In Fig. 6(@), wheredy;=1.02, the full spectrum of pertur- < o
bations to the natural modes is seen. Theinteraction is
0.001 | g

unstable and monotonically decreases, approaching th
single species resultN” for large wg. Hence this is indeed
consistent with the single ion analysis given by

Lsf

0.000

2 vak! I

Sr———————, asd—1. (83
4ar(1+ By +By)
Thelf interaction is also unstable, however it experiences g -0-001 -
a minimum (corresponding to amaximumgrowth rate, Uss
about which it turns over and approaches zero. For our Lss —
choice of parameters, in this figure, this occurs negr -0.002 s s . s
0.0 0.1 0.2 0.3 0.4

~0.2Q4. Moreover the intersection witthN occurs atwg
~0.450Q,. Next, we see that th®s interaction is small and
positive, and hence it is weakly stable. Note, however, that if ) )
higher order terms are included in the field expansions then F!G- 7. The squared normalized frequency chatgg /()
this may in fact prove to be weakly unstable. Finally, we sed®' the Ieft-left interaction plotted against pump frequengy ).
that the Ls interaction, which is only present in warm Ti;ez the dsgcj’?ld sgelmes clisﬁposll_tl('\JISZ V‘ﬁfpog By Ll S, Sif/ULlff
plasma, is strongly unstable, with a growth rate that ap- anditaith andoo,= S0, LSS, LSS,
Usf, Lsf denotes the upper-slow-slow, lower-slow-slow, upper-fast-
proaches infinity at a rate considerably faster thiaar Uf.
.fast, lower-fast-fast, upper-slow-fast, and lower-slow-fast combina-

As we decrease the number density of the second speci ?Sns respectively.
in Fig. 6b) to 5y;=1.002 some interesting features appear.
The Uf curve shows a sharply varying growth rate at just ) )
above the cutoff frequency. Thief minimum shifts to a Hence, we have seen that the introduction of a second
lower value (lying beyond the range of the plotThe Us  species adds a range of extra behaviors, even with a small
interaction has actually become unstable in the frequencpumber density. Note that in the special case where the fre-
region just above the cutoff frequency. Also, the manner irfiuencies of different modes coincide, the selection of reso-
which our bi-ion result approaches the single species resuitant Fourier transforms to generate these plots is actually
as 5Ol_>l is |nterest|ng the enve|ope of the three motss invalid. In parthUlar this occurs at the pOInt seenin F@)4
Us, and Uf form N in the domainswy<w. w.<w, Wherewg=w. At that point there are actually more terms
<2 w,, andwy=2 w,, respectively. resonant than have been accounted for. However, since this

In Fig. 7 we plot the range of left-left interactions for the occurs on a set of measure zero, it has been ignored.
positively charged secondary species case. As can be seen in
Fig. 4a) this case has two left handed brancligew and  *~

Normalized Frequency Change (Squared)

Normalized Pump Frequency o /Q,

fasy. Hence we may form the slow-slow, fast-fast, and slow- &, 0.002 ; - -

fast combinations. This combined with the lower and upper € Lsf 501:0'998_

branches of the pump dispersion relation gives a total of sixg

interactions. Of these six we find that all are unstable, excep g 0.001 - .

the “Lsf’ combination which experiences a point of maxi- G

mum stability at just below @.. Note that the Lss’ interac- g

tion decreases without bound ag— 2(); Thls is acceptable  § o000 f— Lff

given that for the slow-slow case the excited wave nunkber § s

experiences a resonanceas- (), (with pump wave number 3

small). Although it lies below the range of the plot theff” § 0001 L Lss - Usf i

interaction starts at a finite value, wheg=2w.. Also note g

the curious feature wherein th&$f interaction has a cor- = Ut

responding growth rate which is large in the ranges wq 8 . ; . . _ . .

=2 wc only. f: 00030 0.1 0.2 0.3 0.4
Finally, in Fig. 8 we plot the range of right-right interac- 5 Normalized Pump Frequency o/,

tions for the negatively charged secondary species case:

Again by mspectlon of Fig. @) it makes sense that there are £, g, The squared normalized frequency chatgigr/Q1)?
six values 0f¢’RR This plot shares many features in commonfor the right-right interaction plotted against pump frequency

with the previous plot. However, an important change is that,,/;. Here the second species is negative, wih=0.8B;
the Lssinteractions has a minimum and approaches zero as1.5U,/U;=1/2 ,0,/Q,=-0.1, anddy;=0.998. Also, Uss, Lss,

k—oe. Also, the Usf maximal growth rate has shifted to Uff, Lff, Usf, Ls? denotes the upper-slow-slow, lower-slow-slow,
much higher values of pump frequency. Thef interaction  upper-fast-fast, lower-fast-fast, upper-slow-fast, and lower-slow-fast
has stability aswy increases. combinations, respectively.
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VIII. CONCLUSIONS domainswy=< w;, w;< we=2 w; and wy=2 we.
(i) The two interactions corresponding to the lower
This paper has outlined an investigation into a certairpranch of the pump dispersion relation are strongly unstable,
class of instabilities in a bi-ion or dusty plasma, allowing full with the Lf experiencing a local maximum ands
mobility of all species and the inclusion of pressure. Theunbounded.
results should be applicable to a wide range of laboratory Next we investigated the left-left and right-right interac-
and space plasmas where secondary ion species or chargéehs (same sense circular polarizatjon
dust grains occur. The immediate consequence of the pres- (i) These interactions involve six and two combinations,
ence of an extra heavy species is its increase or reduction s¢spectively, when the second species is positive, and the
the number of free electrons in the plasma through the chargeverse when the second species is negative. This follows
neutrality condition. We obtained a pump wave with spatialsimply from the assortment of handedness of natural modes.
variation transverse to the background magnetic field, which (i) Of these only the_sf interaction is stable, while the
contained an upper and lower branch, and made the approx¢thers display interesting behaviors. In particular, in the posi-
mation of spatial uniformity of this pump. The stability of tive case, the_ss curve approachesoas wy— 2w, where
this structure was investigated by perturbing the pump wavdhe excited wave numbérexperiences a resonance, while its
as we looked for parametric instabilities wherein the pumpgrowth rate is maximal ab, just below 2w in the negative
wave generates excited waves. Three natural transvers@se.
modes were found to be excited propagating parallel to the (iii) In contrast to the left-right interactions, the upper
background magnetic field; two left handed when the secongump mode can give the strongest instabilities. Usd in-
species is positive and two right handed when the secontgraction has a large growth rate betwegnand 2w, in the
species is negative. Two out of each of these three are theositive second species case, and at higher values of pump
modified fast and slowion-cyclotron modes. There were frequency in the negative second species case.
three basic types of interactions allowed; left-right, left-left,  In several of the above interactions the growth rate starts
and right-right, each of which has several combinations deat a nonzero value. This occurs in the cases where the start-
pendent on both the choice of branch from the pump wavéng value ofwy have a corresponding nonzero value kgr
(upper and lowerand the choice of natural modslow and  so the velocity derivative terms are nonzero.
fast), giving rise to twelve interactions in total for any par- A possibility for further work would be to allow the ex-
ticular plasma. cited waves to be fully oblique, rather than simply parallel to
We derived the frequency changes to the natural modesghe background magnetic field. In doing so we would be able
corresponding to growth rates when the perturbation to théo remove the long pump wavelength assumption, which
frequency was imaginary. We can summarize the main feamay lead to interesting features. In the single ion case this
tures of the instabilities for the left-right interactiof@ppo-  was treated in Ref.11], albeit without pressure. It is antici-
site sense circular polarizatipas follows. pated that implementation of the accompanying additional
(i) Of the four combinations allowed, three are unstablewave number matching rules, in both thandx directions,
when the number density of the second massive species Vgould be algebraically complicated.
substantial, and all four are unstable when the number den-
sity of the second massive species is low. ACKNOWLDGMENT
(if) As the single species case is approach®ée- 1), the This work was supported by the Australian Research
envelope of three different growth rates approaches it in th€ouncil.
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