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This paper investigates the excitation of various natural modes in a magnetized bi-ion or dusty plasma. The
excitation is provided by parametrically pumping the magnetic field. Here two ionlike species are allowed to be
fully mobile. This generalizes our previous work where the second heavy species was taken to be stationary.
Their collection of charge from the background neutral plasma modifies the dispersion properties of the pump
and excited waves. The introduction of an extra mobile species adds extra modes to both these types of waves.
We first investigate the pump wave in detail, in the case where the background magnetic field is perpendicular
to the direction of propagation of the pump wave. Then we derive the dispersion equation relating the pump to
the excited wave for modes propagating parallel to the background magnetic field. It is found that there are a
total of twelve resonant interactions allowed, whose various growth rates are calculated and discussed.
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I. INTRODUCTION

The basic natural modes of magnetized plasmas such as
those that occur in molecular clouds, cometary plasmas, and
stellar atmospheres are of great interest. When the frequen-
cies are low then a class of linear waves, referred to collec-
tively as Alfvén waves, are known to exist and are of impor-
tance to the understanding of many basic plasma phenomena
[1,2]. The linear approximation to these waves breaks down
at large amplitudes where nonlinear effects become impor-
tant in their propagation. One such large amplitude wave is a
magnetoacoustic wave, which modifies the background mag-
netic field in an oscillatory fashion, and so can be considered
as a pump wave that drives other waves nonlinearly. Such
large-amplitude pump waves may occur in conditions such
as seen in solar and space plasmas. For example, solar shock
waves can set up large amplitude standing magnetoacoustic
waves in coronal loops or magnetic flux tubes[3–5].

By considering perturbations of this large amplitude
pump, we can investigate the possibility of exciting natural
modes of the system, such as Alfvén waves, due to a reso-
nant interaction between the pump wave and the natural
waves. In the single ion species case this basic phenomenon
was predicted by Ref.[6,7], and subsequently pursued by
several authors[8–10]. For a pump magnetic field parallel to
the background magnetic field in a single ion species plasma,
the excited waves are Alfvén waves traveling in opposite
directions along the magnetic field[6,7]. If ion-cyclotron ef-
fects are included, the excited waves are the fast and slow
(ion-cyclotron) Alfvén waves traveling in opposite directions
[8]. More general behavior is allowed in the case where the
excited waves are permitted to travel obliquely to the mag-
netic field [11].

The parametric excitation of waves in a dusty magnetized
plasma has been investigated in Ref.[12], but in the approxi-
mation where the dust is taken to be immobile. In that case

the oppositely traveling pair of waves are modified, with the
presence of a cutoff frequency in the fast Alfvén wave. Fur-
thermore, an interaction between a pair of fast waves or a
pair of slow waves was found to exist. The corresponding
growth rates of the slow-fast and fast-fast pairs were maxi-
mized as a function of the dust concentration.

Many space and laboratory plasmas are multicomponent,
i.e., contain multiple ion species. It is therefore of great in-
terest to investigate the effects of the additional species on
the linear and nonlinear properties of the waves in the
plasma. For instance, it is often the case that in the presence
of an additional ion component an extra mode is excited or
forbidden regions of frequency are introduced. One area of
study of multi-ion plasmas is the bi-ion plasma. The inclu-
sion of one extra ion species often captures the basic infor-
mation of several extra species. The bi-ion plasma has par-
ticular importance in plasma, fusion, laboratory plasmas, and
in astrophysical environments, with the secondary ion usu-
ally positively charged.

A dusty plasma adds another level of interest to the topic
of multicomponent plasmas, due to the dust properties. Dust
is an additional impurity of large mass and often of negative
charge. Under the simplest approximation, all the dust grains
may be considered to have the same mass and equilibrium
charge, and so are equivalent to a second ion species. This is
the case considered in this paper. It is known that the inclu-
sion of dust in a plasma may introduce cutoff frequencies
into the basic Alfvén waves, and introduce a low frequency
mode, whose nature is different from that in a bi-ion plasma
due to the dust grain’s extremely high mass[13,14]. Quali-
tative differences to the bi-ion case arise when charge per-
turbations of the grains are included, leading to an additional
damping mechanism[15], or when a spectrum of dust grain
sizes and charges is allowed for[16]. Dust is found, in vary-
ing amounts, in many astrophysical and space environments
such as molecular clouds and the rings of Saturn. Dusty plas-
mas have also been studied closely experimentally, since the
heavy grain mass introduces low frequency effects that may
be studied in real time.

An immediate consequence of the presence of an addi-
tional ion species is its modification of the background free-
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electron number density. This influences the propagation of
plasma and electromagnetic waves[15,17,18]. If in the case
of a dusty plasma we fix the grain charge, then the grain
becomes entirely defined in terms of its mass and charge, and
as such acts just like another ion in the plasma(albeit of
negative charge). The state of charge neutrality may be writ-
ten as

− ene + eZ1n1 + eZ2n2 = 0. s1d

Here ne,1,2 is the number density of plasma electronsswith
the charge −ed, and the two ion speciessof signed chargeZ1
andZ2d, respectively. For laboratory dusty plasmas, the grain
charge is negativesi.e., Z2,0d and largesuZ2u ,102−103d,
so that an appreciable proportion of the negative charge in
the plasma may reside on the dust particles. For astro-
physical dusty plasmas,uZ2u may only be of the order of
unity, which is often the case for a canonical bi-ion
plasma. In environments such as the interstellar medium,
where the dust grain is in an electron-proton plasma with
little ultraviolet radiation present, the dust grains acquire a
negative charge. On the other hand, exposure to ultravio-
let light from nearby stars can cause ionization of the
grains, leaving a residual positive charge.

In this paper, we investigate the propagation of plane hy-
dromagnetic waves(Alfvén waves and magnetoacoustic
waves modified by the presence of a secondary ion or dust
species in a bi-ion plasma), propagating parallel to the
pumped magnetic field of a large amplitude magnetoacoustic
wave. We generalize Ref.[12] where the second heavy space
was assumed immobile, to the case where both ions are fully
mobile. A further generalization is the inclusion of pressure.
The background magnetic field and plasma density are taken
to be uniform, at frequencies well below the electron plasma
and cyclotron frequencies. First, we find the dispersion equa-
tion of the pump wave, and then concentrate on pump waves
of large wavelength. We then obtain a coupled pair of equa-
tions of motion governing the perturbed plasma. Resonant
interactions are sought and growth rates of the waves para-
metrically excited by the pump are calculated and discussed.

II. MULTIFLUID MODEL

The most general set of equations used to describe two
mobile ionlike species, plus electrons, is a three-fluid model.
In this picture we employ three momentum equations for the
electrons and the two ion species, where we include both the
ions’ inertia terms, while ignoring the electron inertia. This is
valid if the frequencies of interest are well below the electron
cyclotron frequency. In addition we use Maxwell’s equations
and two mass continuity equations for each of the ion spe-
cies, ignoring Maxwell’s displacement current.

The primary species(assumed positively charged) shall be
denoted with a “1” subscript and the secondary species(ei-
ther positively or negatively charged) shall be denoted with a
“2” subscript. In this notation we may write the current den-
sity as

J = Z1en1v1 + Z2en2v2 − eneve, s2d

where the two ion species and electrons have velocities de-
noted byv1, v2, andve, respectively. We employ the param-
etersd1=ne/Z1n1 andd2=ne/Z2n2, which measure the distri-
bution of charge in the plasma amongst the ions. Employing
the total charge neutrality condition, given in Eq.s1d, we
may write this as

1

d1
+

1

d2
= 1, s3d

in terms of these parameters. Note that in the limit of a single
sprimaryd ion species, we haved1→1 andud2u→`.

Ignoring collisions, but including the effects of pressure,
the starting equations for the velocities, electric and magnetic
fields and each number density are the momentum equations,
the two ion continuity equations, and Ampere’s law neglect-
ing the displacement current:

m1n1
dv1

dt
= −= p1 + Z1en1sE + v1 3 Bd, s4d

m2n2
dv2

dt
= −= p2 + Z2en2sE + v2 3 Bd, s5d

0 = −= pe − enesE + ve 3 Bd, s6d

] n1

] t
= −= · sn1v1d, s7d

] n2

] t
= −= · sn2v2d, s8d

= 3 B = m0esZ1n1v1 + Z2n2v2 − neved. s9d

Here,p1,2,e are the two heavy species and electron pressures
andm1,2 are the heavy masses. The magnetic fieldB includes
the background magnetic fieldB0.

Finally, by assuming either an isothermal or an adiabatic
equation of state, we have

=pa = Ua
2ma = na s10d

for each species, whereUa are the individual sound speeds.
Though it is not imperative, we shall assume isothermal
changes, which permits us to write downUa in terms of the
plasma temperatures, i.e.,Ua

2 =kBTa /ma is the square of each
thermal speed, whereTa is each temperature andkB is Bolt-
zmann’s constant.

At this point we choose to eliminate the electron variables
from Eqs. (4)–(9), and use Faraday’s law to eliminate the
electric fieldE. There are then two choices for the way to
proceed. We can add and subtract the momentum equations
and deal with a total fluid velocity and the current densityJ.
Instead we shall employ the most direct method, which is to
deal with the ion velocitiesv1 and v2 separately, since our
equations will exhibit the most symmetry this way. By em-
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ploying the charge neutrality condition to all orders, the fol-
lowing system of nonlinear partial differential equations is
found:

] r1

] t
= −= · sr1v1d, s11d

] r2

] t
= −= · sr2v2d, s12d

] B

] t
= = 3 sv1 3 Bd −

B0

V1
= 3

dv1

dt
= = 3 sv2 3 Bd

−
B0

V2
= 3

dv2

dt
s13d

d1r1
dv1

dt
= − sd1U1

2 + a1
2d = r1 − a2

2 = r2 +
r2V2

B0
sv1 − v2d

3 B +
1

m0
s= 3 Bd 3 B, s14d

d2r2
dv2

dt
= − sd2U2

2 + a2
2d = r2 − a1

2 = r1 +
r1V1

B0
sv2 − v1d

3 B +
1

m0
s= 3 Bd 3 B. s15d

In Eqs.s11d–s15d r1,2=m1,2n1,2 are the densities of each mas-
sive component of the plasma andV1,2=Z1,2eB0/m1,2 are the
correspondingssignedd cyclotron frequencies, withB0= uB0u.
Also a1

2=Z1Ue
2me/m1 and a2

2=Z2Ue
2me/m2 are pseudo-

squared thermal speeds associated with the electron pressure
sif Z2,0 we allowa2 to be imaginaryd. The presence of both
=r1 and=r2 in both equations of motion is a consequence of
the elimination of the electron variables from the equations.
To be more explicit, the electron density fluctuations gener-
ate fluctuations in both the ion densities through the charge
neutrality condition, which produces this coupling in the mo-
mentum equations. The second term on the right hand side of
Eq. s13d is the Hall term; it is important when the wave
frequency is comparable to either of the cyclotron frequen-
cies. Also, we see that the two species are strongly coupled
through the momentum equations, via the third term on the
right hand side in each. This is an additional Hall-type term
associated with the relative motion of the two species. Note
Eqs.s11d–s14d reduce, in the case of a single species plasma
sd1→1,ud2u→`, assuming local charge neutrality is main-
tainedd, to the equations used in Ref.f19–23g where nonlin-
ear Alfvén waves were investigated. They are then known as
the scollisionlessd Hall-MHD smagnetohydrodynamicsd
equations.

The neglect of the displacement current in Maxwell’s
equation is justified when the electron current is much
greater than the displacement current, which leads to the con-
ditions

d1 @
v

V1

vA1
2

c2 , ud2u @
v

uV2u
vA2

2

c2 , s16d

wherev is the wave frequency andvA1,vA2 are the Alfvén
speeds associated with each ion. The charge neutrality con-
dition implies that the wave frequencies are restricted to the
regimev!vpe, which may be restated as

ud1,2u @
uV1,2u

Ve
S v

V1,2
D2vA1,2

2

c2 . s17d

There exists a wide range of physical environments for
which all of the above mentioned conditions are met.

III. MAGNETOACOUSTIC PUMP WAVE

Suppose there is a constant background magnetic field in
thez direction, given byB0ẑ. We now periodically pump the
field, with a periodic modulation:

B0f1 + «̄b cossv0tdgẑ, s18d

wherev0 is the pump frequency. Here«̄ is a constant dimen-
sionless quantity which determines the amplitude of the
pump. More precisely,«̄ is an expansion parameter, which
permits us to keep track of our terms, by matching powers of
«̄. The parameterb on the other hand is a dimensionless
quantity that we include to capture any necessary frequency
information, i.e.,b=bsv0d, such that the average ofb overv0

is Os1d. By specifying a particular choice of normalization
condition, we may solve forb. We later in fact impose the
condition that the energy density in the pump system is a
constant overv0 and calculate the resultingb. Since we are
interested in a large amplitude pump wave,«̄ will typically
be Os10−2−10−1d.

However, since this field has no spatial dependence, it
does not satisfy our wave equations. Hence this is an ap-
proximation to a wave with a large wavelength. We must
therefore modify the pump with an envelope of some wave-
length. Since the pump wave magnetic field points in thez
direction, the wave vector should point perpendicular to this
to satisfy= ·B=0. For a planar geometry plasma, we choose
the axes such that the wave varies in thex direction, with
wave numberk0. By denoting the pump magnetic field(and
all subsequent pump fields) with a “0” superscript, we have

Bs0d = B0f1 + «̄b cossk0xdcossv0tdgẑ. s19d

In a cylindrical plasma, withr denoting the radial distance
from the cylindrical axis, we have

Bs0d = B0f1 + «̄bJ0sk0rdcossv0tdgẑ, s20d

whereJ0 is the 0th order Bessel function of the first kind.
Note thatb=bsk0,v0d in Eqs. s19d and s20d.

In the absence of a wave, we shall suppose that the
plasma is stationary, with ion densitiesr01,2 and charge ratios
of d01,2. The effect of pumping will be to modify the velocity,
density, and charge imbalance to order«̄, so that

v1
s0d = «̄v̄1, v2

s0d = «̄v̄2, s21d
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r1
s0d = r01 + «̄r̄1, r2

s0d = r02 + «̄r̄2, s22d

d1
s0d = d01 + «̄d̄1, d2

s0d = d02 + «̄d̄2. s23d

These quantities define the pump wave, and we now proceed
to solve Eqs.s11d–s15d to order«̄ si.e., the linear solutiond.

By inspecting the form of the magnetic field in Eq.(19)
[or Eq.(20)], and Eqs.(14) and(15), we note that the veloc-
ity cannot have az component. Hence, the velocities of the
ion species must be of the form

v̄1 = sv̄x1,v̄y1,0d, v̄2 = sv̄x2,v̄y2,0d s24d

for planar waves. From the resulting pair of equations we
ascertain the form of each velocity component and density:

v̄x1,2= Ax1,2 sinsk0xdsinsv0td, s25d

v̄y1,2= Ay1,2 sinsk0xdcossv0td, s26d

r̄1,2= R1,2 cossk0xdcossv0td, s27d

where Ax1,2,Ay1,2 and R1,2 are amplitudes independent of
space and time, to be determined. Then, from the continuity
equations, we have

R1 = r01
k0

v0
Ax1, R2 = r02

k0

v0
Ax2. s28d

For the cylindrical plasma case, we make the substitutions:
x→ r, y→f, cos→J0, and sin→J1, where f is the azi-
muthal angle andJ1 is the 1st order Bessel function of the
first kind. Then it is found that all the relationships
s24d–s28d still hold. It follows that the modes in the planar
and cylindrical plasmas satisfy the same dispersion equa-
tion.

Upon substitution of Eqs.(25)–(28) into Eqs.(11)–(15),
written to first order in«̄, the following dispersion equation
of the pump wave is obtained:

v0
2sv0

2 − vc
2d = Wk0

2sv0
2 − X − Yk0

2d. s29d

Here, we have defined

vc = V1/d02 + V2/d01, s30d

W= vA1
2 s1 + d01

2 b1 + d01B1d/d01
2 + vA2

2 s1 + d02
2 b2 + d02B2d/d02

2 ,

s31d

X = vcsvA1
2 V2s1 + b1 + d01B1d/d01 + vA2

2 V1b2/d02d/W,

s32d

Y = vA1
2 vA2

2 sb2s1 + d01B1d/d01
2 + b1s1 + d02B2d/d02

2 + b1b2d/W,

s33d

where uvcu is a hybrid cutoff frequency ask0→0. Also we
have introducedb1: =U1

2/vA1
2 , b2: =U2

2/vA2
2 , B1: =a1

2/vA1
2

and B2: =a2
2/vA2

2 which allow us to specify the cold/warm
plasma regimes, withB1 and B2 related through:d01B1
=d02B2. Note that asd01→1,ud02u→` si.e., a single spe-

ciesd we are left with the nondispersive relation

v0 = Îcs
2 + vA1

2 k0, s34d

wherecs
2=U1

2+a1
2 is the combined sound speed in this limit.

This is the familiar fast magnetoacoustic wave characteristic
for k 'B0. However, in the presence of a secondary ion spe-
cies the fast magnetoacoustic wave gains an additional mode
and the relationship is dispersive, see Fig. 1.

It is easy to show that the parametersX andW are always
positive, whileY=0 for the cold plasma and is positive if any
of b1,b2,B1,B2 are nonzero. Although Fig. 1 is for a plasma
in which the secondary ion species is positive, the same basic
qualitative features are present when the second ion species
is negative. For the warm plasma the effect of theY k0

2 term
in the dispersion relation is to cause the lower branch to
increase without bound ask0→`, as indicated in Fig. 1(a).
Physically, it can be thought of as the fast magnetoacoustic
mode being converted into an acoustic mode for largek0 due
to the inclusion of pressure. However, if the plasma is cold
(i.e., Y=0) then the lower branch experiences a resonance as

FIG. 1. The normalized pump frequencyv0/V1 vs normalized
pump wave numbervA1k0/V1 with d01=1.1 andV2/V1=0.1. (a)
The warm plasma, withb1=0.8,B1=1.5, andU2/U1=1/2. (b) The
cold plasma, withb1=B1=U2=0.
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k0→`, as indicated in Fig. 1(b). In this limit X becomes the
square of a resonance frequency given by

X → vr
2 =

vcvA1
2 V2d02

d02vA1
2 /d01 + d01vA2

2 /d02

, s35d

which gives rise to a forbidden frequency region between
uvru and uvcu, sinceuvr u , uvcu wheneverd01Þ1.

The ratio of thex-velocity amplitudesAx1,2 to the mag-
netic field parameterb are of particular importance to our
later discussion, so we briefly discuss them here. In terms of
the frequency and wave number, we find

Ax1

b
=

v0

k0A1
,

Ax2

b
=

v0

k0A2
, s36d

where

A1: =
1

d01
+

1

d02

V2

V1

U1
2k0

2 + V1vc − v0
2

U2
2k0

2 + V2vc − v0
2 ,

s37d

A2: =
1

d02
+

1

d01

V1

V2

U2
2k0

2 + V2vc − v0
2

U1
2k0

2 + V1vc − v0
2 .

Finally, to complete the set of pump quantities, we find that
the velocity in they direction is given by

Ay1

Ax1
=

sU2
2k0

2 − v0
2dV1 − sU1

2k0
2 − v0

2dV2

d02v0sU2
2k0

2 + V2vc − v0
2d

= F1, s38d

with Ay2 given similarly. This is quite different to the single
ion species case, whereAy;0.

The behavior ofuAx,yu /b is dramatically altered by the
choice of branch from the dispersion relation; see Fig. 2
where for brevity we plotAx1,y1 only. We see that ask0
→`, the x component approaches a finite positive value
while they component approaches zero for the upper branch
of the dispersion relation. On the other hand thex component
approaches large values and they component passes through
zero for the lower branch of the dispersion relation.

Note that the two branches stemming from the upper
branch of the dispersion relation become singular ask0→0.
This motivates the need for a normalization condition relat-
ing the pump field amplitudes of the velocitiesAx1,2,Ay1,2,
magnetic fieldb, and densityR1,2. A reasonable way to pro-
ceed is to assume that as we varyv0 the energy densityED in
the pump system is fixed. The appropriate relation in a fluid
description for general magnetoacoustic waves is(e.g., Ref.
[24]),

ED =
B̄2

2m0
+

e0Ē
2

2
+

1

2
r01sAx1

2 + Ay1
2 d +

1

2
r02sAx2

2 + Ay2
2 d

+
1

2o
a

Ua
2

r0a

Ra
2 , s39d

whereB̄=B0b, and the summation in the final term is over
each plasma species. In our approximations the electric en-
ergy term may be neglected compared to the magnetic en-

ergy. By switching to dimensionless units and setting
m0ED /B0

2;1, then all our variables are given uniquely in
terms of the basic plasma parameters. By using the expres-
sions forAx1,y1 andAx2,y2 we may solve forb. The result is

b =
Î2

Î1 +
v0

2s1 + F1
2d

k0
2vA1

2 A1
2

v0
2s1 + F2

2d
k0

2vA2
2 A2

2 +
b1

A1
2 +

b2

A2
2 + B1d01

s40d

fusingF1,2 from Eq. s38dg. A plot of b versus wave number
is given in Fig. 3 for each branchv0sk0d. It is important to
note thatb=OsvA1k0/V1d ask0→0 for the upper branch. It
follows that all the velocity amplitudes are well behaved near
k0.0.

The remaining pump quantities to solve for are the charge
ratios d1,2

s0d. These may be obtained by imposing the charge
neutrality condition on both the background plasma and on
the perturbations to the equilibrium. This is justified since we
are interested only with frequencies that are much less than
that of the electron plasma frequency. This means the elec-
trons have sufficient time to respond to the perturbations
from the equilibrium and neutralize the plasma at each point
in space. Thus, on the perturbed plasma we impose the con-
dition,

− en̄e + Z1en̄1 + Z2en̄2 = 0, s41d

where we have ignored the effects of dustsor iond charging,
that is,Z2 is constant. It is then straightforward to obtain the
charge ratios in terms of the densities, and subsequently in

FIG. 2. The ratio of normalizedx-velocity amplitude and
y-velocity amplitude to magnetic fieldAx1,y1/bvA1 vs normalized
pump wave numbervA1k0/V1, with d01=1.1,V2/V1=0.1,b1

=0.8,B1=1.5, andU2/U1=1/2. Thesolid curve is for the upper
branch of the dispersion relation, the dashed curve is for the lower
branch of the dispersion relation. Note that on the vertical axis we
plot the absolute value of this ratio, since we are interested here in
the ratio ofamplitudes. Consequently one of the two dashed curves
experiences a discontinuity in its first derivative when it touches the
horizontal axis.
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terms of the velocity amplitudes andb, as follows:

d1
s0d = d01F1 + «̄Sb −

k0

v0
Ax1Dcossk0xdcossv0tdG ,

s42d

d2
s0d = d02F1 + «̄Sb −

k0

v0
Ax2Dcossk0xdcossv0tdG .

This implies that the amount of charge that resides on each
species is temporally coupled to the other.

Using the derived set of quantities characterizing the
pump wave we may, in principle, investigate the possibility
of excited modes propagating at arbitrary angles with respect
to the z axis, as in Ref.[11]. However, by removing thex
dependence in the pump waves our calculations become
much more tractable, with the requirement that our excited
waves are restricted toparallel propagation along thez axis,
see Ref.[8].

For an infinitely extended medium, the perpendicular
wave number of the excited waves is then zero. However,
this would clearly be inconsistent with wave number match-
ing of a propagating pump with finite perpendicular wave
number. We therefore envisage this analysis to apply to a
standing wave(in the transverse direction) pump in a finite
geometry system, such as a cylindrical or toroidal laboratory
plasma, or an astrophysical magnetic flux tube; by seeking
localized solutions for distances transverse to the magnetic
field such thatk0x=Os«̄d in a planar plasma ork0r =Os«̄d in a
cylindrical plasma, we can recover the initially proposed
form for the magnetic field, Eq.(18). In other words, we are
taking x small rather thank0 small, to ensure that the fields
will look approximately uniform in the perpendicular direc-
tion, i.e., that the wavelength is effectively very long on the
length scale of interest. In the parallel direction, however, the
pump fields are uniform, we place no such restriction on

distances and excited wavelengths, and we can apply wave
number matching of the excited wave fields in that direction,
as discussed in Sec. VI.

Then in the region near thez axis we have

fBs0dgk0x,«̄ = B0f1 + «̄b cossv0tdgẑ, s43d

fv1
s0dgk0x,«̄ = 0, fv2

s0dgk0x,«̄ = 0, s44d

fr1,2
s0dgk0x,«̄ = r01,2F1 + «̄

k0

v0
Ax1,2 cossv0tdG , s45d

fd1,2
s0dgk0x,«̄ = d01,2F1 + «̄Sb −

k0

v0
Ax1,2Dcossv0tdG , s46d

correct toOs«̄d. Since the magnetic field has now simply a
periodic variation in time it resembles a canonical parametric
pump. The problem then resembles a parametric amplifier,
such as a harmonic oscillator with a time-varying spring con-
stant. For use in the excited wave equations we must also
compute the derivatives near thez axis, given here

F ] Bs0d

] x
G

k0x,«̄

= 0, s47d

F ] v1
s0d

] x
G

k0x,«̄

= «̄k0fAx1 sinsv0td,Ay1 cossv0td,0g, s48d

F ] v2
s0d

] x
G

k0x,«̄

= «̄k0fAx2 sinsv0td,Ay2 cossv0td,0g, s49d

F ] r1,2
s0d

] x
G

k0x,«̄

= F ] d1,2
s0d

] x
G

k0x,«̄

= 0. s50d

Note that the velocity has a finite derivative, even though the
velocity itself is zero in this regime.

IV. PERTURBATION METHOD

Next we wish to test the stability of the self-consistent
linear solution given in Eqs.(43)–(50), now regarded as a
finite-amplitude pump wave, to the excitation of waves
propagating along the magnetic field direction. We must
however be careful since this is only a linearized pump so-
lution. To proceed we will adopt the basic methodology of
Refs.[7,8], but shall attempt to refine the argument.

The basic technique is to perturb each quantity, i.e.,Bs0d,
vs0d, rs0d, ds0d, by an arbitrarily small amount as measured by
an expansion parameter«8. For example, take an arbitrary
field, sayX, with a known linear representation of the pump

field: Xs0d=X0+ «̄X̄. Then Refs.[7,8] proceed by perturbing
this quantity in the following way:

X = Xs0d + «8X8. s51d

However, sinceXs0d has neglected terms ofOs«̄2d, the term
of Os«8d is even more so negligible in this expansionsrecall

FIG. 3. The magnetic field amplitudeb vs normalized pump
wave numbervA1k0/V1 due to the normalization condition(40),
with d01=1.1,V2/V1=0.1, b1=0.8,B1=1.5, andU2/U1=1/2. The
solid curve is for the upper branch of the dispersion relation, the
dashed curve is for the lower branch of the dispersion relation.
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that «8 is arbitrarily smalld. The problem lies in the fact that
we are ultimately interested in the stability of theexactpump

solution, sayYs0d=X0+ «̄Ȳ, with

Ȳ = X̄ + Os«̄d. s52d

Thus, we shall perform the following expansion instead:

X = Ys0d + «8X8. s53d

Upon substitution into our set of nonlinear differential equa-
tions s11d–s15d, we obtain a set of equations of the following
structuresno approximationsd:

«̄AsȲd + «̄2BsȲd + «8CsX8d + «28DsX8d = «̄«8EsȲ,X8d,

s54d

whereA,B,C,D ,E are differential operators acting on their
respective arguments which we may treat as functionssfor
brevity we have suppressed their dependence on fields other

than Xd. Now «̄AsȲd+ «̄2BsȲd=0 by definition of an exact
pump solution. Also, the term ofOs«28d can certainly be ne-

glected. Next, we Taylor expandEsȲ,X8d and write

EsȲ,X8d = EsX̄,X8d + Os«̄d. s55d

We are then permitted to neglect this term ofOs«̄d when
inserted back into Eq.s54d. This gives us a set of equations

for the perturbationX8, in terms of theX̄, to sufficient accu-
racy, i.e.,

CsX8d = «̄EsX̄,X8d. s56d

Note thatX̄ has served two purposes. First, it gives us an
approximate description of the corresponding exact solution

Ys0d=X0+ «̄Ȳ, and second, it allows us to investigate its sta-

bility without ever having to findȲ.

V. EQUATIONS OF MOTION AND NATURAL MODES

Our task then is to ascertain the primed variables which
are the excited fields. As stated previously, we are interested
only in plane waves that travel parallel to thez axis. In this
case, any longitudinal components will decouple completely
and merely describe a linear acoustic wave, so we may set
the z component of the primed velocity to zero. Hence, both
primed velocities have the following form:

v1,28 = fvx1,28 sz,td,vy1,28 sz,td,0g. s57d

Thus,= ·v1= = ·v28=0, and from each of the two continuity
equations we have

] r1,28

] t
= − «̄r1,28 f= · v̄1,2gk0x,«̄, s58d

where we have imposed thek0x=Os«̄d for k0r =Os«̄dg condi-
tion. Hence we haver18=r28=0, i.e., there are no perturba-
tions in the densities of the excited fields. From this it also
follows thatd18=d28=0.

By taking the derived expressions forB, v, r, andd and
substituting into Eqs.(13) and (14), and using the stability
analysis procedure conveyed in Eq.(56), we obtain

] B8

] t
− = 3 sv18 3 B0d +

B0

V1
= 3

] v18

] t

= «̄F= 3 Sv18 3 B̄ + v̄1 3 B8 −
B0

V1
vx18

] v̄18

] x
DG

k0x,«̄

,

s59d

r01d01
] v18

] t
− r02V2sv18 − v28d 3 ẑ −

1

m0
s= 3 B8d 3 B0

= «̄F− d01r01vx18
] v̄1

] x
+ V2r̄2sv18 − v28d 3 ẑG

k0x,«̄

. s60d

Here the terms ofOs«̄d, which occur on the right hand side,
should be thought of as driving terms from the pump wave.
Note that there exist two further equations of motion under
the index interchange 1↔2. Note also that there are no
acoustic terms on the left hand sides of these equations be-
cause of the decoupling of the longitudinal motions: however
there are still acoustic influences in the pump fields on the
right hand sides of the equations.

Now in order to treat thex andy components of theB and
v vectors on an equal footing we form a complex vector out
of each component of these partial differential equations, uti-
lizing the variablesv±=vx± ivy. The spatial variation is as-
sumed to be periodic in thez direction with wave numberk,
as follows: expsikzd. Given this, the following pair of linear
ordinary differential equations are obtained:

] B±

] t
− ikB0v±1 7

kB0

V1

] v±1

] t

= i «̄FSB0bkv±1 + k
B0k0Ay1

V1
vx18 ± k0Ay1Bx8Dcossv0td

7 Ax1Sk0By8 + ik
B0k0

V1
Dsinsv0tdG , s61d

d01r01
] v±1

] t
± ir02V2sv±1 − v±2d − i

kB0

m0
B±

= «̄F− d01r01k0vx18 fAx1 sinsv0td ± iAy1 cossv0tdg

7 iV2r02
k0

v0
Ax2 cossv0tdsv±1 − v±2dG . s62d

Let us define the sense of polarization in reference to the
screw sense of the fields in the direction of propagation in
the z direction. Thenv+=vx8+ ivy8 corresponds to a left hand
circularly polarized wave for positive frequencies and a right
hand circularly polarized wave for negative frequencies,
while v−=vx8− ivy8 corresponds to a right hand circularly po-
larized wave for positive frequencies and a left hand circu-
larly polarized wave for negative frequencies. Also,B± is
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defined similarly. With these definitionsvx8 ,vy8 ,Bx8 ,By8 may
be eliminated entirely from these expressions. Note that the
presence of a second moving ion species introduces coupling
through terms of the form:v±1−v±2 and an additional term
on the right hand side in Eq.s62d due to density variations.

In an analogous way to the classic driven pendulum prob-
lem [25], we have found that the velocities of the two species
satisfy a pair of generalized Mathieu equations. Furthermore,
the two species and magnetic field are strongly coupled. To
proceed, we move from the time domain to the frequency
domain, under the Fourier transform:

V±1svd =
1

Î2p
E

−`

`

v±1stdeivtdt,

s63d

V±2svd =
1

Î2p
E

−`

`

v±2stdeivtdt,

where v is the frequency of the excited waves. Using the
linearity of our pair of differential equations, we compute the
Fourier transform of both. Upon eliminatingB± andV±2svd
in favor of V±1svd, we obtain

F±svdV±1svd = «̄†− 1
2fbvA1

2 k2 + P±svdgfV±1sv+d + V±1sv−dg

+ 1
2P±svdfV±2sv+d + V±2sv−dg + M±s− Ax1,

+ Ax1,v+,− 1dV+1sv+d

+ N±s− Ax2, + Ax1,− 1dV+2sv+d

+ M±s+ Ax1,− Ax1,v−,− 1dV+1sv−d

+ N±s+ Ax2,− Ax1,− 1dV+2sv−d + M±s− Ax1,

− Ax1,v+, + 1dV−1sv+d + N±s− Ax2,− Ax1,

+ 1dV−2sv+d + M±s+ Ax1, + Ax1,v−,

+ 1dV−1sv−d + N±s+ Ax2, + Ax1, + 1dV−2sv−d‡ ,

s64d

where

F±svd: = − d01v
2 + vA1

2 k2S1 7
v

V1
D

±
V1d01

d02
v11 −

1 7
v

V1

1 7
v

V2

2 , s65d

P±svd

: = ±
V1d01

d02
v1k0Vx2

v0
−

b

1 7
v

V2
2 , s66d

M±sA1,D1,j,«d:

= −
k0

4 3Sd01v ±
vA1

2 k2

Vi
DsA1 ± Ay1d

± f− d01j + es1 − d01dV1g

311 −
1

d02S1 7
v

V2
D2sD1 + Ay1d4 , s67d

N±sA2,D1,ed: = ±
k0

4
es1 − d01dV1sD1 + Ay1d

−
k0

4

V1d01v

d02V2

A2 ± Ay2

1 7
v

V2

, s68d

andv± : =v±v0. Equations64d is obviously not an algebraic
expression from which we can uniquely obtain the dispersion
equation betweenv and k. Instead it provides us with a
functional relationship between the Fourier transforms with
argumentsv, v−v0, andv+v0.

Nevertheless, we may proceed by noting that the right
hand isOs«̄d, which is small. For the left hand side to be
small we must ensure that the frequency is near a root of the
polynomial on this side with a correction ofOs«̄d, i.e.,

v = x + Os«̄d, s69d

wherex is defined to satisfy

F±sxd = 0. s70d

These define the naturally occurring modes in the absence of
pumping si.e., if «̄=0 then v=xd. The solutions of these
algebraic expressions give the dispersion relations character-
izing plane transverse waves propagating parallel to the
background magnetic field in a two species plasma. The last
term ofF± is only present when a secondary moving ionlike
species resides in the plasma. It is an additional Hall-type
term, associated with the relative motion of the two charged
species. In the one species limit this relation simplifies to

− x2 + vA1
2 k2S1 7

x

V1
D = 0, s71d

and we are left with the familiar fast and slowsion-
cyclotrond transverse wavesf8g.

The important feature of the two-species result in Eq.(70)
is that it is a cubic inx and hence another mode of excitation
has been added. Moreover, since we may chooseF+ or F− it
follows that there are a total of six solutions; three are left
hand circularly polarized and three are right hand circularly
polarized. However, only three of these are physically differ-
ent. This is because ifx satisfiesF+sxd=0, then −x satisfies
F−s−xd=0, and vice versa. We may then concentrate on the
positive frequency solutions.
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If the secondary species is positively charged then there
are two left hand modes of excitation[14]. These we denote
by vLs andvLf, where “s” denotes slow and “f” denotes fast.
There is also a single right hand mode, denoted byvR. The
corresponding dispersion relations are plotted in Fig. 4(a)
Note that the right hand mode intersects with the fast left
hand. Also, the two left hand modes both experience reso-
nancek→`. ForvLf it is given byV1, and forvLs it is given
by V2 (where we have assumedV1.V2).

For a negatively charged secondary species there are also
three modes of excitation, however the combination of po-
larizations has changed. In this case there are two right hand
modesvRf andvRs, and a single left hand modevL; see Fig.
4(b) Here vRs has a resonance at −V2, and vL has a reso-
nance atV1. In the dusty plasma case, further properties of
these modes were investigated in Refs.[13,26,27].

Note that the upper curves(fast modes), regardless of the
sign of the species, experience a nonzero cutoff frequency
which coincides with that of the pump frequency, see Eq.
(30).

VI. GROWTH RATES OF PARAMETRIC INTERACTION

From the above analysis we see thatx may be any one of
vLs, vLf, vR for a positively charged secondary species, or
vRs, vRf, vL for a negatively charged secondary species.
Since the frequency describing the excited wave is a pertur-
bation of a natural mode frequency, we denote the change by
f which is allowed to be complex, where

v = x + «̄f. s72d

Now by returning to the Fourier transform relationship in Eq.
s64d we can see what effectf si.e., pumpingd will have on
V±. Without any pumpingsi.e., «̄=0d the spatial solutions
would be a linear superposition of three pure monochromatic
exponentials. Hence the Fourier transform would be a sum of
three Dirac-d functions; see Fig. 5sad for a representation.
The effect of pumping is to modify this and provide fre-
quency shifts. The modified solution will have some broad-
ened frequency spectrum, since it is the case that Dirac-d
functions do not solve the Fourier transformed equations in
the presence of a pump. These types of modifications will
occur near each natural frequency; see Fig. 5sbd for a sim-

FIG. 4. The normalized excited wave frequenciesx /V1 vs nor-
malized wave numbervA1k/V1 of the three natural modes.(a) The
second species is positively charged, withd01=1.1 and V2/V1

=0.1. (b) The second species is negatively charged, withd01=0.9
andV2/V1=−0.1.

FIG. 5. A representation of the Fourier transformVsvd vs fre-
quencyv. (a) No pump, giving three Dirac-d functions. (b) The
effect of a pump, broadening(and shifting) the spectrum. Note that
we have chosen to illustrate the idea using only the right hand
modes(i.e., V−) for a plasma with a negatively charged secondary
species.
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plified representation of this effect. In fact an exact solution
would be more complicated with the identification of har-
monics, etc., but this figure should illuminate the key feature
of the interaction.

This is described as aparametric interactionbetween the
excited fields due to the pump fields. In order to proceed we
consider the case in which the interaction is greatest, as in
Refs. [7,8]. It is clear that this effect will be greatest when
the right hand side of Eq.(64) is large, which is the reso-
nance condition. This occurs when one of the Fourier trans-
forms on the right hand side is resonant, in other words when
their arguments are near one of thex’s, as conveyed in Fig.
5. Since the right hand side of Eq.(64) involves terms of the
form: Vsv+d andVsv−d, it follows that there will be a large
parametric interaction whenv+v0 or v−v0 satisfies this.
Now, as mentioned earlier we are restricting our attention to
positivev (without loss of generality). Under this condition,
it is found that onlyv−v0 can satisfy this. Moreover, there
are three choices for this interaction: a left hand mode inter-
acting with a right hand mode, a left hand mode interacting
with a left hand mode, or a right hand mode interacting with
a right hand mode.

To illustrate, suppose the secondary species is negatively
charged andv<vL (i.e., x=vL). Then we can havev−v0
<−vRs or v−v0<−vRf (left hand mode interacting with
right hand mode) or v−v0<−vL (left hand mode interacting
with left hand mode). In other words, the resonance condi-
tion is that the pump frequency satisfies

v0 = vL + vRs,v0 = vL + vRf, or v0 = 2vL, s73d

respectively, which is a statement of conservation of energy.
That is, the resonance condition describes the coupling of a
pump wave with two daughter waves.

Moreover, if v<vRs then we can havev−v0<−vL, v
−v0<−vRf, or v−v0<−vRs and the same conditions for
resonance apply. Similar rules apply forv<vRf and for a
plasma where the secondary species is positive.

Let us now address the issue of the treatment of the wave
numberk in our pair of interacting waves. First, note that in
the z direction thepump wave numberk0 is zero. For the
natural modes we have that a wave given bysk,−xd is physi-
cally equivalent to a wave given bys−k,xd. Thus our two
interacting waves will be given bysk,x1d ands−k,x2d, where
x1,x2 are any combination ofvL ,vLs,vLf ,vR,vRs,vRf.
Hence the wave numbers associated with each interacting
wave are equal and opposite, i.e.,

k1 + k2 = 0, s74d

which is a statement of conservation of momentum in thez
direction. The fact that the right hand side is zero reflects the
spatial uniformity of the pump wave. This tells us that if the
approximately spatially uniform standing pump wave de-
cays, then it does so into two daughter waves of equal wave-
length traveling in opposite directions. Since the wave num-
ber magnitudes are equal we may just consider the wave
numberk without referring to the sense of polarization. This
is a direct generalization of the previous investigations in
Refs.f7,8,14g.

With the above framework we now proceed to solve forf
from the Fourier transform relationship. We discuss the
method involved in obtainingf in the case where a left
handed wave interacts with a right handed wave, denoted
fLR. Here we may assume, without loss of generality, that
x=xL in Eq. (72), wherexL is any one ofvL ,vLs,vLf. This
will interact with −xR (i.e., x−v0 may be any one of
−vRs,−vRf,−vR).

Following the methodology of Ref.[28] we form another
equation corresponding to Eq.(64) under the transformation
v→v−v0. In the resulting two equations, we neglect the
obviously nonresonant termsVsv+d and Vsv−2v0d. Addi-
tionally, due to our particular choice of interaction, i.e., left-
right, we neglectV+sv−d and V−svd, and retain onlyV+svd
andV+sv−d. We find the following:

F+sxL + «̄fLRdF−sxR − «̄fLRd

= «̄2fY+s− xRd + J+s+ Ax1, + Ax2,− Ax1,− xR,− 1dg

3 fY+s+ xLd + J+s− Ax1,− Ax2, + Ax1, + xL,− 1dg,

s75d

where

Y±sjd: = −
1

23bvA1
2 k2 + P±svd11 −

1 ±
j

V1

1 ±
j

V2

24 , s76d

J±sA1,A2,D1,j,ed: =

1 7
j

V1

1 7
j

V2

N±sA2,D1,ed + M±sA1,D1,j,ed.

s77d

In these expressions we implicitly have thatj and v are
related by:j→xL⇒v→−xR andj→xR⇒v→−xL.

In the one ion species analysis, it is at this point that the
conservation of energy and momentum rules are used to ex-
plicitly obtain xL ,xR,k. The procedure is to useF± to solve
for xL,R in terms of k. These solutions are then added to-
gether and equated tov0. The resultant expression is then
solved for k and subsequently substituted into the expres-
sions for xL,R. This process explicitly shows that the reso-
nance condition, for a given value of pump frequencyv0,
uniquely determines the frequencies and wave numbers of
the excited waves. Now, this is all possible since the solution
of F± in the one species limit is merely a quadratic, see Eq.
(71). However, in our case we must solve a cubic. As such,
the resulting expressions forxL ,xR,k are too complicated to
be reproduced here. Let us just note that it is still true thatv0
determines them uniquely.

In order to solve forfLR in Eq. (75) we Taylor-expand
F+sxL+ «̄fLRd aroundxL to order «̄, then use the fact that
F+sxLd=0 to obtain
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F+sxL + «̄fLRd = «̄fLRHsxLd, s78d

where

Hsxd: = −
vA1

2 k2

V1
− d01xS2 +

sV1 − V2ds2V2 − xd
d02sV2 − xd2 D , s79d

while F−sxR− «̄fLRd can be treated similarly. HencefLR is
obtained from

fLR
2 = fY+s− xRd + J+s+ Ax1, + Ax2,− Ax1,− xR,− 1dg

3fY+s+ xLd + J+s− Ax1,− Ax2, + Ax1, + xL,− 1dg

3fHsxLdHs− xRdg−1. s80d

Although this was derived assuming we were near a natural
frequency of a left hand mode, we obtain the same expres-
sion for f2 for the right hand casesviz. fRL

2 d with the modi-
fication thatfRL is of the opposite sign.

This technique may also be applied to both the left-left
interactions and the right-right interactions. This includes the
possibility of a slow wave interacting with a fast wave(e.g.,
vLs and vLf) and waves of equal frequency interacting.
These sorts of interactions occur only because of the velocity
derivative terms in Eqs.(48) and (49). In obtainingf we
must retain and neglect the appropriate selection of Fourier
transforms according to the choice made. Here we introduce
xL1 andxL2 as two(possible equal) left hand modes, andxR1
andxR2 as two(possible equal) right hand modes. The cor-
responding frequency changes are obtained from

fLL
2 = fJ+s+ Ax1, + Ax2, + Ax1,− xL2,− 1dg 3 fJ−s− Ax1,− Ax2,

+ Ax1, + xL1,− 1dg 3 fHsxL1dHs− xL2dg−1, s81d

fRR
2 = fJ−s+ Ax1, + Ax2,− Ax1,− xR2,− 1dg 3 fJ+s− Ax1,− Ax2,

− Ax1, + xR1, + 1dg 3 fHsxR1dHs− xR2dg−1, s82d

for the left-left and right-right interactions, respectively.
It is worth noting that in other types of parametric prob-

lems, such as modulational and beam instabilities, a graphi-
cal approach is useful in classifying the instabilities; they
occur where two normal mode lines cross and reconnect
[29,30]. In those cases the number of interacting modes is
finite and the nonlinear dispersion relation can be obtained in
closed form. In our case, however, we cannot obtain the non-
linear dispersion relation in closed form, due to the infinite
number of interacting modes; the decay interaction of the
two excited modes with the pump is postulated in the first
approximation and the classification of the instability is rela-
tively straightforward.

VII. NUMERICAL ANALYSIS

From the expressions forfLR
2 ,fLL

2 ,fRR
2 it is easy to see

that these quantities are real valued when we are in a
frequency–wave number regime such that a pump wave can
propagate. Hencef is either purely real or purely imaginary.
If f is real then what we have found is a correction to the
natural mode frequency which adds an extra Fourier compo-
nent to the field expansions. Iff is imaginary then the

daughter waves will either undergo exponential growth or
decay. Moreover, since there will exist both a positive and a
negative imaginary frequency solution and since the fre-
quency is conserved, this implies that one of the daughter
waves will grow and the other will decay. In such cases the
presence of one exponentially growing daughter wave im-
plies that anywhere in whichf2,0 is a region of instability.
In this casef is the growth rate.

In Fig. 6 we plot the full complement of(normalized)
squared frequency changes. That is, we plotsfLR/V1d2 ver-
sus pump frequencyv0/V1 for the upper “U” and lower “L”
branches of the pump dispersion relation for each mode of
interaction. This figure is for a warm plasma in which the
second heavy species is positively charged. The same basic
features are present in the negatively charged case. All
curves labeled “s,” i.e., “Us” and “Ls,” correspond to the
combination betweenvR and vLs, that is, the slow interac-

FIG. 6. The squared normalized frequency changesfLR/V1d2

for the left-right interaction plotted against pump frequencyv0/V1.
In both plots the second species is positive, withb1=0.8, B1=1.5,
U2/U1=1/2, andV2/V1=0.1. The number densities vary in(a, b),
with d01=1.02 in (a), andd01=1.002 in(b). Also, “Us, Uf, Ls, Lf”
denotes the upper-slow, lower-slow, upper-fast, and lower-fast com-
binations, respectively. Here “N” denotes the single species result.
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tion. The curves labeled “f,” i.e., “Uf” and “Lf,” are for the
fast interaction betweenvR andvLf.

In Fig. 6(a), whered01=1.02, the full spectrum of pertur-
bations to the natural modes is seen. TheUf interaction is
unstable and monotonically decreases, approaching the
single species result “N” for large v0. Hence this is indeed
consistent with the single ion analysis given by

fLR
2 → −

vA
4k4

4v0
2s1 + b1 + B1d

, asd01→ 1. s83d

TheLf interaction is also unstable, however it experiences
a minimum (corresponding to amaximum growth rate),
about which it turns over and approaches zero. For our
choice of parameters, in this figure, this occurs nearv0
,0.2 V1. Moreover the intersection withN occurs atv0
,0.45V1. Next, we see that theUs interaction is small and
positive, and hence it is weakly stable. Note, however, that if
higher order terms are included in the field expansions then
this may in fact prove to be weakly unstable. Finally, we see
that the Ls interaction, which is only present in awarm
plasma, is strongly unstable, with a growth rate that ap-
proaches infinity at a rate considerably faster thanN or Uf.

As we decrease the number density of the second species
in Fig. 6(b) to d01=1.002 some interesting features appear.
The Uf curve shows a sharply varying growth rate at just
above the cutoff frequency. TheLf minimum shifts to a
lower value (lying beyond the range of the plot). The Us
interaction has actually become unstable in the frequency
region just above the cutoff frequency. Also, the manner in
which our bi-ion result approaches the single species result
asd01→1 is interesting: the envelope of the three modesLs,
Us, and Uf form N in the domainsv0&vc, vc&v0
&2 vc, andv0*2 vc, respectively.

In Fig. 7 we plot the range of left-left interactions for the
positively charged secondary species case. As can be seen in
Fig. 4(a) this case has two left handed branches(slow and
fast). Hence we may form the slow-slow, fast-fast, and slow-
fast combinations. This combined with the lower and upper
branches of the pump dispersion relation gives a total of six
interactions. Of these six we find that all are unstable, except
the “Lsf” combination which experiences a point of maxi-
mum stability at just below 2vc. Note that the “Lss” interac-
tion decreases without bound asv0→2V1 This is acceptable
given that for the slow-slow case the excited wave numberk
experiences a resonance asv→V1 (with pump wave number
small). Although it lies below the range of the plot the “Lf f”
interaction starts at a finite value, whenv0=2vc. Also note
the curious feature wherein the “Usf” interaction has a cor-
responding growth rate which is large in the rangevc&v0
&2 vc only.

Finally, in Fig. 8 we plot the range of right-right interac-
tions for the negatively charged secondary species case.
Again by inspection of Fig. 4(b) it makes sense that there are
six values offRR

2 . This plot shares many features in common
with the previous plot. However, an important change is that
the Lss interactions has a minimum and approaches zero as
k→`. Also, the Usf maximal growth rate has shifted to
much higher values of pump frequency. TheLsf interaction
has stability asv0 increases.

Hence, we have seen that the introduction of a second
species adds a range of extra behaviors, even with a small
number density. Note that in the special case where the fre-
quencies of different modes coincide, the selection of reso-
nant Fourier transforms to generate these plots is actually
invalid. In particular, this occurs at the point seen in Fig. 4(b)
wherevR=vLf. At that point there are actually more terms
resonant than have been accounted for. However, since this
occurs on a set of measure zero, it has been ignored.

FIG. 7. The squared normalized frequency changesfLL /V1d2

for the left-left interaction plotted against pump frequencyv0/V1.
Here the second species is positive, withb1=0.8, B1=1.5, U2/U1

=1/2, andV2/V1=0.1, andd01=1.002. Also, “Uss, Lss, Uff, Lff,
Usf, Lsf” denotes the upper-slow-slow, lower-slow-slow, upper-fast-
fast, lower-fast-fast, upper-slow-fast, and lower-slow-fast combina-
tions, respectively.

FIG. 8. The squared normalized frequency changesfRR/V1d2

for the right-right interaction plotted against pump frequency
v0/V1. Here the second species is negative, withb1=0.8,B1

=1.5,U2/U1=1/2,V2/V1=−0.1, andd01=0.998. Also, “Uss, Lss,
Uff, Lff, Usf, Lsf” denotes the upper-slow-slow, lower-slow-slow,
upper-fast-fast, lower-fast-fast, upper-slow-fast, and lower-slow-fast
combinations, respectively.
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VIII. CONCLUSIONS

This paper has outlined an investigation into a certain
class of instabilities in a bi-ion or dusty plasma, allowing full
mobility of all species and the inclusion of pressure. The
results should be applicable to a wide range of laboratory
and space plasmas where secondary ion species or charged
dust grains occur. The immediate consequence of the pres-
ence of an extra heavy species is its increase or reduction of
the number of free electrons in the plasma through the charge
neutrality condition. We obtained a pump wave with spatial
variation transverse to the background magnetic field, which
contained an upper and lower branch, and made the approxi-
mation of spatial uniformity of this pump. The stability of
this structure was investigated by perturbing the pump wave,
as we looked for parametric instabilities wherein the pump
wave generates excited waves. Three natural transverse
modes were found to be excited propagating parallel to the
background magnetic field; two left handed when the second
species is positive and two right handed when the second
species is negative. Two out of each of these three are the
modified fast and slow(ion-cyclotron) modes. There were
three basic types of interactions allowed; left-right, left-left,
and right-right, each of which has several combinations de-
pendent on both the choice of branch from the pump wave
(upper and lower) and the choice of natural mode(slow and
fast), giving rise to twelve interactions in total for any par-
ticular plasma.

We derived the frequency changes to the natural modes,
corresponding to growth rates when the perturbation to the
frequency was imaginary. We can summarize the main fea-
tures of the instabilities for the left-right interactions(oppo-
site sense circular polarization) as follows.

(i) Of the four combinations allowed, three are unstable
when the number density of the second massive species is
substantial, and all four are unstable when the number den-
sity of the second massive species is low.

(ii ) As the single species case is approached(d1→1), the
envelope of three different growth rates approaches it in the

domainsv0&vc,vc&v0&2 vc andv0*2 vc.
(iii ) The two interactions corresponding to the lower

branch of the pump dispersion relation are strongly unstable,
with the Lf experiencing a local maximum andLs
unbounded.

Next we investigated the left-left and right-right interac-
tions (same sense circular polarization).

(i) These interactions involve six and two combinations,
respectively, when the second species is positive, and the
reverse when the second species is negative. This follows
simply from the assortment of handedness of natural modes.

(ii ) Of these only theLsf interaction is stable, while the
others display interesting behaviors. In particular, in the posi-
tive case, theLss curve approaches −̀as v0→2vc where
the excited wave numberk experiences a resonance, while its
growth rate is maximal atv0 just below 2uvcu in the negative
case.

(iii ) In contrast to the left-right interactions, the upper
pump mode can give the strongest instabilities. TheUsf in-
teraction has a large growth rate betweenvc and 2vc in the
positive second species case, and at higher values of pump
frequency in the negative second species case.

In several of the above interactions the growth rate starts
at a nonzero value. This occurs in the cases where the start-
ing value ofv0 have a corresponding nonzero value fork0,
so the velocity derivative terms are nonzero.

A possibility for further work would be to allow the ex-
cited waves to be fully oblique, rather than simply parallel to
the background magnetic field. In doing so we would be able
to remove the long pump wavelength assumption, which
may lead to interesting features. In the single ion case this
was treated in Ref.[11], albeit without pressure. It is antici-
pated that implementation of the accompanying additional
wave number matching rules, in both thez andx directions,
would be algebraically complicated.
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