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This paper presents a setup of turbulence mechanics for averaged description of turbulence, founded on laws
of momentum, moment of momentum, and energy, complemented by common rheological principles for
formulating constitutive relations between generalized forces and generalized velocities of the description. A
kinematical-geometrical principle is adopted to determine internal rotating degrees of freedom of turbulent
media generated by the eddy structure of turbulent flow fields. The connection between the formulated me-
chanics and some modeékssK-¢ mode), widely used in practical engineering flow calculations, is established.

As an example, the formulated mechanics is applied to describe some classical flow patterns.

DOI: 10.1103/PhysRevE.69.056317 PACS nunmderd7.27—i

I. INTRODUCTION the latter, the formulated idea as well as the idea of Mattioli

Turbulence mechanics is a theory of turbulence formudid not live up to expectations. _
lated in terms of average fields and founded on conservative Nikolaevski[13] attempted to revive those ideas by asso-
laws of momentum, moment of momentum, and energy. Thé&iating internal rotating degrees of freedom in turbulent me-
balance equations, expressing these laws, are closed by &fja with volume(coarse graipaveraging. Although this ap-
plying common rheological principles for formulating con- proach expresses the rotational degrees of freedom in a
stitutive relations expressing generalized forces of the deturbulent medium in terms of conventional characteristics of
scription through the corresponding generalized velocitiegurbulent flow field, it binds the nontriviality of internal mo-
and by adopting some specific assumptions which may varjents to the finiteness of the linear scale of the differential
on considerations such as physics encompassed in the flowplume. This statement ascribes a subjective sense to the
the level of accuracy, and so on. internal moments in turbulent media and differs from the

The basic question to answer in formulating any mechaniconventional understanding of differential volume as a vol-
cal description of turbulence lies in determination of degreesgime of infinitesimally small linear scale.
of freedom of turbulent motion. Starting from Richardson’s The essentiality of the internal rotating degrees of free-
turbulence understandinid] with complementary remarks dom of turbulent motion and the absence of their satisfactory
by Kolmogoroff[2] (together referred to as the RK concep- determination led the author to a kinematical-geometrical
tion) it is easy to conclude the independence of internal roprinciple of determination of characteristics of internal rota-
tating degrees of freedom in turbulent medigformed as tion in turbulent medig14,15. Indisputable advantage of
the summary effect of rotation of hierarchy of eddies of dif- the proposed approagtiscussed in detail in Secs. Il and IlI
ferent scales with a cascading mechanism for their generstands in the connectedness of the internal rotating degrees
tion) from the degrees of freedom of its translatory motionof freedom with local measurable flow field parameters, turn-
described in terms of average velocity field. Indeed, largeing the statements of the theory verifiable. Concerning the
scale eddies in the hierarchy draw their energy from averagitter, the proposed theory differs essentially from the ones
flow and average angular velocity of their rotation deter-used in Refs[10-17 and finds the need to vitalize the ideas
mined by vorticity of the average velocity field, while the of the 1960s which have been forgotten to a large extent and
small-scale eddies are not oriented, i.e., average velocity gire not actively pursued in most of today’s turbulence stud-
their rotation is zero. It is clear that in this situation the meanies.
angular velocity of eddy rotations over all scales cannot be The closure problem for the formulated turbulence me-
determined by the vorticity of the average velocity field un-chanics(Sec. 1V) is solved within the common rheology
ambiguously and must be treated as independent of the aused in the mechanics of continuums. It is shown that spe-
erage velocity.(This corollary of RK conception was not cific solutions of the closure problem by adopting idea& pf
noticed by Richardson and Kolmogoroff themselyess a  K-¢, andK-w models, widely used in the majority of appli-
consequence, the law of moment of momentum should forngations, open the door to their significant generalization. As
an indispensable component of any setup of mechanical dén example, in Sec. V the formulated mechanics is applied to
scription of turbulence. the description of some classical flow patterns.

The independence of rotating and translatory degrees of
freedom of turbulent motion was first broached by Mattioli
[3]. Mattioli's idea was vivified in 1970s as indicating to a  1I. THE SETUP OF MECHANICAL DESCRIPTION OF
possible field of applications of moment hydrodynamics TURBULENCE: EQUATIONS OF BALANCE
[4-9]. Concrete attempts in this directiph0—-12 were made
by ascribing micromorphic properties to turbulent media ap- We start the setup of turbulence mechanics from the defi-
pearing beyond the scope of classical field theories. Due taition of density of the internal moment of momentum per
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r,dv and moment of momentum.
v’ Let us list some other properties of turbulent continuum
which follow from Eqgs.(1) and(2).

(vii) The definition(1) suggests the definition of a kine-
matical characteristic of flow fiel@ corresponding tdé/1, as

9=<"':2R>. 3)

(viii) The density of turbulence energy per unit mass

FIG. 1. The definition oM (1) at a fixed point determined by (henceforth the turbulence eneygh'=3(v'?) decomposes
point vectorr: unlike the conventional understanding of internal into the sum of two constituents,
moments, defined as moments with respect to a fixed point inside 1
differential volumedV associated witlhh, momentM atr defines as Ktl = EM -
the average moment with respect to random centers of curvature
(determined byR) outside the differential volumaV. and

v’- streamline

. . . Ky=3(M"-Q),
unit mass of turbulent flow fiel¢henceforth the internal mo-
ment of momentumin the form where

M = (v’ X R). (1) MP=vixXR-M
and

In Eq. (1) and thereafter the brackets denote statistical aver- )
aging(or an arbitrary averaging, satisfying the Reynolds av- Q= VIXR Q
eraging ruleg v’ =v-(v) denotes the fluctuatiofresidua) R? ’

constituent of the flow velocity; andR=de/ ds|de/ 952, in
which e=v’/v’ ands is length of the arc of/’ streamline, ; . -
which denotes the curvature radiuswdfstreamline(Fig. 1). ~ @nd of three-dimensional constituents of turbtuler{dk{:-

Let us note thaR, contained in definition(1), can be ~cording to RK conception the energi¢§ and K; can be
extracted from the experimental data by using technique t§'terpreted as energies of relatively large-s¢aféented and
measure Lagrangian velocities of tracer particles in turbulenfelatively small-scale(nonorientedl constituents of turbu-
flow [16] and from the data of direct numerical simulations '€nce. To avoid confusion with applying the terms “small-
[17]. This comment attributeM with measurability and all Scale” and “large-scale” turbulence, we cease using them if

corollaries following from the definition o1, given by Eq.  ©itherK!=Kj or K'=K3]. .
(1), with testability. (ix) M and Q define the tensor of effective moment of

We also point out the following. inertia J for each flow field point, determined by

(i) M is defined for each point of the flow field and
forms a continuum.

(i) M (as a quantity determined on characteristics o
fluctuating constituents of velocity fields defined as inde-
pendent of the average velocity).

(iii) M is defined as a statistical characteristic of the
motion field and cannot be interpretédue to the random-
ness ofR) as a moment with respect to any fixed moment
center(in this senseM is similar to the spin in quantum

interpreted as the densities of energies of two-dimensional

M=7-Q.

fWhenj is isotropic(7=J-1, wherel is the unit tensorit
defines the parametdr \J with the dimension of length
for every flow field point.

Here we point to the difference in physics of introduced
Q, defined by Eq«3), and vorticity , defined byw=V
X{(v)/2. If @ describes the angular velocity of rotation of a
medium particle in differential volumeV surrounding the

mechanic t center and is determined by th locit
(iv) Definition (1) is not related to the microproperties of moment center and IS determined by the average velocity
the medium field, thenQ is determined as the average characteristic of

fluctuating (residua) constituent of the velocity field. It ex-
presses the average angular velocity of rotation of a medium
particle indV with respect to the momentary centers of cur-
M #0 ) vature ofv’ streamlines. Quantitie® and w, though differ-
ent in their physical sense, have coinciding dimensions and
[the property of turbulent medium, expressed by the condimay appear to have equal values. Definitigay and (3)
tion (2), is called henceforth rotational anisotropy. It declaresdisprove the idea according to which the independence of
the existence of a preferred orientation of eddy rotations ircharacteristics of internal rotation in turbulent media should
turbulent mediun follow only from averaging over some volunjé3] since
(vi) The description of turbulent motions satisfying the volume averaging and differentiation need not commute, i.e.,
condition (2) must be subjected to the laws of momentummay lead tXV X v) # V X(v).

(v) In general
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In addition to (i)<(ix), the definition(1) prescribes, to- viscosity, andv(i’j):%(vi'j"'vj'i)] denote components of the
gether with Navier-Stokes equation and averaging rules, agolecular stress tensor:
algorithm for deriving the balance equations for momentum,

moment of momentuniM ), and energyK}, leading also to o = - pleasvjviRs P}
specific expressions of their terms. These equations follow as
the averaged Navier-Stokes equation, as the averaged equa- My = _p<vj’|v||;);

tion formed by multiplying the equation far’ (deduced as ) )
the difference between the Navier-Stokes equation and th@=Ms+My+my, in which

averaged Navier-Stokes equatidrom the right vectorially me=(f" X R)
by R, and as the difference of energy equations Kérand f
K. (f"=f-F denotes the fluctuating constituentfofield),
Below are the derived equations of balance:
D m1:<v’ X —R>, (8)
Pau:{gij,j}"'PF: (4)
and
PEM ={my i} — o +pm (5) M = {8is(vi URs ) + (0RO T 9
Dt ' '
h,=ht-h}
D . .
pD—tK‘Z:V-htz—¢+\If+B+pq. (6)  inwhich

ht={- .’KU/ + m' s
In Egs.(4)~(6), in addition to the notations explained above, (= piK") + (o o))
u=(v); p is the medium densityassumed to be constant (whereK”':v’Z/Z) and
D/Dt=4/at+u-V; F=(f), in whichf denotes the densityper

unit mas$ of the nonaveraged body force acting on medium; h} = {Mud;
g;j andmy; denote the components of the stress tensor and

the moment stress tensor, describing the diffusive transport (p:(gif}“'vi'j :
of momentum and moment of momentum in a mediwm; '
={egjoij}, wheregg; are the components of the Levi-Civitta B=-pm,-Q:

tensor, denotes the dual vector of the antisymmetric constitu-
ent of the stress tensan denotes the densityper unit masg 4
of body moment acting on a mediurh}, denotes the diffu- v=SFy (10)
sive flux vector for energy};  describes the molecular B are
dissipation of energ;Ktz; ¥ denotes the scattering function
of energiesu?/2 andK} into energyK}; B denotes the term in which 7, and ), denote the generalized forces and ve-
describing an additional mechanism of interaction betweetocities of the description, defined as
K! and K}, differing from the one described by; and q
denotes the term which describes internal sourc&ofin
Egs.(4—(6) and henceforth, the index after comma denotes,
differentiation by the respective space coordinate, while the
notations in braces denote the component representation of a Vo ={Uij) Q2 — 0,0 ;,Q},
tensor or vector quantity, wherein equivalent notation, arbi- ; C g . .
trary tensor or vector quantitg {components of this quan- Whereo(;=(oj;+0j)/2 is the symmetric part of the turbu-
tity }, is used. lent stress tensor; and

Consider now the cagd&)=0. In this case the derivation —(f" xR) - Q)
of Egs.(4)—(6) leads us to the following expressions fey, a=( ) '
o, Mg, m, hS, ¢, W, B, and q through characteristics of Let us list some remarks concerning the situation de-

a=1

— t
fa—{o'(ij)!o':mij:_f)ml}

nonaveraged flow field: scribed by Eq(4)—6).
" ’ (i) No more assumptions besides the listed one in the
aij ={oij) + o, section preceding Eq$4)—<6) are adopted in the deduction
where process.
(i) The mechanics of turbulence based on Ed$(6)
Uit]. =- p<Uj,Ui’> (7) does not reject classical theories and modfesinstance K

model,K-& model, andK-w model), founded on the balance
are components of the turbulent stress tensor affé  equation(4) and on the equation for full turbulence energy
—pdij+2u™v ) [p denotes thermodynamic pressufg,are K, following from Eq. (6) for rotationally isotropic turbu-
components of unit tensoy™ is coefficient of molecular lence, but complements them.
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(iii) The derivation of Eq4)—6) exhibits not only spe- direct measurements, based on E@%)—14), or by compar-
cific expressions for the terms of the equations but also theng results of calculations with the corresponding experimen-
structure of the generalized forces and generalizedal data. The constitutive relatiorid1)—(13) are familiar to
velocities—the base of formulation of constitutive relationsthe moment hydrodynamicglt-9], while the relation(14)
(Sec. . expresses a property specific to the turbulent media.

(iv) The mechanics based on E¢)—(6) declares asym- Postulating inequality
metry of the turbulent stress tensor. In a coordinate system
associated with each flow field poifit;) and with an origin V=0,
placr:ed at a random point with the coordinatesR;, for o for 4, y, 9, 9, 9,, andx we have from Eq(10)
we have
My Yy K, 9o+ %(191‘F 9y), O+ Dy —9,=0.

o = - p{eglviv)} Einall _ @) 1 i the f 1
nally, representing express or m, in the form
According to definition oM, o is interpreted as the moment inaly, rep ng exp 'e8) 2! [15]
acting on the internal rotatiofin the sense determined by m,=J(Vu) - Q (15

Eqg.(1)] and causing an increase or a decrease in the moment = | . ) . )
of momentumM . It realizes the interaction between the (Which includes the assumption about approximate linearity
andM fields. of u field within the space scales determined Ry after

(v) Only the constituentn; of the body momenm is replaping in Eqs(4) and(5) the quantities gppearing on the
associated with external body forces. Constituents of thefft side of Egs(11)«(15) by their expressions on the right
body momentm, andm,, defined in Eqs(8) and (9), are  Side of EGs(11)«15), we have
caused by the cascading scatter of moment of momeiMum

and by the mean flow modified eddy structure. p—u=-Vp+{(uyu;)+V X ¢y2Q -V Xu)+pF,
(vi) The decomposition of the total turbulence energy Dt
within the turbulence mechanics, based on Eds<6) into (16)

two sublevels is substantial, owing to the difference in the
character of the energy interaction processes of enekjies D
and K}, with energyu?/2. As opposed to enerdgs, energy POt
K! can transform into the energi#/2. This effect, known as
“negative viscosity,” follows naturally from the adopted as- —2y(2Q =V X u) - 4xQ + pJ(Vu) - Q + pmy.
sumptions without any transgression against physical reason- (17)
ability. The situation realizes whedr-w=0.

JQ =V[3o(V - Q)] +{(01 ) j} + {(92€;,) ;}

The assumptions listed in the paragraph preceding Egs.
(4)—<(6), constitutive relationg11)—(14), and the assumption
about approximate linearity of the field within the space

Closure of the derived balance equations formulates irscales determined bR, leading to Eqs(16) and(17), form
two steps. the axiomatic base of the formulated turbulence mechanics.

The first step stands in formulation of constitutive rela- The second step of solving the closure problem stands in
tions. In accordance with the common rheology we assumsepecification ofu, v, k, 9q, U4, ¥,, andJ. In the following
that the generalized forces of a description depend linearlye consider three sets of specifications.
on those generalized velocities on which they act. Within this a. Standard formulation of Theory of Rotationally An-
statement we have isotropic TurbulencgRAT theory. Within RAT theory u, v,

K, Uy, U1, U, andJ are considered as depending only on

Ill. CLOSURE

o) =~ P&j + 2uug ), (1D integral parameterssuch as Reynolds numbeof flow pat-
tern. In this case Eq$16) and(17) simplify to the forms
o=4y(Q - w), (12 5
p—u=-VP+puAu+yV X (2Q -V X u) + pF,
my; = oy kG + 9180 5 + 005, (13 Dt
and (18)
pmy=—4kQ. (14) D
5 pJ—Q=(Jy+ ) VV - Q + HAQ - 2¢(2Q -V X u)
In Egs.(11)~14) P=(p)+3K" u, v, ¥o, 91, ¥, and« are Dt
coefficients, characterizing the medium propertigs u™ - 4KkQ + pJ(VU) - Q + pmy. (19)

+u',whereu! denotes coefficient of turbulent shear viscosity;

v denotes the friction coefficient in relative rotation, i.e., if Equations(18) and (19) differ from the equations used in
Q # w; %, %, andd, describe diffusion oM ; « describes Refs.[10-12 by specification of all terms through charac-
decay ofM due to the cascading scatter of moment of mo-teristics of nonaveraged flow field as well as by additional
mentum in turbulent mediumAll coefficients, included in terms —4Q and pJ(Vu)-Q on the right side of Eq(19).
Egs.(11)—(14), can be, at least in principle, determined from Term —4€ describes the effect of scattering if due to
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the cascading process and tepd(Vu)-€ plays an impor- 1
tant role in establishing correspondence between the derived

motion equations and classical equations. There exist two

ways to achieve this correspondence. Consider the situation 08 1
whereF=0 andm;=0. The first way realizes foy=0, i.e., if
there is no friction in relative rotatiofsee Eq.(12)]. In this -
case Eq(19) declares thaf), equal to zero at the initial time

vive(0)

instant, stay equal to zero for every following time instant. 0.6 -
The second way realizes f6)=w (there is no relative rota- A o Re=4,000 (Nikurdse [24])
tion in a medium, k=0 (there is no cascading scatter), ] 4 Re=240,000 (Compte Bellot [25])

and ¥, =Ju. For the latter case E¢19) reduces to the equa-
tion for w, following from Eq.(18).

b. RATK models These models link RAT theory to
K models. Formulation of RATK _models is based on ex-
pression ofu! and ¢ as u'=c,pl, K} and y=cpKE?/ ¢, (¢, 02 —————
denotes characteristic length scale of turbulence constituents 0 02 04 06 0.8 1
described byk}) and on solving the problem of determina-
tion of h} in a form reducing for the rotationally isotropic FIG. 2. Velocity profiles calculated for the Poiseuille flows in
turbulence to the expressidry=kVK} with k=c3¢,\K} (c;,  tube and channétontinuous curves compared with experimental
C,, andc; denote dimensionless constgntdithin RAT/K  data of Nikurads¢20] and Compte-Bellof21].
models Eq(6) for K, becomes an essential component of the
setup of turbulent motion description. For rotationally isotro-  Applying Cartesian system of coordinatesy,z) in case
pic turbulence a RATK model reduces to a correspondiig o channel flow and cylindrical system of coordinates

mode_l. Dependent on specification Kfmodel used for_f_or- (r,¢,2) in case of flow in tube and between rotating cylin-
mulating the corresponding RAK/model and on specifica- ders, the velocity field is determined as followst

- t . .
E?T?I(thagsi(;nﬁéé%,rr%uf:;gg , different versions of =(0,0,u(x,t)) for the channel flowu=(0,0,u(r,t)) for the
' tube flow, andu=(0,u(r,t),0) for the flow between rotating

The energy equation fdf] is equivalent to the equation s X X
of moment of momentum, therefore the difference in termLylinders. In case of absent external force field equation set
(18) and(19) simplifies to the form

of the energy treatment RAT theory aidmodels can be
formulated as follows: iK models consider total turbulence 9
energyK! with turbulence considered to be rotationally iso- p—uU==-VP+uAu++yV X (2Q -V Xu), (20
tropic, then RAT theory considers only a part of the total It

turbulence energy associated with the two-dimensional tur-
bulence constituent, caused by the rotational anisotropy.

c. RATK-¢ models These models link RAT theory
andK-e models of turbulencén our notations: = ). Within . . )
RAT/K—s modelsy determines from an additional equation _ 'Ntegration of Eqs(20) and (21) for Poiseuille flows in
for  [18]. As in the case of formulation of RAK models, plane_channel and in round tube leads to the following ex-
different versions oK-s models can be used to get different Pressions fou/u(0):
versions of RATK-e& models. For rotationally isotropic tur- u 1

04 * a Re=3,240,000 (Nikuradse [24])

J
PIT Q=900 -2y20 -V XU -4kQ.  (2D)

bulence RATK-¢ models reduce to the respecties mod- U, 1 P H2&2 - Cw (22)
els used for solving the closure problem. u(0) 2peu(0) | 92 coshtH/)

d. RATK-» models These models link RAT theory gnq
and K-w models of turbulencg19] where the notiorw is
used to denote the turbulent frequency.lhe simplest formu- u 1 Pl 5, [o(roéll)
lation of RAT /K- model defineso as ¢/1K, leading to the u() ~ 1- 4uu(0) | 9z rog”~C lo(ro/l) (23)
following expressions foru!, ¢, and k: u'=cipK}, o _
=c,pKY/ 7, andk=cap7K, where r= w2, In Egs. (22) and (23) é=x/H or r/r,, whereH is the

Besides the formulated two steps of solving the closurd@lf-width of the channel and, is the tube radiuspes=pu
problem for Egs.(4)—(6) the termsF, m;, and q in Egs.  +yk/(y+k); 1=\ 0 (u+y)/4[(u+y)k+uyl; 1, is the modi-
(4)—(6) must be also specified dependent on the nature died Bessel function of zero order; ai@lis the integration
external force field. constant.

Figure 2 presents a comparison of calculated velocity pro-
IV. EXAMPLE: VELOCITY PROFILES OF ONE- files with experimental data of Nikurad$20] and Compte-
DIMENSIONAL FLOWS IN PLANE CHANNEL, ROUND Bellot [21]. The calculations correspond ©=0.16, I/H
TUBE, AND BETWEEN ROTATING CYLINDERS =1/ry=0.16, and to values qi.; depending on the Reynolds

Let us consider the flows in plane channel, round tubepumber. Figure 3 presents the values of(Jag/ u™) for dif-
and between rotating cylinders within the standard formulaferent log Re determined from the Nikuradse experiment
tion of RAT theory. (doty and the approximating curve correspondsutg/ u™
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4
IOg (“'ef/ l‘Lmol) o
I "
m from data Compte-Bellot [25] o
3 4 e from data Nikuradse [24]
4 e /./
P
2 4 ‘//
- /./
1 T ./,/ T l\ogRe
3 4 5 6 7

FIG. 3. The dependence Q@i tmo)=l0g(Re) determined
from data of Nikurads¢20] and Compte-Bellof21].
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| vioy
0.8 -
| o =283 and ®=450sec
0.6 1
0.4 A
0.2 A
| g
0 ———
0 0.2 0.4 0.6 0.8 1

FIG. 5. Velocity profile calculated for the flow between rotating

=0.008 R&%8% The same figure also shows the dependenceylinders (continuous curvecompared with experimental data of
for channel flow, as obtained from the data of Compte-Zmeikov and Ustremenk{®23].

Bellot. It differs from the previous example in the propor-

tionality constant, which now is 0.014 instead of 0.008.
The solution of Eqs(18) and (19) for the Couette flow
leads to the velocity distribution, expressed as

TR (ﬁ—c>—3i”w§/§) (24)

U sinh(H/I)

In Fig. 4, the calculated, according to E&4), velocity pro-

files are compared with experimental data of Reichardt fromion of the first order, andC,, .

[22]. In calculationsl=0,1M, while the values ofu(1)/U
and C are determined as(1)/U=0, C=0,29 for Re=2900
andu(1)/U=0.4,C=0,21 for Re=3400.

Integration of Eqs(15) and (19) for the flow between

c li[(ro—ryé/]

=G+ 4 G
wry ! ’r] S 1al(ry= 1]

rt+é
K —
\ al(rp r1)§/|]. (25)
Kal(ra=rp/l]
In Eq. (25 o, denotes the angular rotation velocity of the
inner cylinder,r; andr, are the radii of the inner and outer
cylinders,ry=rq/(ro=rq), &=(r=ry)/(r,=ry), 11 is the modi-
fied Bessel function of the first ordd{; is the Hankel func-
..,C, are integration con-
stants. The calculated velocity profile, corresponding{o
=0.049,C,=15.5,C3=0.17,C,=1.15, is compared in Fig. 5
with data of Zmeikov and UstremenK@3], realized forr,
=66.6 cm, r,-r;=4.9 cm and for w;=28.3 ! and o,

rotating cylinders results in the following expression for the=45.0 s* (the outer cylinder is resting

velocity field:

1
1 U

0.8 A

06 | o Re=2900

) a Re=3400

04 A

0.2 |

0 : : : : ‘F’
0 0.2 0.4 0.6 0.8 1

FIG. 4. Velocity profiles calculated for Couette flow in plane
channel(continuous curvescompared with experimental data of
Reichardt[22].

The solution of Eqs(18) and(19) for an undulating flow
in a round tube realized under the pressure gradient field

E—P +P COS(E)
az ot 7/’

where P, and P, are constants, leads to the velocity distri-
bution represented as

u(r,t) = ug(r) + Re{ ul(r)exp<— |£T)} ,

where uy(r) is the solution of the case with™'=0 deter-
mined according to Eq23) andu; expresses as

(28)

(26)

(27)

PlT
pUo(0)

loARE)
Y 16(\R)

lo(\'RIE)
L14NR)

Uy = uo(O)[— i

If wes=1/J, then fork and\” we have expressions
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1.6 Egs. (23), (27), and (29), for time instantst/7=nw/4
vive(0) +0.02r wheren=0,1,...,7 andr=(207)'s. The calcu-
lated profiles are juxtaposed with the data obtained by
Bukreejev and ShakhifR4]. The calculation parameters are
determined asPq/4uqu(0)=0.37, C=0.5, A=-C;=0.419,
C,=0.081,¢;=¢,=0, andl"/r,=0.15.

Besides the presented velocity distributions, the distribu-
tions of many other quantities, such as characteristics of in-
ternal rotation and of the stress and energy, can be calculated.

04 - V. CONCLUDING REMARKS

on=0; m n=1;
an=2; v n=3; + n=4;

The only reason for generating a nonzétdield, defined
+1n=5; ¢ n=6; » n=7

¢ by Eq. (1), follows from the eddy structure of the turbulent
0 ——— medium. Generating a nonzelb field does not presume any
0 0.2 0.4 0.6 0.8 1 micromorphic properties of the continuuh0-12 or finite-
FIG. 6. Calculated velocity profiles for undulating flow in tube nes_s Of_ the l,mear scale of differential volurfis]. This a_s'
for different time instantgcontinuous curvecompared with data of sertion is valid for the turbulence treatment formulated in the
Bukreejev and Shakhif24]. present paper as a whole. _ , ,
The formulated turbulence mechanics essentially widens
the physical background of the turbulence mechanics as well

_1 . pl? L1 as enlarges its capacity to describe various effdite ef-
A= 1-i and N =——, # . . .
I (w+y)r | fects of the so-called “negative viscosijylt opens the door
. — ) for generalization of different modelessuch aK models,
wherel” =v2puer/ p. Assuming that K-e models, anK-w modelg used in a variety of applica-
tions.
1< r_f and A P < r_O, The formulated turbulence mechanics offers not only an
| (u+tyr | additional instrument for discussion of different theoretical

turbulence problems but, as it is shown in Sec. IV, also an

solution (28) simplifies to the form useful tool for practical calculations.

u ot , E-1)\ ([t
L =Asin-+C] exp(ro—)sm(— + (p1> ACKNOWLEDGMENTS
Ug(0) T I T

£-1 -1t The author thanks Professor J. V. Nemirovski—the initia-
+C, exp<r0—*)co ro—— +—+ <p2> , tor of the investigations which led the author to formulate the
' T proposed conception and Professor V. I. Bukreejev for the
(29 presented experimental data. This work was partially sup-
where A=P;7/pu(0). ported by the Estonian Science Foundatig@rant No.
Figure 6 presents velocity profiles calculated according t&009).

[1] L. F. RichardsonWeather Prediction by Numerical Process [10] A. C. Eringen and T. S. Chang, Recent Adv. Eng. Ssi.1

(Cambridge University Press, Cambridge, 1922 (1970.
[2] A. N. Kolmogoroff, Dokl. Akad. Nauk SSSR30, 299 (1941 [11] A. C. Eringen, J. Math. Anal. Appl39, 253(1972.
(in Russia. [12] J. Peddieson, Int. J. Eng. SdO, 2 (1972.
[3] G. D. Mattioli, Teoria Dinamica dei Regimi Fluidi Turbolenti [13] V. N. Nikolaevski, Dokl. Akad. Nauk SSSR84, 1304(1969
(Padova, 193y/(in Italian). (in Russiain.
[4] J. S. Dahler, J. Chem. Phy80, 1447(1959. [14] J. Heinloo, Phenomenologitseskaja Mehanika Turbulentnih
[5]J. S. Dahler and L. F. Scriven, Natufeondon 192 36 Potokov(Valgus,Tallinn, 198%(in Russian.
(1961). [15] J. Heinloo, Mehanika Turbulentnost{Estonian Academy of
[6] A. C. Eringen, J. Math. Mech16, 1 (1966). Science, Tallinn, 1999(in Russian.
[7] A. C. Eringen, inMechanics of Generalised Continuadited  [16] N. Mordantet al, Phys. Rev. Lett.87, 214501(200).
by Krdner(Springer, Berlin, 1968 p. 18. [17] P. K. Yeung, J. Fluid Mech427, 241 (2003).
[8] T. Ariman, M. A. Turk, and D. O. Silvester, Int. J. Eng. Sci. [18] A. S. Monin and A. M. Yaglom Statistical Fluid Mechanics:
11, 905(1973. Mechanics of TurbulenceMIT Press, Cambridge, 1975Vol.
[9] A. C. Eringen Microcontinuum Field Theorieg€Springer, New 1.
York, 1999. [19] D. C. Wilcox, AIAA J. 26, 1299(1988.

056317-7



J. HEINLOO PHYSICAL REVIEW E 69, 056317(2004)

[20] J. Nikuradse, VDI-Forschungshe®56, 1 (1932. [23] V. N. Zmeikov and B. P. Ustremenk@roblems of Thermoen-
[21] G. Compte-Bellot,Ecoulement Turbulent Entre Deux Parois ergetics and Applied Thermophysics (Academy of Science

Paralléles (Publications scientifiques et techniques du minis- of Kazakhstan SSR, Alma-Ata, 1964. 153(in Russiai.

teré df I'air, Paris, 196p(in French). [24] V. |. Bukreejev and V. M. ShakhinAeromehanika(Nauka,
[22] H. Schlichting,Boundary Layer TheoryMcGraw-Hill, New Moscow, 1976, p. 180(in Russiai.
York, 1979.

056317-8



