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Long-term behavior of cooling fluid in a rectangular container
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In this study, the long-term behavior of cooling an initially quiescent isothermal Newtonian fluid in a
rectangular container with an infinite length by unsteady natural convection due to a fixed wall temperature has
been investigated by scaling analysis and direct numerical simulation. Two specific cases are considered. Case
1 assumes that the cooling of the fluid is caused by the imposed fixed temperature on the vertical sidewall
while the top and bottom boundaries are adiabatic. Case 2 assumes that the cooling is caused by the imposed
fixed temperature on both the vertical sidewall and the bottom boundary while the top boundary is adiabatic.
The appropriate parameters to represent the long-term behavior of the fluid cooling in the container are the
transient average fluid temperatufg(t) over the whole volume of the container per unit lengtle., the
transient area average fluid temperature, as used in the subsequent numerical simalatiorest and the
average Nusselt number on the cooling boundary. A scaling analysis has been carried out which shows that for
both cased,(7) scales ag CARa ' \whered,(7) is the dimensionless form af,(t), = is the dimensionless
time, A is the aspect ratio of the container, Ra is the Rayleigh numberCard proportionality constant. A
series of direct numerical simulations with the selected valués Bia, and P(Pr is the Prandtl numbgin the
ranges of 1/3xA<3, 6X10°<Ra<6x10'% and 1=<Pr<1000 have been carried out for both cases to
validate the developed scaling relations. It is found that these numerical results agree well with the scaling
relations. The numerical results have also been used to quantify the scaling relations and it is fo@hd that
=0.645 and 0.705 respectively for Cases 1 and 2 withARand Pr in the above-mentioned ranges.
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I. INTRODUCTION peratures at the opposing two vertical side walls of a rectan-

Cooling/heating a body of fluid in an enclosure via natural9ular cavity are impulsively heated and cooled by an equal
convection with an imposed different temperature or hea@mount, devising a classification of the development of the
flux on the enclosure boundary is widely encountered in naflow through several transient flow regimes to one of three
ture and in engineering settings, and the understanding of igfeady-state types of flow based on the relative values of Ra,
behavior is of fundamental interest and practical importancethe Rayleigh number, and various combinations of Pr, the
In the past decades, extensive experimental, numerical, affyandtl number, and\, the aspect ratio of cavity. This
analytical studies have been conducted on this issue, aRatterson-Imberger flow model has since occupied the center
though mainly on the more specific case of a rectangulastage of research into understanding natural convection in
cavity with differentially heated sidewalls, such as those wellcavities, and numerous investigations subsequently focused
documented in Refl1] and in the annual literature reviews on diverse aspects of the model. For example, the numerical
on heat transfe(see, e.g., Ref2]). studies by Hyun[7] elucidated the flow and temperature

The majority of the past studies have been on the shortstructures of the heat-up process of an initially homogeneous
term behavior of the cooling/heating process, involving ei-fluid in a cylinder with a linearly heated side wall using a
ther the boundary-layer formation and its evolution on thefinjte-difference model and the effect of Pr on heatup of a
cooling/heating wall, the traveling wave activities, the strati-stratified fluid in an enclosure. Nicolette and Yai) made
fication established in the enclosure, or the combinations of numerical and experimental investigation into two-
these features. For example, Sakurai and Matg8fi@on-  dimensional transient natural convection of single-phase flu-
ducted a theoretical investigation into the transient process Ims inside a Comp|ete|y filled square enclosure with one ver-
an already stratified fluid, revealing the core of the intricatetical wall cooled and the other three walls insulated. Otis and
physics involved in the transient adjustment process of &Roesslef9] conducted an experimental investigation into the
stratified fluid system in response to changes in thermajievelopment of stratification of a gas in a cylindrical enclo-
boundary conditions in a vertical circular cylinder, which syre and provided experimental support for the existence of
was further modified and extended analytically by Jischkenternal waves and revealed several time constants that char-
and Doty[4], and numerically by Hyuret al. [5]. acterize the process. Schladow, Patterson, and Stt@t

Patterson and Imbergg$] carried out a pioneering inves- conducted a series of two- and three-dimensional numerical
tigation of the transient features that occur when the temsjmulations of transient flow in a side-heated cavity and their

simulations generally agree with the results of the scaling

argumentgs[6]. Patterson and Armfield11] conducted de-
*Electronic address: wenxian.lin@aeromech.usyd.edu.au tailed experimental and numerical investigations into the
FAX: +61-2-9351-7060 presence of traveling wave instabilities on the vertical-wall
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boundary layers and horizontal intrusions, the existence of bower fixed temperature on the vertical side wall, with all the
rapid flow divergence in the region of the outflow of the remaining boundaries adiabatic; and that due to the imposed
intrusions, and the presence of cavity-scale oscillationsixed lower temperature on both the vertical side wall and the
caused by the interaction of the intrusion with the opposinghottom boundary, with the top boundary adiabatic is investi-
vertical boundary layer. Armfielet al. [12] made further gated. In Sec. Il, a scaling analysis is carried out to develop
in-depth studies on the wave and stability properties of th@he scaling relations to characterize the long-term behavior of
boundary layers in the cavities. Xin and Le Quéi&] in-  the fluid cooling, which is well represented by the transient
vestigated numerically chaotic natural convection in a differ-ayerage fluid temperature in the container and the average
entially heated air-filled cavity with adiabatic horizontal Nysselt numbes) on the cooling walls). In Sec. lI, the
walls. Brooker, Patterson, and Armfie[d4] conducted a governing equations and the numerical methods as well as
nonparallel linear stability analysis of the vertical boundarythe meshes used in this study are briefly introduced. The
layer in a differentially heated cavity. Kwak, Kuwahara, andscaling relations are then validated and quantified in Sec. IV

Hyun [15] conducted a numerical study on the transient natupy a series of direct numerical simulations with the selected
ral convective cool-down process of a fluid in a cylindrical yalues of A, Ra, and Pr in the ranges of 1#3A<3, 6

container, with emphasis on the flow patterns when the maxix 10f<Ra<6x 101% and 1<Pr<1000. Finally, conclu-
mum denSity temperature is eXperienced. sions are summarized in Sec. V.

More recently, the authors carried out a scaling analysis
and direct numerical simulation of the transient processes of

cooling down and stratifying an initially homogeneous fluid Il. SCALING ANALYSIS
by natural convection in a vertical circular cylinder and in a ) o ) )
rectangular containgil6—18. The results show that vigor- Under consideration is the long-term behavior of cooling

ous flow activities concentrate mainly in the vertical thermal@ quiescent isothermal Newtonian fluid in a rectangular con-
boundary |ayer a|ong the side wall and in the horizontal re_tainer with an infinite Iength by Unsteady natural convection
gion which is the lower part of the domain where the colddue to the imposed fixed lower wall temperature. The physi-
intrusion flow is created. The transient flow patterns at thec@l systems considered in this study are schematically de-
unsteady and quasisteady stages were analyzed, includiféfted in Fig. 1. Two cases are considered. Case 1 assumes
the activities of the traveling waves in the vertical thermalthat the cooling of the fluid is the result of the imposed fixed
boundary layer along the side wall, the cold intrusion moveWall temperatureT,, on the vertical side wall while all the
ments in the horizontal region, and the stratification of the'émaining boundaries are adiabatic and nonslip. Case 2 as-
fluid. A scaling analysis was used to characterize the flowpumes that the cooling is due to the imposed fixed tempera-
evolution at these distinct developmental stages which wa8!re Ty, on both the vertical side wall and the bottom bound-
quantified by extensive direct numerical simulations unde®ry While the top boundary is adiabatic and nonslip. For both
different flow situations in terms of Ra, Pr, aAd The scal- cases, the fluid in the container is initially at rest and at a
ing relations were also obtained by the authgig] for the ~ uniform temperaturd, (To>T,). Itis assumed that the con-
boundary layer development along a vertical isothermal platédiner has an infinite length and the flows are laminar so that
in a linearly stratified fluid with Pr 1. Oliveski, Krenzinger, ~two-dimensional flows can be assumed and symmetry allows
and Vielmo [20] made a numerical and an experimentalonly one half of the physical domain to be chosen as the
analysis of velocity and temperature fields inside a storagéomputational domain, as shown in Figcjl
tank submitted to natural convection cooling. All these stud- The long-term behavior of the fluid cooling is well repre-
ies have addressed only the short-term behavior of th&ented by the transient average fluid temperaliy® over
cooling/heating process, while the study of the long-termthe whole volume of the container per unit lengtfe., the
behavior is rare, which motivates the current study. transient area average fluid temperature, as used in the sub-
In this study, the long-term behavior of cooling a quies-sequent numerical simulationgt time t and the average
cent isothermal Newtonian fluid in a rectangular containemusselt number on the cooling wall. In this section, scaling
with an infinite length by unsteady natural convection with arelations will be developed to characteridg(t) with the
fixed lower wall temperature is investigated by a scalingcontrol parameters of the flow, that is, the Rayleigh number
analysis and direct numerical simulation. Specifically, theRa, Prandtl number Pr, and the aspect ratiof the rectan-
long-term behavior of the fluid cooling due to the imposedgular container, which are defined as follows,
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whereg is the acceleration due to gravi§, v, andx are the ~ where (d6/x),-, is the dimensionless temperature gradient
thermal expansion coefficient, kinematic viscosity, and therat the vertical side wall, and andy are dimensionless hori-
mal diffusivity of fluid, andH and W are the height and zontal and vertical coordinatésondimensionalized bv),

half-width of the container, respectively. respectively. Hence, E¢3) becomes

In this study, the investigation will focus on the flows —
with 1=Pr=1000, 6x10P=Ra=6x10Y, and 1/3<A dba(n) __ Nus ®)
<3. For such flows, it is appropriate to assume thathe O(n+1  AR&? "’

density of the fluid, is constant, except that appearing in th
buoyancy, and,, the specific heat of fluid at constant pres-
sure, is also constant.

Svhere the relationshig=Kk/(pc,) has been used.
When 7> 0, numerical results show th&tudr has the
same order asdNu, therefore, Eq(8) can be written as

A. Case 1 do(r)  2C,

- 12
In this case, as the fluid cooling is achieved by maintain- Oa(7) + 1 ARE
ing a fixed temperaturd,, on the vertical side wall while whereC, is a proportionality constant.
keeping the top and bottom boundaries adiabatic, energy As shown in Refs[17,19, after the full development of

d(Nugr), (9)

conservation in the container requires that the boundary layer on the vertical side wall, the thermal
a0 boundary layer thicknesé; has the following scaling rela-
Ve g =~ RALTA() = T, (1) tonwithRa,
8~ R, (10)

whereV,=2HW is the volume of the fluid in the container
per unit length As=2H is the surface area of the side wall
per unit length, andh is the average heat transfer coefficient
on the side wall. The initial condition for Eql) is as fol-

for Pr>1, where the symbol~" denotes “scales to,” and
Ra, is the Rayleigh number defined with, that is,

- gB(TO - TW)H3 -

3
lows: Ra, VK RaA™.
T,)=T, at t=0. (2 Therefore,Nus should have the following scaling relation
) . . ) ) with Ra for Pr>1:
Equation(1) can also be written in the following dimen- A
i — 1 1
sionless form, NU. ~ _j Ly~ Re4~ R 3", 11)
_ Alg &,
de. h . .
an)____hs dr, (3)  Hence, Eq(9) has the following solution
03(7') +1 pCpVO ,
— N . On(7) = e CalARA 12
in which the dimensionless temperatwigr) and timer are _ a(T). _ (12
defined respectively as follows whereC; is a proportionality constant.

Ta(t) B TO t
L T = L
To—Tw (WIVo)

Oa(7) = (4 B. Case 2

In this case, as the fluid cooling is achieved by maintain-
whereV, is a characteristic velocity scale of the flow. For ing a fixed temperaturd,, on both the side wall and the
unsteady natural convection flow in a cavity, it is a commonbottom boundary of the container while keeping the top
practice to usé/,=«Ra2/W, the velocity scale of the ther- boundary adiabatic, energy conservation requires that
mal boundary layer thickned$,16,18, which is also used dT.(0)

a

here. The initial conditiorf2) becomes VG, el (FSAS-"HbAb)[Ta(t) -T,], (13)

0,(7)=0 at7=0. (5) — o
whereh, is the average heat transfer coefficient on the bot-
tom boundary with the surface area per unit lengthk2W.

It is assumed that, < hg and the scaling relatio(ll) is also
kNug valid for Nuy, that is,

, (6) _
H Nu, ~ Ra/4, (14)

FS in Eq. (1) is calculated by

in which k is the thermal conductivity of fluid, andugis the ~ where Nu, is the average Nusselt number on the bottom
average Nusselt number on the side wall, which is defined asoundary, which is defined as follows
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TABLE |. Vertical stretching factors and time steps used in the

1

— d60

NUb=f <—) dx, (15  direct numerical simulations.
0 \dY/y=0

in which (96/ dy),= is the dimensionless temperature gradi-Run ~ Ra A Pr Vertical stretching factor Time step
ent at the bottom boundary. Hence, E§3) can be reduced

; ; . e N . 1 6x10° 1 7 1.0412 3.5%10%
to an ordinary differential equation similar to E§) with the . 4
L .. . 2 6X 10 1 7 1.0412 5.X10
same initial condition represented by E§), which has the I .
following scaling relation 3 6x1 1 7 1.0412 8.%10°
4 6xX10° 1 7 1.0412 1.410°3
0( —_ —CZ(ARE))_]'MT_ 0 4
7)=¢€ 1, (16) 5 6x10° 1 7 1.0412 8.K 107
. . . 3
whereC, is another proportionality constant. 6 6x10° 1/3 7 1.0106 1.x10
7 6x108 1/2 7 1.0205 1.%10°3
Ill. GOVERNING EQUATIONS AND NUMERICAL 8 6xX10¢ 2 7 1.0705 44104
METHOD 9 6x1¢ 3 7 1.0650 44107
A. Governing equations 10 6x10° 1 1 1.0412 6.x 107
: . . .11 6x108 1 50 1.0412 6.X 10
The two-dimensional unsteady natural convection flow in & 4
the container is governed by the Navier-Stokes equations a 6x1 1200 1.0412 3.K 104
temperature equation. With the Boussinesq assumption, thed@ ~ 6x10° 1 1000 1.0412 2.410°

governing equations can be written in dimensionless and in-
compressible form as follows:
u=v=0, f#=-latOsx<1, y=0 forCase 2,

Ju 4
=+t (17)
ax  ay 20
u=v=0, @:Oat0$xil, y=A, 7=0.
du d(uu) d(wu)  dp Pr | Pu  Fu
ar X ay ax Ra”Z[ax gy
(18 B. Numerical method

Detailed information about the numerical algorithm and
numerical accuracy tests can be found in REE§,17. Only
a brief introduction is presented here.

Due to the large variation in length scales it is necessary
to use a mesh that concentrates points in the boundary layer
and is relatively coarse in the interior. In this study, the mesh
96 g Il _ 1 @4_@ o0 used for all runs of direct numerical simulations is con-
JT IX ay T Ra’2| gx? ay? (20) structed using a stretched grid and has X999 grid points,

which are distributed symmetrically with respect to the half-
! : 4 ! ! width and half-height of the computational domain repre-
sionalized x coordinate, y coordinate, x—velocity,  sented by Fig. (). The nearest grid point is located 0.001
y—velocity, time, pressure, a_nd temperature. from the domain boundaries. Subsequently, the mesh ex-
_ All the Iengths, velo_cmes, time, pressure, z;nd temperatur%ands at a fixed rate up to=y=0.1 in bothx andy direc-
in the governing equations are made dimensionles&/fYo,  {ions, After that, the mesh size expansion rate decreases at a
WIVo, pVg, and (T=To)/(To=T,), respectively, wherd is  rate of 10% until it reaches zero, resulting in a constant
the dimensional temperature. coarse mesh in the interior of the domain.

The appropriate initial and boundary conditions are The stretching factor in the direction is chosen to be
4.12% for all runs but some different values of the stretching
factor have been chosen for the runs whik 1 in they

dv  d(u) d(vv) ap Pr|dv v
—t——+—=——+ sl T3+ = |+ Pro,
ar  dx ay dy Ra?| ox® oy

(19

wherex, y, u, v, 7, p, and 6 are, respectively, the nondimen-

u=v=0, #=0atallx,yandr<0;

and direction for constructing the mesh with the same 199
X199 grid points, as listed in Table I, where the vertical
u=0, v _ 0, 90 _ 0atx=0, O<y stretching factors and the time steps used in all 13 runs are
IX dIX presented for both cases.
<A, on the symmetry line, The equations are discretized on a non-staggered mesh

using finite volumes, with standard second-order central dif-
ference schemes used for the viscous, pressure gradient and
divergence terms. The QUICK third-order upwind scheme is
used for the advective ternfig3]. The second-order Adams-
U=v=0, 90 _ 0ato=x<1, y=0 for Case 1, Bashforth scheme and Crank-Nicolson scheme are used for
the time integration of the advective terms and the diffusive

u=v=0, #=-1latx=1, OsysA,
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terms, respectively. To enforce the continuity, the pressur®a Y4, and the time series of,(7) with this scaling are
correction method is used to construct a Poisson’s equatioshown in Fig. 2b), where it is seen that this scale brings all
which is solved using the preconditioned GMRES methodfive sets of data for different Ra together, indicating that
Detailed descriptions of these schemes were given in ReRa'*is the correct dependence @f(7) on Ra in the scaling
[24] and the code has been widely used for the simulation ofelation(12). Similarly, Fig. 2¢) contains the raw data show-
a range of buoyancy dominated flowsee, e.g., Refs. ing the time series ofi,(7) for A=1/3, 1/2, 1, 2, and Sith

[11,25,26). Ra=6x 10° and Pr=7 unchanged. The scaling relatiag)
shows that the dependencedfr) on A goes likeA™4 and
IV. NUMERICAL RESULTS AND DISCUSSIONS the time series of,(7) with this scaling are shown in Fig.

) _ ) ) ] _ 2(d), where, again, it is seen that this scale brings all five sets
The purpose of the direct numerical simulations in thisgf data for differentA together, indicating tha&=* is the
study is threefold. First, the scaling relatio(i2) and (16) correct dependence 6f(7) on A in the scaling relatior12).
are verified by the numerical simulation results with selecteoj:igure 26) contains the raw data showing the time series of
values of Ra,A, ar(;d Pr in the ranges of 188A<3, 6 0,(7) for Pr=1, 7, 50, 200, and 1000 with Rax6L0°® and
X 10°P<Ra=6x 10", and 1= Pr<1000. Second the propor- -1 unchanged. The scaling relati¢i?) shows that there is

tionality constantsC, and C, in the scaling relations are dependence d,(7) on Pr, and the overlaying of all five

quantified using these numerical results. Finally, the Iong—Sets of raw data for different Pr presented in Fige) 2learly

term behavior of the averaged Nusselt numbers and the a§g\onstrates this feature.
sumption thaty, <hs, which was made in the scaling analy-  The numerically obtained,(7) is plotted against the full
sis, are examined using these numerical results. scaling relationARa) 7 in Fig. Ja) for all runs in Case 1.
The technique for verifying the scaling relatiofi?) and ~ The collapse of all sets of data onto a single curve again
(16) is first by examining the dependence of these scalingonfirms that the scaling relatiqai2) is true for Case 1. The
relations on individual control parameters Rg,and Prre-  gpecific values of the proportionality constadt for each
spectively, which will be achieved by carrying out a series ofrun, determined by a curve-fitting method with the minimal
direct numerical simulations with several selected values of &tandard deviatiotdenoted asd), are listed in Table II. It is
specific parameter while keeping the other control parampgteq that the variation in th€, values is of the order of
eters unchanged with selected values: and the_n by examiningg3oy, indicating that a singlé, value will provide a good
the combined dependence of the scaling relations on all conapresentation of the behavior of the flow. This general value
trol parameters, which will be achieved by combining theof ¢, is found in the same fashion for all 13 sets of data by

three sets of individual numerical results obtained in the Prézombining them into a single average setCas 0.645. The
vious step. Specifically, direct numerical simulations with numerically obtainedi,(7) is plotted againsé‘°-645ARa>fl/4T
a

= Y 0 -
Eea e_p?r? g%b\oill(s;n%iolsr?; 1u0r?2:h6a>r<1$e0:i’ v%i?ldb?cla(t)rlriegh(;ﬁ to in Fig. 3(b) for all runs in Case 1 anq the standard deviation
show the dependence of the scaling relations on(fdas '(de.n.otes asd)_ producgd by' using this valpe @, for each
1-5); simulations withA=1/3, 1/2, 1, 2, and Svhile keep- |nd|V|dgaI run is also listed in Table 11, which cle_grly_shows
ing ha:6>< 168 and Pr=7 un,chan,gea \;viII be carried out to that thls_general_ value df; gives a good quantlflcanon of
the scaling relatior{12) for A, Ra, and Pr in the ranges of

show the dependence én(runs 3 and 6—8 and simulations 0
with Pr=1, 7, 50, 200, and 1000 while keeping Ra<B® L/ 3=AS3, 6X10°<Ra<6x 10" and 1=Pr=1000, that

andA=1 unchanged will be used to show the dependence of’
the scaling relations on Rruns 3 and 10-13 respectively. ua

As theoretically and numerically it needs an infinite time Oa(7) = € 0648ARA T (21)
to fully cool down the fluid in the containgthat is, to reach
exactly ,(7)=-1], it is necessary to terminate the numerical ful
simulations at some point. In this study, as a general rule, all
direct numerical simulations will be terminated when
that is whend,(r)=-0.99.

Details of the flow structures during the stages of the
start-up and the stratification were reported in R&6-19,
which will not be repeated here.

The scaling and numerical results show that the time to
| cooling, 7t as defined above, scales as

i ~ (ARa)Y4, (22

Using the definition given above fat, that is the time for
0,(7) to reach —0.99, and the scaling relati@1), the scaled
7; is obtained for Case 1 as

A. Case 1 7= 7.14(IARa)1’4. (23)

Figure 2 contains the numerically obtainedr) for all 13
runs in Case 1 to show the dependence of the scaling relatiorhis 7 will be used below to scale the Nusselt number and to
(12) on each individual control parameter R&, and Pr.  obtain a time averaged Nusselt number.
Figure 2a) contains the raw data showing the time series of The numerical results showing the dependence of the av-
6,(7) for Ra=6x1CP, 6x10°, 6x10°, 6x10°, and 6 erage Nusselt numbers on individual Ra,and Pr are pre-
% 10* with A=1 and Pr=7 unchanged. The scaling relationsented in Fig. 4 for Case 1, whely, is the average Nus-
(12) shows that the dependence @f() on Ra goes like selt number on the side wall ovey, that is,
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0_ |||||rl1]|||||I11|_I: O|||||||||||||||||||_ ><107( ,,,,,, ) 6><108(———) 6
- - - x10° (--9, and 6x10% (- .9
= B ] =~ A ] with A=1 and Pr=7{c) Time se-
~ 05} _ ~ 051 — ries.of 0,(7) and(d) 6,(7) plotted
@ = - @ = - against A"V for A=1/3(—),
B ] i ] 1/2(-+),1(==>),2 (-9, and
i i B i 3 (=- -9 with Ra=6x 10 and Pr
- fd v oo vl T I i bt =7; (e) Time series off,(7) for
1 10 100 1000 0 500 1000 1500 2000 Pr=1(—), 7(--=-), 50(——3,
©) - ) A—1/4,C 200(--9, and 1000(-- -9 with

Ra=6x10° and A=1, respec-

0 tively. All results are presented for
B i Case 1.
o . i
& O ]
_1 B LI 1 IIII|,|,|J 1 IIII|,|,|I L1l ]
1 10 100 1000
(e) T

_ 1 (™" apparent that the time scaling combined with the Ra And
NUs, = —f Nug(7)dr. (24) scalings provides a good representation of the behavior of
Tt7o Nug, with all results collapsing close to single lines, in both
The time shown is scaled against while thems shown in (& and(c). The Prandtl number variation results, shown in
(a) and(c) are scaled against RAandA34, respectively. It is (e), again show that the Prandtl number is not an important
control parameter, as predicted. g, variation also shows

O T T T 7T LI T 0 T T T T T T T T
"] - I TABLE II. Values of C; for each run and their corresponding
i i i standard deviations in Case 1.
= S -0.5_— /_,f’ 7 Run Ra A Pr C, sd sd
1 C ] 1 6x10° 1 7  0.648 0.000766 0.000767
LT = | . 2 6x 107 1 7 0.643 0.000514 0.000514
0 5 ' 10 '10 0.5 1 3 6x 108 1 7 0.643 0.000355 0.000355
@ (ARa) "1 )  Exp[-0645(ARa)"7] 4 6x10° 1 7 0.647 0.000260 0.000261
5 6x 100 1 7 0.673 0.000263 0.000294
FIG. 31./4 0.(7) plotted against (@ (ARaY4r and (b) 6 6x10° 1/3 7 0.599 0.000357 0.000425
g 0648ARA™ for gl simulations in Case 1. —, Ra=6Lf, A 7 6X108  1/2 7 0.622 0.000341 0.000357
=1' E“;?”““f Féa:t;xlg, AA=11'PPF=77i — RaR=8 )160561/3 8 6x1® 2 7 0655 0.000519 0.000527
=1, Pr=7; ———, Ra= , A=1, Pr=7; —-—-— , Ra= :
A=1, Pr=7: ——._ Ra=610°, A=1, Pr=1: —.-—..—. Ra=6 9 6x10° 3 7 0.660 0.000517 0.000530
X 108' A= 1’ PI’=50, ________ , Ra%l(ﬁ, A=1, Pr 10 6X 1(? 1 1 0.587 0.000245 0.000394
=200; -+ (bold), Ra=6x 10°, A=1, Pr=1000; — — «bold), Ra 11 6x 108 1 50 0.654 0.000393 0.000398
=6x10°%, A=1/3, Pr=7; —-—-«bold), Ra=6x 1%, A=1/2, Pr 12 6x108 1 200 0.655 0.000392 0.000397
=7; = -~ ~bold), Ra=6x10%, A=2, Pr=7; —(bold), Ra=6 13 6x10F 1 1000 0.655 0.000249 0.000251

X108, A=3, Pr=7.
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1 1 1 1 | 1 1 1 1 60 L LI LU
= 0.6 — - ]
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& 04 — 5 - ]
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| = 02 — 20 |~ O  Numerical []
z L - o —— Linear fit []
0 L1 Ll | 0 F i T o
0 0.5 1 0 200 400 600 FIG. 4. (@ Nugn)Ra'* plot-
(b) R ted against/ 7 and(b) Nu , plot-
ted against R4* for Ra=6
20 T T 1 T T T T [ T 1 x 10° (——), 6><107( """ ), 6
B O  Numerical [] X108 (——9, 6x10° (--9, and
o - —— Linear fit H 6x 10 (- -5 with A=1 and Pr
kg B . =7;(c) Nug(nA~%4 plotted against
|Z 5= ] 7/ 7 and (d) Nus, plotted against
= - A3 for A=1/3(—), 1/12(--+-),
B N 1(==9,2(-+-), and 3(-- -9 with
10 IR RN B Ra=6Xx10° and Pr=7;(e) Nug(7)
0 1 2 plotted againstr/ s and (f)Nug 4
(d) A3/4 plotted against Pr for Pr=¢—), 7
(-++), 50(= =), 200(---), and 1000
30 prm—r T (—- -9 with Ra=6x 10° andA=1,
100 - - ] respectively. All results are pre-
< 20 = sented for in Case 1.
£ 10 | fo—e—9—e—0:
= Z. u 3
| p 10— —
1 L 3
01|_|,|,|J IIIII|,|_|I IIIII|,|_|I IIIII|| |_
0 0.5 1 1 10 100 1000
(e) Ty 0 Pr

a basically asymptotic behavior, as expected, with relativelyscaling relation16) on Ra,A, and Pr, respectively. The col-
little variation over the last 60% of the development time.lapse of all five sets of numerically obtaing(7) onto a
The time averaged results, shown(b), (d), and(f), further single curve in each of Figs.(®, 5(d), and Fe) clearly
confirm theNus scaling, showing very close to linear rela- shows that the dependence of the scaling relati) on

tions to R&* andA®*, and little variation with Pr. each of the control parameters Rg,and Pr is true for Case
It should be noted that the experimental results of Berk- similar to that for Case 1.

ovsky and Poleviko\21] and the numerical results of Cat- The numerically obtainedd,(r) is plotted against
ton, Ayyaswamy, and Cleve22] show thatNus, has the  (apy-14.j, Fig. 6a) for all runs in Case 2. The collapse of

following empirical dependence on both Ra and Pr for . . .

0 all sets of data onto a single curve confirms again that the
2<A<10, P<10P, and Ra< 10%, . , : "

scaling relatior(16) is true for Case 2. The specific values of

RaPr \0-28 the proportional constar@, for each run, determined by the
0.2+ Pr (25) curve-fitting method with the minimal standard deviatsuh
_ _ . are listed in Table Ill. Once again a best fit sin@lgcan be
This relation clearly shows that the Pr dependendsief, is  obtained for all the data, as described above, given for Case
only significant for Pr-1. When Pr is large, the dependence 2, C,=0.705. All the data sets are plotted, using is in
of Nus, on Pr is negligible. The numerical results shown inFig. 6b), while the standard deviation for each data set is
Fig. 4(f) qualitatively show this feature. On the other hand,shown in Table Ill asd. The scaling relatiori16) is there-
the scaling relatiori11), which shows no dependenceMfis  fore well approximated by the following general equation for

on Pr, was developed with the assumption of Pr being largea, Ra and Pr in the ranges of 1#3A<3, 6X 1(°<Ra<6
than 1. When Pr 1, such a scaling relation is not valid. It is x 10'° and 1< Pr< 1000,

expected that this will also be true for Case 2.

NUg o = o.zm—l/“(

B. Case 2 0u(7) = g 0709ARY ™ _ (26)

The direct numerical simulation results for Case 2 are Using the definition given above for; and the scaling
presented in Fig. 5 to show the individual dependence of theelation (26), the scaledr; is obtained for Case 2 as
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0 '—-.LH-I IIIII|T|'| IIII"T|| IIII

~~~~~~~~~
~~~~~

-0.5

0,(7)

| L L] I LI I
0,0

L1 11 I L1 11

1 10 100 1000
(a) T

T IIII|'|.'|I= I IIII|T|'|

-
(@]

-1/4 FIG. 5. (a) Time series off,r
Ra' 7 and (b) 6,7 plotted against
Ral4r for Ra=6x10° (—), 6
T T ] 0 LI I L Y L B B ><107( ______ ),6><108(———),6
X1 (-9, and 6x10%° (- -9
with A=1 and Pr=7{c) Time se-
ries of A,(7) and(d) 64(7) plotted
against A‘l"‘T for A=1/3 (—),
1/2( ...... , l (___)’ 2 (__)
and 3(-- -9 with Ra=6x 1% and
tood 1o I N N S Pr=7;(e) Time series offy(7) for
10 100 1000 (d) 0 500 1000 1500 Pr=1(—), 7 (... ... ), 50 (==,
T A—1/4,c 200 (—-—), and 1000(-- -9 with
Ra=6x10° and A=1, respec-
AL UL B tively. All results are presented for
Case 2.

b

—_—
~

L1 1 1 | 1 1 1
0,(1)
L1 11 | L1 11

AT AT BRI
10 100 1000

(e) T

1= 6.537ARa)Y4. (27) The numerical results showing the dependence of the av-
erage Nusselt numbers on Raand Pr are presented in Figs.
7-9 for Case 2 respectively, wheley, , is the average Nus-
This 7; will be used below to scale the Nusselt number and tS€lt number on the bottom boundary owerandNu, is the

obtain a time averaged Nusselt number. average Nusselt number on all boundaries, that is,
0 0 TABLE Ill. Values of C, for each run and their corresponding
. L standard deviations in Case 2.
© R © os a Run Ra A Pr C, sd sd
< 1 <7t 1 6x10° 1 7 0771 0.001275 0.001379
- - 7
] [ ” 2 6x107 1 7 0724 0.00806 0.000815
1 A 3 6x108 1 7  0.697 0.000525 0.000527
10 "0 0.5 1 4 6x10° 1 7  0.685 0.000352 0.000360
(@) (ARa) )  Exp[-0.705(ARay 1] 5 6x101° 1 7 0.704 0.000363 0.000363
_ 6 6x10° 1/3 7  0.798 0.000652 0.000814
FIG. 6. 6,(7) plotted against(® (ARa™*r and (b 7 6x1CF 1/2 7 0740 0.000590 0.000616
Pr="7;:w- , Ra=6x107, A=1, Pr=7; -, Ra=6&10°, A=1, Pr ' ' '
=7~ Ra=61°, A=1, Pr=7: ——.— Ra=61010 A=1. 9 6x10¢ 3 7  0.679 0.000631 0.000652
Pr=7; _____ , Razﬁ 1081 Azl, Pr=1 R Ra:>6108, A 10 6>< 1(? 1 1 0670 0000486 0000516
=1, Pr=50;—— - —— - — . Ra=610°, A=1, Pr=200;------ (bold), 11 6x10° 1 50 0.703 0.000537 0.000537
Ra=6x10° A=1, Pr=1000;-———(bold), Ra=6x1C%, A=1/3, 12 6x108 1 200 0.706 0.000541 0.000541
Pr=7;—-—.~(bold), Ra=6x10° A=1/2, Pr=7;—- .~ +bold), 13 6106 1 1000 0.706 0.000344 0.000344

Ra=6x10°, A=2, Pr=7;—(bold), Ra=6x 108, A=3, Pr=7.
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| FIG. 7. (8) NufnRa* and(b) Nu,(r)Ra/4
— M plotted against /7 for Ra=6x 10 (—), 6
(a) Ty (b) T X107 €, 6x 1P (-, Bx 10 (=5, and
610 (=- -9, () Nus 4 andNu, , and(d) Nuy,
60 - ] L L L B plotted against R&* with A=1 and Pr=7 in Case
- . o . 2. O and A in (c) are numerical data foNus,
B ] C ] andNu, ,, and — and- - -+ are their correspond-
B 7] C 7] ing linear fit curves, respectively.
|zﬁ C 1 E ]
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0 200 400 600 0 200 400 600
(©) Ra" (d) Ra"
_ 1 (77— tively. It is apparent that the time scaling combined with the
NUp s = J Nuy(7)d, (28)  Ra andA scalings provides a good representation of the be-
1o havior of Nug for Case 2, with all results collapsing close to
and single lines, in both Figs. (@ and &a). The time scaling
combined with the Ra ané scalings provides less satisfac-
NU; 2 = NUp 2 + NUg . (29)  tory representation of the behavior lfi,, with some varia-

L tions seen in the results shown in both Fig&)7and &b).
The time shown is scaled against while theNug shown in  The time averaged results, shown in Fig&)@and §c), fur-
Fig. 7(a) andNu, shown in Fig. Tb) are scaled against R4  ther confirm theNu, scalings, showing very close to linear
and theNu, shown in Fig. §a) is scaled against®*, respec-  relations to R¥* andA%4. The results foNu, , show a linear

100 T 30|||||||||

; FIG. 8. (a) Nus(nA=3*and(b) Nuy(7) plotted
== s s A againstr/ ; for A=1/3(—), 1/2(-+++), 1(=—),

2(=-9, and 3—- -9, (¢) Nus, and Nu, , plotted

(@) Uty () v againstA¥* and (d) Nu, , plotted againsi with
e L o e 2T T Ra=6x 1% and Pr=7 in Case 2D and A in (c)
L 4 - A are numerical data foNus, and Nu;,, and —
. 20— A — B T and----- are their corresponding linear fit curves,
| s L ] respectively.
Z L 4
12 °r 7
0 i 1111 | 1111 l 1111 ] 0 i 1111 | 1111 | 1111 |
0 1 2 3 0 1 2 3
(© A (d) A
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relation with R&'4, as shown in Fig. @), however theA the later stages of cooling, and the heat transfer in that region
scaling, shown in Fig. @), shows some nonlinear behavior will be considerably less than that on the side wall.

for low A. The Nu, , results show linear relation with R4

and A%4, The numerical results showing the dependence of V. CONCLUDING REMARKS

the average Nusselt numbers on Pr for Case 2, as presented ) . o

in Fig. 9, clearly show that there is relatively little depen- ~ Scaling analysis has been used to obtain time scales for
dence on Pr for the long-term behavior Nfi, Nug,, and the long-term behavior of the cooling of a fluid in a rectan-
N_ut a again Consistent with the assumption about ]Ehe averaﬁular.container with an infinite |ength via the_Side walls and
heat transfer coefficient on the side wall. TRe, andNu,  the side wall and bottom. The scaling relations have been

relations are less satisfactory, showing some Pr dependen¥@lidated by comparison to numerical simulation. The nu-
in the heat transfer on the bottom boundary. merical results have also been used to obtain the proportion-
The percentage of heat transferred through the bottorlity constants in the scaling relations, allowing the time re-
boundary overr, ¢, is defined as
TABLE IV. Numerical results of¢y, for all simulations in Case

L — 2.
f thbd’T
— 0 0,

= — — , (30) Run Ra A Pr by (%)
J thde+f hAdT 1 6% 10° 1 7 9.86
0 0 2 6x 107 1 7 6.55
which can also be expressed as follows 3 6x10° 1 7 4.20
4 6x10° 1 7 2.90
Nu, , 5 6x 1010 1 7 2.10
b= B 6 6 108 1/3 7 6.77

Nup 5 + NUg 5
7 6x10° 1/2 7 5.38
The numerically obtainedy, is presented in Table IV for all 8 6x 10° 2 7 3.39
runs in Case 2, clearly showing that the assumpliggh, 9 6x10° 3 7 3.50
which was made in the scaling analysis is true. 10 6x 10° 1 1 7.02
It is clear that the heat transfer occurs primarily on the11 6x10° 1 50 3.64
side walls and will be associated with the convective bound4> 6x 108 1 200 3.90
ary layer that forms there. The flow velocity adjacent to the; 3 63 108 1 1000 4.24

bottom boundary will be relatively small, particularly during
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quired for cooling to any required degree to be accuratelyooling the flow adjacent to the bottom is near to quiescent

determined. and the predominant mode of heat transfer within the fluid in
Using 99% as the cool down criterion the scaled nondithat region is conduction. The observation tNaf, has some

mensional cool down time for the side cooled cavity isPr dependence supports this hypothesis, however the scaling

7.140(ARa)™*, and for the side and bottom cooled cavity is relations do not represent this change in flow type, or the

6.532(ARa)™. It has been shown that for Case 1, side wallweak Pr dependence.

cooling only, the scaling relations correspond very well to  Despite this, the overall heat transfer rate for Case 2 is

the behavior of the numerical results, confirming the ap-+well represented by the scaling relations, as seen izNthe

proximations used to obtain those relations. The results fofesults, and this is at least in part because this is dominated

Case 2 also show that the scaling relations provide a verpy Nug,. The side wall heat transfer is predominantly a result

good prediction of the overall cooling down rate, representeaf the natural convection boundary layer which forms there,

as 0,(7). The form of thed,(7) scaling relation for Case 2 is maintaining a high-temperature gradient throughout the cool-

the same as that for Case 1, with only a variation in theing process. The overall heat transfer and cooling process for

proportionality constant, as noted above. This again confirmgase 2 is therefore dominated by the side wall heat transfer,

that the assumptions made in obtaining the scaling relationand as a result, for both Case 1 and 2 the cooling rate and

are correct, and that additionally cooling the bottom has littletotal heat transfer are well represented by the scaling rela-

effect on the overall cooling rate. The relative behavior of thetions presented above.

bottom and side wall cooling has been further investigated

by obtainingNug andNu, separately, and comparing them to

their scaling relationdNug is seen to correspond very well to

the scaling relation, while thBu, correspondence is seen to

be less satisfactory, with some Pr dependence observed as ACKNOWLEDGMENTS
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