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Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media
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Following the work of RobertfLos Alamos Scientific Laboratory Report No. LA-299, 194®publishedl],
we investigate the effect of small two-dimensional perturbations on an isolated, planar shock front moving
steadily through an inviscid fluid medium with an arbitrary equation of stat®S. In the context of an
initial-value problem, we derive explicit analytical expressions for the linearized, time-dependent Fourier
coefficients associated with an initial corrugation of the front. The temporal evolution of these coefficients
superficially resembles the attenuated “ringing” of a damped harmonic oscillator, but with the important
distinctions that the frequency of oscillation is not constant, and that the damping factor is not simply an
exponential function of time. It is shown that at least two three-parameter families of stable solutions exist,
one more strongly damped than the other. In both cases, we find that the envelope of oscillations decays
asymptotically as %, with shorter wavelengths dying out earlier than longer ones. For a particular perturbed-
shock system, the strength of the front and the EOS properties of the material through which it propagates
determine the applicable family of solutions. Theoretical predictions agree wellpastied numerical simu-
lations for several examples derived from ttve EOS library.
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I. INTRODUCTION Laboratory(NRL), are the D’yakov parametdr (a quantity
that is inversely proportional to the slope of the shock Hugo-

Shock waves are ubiquitous in compressible hydrodyiot [5]), the compression ratiay, and the Mach number
namic systems ranging from interstellar mefiia to traffic ~ behind the shockM . Several examples are considered in
flow [2]. Of fundamental importance to the dynamics of our analysis that underscore a somewhat unexpected result. It
shock waves is an understanding of how disturbances to othis shown that at least two families of damped oscillatory
erwise steady shock fronts evolve in time. The earliest analysolutions exist for initial disturbances localized at the shock
sis of this problem is likely due to Robeift3], who consid-  front. The determination of which family applies to a particu-
ered the effect of small perturbations on isolated planatar perturbed-shock system depends on the sign of a certain
shocks propagating through homogeneous fluids from thdimensionless quantitx, which is an algebraic function of
point of view of an initial-value problem. The use of the the three shock parametdrsy, andM; only. The properties
word “isolated” here implies that a shock is very far, or of the two families of solutions are similar in that they share
“decoupled,” from its driving mechanisnie.g., a moving the same late-time asymptotic behavioscillations decay in
piston. Working in the context of an ideal fluid description, time ast™%?), but differ in the degree of damping that the
Roberts reduced the linearized system of governing equasscillations experience initially; see Fig. 1. All ideal gases
tions to an integral expression, the evaluation of which yieldselong to the family of solutions with >0. For moderately
the time-dependent amplitude of each Fourier component adtrong shocks in materials such as polystyrene, aluminum,
the initial disturbance. His work demonstrated that shocksaand deuterium-tritium “ice,” the parametek is negative
are almost always stable, with perturbations decaying asaccording to thecALEOS databasg and the behavior is ac-
ymptotically in timet at least as fast as 2 One obvious curately described by the more strongly damped family of
oversight of Roberts’ analysis, though, is that the presence afolutions. At sufficiently large driving pressures, though, the
entropy perturbations behind the shock is neglected; moresign of A eventually becomes positive—the threshold for
over, results are specialized to the case of a perfect gas. this continuous crossover being material dependent.

In this paper, we generalize Roberts’ calculation and de- The motivation for this study is borne out of an interest to
rive explicit expressions governing the temporal evolution ofunderstand better the implosion of inertial confinement fu-
a rippled shock front in a fluid medium with an arbitrary sion (ICF) targets, which contain materials whose equations
equation of statéEOS. The solution methodology is based of state are far from idedl6]. In most ICF schemes, it is
on a perturbative expansion, with the ratio of shock-ripplerequired to compress fuel pellets containing mixtures of deu-
amplitude to wavelength serving as a small parameter. Inforterium and tritium to densities as much as 1000 times greater
mation about the EOS of a specific material is contained irthan solid valueg7]. The compression of the fuel results
three dimensionless parameters that characterize the unpérem multiple shock waves launched into the pellet by high-
turbed shock, and serve as necessary inputs for the first-orditensity radiation striking its surface and ablating away the
theory. The three parameters, which in this study are derivedutermost layers of material. Successful compression re-
from the caLeos library [4] at the U.S. Naval Research quires that the ablation and compression processes occur

with near-perfect symmetry, otherwise high fusion-reaction
yield may not be achievd®]. Asymmetric irradiation and/or
*FAX: (202767-0046; Email address: bates@this.nrl.navy.mil  rough surface finishes can lead to a nonuniform ablation pro-
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problems in gas dynamics as well. Fraléyg], for example,
(aA)A>0 has shown that isolated rippled shocks possess many of the
same general properties as those generated by curved pistons
[14,15, or reflected from corrugated wall46].

As it stands, the isolated rippled-shock solution presented
in this paper also serves as a useful benchmark for
hydrodynamic-based computer codes used in ICF research.
Modern ICF codes usually comprise a sequence of distinct
“modules” for simulating various physical phenomena such
as hydrodynamic motion, thermal conduction, and radiation
transport, as well as accounting for realistic EOS information
(often through a table look-up procedufé7-21). The only
way to verify the fidelity of such complicated codes is
through the use of limiting test cases that are amenable to
(b)A<O analytical solutions. Presently, however, very few analyti-
cally tractable problems relevant to hydrodynamic stability
calculations are available—Rayleigh-Taylof22] and
Richtmeyer-Meshko\ 23] problems being the only other
known examples. The isolated rippled-shock problem thus
provides a valuable addition to the suite of available “reality
checks” for testing and debugging numerical simulations.
This subject has been discussed previously by Mg,
who used the analytical solution of a rippled-shock problem
to check the accuracy of the codesNex [17], but found
rather poor agreement. In contrast, it will be shown here that
Time the FAST2D code[18,21] (with the thermal conduction and

FIG. 1. Qualitative difference between the two families of solu- radiation transport modules disablgeerformed well on the

tions for an isolated, rippled shock wave. Although the amplitudeé-sc’lat(Ed rippled-shoqk problem_; simulat.iorll results show ex-
of shock ripples decay asymptotically in both cases &2 the cellent agreement with theoretical predictions for the evolu-

degree of initial damping in one family is typically smaller than in tion of shock-ripple amplitudes.

Amplitude of shock ripple

Time

Amplitude of shock ripple

the other. The lesser-damped example show@)icorresponds to a This paper is organized as follows. In Sec. II, we formu-
positive value of the parametdr [defined in Eq(55)], whereas in  late the initial-value problem for the isolated perturbed-shock
(b), A is negative. system, and derive the governing first-order equations, as

well as the linearized boundary conditions that they must

cess, and thus to the generation of perturbed shock wave@P€Y- In Sec. lll, these equations are reduced to an integral

The presence of distorted fronts in ICF pellets is significan€XPression for the time-dependent shock-ripple amplitude.
because of their potential for seeding hydrodynamic insta(UP t0 this stage, our approach closely follows that of Rob-

bilities (via “interface imprinting” [9] or otherwise[10]), erts, b_ut with the important _distinctions that the present
which disturb uniform high-density compression and reducénalysis accounts for the existence of postshock entropy-

gain. A better understanding of the dynamics of perturbed’Ortex waves, and non-ideal-ggs equations 9f 3t$ection
shocks in real materials could provide insight into how tolV outlines the solution of the integral equation via Laplace

suppress these instabilities, thus improving the overall unitr@nsforms, which involves one of two different inversion

formity of the compression process. procedures, depending on the sign of the quantityCom-
Previous work by Ishizaki and Nishihafd1] has ex- parisons of results from numerical simulations using the
plored the subject of perturbed shocks generated by nonurfAST2D code in conjunction with theALEOS database appear

form ablation surfaces in planar ICF targets. The authord? S€c. V. Finally in Sec. VI, the conclusions of the paper are
were able to solve for the time history of the rippled shock91Ven. For convenience, Laplace transforms and other math-
and ablation fronts, and demonstrate fair agreement with e)@matm_al relations th_at were useful in this investigation are
periments[12], but their theoretical model relied on a liSted in the Appendix.

perfect-gas EOS with an artificially large value for the ratio

of specific heats. In the present st_udy, we d(_) not attempt t0, oRMULATION OF THE INITIAL-VALUE PROBLEM

model the complete ICF-compression scenario, but rather fo-

cus our efforts on assessing the influence that real equations The first step in our analysis is to define the “zeroth-
of state have on the dynamics of perturbed-shocks. Althoughrder” state upon which perturbations are to be imposed. We
the issue of how such perturbations might arise physically i€hoose this to be a one-dimensional, planar step shock mov-
not addressed by the theory, we expect that the solution corRg in the laboratory frame with a constant spdedThe
tained herein will contribute to a more complete understandshock propagates into a half-space filled by a fluid medium
ing of the shock-compression process in ICF. Moreover, that rest with densitypy, pressurep,, and entropy per unit
solution may have direct relevance to other perturbed-shockiasss,. Behind the unperturbed shock, the density, pres-
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sure, and specific entropy have the valygs p;, ands;,
respectively. We imagine that a steadily moving driving
mechanism(such as a piston or ablation frorgupports the
shock from behind, but that its influence on the shock dy-
namics is negligible. That is, we assume that the shock is far
enough away from the driving mechanism that the transit
time of a sound wave between the two surfaces is much
longer than the time of interest for this problem.

The unperturbed state{,p4) is, of course, not arbitrary,
but constrained to lie on the principal Hugoniot curve, which
is the locus of all compressed, or “downstream,” states that
can be realized behind a single shock front given the initial,
or “upstream,” condition py,pg). The shape and other im-
portant geometric properties of this curve are greatly influ-
enced by the EOS of the substance through which the shock
propagate$25]. In the case of a perfect gas, the equation for
the Hugoniot can be calculated analytically, with the result
expressible in a simple closed form. For nonideal materials,
the situation is slightly more involved in that an accurate
calculation of the Hugoniot usually requires the use of com-
plex EOS models to supply realistic thermodynamic data.
Examples of such models includaLEOS [4], SESAME[26],
and Qeos[27], all of which characterize a variety of sub-
stances over a wide range of pressure and density states by
combining theoretical, empirical, and phenomenological de-
scriptions[6]. A few Hugoniots derived from the&ALEOS
database are presented in Fig. 2 for materials of interest to
ICF research. For comparison, these figures also show the
corresponding results for the more widely ussbAME li-
brary. As Fig. 2 demonstrates, the theoretical predictions of
different EOS models for the same material are not always in
agreement, but we shall not attempt to address these discrep-
ancies here since such a discussion lies beyond the scope of
the present investigation. In the analysis that follows, we
shall employ thecALEOS model exclusively to characterize
the properties of shock waves in materials with nonideal
equations of state.

A quantity that plays an important role in the study of
perturbed shocks is the slope of the Hugoniot curve in the
plane of densityp versus pressurp. Note that this slope—
which is written as @p/dp)y and evaluated at the down-
stream state—is distinct from the postshock isentropic de-
rivative, (9p/dp)s=c?. Here, the subscripts implies
constant entropy and is the speed of sound in the com-
pressed fluid. Although these two derivatives possess a
ﬁqe;c;?f':(;i: :,i?g\;g;}l: ﬁlérc]:i ug‘\;aégsgtft?r’]:yniaﬂe d;”flfpeeroxgluminum, andc) deuterium-tritium ice. Solid and dashed curves

iabl f d | hooks. A ul show results derived from theaLeos and sesaME EOS libraries,
appreciably even for moderately strong shocks. A usefu WaYespectiver. The symbols ifb) are experimental data points taken

of expressing th¢inverse slope of the Hugoniot is in terms  ¢oy Ref. [28]. According tocaLeos, the sign ofA in (c) changes
of the dimensionless “D’yakov parametef3] from negative to positive negr, = 1.7 Mbar, indicating a transition
_2 to a lesser-damped solution above that valsteaded region For
J (dP the range of density values (@) and (b), the sign ofA is strictly
pi\dp

p (Mbar)

p (Mbar)

p (Mbar)

FIG. 2. Examples of Hugoniot curves féa) polystyrene,(b)

h:

’ @ negative.

H

where j=poD is the mass flux density across the shock.whereM;=(D—U)/c is a downstream Mach number satis-
According to a linearized normal-mode analyfi30,31,  fying 0<M;<1 andU is the mass velocity of the shocked

stable shocks obeys the condition fluid in the laboratory reference frame. Planar shocks in ma-
terials with values oh that lie outside of this range experi-
—-1<h<1+2M,, (2)  ence exponential growth of perturbatiof®5,32, and are
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thus unstable. In Eq2), the lower limit is known to corre- Ay
spond to the breakup of a shock into two waves traveling in
the same directioh33], and has long been observed experi-
mentally in substances undergoing phase transformations, or
yielding plastically at the elastic limit34]. Satisfaction of fluid at rest
the condition H2M;<h, on the other hand, has been -
shown by Gardnef35] to correspond to the splitting of a
shock into two counterpropagating waves, although this phe-
nomenon apparently lacks experimental confirmation. For
the examples considered in this study, all valueb k¢ well
within the stability limits specified by Eq2).

Let us proceed with our perturbative analysis of the iso-
lated rippled-shock problem. In anticipation of the lineariza- -T
tion procedure to follow, it is convenient at this stage to
transform our frame of reference to one in which the unper-
turbed compressed fluid behind the shock front is stationary. 011
In such a reference frame, the unperturbed planar shock fiG. 3. Geometry of an isolated, rippled shock front in the
moves with speed —U, the upstream fluid flows at speed frame of reference in which the downstream fluid is at rest. The

U, and the normal and transverse components of the unpeimperturbed planar shock moves in the negasivairection with
turbed velocity field behind the shock front vanish. This ar-velocity —(D—U) %, while the upstream fluid flows at velocity

rangement is advantageous because it reduces the complexilyk. Unit vectors normal and tangential to the rippled front are
of the first-order algebraic expressions significantly. By apdenoted byN and T, respectively.
plying the law of mass conservation, one can easily show

that should be replaced with the indexed coefficiéni,, and a
summation over alk values in the spectrum performe@
D—-U=D/7, 3 similar Fourier decomposition would apply to the hydrody-
namic quantities to be introduced shoitl2wing to the lin-
ear independence of the functions ekp), though, the result
of this procedure is merely a single set of relations that must
_ 20, 2 be satisfied for every value d and is identical to that
P1=Pot 1D (= 1)l @ obtained using the single-mode formulation above. For this
Equations(3) and (4) are two of the three well-known con- reason, we shall avoid the additional notational complexity
servation laws for planar shocks known as the Rankine@ssociated with a formal superposition of Fourier modes, and
Hugoniot relations[29]. The missing equation, which ex- limit our analysis to a singlé& value only. The final expres-
presses conservation of energy, does not play a direct role #ons that we derive can then be easily generalized to treat
the present analysis. multi-mode perturbation as the need arises. We should also
Next, we wish to derive an expression for the position ofPoint out that the amplitudéx(t) in Eqg. (5) is considered to
the propagating shock front. To do so, we tee the coor- be a “small” quantity—a statement that will be made more
dinate normal to the undisturbed planar front arttie coor- precise momentarily. Furthermore, note that at this stage the
dinate along it, as shown in Fig. 3. Assuming that the shociunctional dependence aix(t) is unconstrained; we have
moves in the negative direction, its unperturbed position as Not assumed, for instance, that it has the “normal-mode”
a function of time is given byx+(D—U)t=0. We now in-  form exp(-iwt), where the frequency would be related to
troduce first-order perturbations into the shape of the frontk through a dispersion relation.
and in the hydrodynamic quantities behind it. In general, Since the zeroth-order flow is stationary in the shocked-
such a disturbance will give rise to two types of waves in thedas reference frame, we can write the postshock normal and
downstream flow: entropy-vortex and sound waygs]. transverse components of the flow velocity as
Since these waves carry energy away from the front whose

¥

where n=p,/po and D>U. Additionally, conservation of
momentum requires

vE IR ; _ _ ik
distortion is the ultimate source of the perturbation, we may Uy(X,Y,t) = Suy(x,t) e"Y, (6)
expect that it will eventually regain its planarity, even in the "

absence of transport coefficients such as viscosity and ther- uy(X,y,t) = duy(x,t) e"Y, (7)

mal conduction[36]. For a single-mode perturbation with . o ) N
wave numberk and amplitudesx(t), the position of the —respectively. Similarly, the pressure, density, and specific en-

perturbed shock is tropy behind the shock are

Xs(y,t) = — (D —U)t+ x(t)e'®y, (5) P(x,y,t)=p1+8p(x,t) &', ®)
wherei=\/—1, and the real part of the right-hand side of p(X,y,t)=p1+ 8p(x,t) ey, 9
this equation is implied. Note that to account for an arbitrary _
multimode perturbation to the shock fronix in Eqg. (5) S(X,y)=s;+ s(x) e, (10
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In Egs.(8)—(10), a quantity prefixed by @ denotes the am- approximation that is linear in the perturbation amplitudes,
plitude of a hydrodynamic perturbation whose magnitude ighese unit vectors are given by
assumed to be much smaller than its zeroth-order counterpart

(e.g.,6p<<p,). Note that in the shocked-gas reference frame, N=x—ik ox €4y, (18)
the entropy perturbatiods is independent of time. This is a A _

consequence of the fact that entropy-vortex waves behind a T=ik 6x €Y%+79. (19
shock propagate with the zeroth-order, downstream fluid ve-

locity, which has zero magnitude here. Note that in writing Eqs(18) and(19), we have implicitly

Let us determine the first-order equations describing hyassumed that 6x<1—a statement that gives precise mean-
drodynamic motion behind the perturbed shock front. Thelnd to the term “small” perturbation in the present context.
governing expressions are the Euler equations for isentropi#/ith us=%Xdxs/t denoting the perturbed shock velocity,

flow: conservation of mass requires theus—u)- N be equal on
both sides of the front. This leads to the first-order equation
ap
T TV (pw=0, (12) 7—1d D &p
SUy=———OX— — —. (20)
n dt 7 p1
Jdu

s +p(u-V)u=—-Vp, (120 The zeroth-order contribution to the mass conservation equa-

tion is given by Eq.(3).
Js We now consider the implications of momentum conser-
—~ 4+u-Vs=0. (13)  vation across the rippled shock. This principle states that the

o vector p(us—u)(us—u)-N+p N is the same on both sides
of the front, which to zeroth order yields E@l). Using the

Here, the fluid velocity is given byu, X+ u, ¥, wherek and _
relation

§ are unit vectors in thex andy directions, respectively.
Substituting Eqs(6)—(9) into Eg. (11), neglecting terms in-
volving products of perturbation quantities, and canceling 5p—(—) Sp=——5p, (22)
common exponential factors, we arrive at the linearized con- Y

tinuity equation .
one can show after performing some algebra thatbem-

d d i ponent of the first-order momentum-conservation equation
5t 5P+P1(55Ux+'k ouy | =0. (14 can be written as
Similarly, thex andy components of the momentum equation 5ule(h— 1) @ 22
reduce to 2D P
d Jd op It should be noted that the relation between the first-order
o7 OUxt o E=0' (19 pressure and density amplitudes in E&1) holds immedi-
ately behind the shock front only, and is merely a conse-
J Sp quence of expanding the Hugoniot equation in a first-order
Eﬁuyﬂk—:o. (16)  Taylor series. Equatiof22) can be combined with Eq20)
P1 to yield
In deriving Eq.(14), we have used the linearized form of Eq. 7—1({1-h\ d
(13), i.e.,d(s)/dt=0, and the thermodynamic relatiafp Su,=——|——| =X, (23
= &plc?+ (dplds), 8s. The partial derivative with respect to 7 \1+h/dt
time of this latter equation allows us to write
2Dpi( n—1) d
P 9 op=— irh > )aéx. (24
1P CZE Sp=0. (17 Y

To complete our set of boundary conditions, we also need an
Equations(14)—(17) constitute the linearized system of per- expression for the transverse amplitude,. This is ob-
turbed fluid equations governing the dynamics of a rippledtained by enforcing continuity of the transverse component
two-dimensional shock wave. Before they can be solvedgf Ve|0city across the shock front. The result is
though, these equations must be supplemented by boundary
conditions, which we now discuss.

The boundary conditions for this problem are derived by
applying the principles of mass and momentum conservation
across the shock front. To apply these principles, we firsThe presence of the factarin Eq. (25) implies that the
need to find expressions for the normal and tangential unifransverse velocity perturbation is 90° out of phase with the
vectors on the surface of the rippled shdske Fig. 3. Inthe  ripple on the surface of the shock.

o1
5uy=|kD75x. (25)
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In order to simplify the statement of our problem, it is meson in quantum mechani¢87]. An equation with the
useful at this stage to introduce the normalized space ansime form as EJ36) also governs the behavior of a flexible
time variablest=kx and7=D k t/ 5, along with the follow-  string with additional stiffness forces provided by its sur-
ing definitions: rounding mediunie.g., a string embedded in a sheet or rub-

ben [38]. This equation is subject to Cauchy-ty(@irichlet

(1)=k n—1 Sx (26) and Neumannconditions at the initial instant, and at the
9(n= i ' surface of the shock. Since E(B6) is hyperbolic, this a
well-posed problem possessing a unique, stable solution
7 8p [39]. The initial conditions thatp must obey are
¢(§,T)E§E, (27
$(£,00=do(£), (37)
Y
I/IX(§1T)556UX1 (28) 8¢ O . M72 3 0 I 8¢X O 38
E(g, )__ 1 "#y(f: ) a_g(ga ) ’ ( )
7
‘ﬂy(fvT)ZB‘SUy- (29 where the latter expression results from HE80). At the

shock front,¢p must satisfy Eq(35) at all times, as well as a
Employing Eqs(26)—(29), the linearized mass and momen- Neumann-type boundary condition, which can be derived by
tum equation$Egs.(14)—(16)] can be cast in dimensionless subtracting Eq.(30) from Eg. (31), and using the totak

form as derivative of Eq.(33), where
. 20 ¢
iyt —&§X+Mi—a7 =0, (30) di:ai_&if when ¢&=-—r.
T T
Iy, P .
X TP The result is
pe + T 0, (31
—h 2] 2]
J = A — | _ 27
;/;y—'—i ¢ =0, (32) l+hg (7)+n9(7) ((9§ 157_)5_ (39

where we have used E(L7) to eliminatedp from Eqg.(14).  The remainder of this paper is devoted to finding an explicit
These equations are subject to the boundary conditions  solution to Eq.(36), subject to the conditions specified in
Egs. (33)—(35 and Egs.(37)—(39). We should point out,

_1-h | though, that the result of our analysis does not yield the
ol =7 )= 9 (D), 33 normalized pressure amplitudedirectly; instead we choose
to solve for the time-dependent ripple amplitugler), since
by(—7,7)=in9(7), (34)  that quantity is more easily compared with results from nu-

merical simulations. Oncg(7) is determined, the functiog
) can in principle be found by recourse to the governing sys-
d(—7,7)=— 1+h9 (7), (35 tem of equationgalthough that step is not performed in the
present study
at the shock front, whose position in normalized variables is It is somewhat instructive to compare E@9) with the
given byé=—r. Note that in Eqs(33) and(35), the prime on  equation governing damped harmonic motjdd]:
g(7) denotes differentiation with respect to the variable
The system of first-order, partial-differential equation ap- mr’(t)+xr(t)=—vr'(t). (40
pearing in Eqs(30)—(32) can be reduced to a single second-
order equation for the dimensionless pressure amplittide Here, the quantitiem, «, and v are constants, and the func-
by taking ther derivative of Eq.(30), subtracting fromitthe tjon r(t) represents some time-dependent amplitiedg., the
¢ derivative of Eq.(31), and employing Eq(32). Following  position of a mass connected to a spring on a frictional sur-

this procedure, we find face. From this comparison, we see that E§9) may be
) ) viewed as a harmonic oscillator equation with a complicated
Q+Mzﬂ+¢ -0 (36) damping term—i.e., one that is not simply proportional to
Lor2 ' the velocity of motion. As we shall see, the evolution of the

9 2
¢ ripple amplitudey(7) in Eq.(39) does superficially resemble
which is a homogeneous, two-dimensional wave equatiothe attenuated “ringing” of a damped harmonic oscillator,
that has been Fourier transformed in one spatial variable. Ibut with the important distinctions that the frequency of os-
passing, we note that E@36) is equivalent to the Klein- cillation is not constant, and that the damping factor is not
Gordon equation for describing the dynamics of a “scalar”simply an exponential function of time.
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(=7,.7,) classified as an “open surface,” and so we may expect to find
a unique and stable solution thgi29]. We proceed by em-
ploying a method due to Riemann for solving hyperbolic
partial-differential equationganalogous to the theory of
Green functions for elliptic operatorg38]. This method re-
lies on choosing an appropriate “Riemann function”
f(&7]€,7"), which in our case should be a particular solu-
tion of Eg. (36). The functionf must also obey the reciproc-
ity relation f(&,7|&',7)=1(&',7'|& 7). Here, the primed
coordinates refer to an arbitrary point in the space-time dia-
gram of Fig. 4. Such a function can be easily found by as-
suming that it depends only on the quantity

Cauchy boundary conditions specified R=\(7' =12 IMi— (£ - &)

FIG. 4. Space-time diagram of shock and sound wave that de- . . .
fine the solution regiofs at the timer, . This region is bounded by Sbet'tUt'on O,ff(R) into Eq.(36) leads to a Bessel equation,
the contourC, which comprises three line segmeng:, C,,, and  With the solution
C,i - The first extends along theaxis from 0 tor,(M; *—1), the
second lies on the characteriséie- ,= (7,— 7)/M, and the third . R ITV VA Y.
coincides with the path of the shock wave givengyr=0. f(R)_‘]O(\/(T TIMI=(E'=§)7).

IlI. AN INTEGRAL EXPRESSION FOR THE RIPPLE

The symbolJ, in this expression denotes a Bessel function
AMPLITUDE

of order zero. Note that the Neumann function, which is the
) ) . . second solution of Bessel’s equation, is disqualified for use
In this section, we outline our strategy for solving EQ. in the present context since it is singularRi=0. For the

(36), which is a linear, hyperbolic, partial-differential equa- primed coordinates irf(R), we chooseé’ =—r7, and 7'
tion. Following Robert$3], we begin our analysis by noting — Ta.
that this equation possesses the characteristics Let us demonstrate how the Riemann functigiR) can

be used to reduce E@36) to an integral equation for the

§= &= (7= /My (4D ripple amplitudeg( 7). The first step is to define the operator

Here, &, and 7, are constants, and refer to an arbitrary point

in the plane define by the variablésnd 7. If we choose this 52 52
point to correspond to the position of the shock at the titpe G=——+ Mf —
so thaté,= — 75, we see that only one of the characteristics 2 JT
comes from the shocked material—namely, the one preceded
by a “+” sign in Eq. (41). Thus, we conclude that_ condmon_s and introduce the vector
at the front are influenced only by what occurs in the region
G defined by
af ) . o[ 9 af\
7=0, V_(¢&_§_f&_§ §+M1 fz—(ﬁz_ 7

§+7=0,

wherefg and 7 are unit vectors in the& and r directions,
respectively. An important property &f is that it is solenoi-
dal: V-V=1fG¢— ¢ Gf =0. Next, we compute the line inte-

ral of this vector around the conto@ by employing the
wo-dimensional form of Gauss’ theorem:

E+Ta=<(1a— 7M.

This region is bounded by the contoGr which comprises
three line segments, as shown in Fig. 4. The first extend
along the¢ axis from 0 tory(M 1‘1— 1), the second along the
characteristict+ r,= (7,— 7)/M, and the third along the
shock-wave patl§+7=0. For convenience, we shall refer to ) ~

these three line segments@s, C,;, andC,, , respectively. fGV'Vd X= ﬁ:Vﬂdf, (42)
Note that in the dimensionless units of this problem, the

speed of sound is given by N/ .

We now seek a solution to E¢36) within the regionG.  where fi is an outward-pointing unit vector andi¢ is an
Since Cauchy boundary conditions are to be imposed on onlinfinitesimal line segment. Then, using E42), and the ex-
two of the three bounding line segments—i.e., al@gnd  pressions fofid¢ alongC,, C,, C;;, listed in Table I, we
Cyi, but not along the characterist€;,, — this region is  find
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TABLE I. Quantities along the line segmer@s, C,, , andC,, , In certain limiting cases, the complexity of this last equation
which comprise the contou€ in Eq. (42). The parametew is  can be reduced considerably. For example, if we consider an
defined in Eq.(44). initial perturbation consisting of a sinusoidal deformation to

a planar shock frontwith unperturbed hydrodynamic quan-
C, Cy Cu tities behind i we have
A de —7d Edr+7 —(E+% h-1
3 édr+7dr /My (é+7)dr X(Ta)=mg'(0)~]o(a7a)- (46)

f (V72 IMi—(£+72)%) 1 Jo(a(ra— 1))

L(EIME= (64 1,)? = J - which is valid for 7,>0. This equation results from setting
o h(EME—(Err)?) (D) Dalnmn) W quantities ¢o(£), ¢ (£,0), and y(£,0)—but not

T 2 [ 2/\2 2 2

IT ME V72 IMi—(£+72)% 2M3 aM; I (€,0)/0é—equal to zero fo > 0 in Eq. (45). Note that
of (&+79) M7 of of , of for this initial condition, the functiory is discontinuous at
JE . or 15 150 7,=0, where it assumes the valu#2g’(0)/(1+h).

In order to cast Eq43) in a more useful form, we ma-
nipulate it according to the following procedure. First, we
change the variable of integration fromto 6. Next, we

(1-My) 74/M; &QS of substitute the variable for r,. Finally, we perform an inte-
0= —MEJ (f 3 &—) dé gration by parts, and then integrate the entire resulting ex-
0 T e, pression with respect te. The result of all these operations
. o o ﬁ(ﬁ o :ma I\_/tol(tjer.ra equation of the second kifL] for the ripple
+J f—— ¢ ¢ d plitudae:
0 ar 35 9&
=F(7)+ 0) K(7—6)dé, 4
J[ (f&d) ¢af) o ¢&f) | g(m)=F(7) fog( ) K(7—0) (47)
- - — Q| — S QO T.
0 Jr. 0T 9 g " where the kerneK(q) is given by
Values forf, df/dr, and of/9¢ are also given in Table I. K(qg)— a(l- ) n(1+h) q
Substituting these expressions into the equation above, mak- 9= 1+2M;— 1(aq)— 2(1 hyJo Jo(w) dw
ing use of Eq.(35) and Egs.(37)—(39), and noting that (48)
d 9 1 9 h M and the functior(7) is
E'_E'_M_lﬂ_f when &+ 7,=(71,—7)/M4 - o 1ih
7)=00)+t +—5-—F
leads to 1+2M;—h
M 1 x[”() g (0) dofaw) | d
1 Ta| 1— x(w)———g aw)|dw
’ " _ +
7n9 (Ta)+fo 1n9 (1) +759(7) |Jo(a(Ta—7))dT 0 h+1
=x(7a), (43 + h:L—lg(O)[l—Jo(a T)]] . (49
where For the case of a planar shock front initially deformed into a
> sinusoidal shape, we have
1-M1
“ M3 49 Fn=—29 oM+ (1-h)J 50
1 (T)—m[ 17+ ( )o(a7)]. (50
and Note thatF(0)=g(0). In the following section, we show
how the integral equation in E¢47) may be solved in this
- 1-M, special case using the method of Laplace transforms.
(72) 1 %o a
IV. THE SOLUTION
(1=My) 75 /My Ay e . . . . .
+f déy iy (£,0+ The difficulty associated with an integral expression like
0 ¢ the Volterra equation in Ed47) is, of course, the appearance

both inside and outside of an integral sign of the unknown
function that we seeKin our case the ripple amplitude
g(7)]. This fact greatly complicates a straightforward at-
Ta q’;o(g)] . (45  tempt at finding a solution. In such situations, one must often
resort to indirect mathematical approaches such as integral

X Jo(V(TalM1)? = (+74)%)

Jl(\/(Ta/Ml)z_(§+ Ta)z)
\/( Ta/M 1)2_(5_" Ta)z
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transform methods that map the sought-after function from A
one spacdin our caser) to another in which a solution is 420
readily determined. Often, the challenge then lies in the in- /
version of the mapping procedure to express the final answer
in terms of the original variable.

One such approach—the method of Laplace transforms
[41]—is particularly well suited to the present class of prob-
lems. A fundamental axiom of this method is the convolution A>0 /
theorem[see Eq(A9) in the Appendi}, which permits us to ;
convert Eq.(47) from an integral equation fog(7) into an o A<0 ot o
algebraic one for g, (s) — our shorthand notation for the
Laplace transform og(7). Throughout our discussion, we FIG. 5. Plot of A as a function ofa?. The roots ofA=0 are
shall use the subscrijtto denote the Laplace transform of a yanoted bya? and o? , as indicated in the figure. IN<0, the
function, wheres is the associated transform varialf®t to 51ye ofa? lies between these two limits. For physical equations of

be confused with the specific entropy introduced in S&¢. Il sate withA>0, the value ofa? is apparently restricted to be less
see the Appendix. Applying the convolution theorem to Eq.thana?.

(47) and solving the resulting expression fr(s), we find
_ B expressiongpartial fractions, each of which can be recog-
9L(8) =FLS/MI=KL(9)]. nized as a Laplace transform of a known function; the prod-
Limiting our attention to the special initial condition of a UCtS Of terms in this series can then be inverted through use
planar shock front deformed by a sinusoidal ripple, explicit®f the convolution theorem. In this paper, we choose to pur-
expressions foF, andK, can be easily derived using Egs. SU€ the latter stra.tegy.. In so doing, we must make sure that
(A2)—(A5) in the Appendix. The result is that the transform the result has no imaginary component, sigge) is strictly

of the ripple amplitude can be written as a real quantity. This consideration leads to two ways of fac-
toring Eq. (54), which in turn yields two families of solu-
21 .2 tions.
S S“+a“+ S
gL(O)) = — /32 , (51 For reasons that will become clear shortly, the factoring
9( sVs“tat+pBs+I method appropriate for a given ripple-shock system is deter-

where we have introduced the definitions mined by the sign of the quantity

1—h A=a*— 48T a?+4I'% (55)
B= S (52
! Plotted as a function af?, this expression forms a parabola,
(1+h)7 as shown in Fig. 5. The roots df=0 are easily shown to be
I'= W (53)
! a? =2I(B+\B%-1).

Our principal task in this section is to invert EG1), and
thus determine the time-dependent ripple amplitude) Note that the inequalith <0 is consistent with the value of
=£Yg,(s)}, where the symbot ~* denotes the inverse «? lying betweena® anda? . The conditionA>0, on the
Laplace-transform operator. Since this equation involves thether hand, implies that?<a? or o <a?, but apparently
quotient of irrational functions, though, such an inversion isonly the former inequality is physical. In the derivation that
not a trivial exercise, and requires special consideration. follows, we shall assume that? never exceeds’> when
The first step to finding the inverse Laplace transform ofA>0. Additionally, we require thgg >1 andI'>0 always—
g.(s)/9(0) is to rationalize the denominator in E¢1),  conditions that appear to be satisfied for most well-behaved

which yields equations of state. Let us now discuss the derivation of the
©  (B—1)S+ (BT ad)st [T a? solution for each sign ol separately.
g.(s -1)s —a®)s+Iys*+a
= . (54
g(0) (B2—1)s*+ (2Bl — a?)s?+ T2 54 A. The caseA >0

: ; If the sign of A is positive, the denominator in E¢54)
To proceed, we must now adopt a particular solution meth- _ > _ 2 5
odology. One obvious approach is to seek a solution of quanzbf W”téeg asﬁh —1) times the producfs™+ (a+b)<]
(54) by analyzing its poles and then computing the appropri-X[S (a—b)“], where

ate Bromwich integral using well-established methods from

analytic function theory39]. This procedure is somewhat (5+ b)ZZ;[ZIBF —a?+\Ja*—4pT o+ 472,
involved, however, owing to the square root term in Exf), 2(B%—1)
which necessitates consideration of a branch cut in the com- (56)

plex plane. A slightly more-attractive possibility for inverting
Eq. (54) is to factor it into a series of paired multiplicative anda andb are real constants given by
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\/23r— o? r
a= + ,
4(B%-1) 2(p2-1)Y?

b_\/Z,BF—aZ_ r
- V- 2

SinceA>0, the right-hand side of E@56) is a real quantity
whose sign is positive by virtue of the inequalitf< a? .
Equation(54) can then be factored as

aw(s) 1 C1
- +C25
9(0)  s2+(a+b)?|s+s?+a?
+ ! s, (57)
CsS|,
+(a—b)?|s+ys?+a?

where the(real) constantx,, c,, c3, andc, are given by

—a’T
C1= =—cCg,
Yo" apTa?rarz
1 I'—a?2

Cr=5— =1-
® 2 o' 4pTa?+4r?

Consulting Eqs(A6)—(A8) in the Appendix, we see that Eq.
(57) is in the form of products of transforms involving trigo-
nometric and Bessel functions. Using the convolution theo-

rem[Eq. (A9)], this expression can be inverted to give

Cy (T Ji(az
328 = a:bfo sinf(a+b)(r—2)] 12:; L4z

Cs T
+c,coqa+b)r+ ﬁfo sin[(a—b)(7—2)]

Ji(az)
X
aZ

dz+c,coga—b)r,

where the symbal,; denotes a Bessel function of order one.

In the case thaa+b>a (which holds for all ideal gases
one can show using EqA10) that all purely oscillatory
terms in the above expression cancelalfb and/ora—b

arelis less tham, some oscillatory terms persist astation-

ary perturbations—which neither grow nor attenuate in
time—result. We shall not discuss this unusual phenomenon

PHYSICAL REVIEW E59, 056313 (2004

a(7) B 2a2\/m

9(0)  \Ja?—4BT a?+4T2

X J (bsinazcosbz—acosazsinbz)
0

Ji(a(7+2))

a(rtz) 0% (58)
where the relatiorf §- - -dz=[g---dz—[7---dz has been
used. Employing Eq(A10) in the Appendix, one can show
that the right-hand side of E@58) has the correct normal-
ization (i.e., assumes the value unitipr ~=0. Furthermore,
from the asymptotic form of the first-order Bessel function,
J1(q)~+ 2 /(mq) cos[qg—3/(4m)] for q—=>, we see that
the amplitudeg(7) undergoes oscillations that die out as
732 Jate in time. This asymptotic dependence, which has
been observed previously in both shock-tuli®,46 and
laser-driven ICF[12] experiments, is apparently a general
property of perturbed shock fronts that extends beyond the
isolated variety considered in this papés].

B. The caseA<O0

If the discriminantA is negative, Eq(54) must be fac-
tored differently to yield a real expression fgf7)/g(0). In
this case, we find that E¢57) should be written as

S 1 d,+d,s
aL( ): 11702 +dystd,
9(0)  (s+0)2+a?| s+ s?+a?
1 ds+dgs tdostd
S 1
(s—o)?+a?| s+ s°+a’ ! 8

(59

where the quantityy=—ib is real and positive. The con-
stantsd,, d,, d3, andd, in Eqg. (59) are given by

a2

d].:—:dsl

2V 1

a2

d= 2_ 712
2\a?— 28T +2I'(B2—1)

6

1
d3:§:d7,

L [
YooJaP—apreer(g-n®

further here, but simply remark that it is likely associated

with the D’yakov-Kontorovich instability of shock waves Once again, Eq59) has the form of products of transformed

[5,42-419. functions that can be easily recognized. Using the convolu-
Assuminga=*b> «, the solution forA>0 can be written tion theorem and Eq$A6)—(A8) in the Appendix, we find

after some manipulation as that the solution forA<O0 is
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g(r) 1 r o?  |e “Tsinar
=€ ’’cosar — -
9(0) 2 TTlgo1 20p2-1)| 4ac
+ e fTe*”(”) cosa(7—2)
40 \B*—1(Jo
o Ji(az
+ —sina(t—2) il e2) dz
a aZ
©° o . Ji(a(7+2))
+f e 7Y cosaz+ — sinaz| ————— dz;.
0 a a(7+2)

(60)

In arriving at this expression, we have made use of Eqs
(A11) and (A12) to cancel all nonevanescent terms. The
presence of decaying exponential functions in @&€) tends
to enhance the initial damping of shock-ripple oscillations,
and thereby serves to distinguish this family of solutions
from that in Eq.(58). Note, though, that for both families the
asymptotic dependence as-» is the same, namely;%?
times an oscillatory function of.

The same asymptotic behavior holds if the discrimin&ant

vanishes—an event that can occur at isolated points along

the Hugoniot curve for realistic equations of state. In this
case, the rootsa(*b)? in Eq. (56) are identical and the
factoring of g, (s)/g(0) is somewhat different than in Eq.
(57) or (59). We shall not provide the details of the calcula-
tion for A=0, but simply quote the final result, which is

907
glo) V&
xf:(sinaz—azcosaz)% )

(61)

wherea=«a_. It should be emphasized here that the ripple
amplitudeg(r) undergoes a&ontinuoustransition from one
family of solutions to the other a& changes sign. That is, in
the limit that A—0, both Eqs.(58) and (60) smoothly ap-
proach the solution appearing in E.1).

We should also remark that although E¢88) and (60)
were obtained by analyzing single Fourier mode of the
shock-front perturbation, the same solutions apply to all nor
malized amplitudes in a linearized multimode description
Sinceg(7) and g(0) are both proportional t& the wave
number enters the normalized solutig(7)/g(0) only
through the independent variabte=Dkt/ 5. As a result, we
see that shorter-wavelength perturbations die out earlier th

PHYSICAL REVIEW E69, 056313 (2004

25

density (g/cm?3)

1000

FIG. 6. An example of a perturbed density surface at the start of
a FAsT2D simulation. The ratio of ripple amplitude to wavelength in
this study is 5%. Periodic boundaries are assumed in the transverse
direction, and inflow and outflow conditions are imposed at the left
and right ends, respectively, of the computational domain.

V. COMPARISONS WITH NUMERICAL RESULTS

In this section, we wish to test the validity of Eq$8)
nd (60) by comparing their predictions against results from
two-dimensional computer simulations. Several examples
are considered for this purpose that illustrate behavior from
both families of solutions. The simulations were performed
on a fixed, two-dimensional numerical grid using a Cartesian
version of NRL's ICF coderasT2D [21], with the thermal
conduction and radiation transport modules turned off. Used
in this way, theFAasT2D code solves the conservation equa-
tions of hydrodynamics in Eulerian form via a flux-corrected
transport algorithm(FCT) [47]. All nonideal EOS data re-
quired for this study were derived from tloaLEOS material
database.

A typical initial condition for our simulations appears in
Fig. 6, which shows a sinusoidal perturbation superimposed
on a two-dimensional shock front moving into a quiescent
homogeneous fluid medium on the right. The size of the
computational grid was approximately 70000 cells, but in
Fig. 6, only the first 100 cells in the direction are shown.
Also note that this figure shows only a perturbed density
profile, but the pressure andcomponent of velocity sur-
faces (not shown were initially deformed with the same
sinusoidal ripple. They component of velocity was left un-
perturbed and initially set to zero everywhet@e should
point out that our choice of initial conditions here implies
that the Rankine-Hugoniot relatiof29] were not strictly

ptisfied in the simulations at=0; this unphysical situation

longer ones. This property has been verified through numeri/as quickly remedied by the FCT hydroalgorithm after a few
cal simulations of the type described in the following sec-lime steps, however, with no noticeable corruption of the
tion, although we shall not present evidence of it in our dis-numerical resultg.The simulations were allowed to evolve
cussion. Instead, we limit our attention to the consideratiorffom this initial state for a duration equal to at least one-and-
of single-mode perturbations only. This is done in an effort toa-half ripple-oscillation periods. The output from the simula-
underscore the differences in the attenuation properties of tHéions were then postprocessed to measure the evolution of

two families of solutions, as well as facilitate comparison
with our numerical results.

the ripple amplitude as a function of time.
A schematic of the method used to determine the temporal
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100

The first task was to determine the position of the deformed

1 shock front by computing a contour midway between the

] unperturbed upstream and downstream density states. Since
] the representation of a smoothly varying corrugation to the

. shock front on a two-dimensional Cartesian grid is only

] piecewise continuous—i.e., discontinuities exist between ad-

80

@ / ] evolution of the shock-ripple amplitude appears in Fig. 7.

60
>

40f

20 \ ] jacent transverse grid cells—the initial contour in Figa)7
0 , , ) ] has a “stair-step” appearance, and was Fourier transformed
20 25 3X° 35 40 and filtered to extract the fundamental mode. The same fil-
tering procedure was performed at every subsequent stage of

, the calculation, as shown in Fig(ly for a time 7>0. The
’ ] fundamental modes appear as solid curves in the figures,
] along with the positions of the unperturbed frofgslid ver-
tical lineg. The evolution of the shock-ripple amplitude was
] then found by computing—at a fixed transverse location—
b the distance between these curves as a function of time. Once
] normalized by the initial shock-ripple amplitude, this dis-
. tance(indicated by a double-headed arrow in each subfigure
] gives an estimate fog(7)/g(0), which can then be com-
o0 pared to theoretical predictions based on either (B8) or
(60).

FIG. 7. Schematic of the method used for determining the Such a comparison is shown in Fig. 8 for four different
shock-ripple amplitude in theasT2p simulations(a) initially and  'iPPled-shock systems. They afe) a shock withMq=3
(b) at a later timer> 0. propagating through an ideal gas wigh=5/3, wherey is the
ratio of specific heatgp) a 1 Mbar shock in polystyrenés)

1 T T T T T T T T 1
08 @ 3 08 [
08 ¢ ] 0.6 |
S 04 1 & ¥
o 4 (=]
S S 041
< 02} 1< —
E E 02
® F-—--f—— P X - [=] [
—02 ] 0r
04 L ] -0.2 |
-0.6 L -04 L

08
0.6
0.4

0.2

9(v) / 9(0)
g(x) / 9(0)

-0.2

-04

FIG. 8. Comparison of theoretical predictiofsolid lineg and FasT2Dp simulation results(open circles for the normalized ripple
amplitude of a perturbed shock wave propagating thraiaglan ideal gas(b) polystyrene(c) aluminum, andd) deuterium-tritium ice. In
(a), the ratio of specific heats ig=5/3 and the unperturbed Mach numbeMg= 3. In (b), (c), and(d), the unperturbed shock strengths are

1, 5, and 0.5 Mbar, respectively. The exampléanbelongs to the family of solutions for which>0; those in(b), (c), and(d) correspond
to A<O.
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TABLE Il. Parameters for the isolated rippled-shock examples considered in this paper. The labels CH,
Al, and D-T stand for polystyrene, aluminum, and deuterium-tritium, respectively. The entries in the last three
columns were computed using theLeos database.

Ideal gas ¢=5/3,My=3) CH (1 Mban Al (5 Mban D-T (0.5 Mbap
Po 1.07 glcm 2.71 glemi 0.25 g/cnmi
p1 3 po 2.350 g/cm 6.257 g/cm 0.7903 g/cr
To 300 K 300 K 19 K
T, 11T, 5.290< 10° K 1.879x 10* K 8.969x 10° K
Po a 1.779<10 2 Mbar  1.813<10 2 Mbar  8.917% 10 * Mbar
p1 11py 1 Mbar 5 Mbar 0.5 Mbar
D V15po/po 1298<1Pcm/s  1.80K10Pcm/s  1.70%1CF cmis
c J55p0/(9 po) 1.236<10° cm/s 1.52% 1P cm/s 1.20% 10 cmi/s
7 3 2.197 2.309 3.161
h —-0.1111 —0.1647 —0.2071 —8.448<10°?
Mo 3 5.868 3.355 11.72
M, 0.5222 0.4782 0.5120 0.4478
a? 3.577 2.006 1.983 3.413
a? 2.667 3.375 2.812 3.988
a? 7.289 7.343 6.449 12.24
B 1.064 1.218 1.179 1.211
r 2.553 1.919 1.788 3.232
a 2.961 1.433 1.527 2.103
b 1.316 0.841P 0.7303 0.5551
(a—h)? 2.706 1.346-2.411 1.799-2.230 4.115-2.335
(a+h)? 18.29 1.346-2.411 1.799+2.230 4.115+2.335
o —-1.316 0.8412 0.7303 0.5551
A 4.214 —5.419 —3.015 —4.747

a8Assumingp, and T, are independent, we hawg=RpyTo/m, whereR=8.317x 10’ erg/deg mole is the
universal gas constant amdis the molecular weight of the gas.

a 5 Mbar shock in aluminum; and) a 0.5 Mbar shock in a poral evolution of perturbations to an isolated planar shock
cryogenic mixture of deuterium and tritiun{The Mach  propagating through a material with an arbitrary EOS. It was
numbers in the latter three cases were chosen so that tR@own that under most circumstances, at least two families
internal energy of the shocked material would exceed byt stable solutions exist. Membership in one family or the

many times the binding energy of the constituent atoms, thugther for a particular shock-wave system is determined by
warranting a hydrodynamic analysis, and justifying our usgnpe sign of the dimensionless quantity [defined in Eq.

of the term “fluid medium” to describe material initially in a (55)], which is a function of the strength of the shock, and

condensed stag29].) In Fig. 8, theoretical predictions aré he EQS properties of the material through which it propa-
indicated by solid lines and simulation results are denoted bﬁi
W

- tes. ForA>0, one family of solutions applig€q. (58)],
open circles. The relevant shock parameters for each systelil. t0. A <0 a slightly different family[Eq. (60)] governs
are listed in Table Il. For the ideal-gas shock, we see that thﬁ;]e evolution ,of the rippled shock wave. Both families of

value of A i; positive, yvhile the other three examples belongsolutions share the same late-time behavior in that the enve-
to the family of solutions for whichA is negative. In all lope of oscillations falls off asymptotically as ¥2 but dif-

cases, the agreement between theoretical prediction and N in the degree of damping that is present initially. In gen-

merical simulation is quite good, which supports the validity : :
of Egs. (58) and (60). Note that for the examples shown ,?hrglr; titglggovci?WZ(J;OWhlchA<O are more strongly damped

:‘rc;r':tlf%]é i'hghci 'gt't?;\?;rg)%ig{é\?}i‘g"gpgg;ﬁ:gﬁ;'rtgetvrveoq;gﬁtﬂr_ It is interesting to note that the attenuated shock-front
bation wavelengths into the fluid ahead of it. This perioolosc:lllatlons discussed in this paper qualitatively resemble the

does not remain constant. of course. but changes over fi damped vibrations of a plucked string im_mersed in a viscous
i ’ ’ 9 "]f‘qwd [48]. In the latter case, the dynamics are governed by
and Ias%/mptoulgally agprﬁ?cmf thef va:ugrﬂ(akD)—a a differential equation similar to Eq40), where the fric-
result that applies to both families of solutions. tional term—wvr'(t) accounts for Newtonian drag forces in
V1. SUMMARY AND CONCLUSIONS the surrognding quuiq that oppose the string_’s motic_)n. V\_/ork_
done against these viscous forces by the string drains kinetic
In this paper, we have generalized an earlier analysis bgnergy from the vibrating system and converts it into heat,
Robertd 3] to derive explicit expressions governing the tem-resulting in oscillations that evanesce over tifWe assume
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here that the “radiation resistance” of the stripgpl—which  perturbed shockgl1]. Additionally, a more complete under-
determines the amount of energy converted into sound—istanding of the dynamics of isolated rippled shocks may be
negligible by comparison; since strings are known to be inuseful in the study of certain type Il supernova phenomena
efficient radiators of acoustic enerf§8], this approximation [53], and forms the basis for developing a new analytical
appears to be well justifiedAs the temperature of the liquid benchmark to validate the performance of ICF and “high-
is raised, the magnitude of the viscous term diminigs€§, ~ €nergy-density physics” cod¢47-20.
which lessens the damping experienced by the string.

The analogy of a vibrating string in a viscous liquid pro- ACKNOWLEDGMENTS
vides some insight into the difference between the two fami-
lies of rippled-shock solutions in Eq&k8) and(60). Bearing
in mind the conventional microscopic theory of liquidsl],
this analogy suggests that the strongly damped shock-fro
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flection of appreciable forces of molecular interaction in theacknowledged

downstream medium, particularly at high densities and rela-
tively low temperatureq29,52. At higher temperatures,
such “viscous” interactions become less significant, and the APPENDIX: LAPLACE TRANSFORMS
behavior resembles that of a perfect gas for whichO. AND MATHEMATICAL IDENTITIES

These assertions are supported by the fact that one sees anwe cite in this appendix particular Laplace-transform re-

eventual(and continuoustransition from the family of solu-  |ations and miscellaneous mathematical identities that were
tions with A<O to that with A>0 for sufficiently strong  yseful in our analysis of the isolated rippled-shock problem.

shocks, as shown in Fig.(@ for the case of deuterium- Following convention, we let the symbal represent the

tritium ice. Although not indicated in F|g 2, it was noted Lap|ace transform of a functio@(,r)' defined as
during the course of this study that a similar sign change in

A occurs for shocks in polystyrene and aluminum at approxi- ?

mately 23 and 50 Mbars, respectively, accordingAaEos. Li®(n)}= JO e T d(r)dr= (), (A1)

[It should be emphasized here that we are not suggesting that

the damping of rippled shocks is due to thieysicalviscos-  where the subscrifit is a practical shorthand notation asd

ity of the downstream medium, since accounting for thisjs the Laplace-transform variable. The inverse transform op-
fluid property lies beyond the Eulerian description adopted inerator is denoted by ~*, such thatZ ~4{®, (s)}=®(7) . In

Eq. (12). Thus, while a vibrating string in a viscous liquid is terms of these definitions, the following results can be estab-
a suggestive simplified model of rippled-shock behavior, itjished[54]:

should not be taken too literally in the present confelxt.

the future, it would be desirable to better elucidate the un- L{1}=1/s, (A2)
derlying physical mechanisms and associated EOS character-
istics that are responsible for the bifurcated nature of solu- L{Jo(a 7)}=1s*+ a?, (A3)

tions to this class of problems.

The objective of the present investigation was to develop s
a better understanding of the dynamics of rippled shock L{I1(a T)}=a1(1—?
fronts in substances with nonideal equations of state. Stated VSTt a
simply, our principal conclusion is that ripple attenuation
properties are EOS dependent, and can differ appreciably r J"”J (w) dw! = a (A5)
from those of a perfect gas, even for moderately strong o © sVs?+a?’
shocks. This result could have important consequences for

: (Ad)

the realistic modeling of shock-compressed ICF-fuel pellets, 1 Ji(ar)

since they contain materials whose equations of state are far L —1[ } _ 1 , (AB)
from ideal (and often poorly understopdBecause of their S+ s+ a? aT

potential for “seeding” hydrodynamic instabilities, a thor-

ough knowledge of how shock ripples evolve during the 1 sinQr
compression stage of an ICF implosion is crucial for design- L _1[ 5 2] e ——, (A7)
ing successful high-gain targets. The findings of this study (s=p)"+Q

represent a significant first step towards this goal. In subse-

guent investigations, it may be possible to apply the solu- 1 o M~

tions derived herein to understand better the Richtmyer- {(S_M)2+QZ =e (COSQTJFES”]QT '
Meshkov instability[23] for realistic equations of state, or to (A8)

extend the calculation to incorporate the influence of such

effects as convergent geometries, and nonuniform drivingNote that the constants, (), and x appearing in the equa-
mechanismse.qg., initial target roughness and/or varying la- tions above are real quantities. An important consequence of
ser intensity in the case of direct-drive IC#at can launch Laplace-transform theory is the convolution theorfi],
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which asserts that any two continuous and sufficiently well-behaved funch¢rsand W(7) obey the relation

L‘l{d),_(s)‘lf,_(s)}=fObe(z)\P(r—z)dz. (A9)

Stated differently, the convolution theorem says that the pro@u¢s) W (s) is the Laplace transform of the function defined

by the right-hand side of EqA9)—a result that plays a central role in the derivation of the solutions presented in Sec. IV.

Other important mathematical identities for this study wérg|

YN2—a’—\
YT cosar if A\=a
» Jy(az) 2
J . sin\(7—z)dz= 5 (A10)
0 a’— A .
5 sin)\r——zcos)\r if A\<a,
o o
»J(az o?+(a—a)?[o?+(a+a)?]—a?+ o2+ a2 &
f 1( )e"’Zcosazdz:{\/[ ( )l ( )] } 7 (ALD)
0 aZ \/Eaz a,2
= Ji(az 2t(a—a)?[c?+ (ata)?]+a%—a?—a?Y?  a
J i(e2) e %%sinaz dz=—{\/[0 (@-a)jlo"+(@+a)] o e + —, (A12)
0 aZ \/Eaz a?

where\, o, anda are positive real parameters, and the condiior 0 is assumed in EqA10).
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