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Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media

Jason W. Bates*
Plasma Physics Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA

~Received 1 October 2003; published 28 May 2004!

Following the work of Roberts@Los Alamos Scientific Laboratory Report No. LA-299, 1945~unpublished!#,
we investigate the effect of small two-dimensional perturbations on an isolated, planar shock front moving
steadily through an inviscid fluid medium with an arbitrary equation of state~EOS!. In the context of an
initial-value problem, we derive explicit analytical expressions for the linearized, time-dependent Fourier
coefficients associated with an initial corrugation of the front. The temporal evolution of these coefficients
superficially resembles the attenuated ‘‘ringing’’ of a damped harmonic oscillator, but with the important
distinctions that the frequency of oscillation is not constant, and that the damping factor is not simply an
exponential function of timet. It is shown that at least two three-parameter families of stable solutions exist,
one more strongly damped than the other. In both cases, we find that the envelope of oscillations decays
asymptotically ast23/2, with shorter wavelengths dying out earlier than longer ones. For a particular perturbed-
shock system, the strength of the front and the EOS properties of the material through which it propagates
determine the applicable family of solutions. Theoretical predictions agree well withFAST2D numerical simu-
lations for several examples derived from theCALEOS library.

DOI: 10.1103/PhysRevE.69.056313 PACS number~s!: 47.40.2x, 51.30.1i, 47.20.2k
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I. INTRODUCTION

Shock waves are ubiquitous in compressible hydro
namic systems ranging from interstellar media@1# to traffic
flow @2#. Of fundamental importance to the dynamics
shock waves is an understanding of how disturbances to
erwise steady shock fronts evolve in time. The earliest an
sis of this problem is likely due to Roberts@3#, who consid-
ered the effect of small perturbations on isolated pla
shocks propagating through homogeneous fluids from
point of view of an initial-value problem. The use of th
word ‘‘isolated’’ here implies that a shock is very far, o
‘‘decoupled,’’ from its driving mechanism~e.g., a moving
piston!. Working in the context of an ideal fluid descriptio
Roberts reduced the linearized system of governing eq
tions to an integral expression, the evaluation of which yie
the time-dependent amplitude of each Fourier componen
the initial disturbance. His work demonstrated that sho
are almost always stable, with perturbations decaying
ymptotically in time t at least as fast ast21/2. One obvious
oversight of Roberts’ analysis, though, is that the presenc
entropy perturbations behind the shock is neglected; m
over, results are specialized to the case of a perfect gas

In this paper, we generalize Roberts’ calculation and
rive explicit expressions governing the temporal evolution
a rippled shock front in a fluid medium with an arbitra
equation of state~EOS!. The solution methodology is base
on a perturbative expansion, with the ratio of shock-rip
amplitude to wavelength serving as a small parameter. In
mation about the EOS of a specific material is contained
three dimensionless parameters that characterize the u
turbed shock, and serve as necessary inputs for the first-o
theory. The three parameters, which in this study are der
from the CALEOS library @4# at the U.S. Naval Researc
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Laboratory~NRL!, are the D’yakov parameterh ~a quantity
that is inversely proportional to the slope of the shock Hug
niot @5# !, the compression ratioh, and the Mach numbe
behind the shock,M1 . Several examples are considered
our analysis that underscore a somewhat unexpected res
is shown that at least two families of damped oscillato
solutions exist for initial disturbances localized at the sho
front. The determination of which family applies to a partic
lar perturbed-shock system depends on the sign of a ce
dimensionless quantityL, which is an algebraic function o
the three shock parametersh, h, andM1 only. The properties
of the two families of solutions are similar in that they sha
the same late-time asymptotic behavior~oscillations decay in
time ast23/2 ), but differ in the degree of damping that th
oscillations experience initially; see Fig. 1. All ideal gas
belong to the family of solutions withL.0. For moderately
strong shocks in materials such as polystyrene, alumin
and deuterium-tritium ‘‘ice,’’ the parameterL is negative
~according to theCALEOS database!, and the behavior is ac
curately described by the more strongly damped family
solutions. At sufficiently large driving pressures, though, t
sign of L eventually becomes positive—the threshold f
this continuous crossover being material dependent.

The motivation for this study is borne out of an interest
understand better the implosion of inertial confinement
sion ~ICF! targets, which contain materials whose equatio
of state are far from ideal@6#. In most ICF schemes, it is
required to compress fuel pellets containing mixtures of d
terium and tritium to densities as much as 1000 times gre
than solid values@7#. The compression of the fuel resul
from multiple shock waves launched into the pellet by hig
intensity radiation striking its surface and ablating away
outermost layers of material. Successful compression
quires that the ablation and compression processes o
with near-perfect symmetry, otherwise high fusion-react
yield may not be achieved@8#. Asymmetric irradiation and/or
rough surface finishes can lead to a nonuniform ablation p
13-1
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cess, and thus to the generation of perturbed shock wa
The presence of distorted fronts in ICF pellets is signific
because of their potential for seeding hydrodynamic ins
bilities ~via ‘‘interface imprinting’’ @9# or otherwise@10# !,
which disturb uniform high-density compression and redu
gain. A better understanding of the dynamics of perturb
shocks in real materials could provide insight into how
suppress these instabilities, thus improving the overall u
formity of the compression process.

Previous work by Ishizaki and Nishihara@11# has ex-
plored the subject of perturbed shocks generated by non
form ablation surfaces in planar ICF targets. The auth
were able to solve for the time history of the rippled sho
and ablation fronts, and demonstrate fair agreement with
periments @12#, but their theoretical model relied on
perfect-gas EOS with an artificially large value for the ra
of specific heats. In the present study, we do not attemp
model the complete ICF-compression scenario, but rathe
cus our efforts on assessing the influence that real equa
of state have on the dynamics of perturbed-shocks. Altho
the issue of how such perturbations might arise physicall
not addressed by the theory, we expect that the solution
tained herein will contribute to a more complete understa
ing of the shock-compression process in ICF. Moreover,
solution may have direct relevance to other perturbed-sh

FIG. 1. Qualitative difference between the two families of so
tions for an isolated, rippled shock wave. Although the amplitu
of shock ripples decay asymptotically in both cases ast23/2, the
degree of initial damping in one family is typically smaller than
the other. The lesser-damped example shown in~a! corresponds to a
positive value of the parameterL @defined in Eq.~55!#, whereas in
~b!, L is negative.
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problems in gas dynamics as well. Fraley@13#, for example,
has shown that isolated rippled shocks possess many o
same general properties as those generated by curved pi
@14,15#, or reflected from corrugated walls@16#.

As it stands, the isolated rippled-shock solution presen
in this paper also serves as a useful benchmark
hydrodynamic-based computer codes used in ICF resea
Modern ICF codes usually comprise a sequence of dist
‘‘modules’’ for simulating various physical phenomena su
as hydrodynamic motion, thermal conduction, and radiat
transport, as well as accounting for realistic EOS informat
~often through a table look-up procedure! @17–21#. The only
way to verify the fidelity of such complicated codes
through the use of limiting test cases that are amenabl
analytical solutions. Presently, however, very few analy
cally tractable problems relevant to hydrodynamic stabi
calculations are available—Rayleigh-Taylor@22# and
Richtmeyer-Meshkov@23# problems being the only othe
known examples. The isolated rippled-shock problem th
provides a valuable addition to the suite of available ‘‘real
checks’’ for testing and debugging numerical simulation
This subject has been discussed previously by Munro@24#,
who used the analytical solution of a rippled-shock probl
to check the accuracy of the codeLASNEX @17#, but found
rather poor agreement. In contrast, it will be shown here t
the FAST2D code @18,21# ~with the thermal conduction and
radiation transport modules disabled! performed well on the
isolated rippled-shock problem; simulation results show
cellent agreement with theoretical predictions for the evo
tion of shock-ripple amplitudes.

This paper is organized as follows. In Sec. II, we form
late the initial-value problem for the isolated perturbed-sho
system, and derive the governing first-order equations
well as the linearized boundary conditions that they m
obey. In Sec. III, these equations are reduced to an inte
expression for the time-dependent shock-ripple amplitu
~Up to this stage, our approach closely follows that of Ro
erts, but with the important distinctions that the prese
analysis accounts for the existence of postshock entro
vortex waves, and non-ideal-gas equations of state.! Section
IV outlines the solution of the integral equation via Lapla
transforms, which involves one of two different inversio
procedures, depending on the sign of the quantityL. Com-
parisons of results from numerical simulations using
FAST2D code in conjunction with theCALEOS database appea
in Sec. V. Finally in Sec. VI, the conclusions of the paper a
given. For convenience, Laplace transforms and other m
ematical relations that were useful in this investigation
listed in the Appendix.

II. FORMULATION OF THE INITIAL-VALUE PROBLEM

The first step in our analysis is to define the ‘‘zerot
order’’ state upon which perturbations are to be imposed.
choose this to be a one-dimensional, planar step shock m
ing in the laboratory frame with a constant speedD. The
shock propagates into a half-space filled by a fluid medi
at rest with densityr0 , pressurep0 , and entropy per unit
masss0 . Behind the unperturbed shock, the density, pr

-
s

3-2
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INITIAL-VALUE-PROBLEM SOLUTION FOR ISOLATED . . . PHYSICAL REVIEW E69, 056313 ~2004!
sure, and specific entropy have the valuesr1 , p1 , ands1 ,
respectively. We imagine that a steadily moving drivi
mechanism~such as a piston or ablation front! supports the
shock from behind, but that its influence on the shock
namics is negligible. That is, we assume that the shock is
enough away from the driving mechanism that the tran
time of a sound wave between the two surfaces is m
longer than the time of interest for this problem.

The unperturbed state (r1 ,p1) is, of course, not arbitrary
but constrained to lie on the principal Hugoniot curve, whi
is the locus of all compressed, or ‘‘downstream,’’ states t
can be realized behind a single shock front given the init
or ‘‘upstream,’’ condition (r0 ,p0). The shape and other im
portant geometric properties of this curve are greatly in
enced by the EOS of the substance through which the sh
propagates@25#. In the case of a perfect gas, the equation
the Hugoniot can be calculated analytically, with the res
expressible in a simple closed form. For nonideal materi
the situation is slightly more involved in that an accura
calculation of the Hugoniot usually requires the use of co
plex EOS models to supply realistic thermodynamic da
Examples of such models includeCALEOS @4#, SESAME @26#,
and QEOS @27#, all of which characterize a variety of sub
stances over a wide range of pressure and density state
combining theoretical, empirical, and phenomenological
scriptions @6#. A few Hugoniots derived from theCALEOS

database are presented in Fig. 2 for materials of interes
ICF research. For comparison, these figures also show
corresponding results for the more widely usedSESAME li-
brary. As Fig. 2 demonstrates, the theoretical predictions
different EOS models for the same material are not alway
agreement, but we shall not attempt to address these dis
ancies here since such a discussion lies beyond the sco
the present investigation. In the analysis that follows,
shall employ theCALEOS model exclusively to characteriz
the properties of shock waves in materials with nonid
equations of state.

A quantity that plays an important role in the study
perturbed shocks is the slope of the Hugoniot curve in
plane of densityr versus pressurep. Note that this slope—
which is written as (dp/dr)H and evaluated at the down
stream state—is distinct from the postshock isentropic
rivative, (]p/]r)s5c2. Here, the subscripts implies
constant entropy andc is the speed of sound in the com
pressed fluid. Although these two derivatives posses
second-order tangency at the initial state, and are appr
mately equal for weak shock waves@29#, they can differ
appreciably even for moderately strong shocks. A useful w
of expressing the~inverse! slope of the Hugoniot is in term
of the dimensionless ‘‘D’yakov parameter’’@5#

h52
j 2

r1
2 S dr

dpD
H

, ~1!

where j 5r0D is the mass flux density across the sho
According to a linearized normal-mode analysis@5,30,31#,
stable shocks obeys the condition

21, h , 112M1 , ~2!
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.whereM15(D2U)/c is a downstream Mach number sati
fying 0,M1,1 andU is the mass velocity of the shocke
fluid in the laboratory reference frame. Planar shocks in m
terials with values ofh that lie outside of this range exper
ence exponential growth of perturbations@25,32#, and are

FIG. 2. Examples of Hugoniot curves for~a! polystyrene,~b!
aluminum, and~c! deuterium-tritium ice. Solid and dashed curv
show results derived from theCALEOS and SESAME EOS libraries,
respectively. The symbols in~b! are experimental data points take
from Ref. @28#. According toCALEOS, the sign ofL in ~c! changes
from negative to positive nearp151.7 Mbar, indicating a transition
to a lesser-damped solution above that value~shaded region!. For
the range of density values in~a! and ~b!, the sign ofL is strictly
negative.
3-3
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JASON W. BATES PHYSICAL REVIEW E69, 056313 ~2004!
thus unstable. In Eq.~2!, the lower limit is known to corre-
spond to the breakup of a shock into two waves traveling
the same direction@33#, and has long been observed expe
mentally in substances undergoing phase transformation
yielding plastically at the elastic limit@34#. Satisfaction of
the condition 112M1,h, on the other hand, has bee
shown by Gardner@35# to correspond to the splitting of
shock into two counterpropagating waves, although this p
nomenon apparently lacks experimental confirmation.
the examples considered in this study, all values ofh lie well
within the stability limits specified by Eq.~2!.

Let us proceed with our perturbative analysis of the i
lated rippled-shock problem. In anticipation of the lineariz
tion procedure to follow, it is convenient at this stage
transform our frame of reference to one in which the unp
turbed compressed fluid behind the shock front is station
In such a reference frame, the unperturbed planar sh
moves with speedD2U, the upstream fluid flows at spee
U, and the normal and transverse components of the un
turbed velocity field behind the shock front vanish. This
rangement is advantageous because it reduces the comp
of the first-order algebraic expressions significantly. By a
plying the law of mass conservation, one can easily sh
that

D2U5D/h, ~3!

where h5r1 /r0 and D.U. Additionally, conservation of
momentum requires

p15p01r1D2~h21!/h2. ~4!

Equations~3! and ~4! are two of the three well-known con
servation laws for planar shocks known as the Ranki
Hugoniot relations@29#. The missing equation, which ex
presses conservation of energy, does not play a direct ro
the present analysis.

Next, we wish to derive an expression for the position
the propagating shock front. To do so, we letx be the coor-
dinate normal to the undisturbed planar front andy the coor-
dinate along it, as shown in Fig. 3. Assuming that the sh
moves in the negativex direction, its unperturbed position a
a function of time is given byx1(D2U)t50. We now in-
troduce first-order perturbations into the shape of the fro
and in the hydrodynamic quantities behind it. In gene
such a disturbance will give rise to two types of waves in
downstream flow: entropy-vortex and sound waves@25#.
Since these waves carry energy away from the front wh
distortion is the ultimate source of the perturbation, we m
expect that it will eventually regain its planarity, even in t
absence of transport coefficients such as viscosity and t
mal conduction@36#. For a single-mode perturbation wit
wave numberk and amplitudedx(t), the position of the
perturbed shock is

xs~y,t !52~D2U !t1dx~ t !eiky, ~5!

where i 5A21, and the real part of the right-hand side
this equation is implied. Note that to account for an arbitra
multimode perturbation to the shock front,dx in Eq. ~5!
05631
n
-
or

e-
r

-
-

r-
y.
ck

er-
-
xity
-
w

-

in

f

k

t,
l,
e

e
y

er-

y

should be replaced with the indexed coefficientdxk , and a
summation over allk values in the spectrum performed.~A
similar Fourier decomposition would apply to the hydrod
namic quantities to be introduced shortly.! Owing to the lin-
ear independence of the functions exp(iky), though, the result
of this procedure is merely a single set of relations that m
be satisfied for every value ofk, and is identical to that
obtained using the single-mode formulation above. For t
reason, we shall avoid the additional notational complex
associated with a formal superposition of Fourier modes,
limit our analysis to a singlek value only. The final expres
sions that we derive can then be easily generalized to t
multi-mode perturbation as the need arises. We should
point out that the amplitudedx(t) in Eq. ~5! is considered to
be a ‘‘small’’ quantity—a statement that will be made mo
precise momentarily. Furthermore, note that at this stage
functional dependence ofdx(t) is unconstrained; we hav
not assumed, for instance, that it has the ‘‘normal-mod
form exp(2ivt), where the frequencyv would be related to
k through a dispersion relation.

Since the zeroth-order flow is stationary in the shock
gas reference frame, we can write the postshock normal
transverse components of the flow velocity as

ux~x,y,t !5dux~x,t ! eiky, ~6!

uy~x,y,t !5duy~x,t ! eiky, ~7!

respectively. Similarly, the pressure, density, and specific
tropy behind the shock are

p~x,y,t !5p11dp~x,t ! eiky, ~8!

r~x,y,t !5r11dr~x,t ! eiky, ~9!

s~x,y!5s11ds~x! eiky. ~10!

FIG. 3. Geometry of an isolated, rippled shock front in t
frame of reference in which the downstream fluid is at rest. T
unperturbed planar shock moves in the negativex direction with
velocity 2(D2U) x̂, while the upstream fluid flows at velocity
U x̂. Unit vectors normal and tangential to the rippled front a

denoted byN̂ and T̂, respectively.
3-4
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INITIAL-VALUE-PROBLEM SOLUTION FOR ISOLATED . . . PHYSICAL REVIEW E69, 056313 ~2004!
In Eqs.~8!–~10!, a quantity prefixed by ad denotes the am
plitude of a hydrodynamic perturbation whose magnitude
assumed to be much smaller than its zeroth-order counte
~e.g.,dp!p1). Note that in the shocked-gas reference fram
the entropy perturbationds is independent of time. This is
consequence of the fact that entropy-vortex waves behin
shock propagate with the zeroth-order, downstream fluid
locity, which has zero magnitude here.

Let us determine the first-order equations describing
drodynamic motion behind the perturbed shock front. T
governing expressions are the Euler equations for isentr
flow:

]r

]t
1“•~r u!50, ~11!

r
] u

]t
1r~u•“ !u52“p, ~12!

]s

]t
1u•“s50. ~13!

Here, the fluid velocityu is given byux x̂1uy ŷ, wherex̂ and
ŷ are unit vectors in thex and y directions, respectively
Substituting Eqs.~6!–~9! into Eq. ~11!, neglecting terms in-
volving products of perturbation quantities, and cancel
common exponential factors, we arrive at the linearized c
tinuity equation

]

]t
dr1r1S ]

]x
dux1 ik duyD50. ~14!

Similarly, thex andy components of the momentum equati
reduce to

]

]t
dux1

]

]x

dp

r1
50, ~15!

]

]t
duy1 ik

dp

r1
50. ~16!

In deriving Eq.~14!, we have used the linearized form of E
~13!, i.e., d(ds)/dt50, and the thermodynamic relationdr
5dp/c21(]r/]s)p ds. The partial derivative with respect t
time of this latter equation allows us to write

]

]t
dp2c2

]

]t
dr50. ~17!

Equations~14!–~17! constitute the linearized system of pe
turbed fluid equations governing the dynamics of a rippl
two-dimensional shock wave. Before they can be solv
though, these equations must be supplemented by boun
conditions, which we now discuss.

The boundary conditions for this problem are derived
applying the principles of mass and momentum conserva
across the shock front. To apply these principles, we fi
need to find expressions for the normal and tangential
vectors on the surface of the rippled shock~see Fig. 3!. In the
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approximation that is linear in the perturbation amplitud
these unit vectors are given by

N̂5 x̂2 ik dx eiky ŷ, ~18!

T̂5 ik dx eikyx̂1 ŷ. ~19!

Note that in writing Eqs.~18! and ~19!, we have implicitly
assumed thatk dx!1—a statement that gives precise mea
ing to the term ‘‘small’’ perturbation in the present contex
With us5 x̂ ]xs /]t denoting the perturbed shock velocit
conservation of mass requires thatr(us2u)•N̂ be equal on
both sides of the front. This leads to the first-order equat

dux5
h21

h

d

dt
dx2

D

h

dr

r1
. ~20!

The zeroth-order contribution to the mass conservation eq
tion is given by Eq.~3!.

We now consider the implications of momentum cons
vation across the rippled shock. This principle states that
vector r(us2u)(us2u)•N̂1p N̂ is the same on both side
of the front, which to zeroth order yields Eq.~4!. Using the
relation

dp5S dp

dr D
H

dr52
D2

h2h
dr, ~21!

one can show after performing some algebra that thex com-
ponent of the first-order momentum-conservation equa
can be written as

dux5
h

2D
~h21!

dp

r1
. ~22!

It should be noted that the relation between the first-or
pressure and density amplitudes in Eq.~21! holds immedi-
ately behind the shock front only, and is merely a con
quence of expanding the Hugoniot equation in a first-or
Taylor series. Equation~22! can be combined with Eq.~20!
to yield

dux5
h21

h S 12h

11hD d

dt
dx, ~23!

dp52
2 D r1

11h S h21

h2 D d

dt
dx. ~24!

To complete our set of boundary conditions, we also need
expression for the transverse amplitudeduy . This is ob-
tained by enforcing continuity of the transverse compon
of velocity across the shock front. The result is

duy5 ikD
h21

h
dx. ~25!

The presence of the factori in Eq. ~25! implies that the
transverse velocity perturbation is 90° out of phase with
ripple on the surface of the shock.
3-5
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JASON W. BATES PHYSICAL REVIEW E69, 056313 ~2004!
In order to simplify the statement of our problem, it
useful at this stage to introduce the normalized space
time variablesj5kx andt5D k t/h, along with the follow-
ing definitions:

g~t![kS h21

h D dx, ~26!

f~j,t![
h2

D2

dp

r1
, ~27!

cx~j,t![
h

D
dux , ~28!

cy~j,t![
h

D
duy . ~29!

Employing Eqs.~26!–~29!, the linearized mass and mome
tum equations@Eqs.~14!–~16!# can be cast in dimensionles
form as

icy1
]cx

]j
1M1

2 ]f

]t
50, ~30!

]cx

]t
1

]f

]j
50, ~31!

]cy

]t
1 i f 50, ~32!

where we have used Eq.~17! to eliminatedr from Eq. ~14!.
These equations are subject to the boundary conditions

cx~2t,t!5
12h

11h
g8~t!, ~33!

cy~2t,t!5 i h g~t!, ~34!

f~2t,t!52
2

11h
g8~t!, ~35!

at the shock front, whose position in normalized variable
given byj52t. Note that in Eqs.~33! and~35!, the prime on
g(t) denotes differentiation with respect to the variablet.

The system of first-order, partial-differential equation a
pearing in Eqs.~30!–~32! can be reduced to a single secon
order equation for the dimensionless pressure amplitudf
by taking thet derivative of Eq.~30!, subtracting from it the
j derivative of Eq.~31!, and employing Eq.~32!. Following
this procedure, we find

2
]2f

]j2
1M1

2 ]2f

]t 2
1f 5 0, ~36!

which is a homogeneous, two-dimensional wave equa
that has been Fourier transformed in one spatial variable
passing, we note that Eq.~36! is equivalent to the Klein-
Gordon equation for describing the dynamics of a ‘‘scala
05631
nd

is
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-

n
In
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meson in quantum mechanics@37#. An equation with the
same form as Eq.~36! also governs the behavior of a flexib
string with additional stiffness forces provided by its su
rounding medium~e.g., a string embedded in a sheet or ru
ber! @38#. This equation is subject to Cauchy-type~Dirichlet
and Neumann! conditions at the initial instant, and at th
surface of the shock. Since Eq.~36! is hyperbolic, this a
well-posed problem possessing a unique, stable solu
@39#. The initial conditions thatf must obey are

f~j,0![f0~j!, ~37!

]f

]t
~j,0!52M1

22 F icy~j,0!1
]cx

]j
~j,0!G , ~38!

where the latter expression results from Eq.~30!. At the
shock front,f must satisfy Eq.~35! at all times, as well as a
Neumann-type boundary condition, which can be derived
subtracting Eq.~30! from Eq. ~31!, and using the totalt
derivative of Eq.~33!, where

d

dt
5

]

]t
2

]

]j
when j52t.

The result is

12h

11h
g9~t!1hg~t!52S ]f

]j
2M1

2 ]f

]t D
j52t

. ~39!

The remainder of this paper is devoted to finding an expl
solution to Eq.~36!, subject to the conditions specified i
Eqs. ~33!–~35! and Eqs.~37!–~39!. We should point out,
though, that the result of our analysis does not yield
normalized pressure amplitudef directly; instead we choose
to solve for the time-dependent ripple amplitudeg(t), since
that quantity is more easily compared with results from n
merical simulations. Onceg(t) is determined, the functionf
can in principle be found by recourse to the governing s
tem of equations~although that step is not performed in th
present study!.

It is somewhat instructive to compare Eq.~39! with the
equation governing damped harmonic motion@40#:

m r9~ t !1k r ~ t !52n r 8~ t !. ~40!

Here, the quantitiesm, k, andn are constants, and the func
tion r (t) represents some time-dependent amplitude~e.g., the
position of a mass connected to a spring on a frictional s
face!. From this comparison, we see that Eq.~39! may be
viewed as a harmonic oscillator equation with a complica
damping term—i.e., one that is not simply proportional
the velocity of motion. As we shall see, the evolution of t
ripple amplitudeg(t) in Eq. ~39! does superficially resembl
the attenuated ‘‘ringing’’ of a damped harmonic oscillato
but with the important distinctions that the frequency of o
cillation is not constant, and that the damping factor is n
simply an exponential function of time.
3-6
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III. AN INTEGRAL EXPRESSION FOR THE RIPPLE
AMPLITUDE

In this section, we outline our strategy for solving E
~36!, which is a linear, hyperbolic, partial-differential equ
tion. Following Roberts@3#, we begin our analysis by notin
that this equation possesses the characteristics

j2ja56~ta2t!/M1 . ~41!

Here,ja andta are constants, and refer to an arbitrary po
in the plane define by the variablesj andt. If we choose this
point to correspond to the position of the shock at the timeta
so thatja52ta , we see that only one of the characterist
comes from the shocked material—namely, the one prece
by a ‘‘1’’ sign in Eq. ~41!. Thus, we conclude that condition
at the front are influenced only by what occurs in the reg
G defined by

t >0,

j1t >0,

j1ta<~ta2t!/M1 .

This region is bounded by the contourC, which comprises
three line segments, as shown in Fig. 4. The first exte
along thej axis from 0 tota(M1

2121), the second along th
characteristicj1ta5(ta2t)/M1 , and the third along the
shock-wave pathj1t 50. For convenience, we shall refer
these three line segments asCI , CII , andCIII , respectively.
Note that in the dimensionless units of this problem,
speed of sound is given by 1/M1 .

We now seek a solution to Eq.~36! within the regionG.
Since Cauchy boundary conditions are to be imposed on
two of the three bounding line segments—i.e., alongCI and
CIII , but not along the characteristicCII — this region is

FIG. 4. Space-time diagram of shock and sound wave that
fine the solution regionG at the timeta . This region is bounded by
the contourC, which comprises three line segments:CI , CII , and
CIII . The first extends along thej axis from 0 tota(M1

2121), the
second lies on the characteristicj1ta5(ta2t)/M1 , and the third
coincides with the path of the shock wave given byj1t 50.
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classified as an ‘‘open surface,’’ and so we may expect to fi
a unique and stable solution there@39#. We proceed by em-
ploying a method due to Riemann for solving hyperbo
partial-differential equations~analogous to the theory o
Green functions for elliptic operators! @38#. This method re-
lies on choosing an appropriate ‘‘Riemann function
f (j,t uj8,t8), which in our case should be a particular sol
tion of Eq. ~36!. The functionf must also obey the reciproc
ity relation f (j,t uj8,t8)5 f (j8,t8uj,t). Here, the primed
coordinates refer to an arbitrary point in the space-time d
gram of Fig. 4. Such a function can be easily found by
suming that it depends only on the quantity

R5A~t82t!2/M1
22~j82j!2.

Substitution off (R) into Eq.~36! leads to a Bessel equation
with the solution

f ~R!5J0„A~t82t!2/M1
22~j82j!2

….

The symbolJ0 in this expression denotes a Bessel functi
of order zero. Note that the Neumann function, which is
second solution of Bessel’s equation, is disqualified for u
in the present context since it is singular atR50. For the
primed coordinates inf (R), we choosej852ta and t8
5ta .

Let us demonstrate how the Riemann functionf (R) can
be used to reduce Eq.~36! to an integral equation for the
ripple amplitudeg(t). The first step is to define the operat

G52
]2

]j2
1M1

2 ]2

]t 2

and introduce the vector

V5S f
] f

]j
2 f

]f

]j D ĵ 1M1
2S f

]f

]t
2f

] f

]t D t̂,

where ĵ and t̂ are unit vectors in thej and t directions,
respectively. An important property ofV is that it is solenoi-
dal: “•V5 fGf2f Gf 50. Next, we compute the line inte
gral of this vector around the contourC by employing the
two-dimensional form of Gauss’ theorem:

E
G
“•V d2x5 R

C
V•n̂ d,, ~42!

where n̂ is an outward-pointing unit vector andd, is an
infinitesimal line segment. Then, using Eq.~42!, and the ex-
pressions forn̂d, alongCI , CII , CIII listed in Table I, we
find

e-
3-7
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052M1
2E

0

(12M1) ta /M1S f
]f

]t
2f

] f

]t D
CI

dj

1E
0

taFM1S f
]f

]t
2f

] f

]t D2S f
]f

]j
2f

] f

]j D G
CII

dt

2E
0

taFM1
2S f

]f

]t
2f

] f

]t D2S f
]f

]j
2f

] f

]j D G
CIII

dt.

Values for f, ] f /]t, and ] f /]j are also given in Table I
Substituting these expressions into the equation above, m
ing use of Eq.~35! and Eqs.~37!–~39!, and noting that

d

dt
5

]

]t
2

1

M1

]

]j
when j1ta5~ta2t!/M1

leads to

2M1

11h
g8~ta!1E

0

taF12h

11h
g9~t!1h g~t!GJ0„a~ta2t!… dt

5x~ta!, ~43!

where

a[A12M1
2

M1
2

~44!

and

x~ta!52M1 f0S 12M1

M1
taD

1E
0

(12M1) ta /M1
dj H F icy~j,0!1

]cx

]j
~j,0!G

3 J0„A~ta /M1!22~j1ta!2
…

1
J1„A~ta /M1!22~j1ta!2

…

A~ta /M1!22~j1ta!2
ta f0~j!J . ~45!

TABLE I. Quantities along the line segmentsCI , CII , andCIII ,
which comprise the contourC in Eq. ~42!. The parametera is
defined in Eq.~44!.

CI CII CIII

n̂ d, 2 t̂ dj ĵ dt1 t̂ dt /M1 2( ĵ1 t̂)dt

f J0„Ata
2 /M1

22~j1ta!2
… 1 J0„a~ta2t!…

] f

]t

ta J1„Ata
2 /M1

22~j1ta!2
…

M1
2 Ata

2 /M1
22~j1ta!2

~ta2t!

2M1
2

J1„a~ta2t!…

aM1
2

] f

]j

~j1ta! M1
2

ta

] f

]t
M1

] f

]t
M1

2
] f

]t
05631
k-

In certain limiting cases, the complexity of this last equati
can be reduced considerably. For example, if we conside
initial perturbation consisting of a sinusoidal deformation
a planar shock front~with unperturbed hydrodynamic quan
tities behind it! we have

x~ta!5
h21

h11
g8~0!J0~ata!, ~46!

which is valid for ta.0. This equation results from settin
the quantities f0(j), cx(j,0), and cy(j,0)—but not
]cx(j,0)/]j—equal to zero forj . 0 in Eq. ~45!. Note that
for this initial condition, the functionx is discontinuous at
ta50, where it assumes the value 2M1g8(0)/(11h).

In order to cast Eq.~43! in a more useful form, we ma
nipulate it according to the following procedure. First, w
change the variable of integration fromt to u. Next, we
substitute the variablet for ta . Finally, we perform an inte-
gration by parts, and then integrate the entire resulting
pression with respect tot. The result of all these operation
is a Volterra equation of the second kind@41# for the ripple
amplitude:

g~t!5F~t!1E
0

t

g~u! K~t2u! du, ~47!

where the kernelK(q) is given by

K~q!5
a~12h!

112M12h FJ1~aq!2
h ~11h!

a2~12h!
E

0

a q

J0~w! dwG
~48!

and the functionF(t) is

F~t!5g~0!1
11h

112M12h

3H E
0

t Fx~w!2
h21

h11
g8~0! J0~a w!G dw

1
h21

h11
g~0!@12J0~a t!#J . ~49!

For the case of a planar shock front initially deformed into
sinusoidal shape, we have

F~t!5
g~0!

112M12h
@2M11~12h!J0~a t!#. ~50!

Note thatF(0)5g(0). In the following section, we show
how the integral equation in Eq.~47! may be solved in this
special case using the method of Laplace transforms.

IV. THE SOLUTION

The difficulty associated with an integral expression li
the Volterra equation in Eq.~47! is, of course, the appearanc
both inside and outside of an integral sign of the unkno
function that we seek@in our case the ripple amplitud
g(t)]. This fact greatly complicates a straightforward a
tempt at finding a solution. In such situations, one must of
resort to indirect mathematical approaches such as inte
3-8
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INITIAL-VALUE-PROBLEM SOLUTION FOR ISOLATED . . . PHYSICAL REVIEW E69, 056313 ~2004!
transform methods that map the sought-after function fr
one space~in our caset ! to another in which a solution is
readily determined. Often, the challenge then lies in the
version of the mapping procedure to express the final ans
in terms of the original variable.

One such approach—the method of Laplace transfo
@41#—is particularly well suited to the present class of pro
lems. A fundamental axiom of this method is the convoluti
theorem@see Eq.~A9! in the Appendix#, which permits us to
convert Eq.~47! from an integral equation forg(t) into an
algebraic one for gL(s) — our shorthand notation for th
Laplace transform ofg(t). Throughout our discussion, w
shall use the subscriptL to denote the Laplace transform of
function, wheres is the associated transform variable~not to
be confused with the specific entropy introduced in Sec.!;
see the Appendix. Applying the convolution theorem to E
~47! and solving the resulting expression forgL(s), we find

gL~s!5FL~s!/@12KL~s!#.

Limiting our attention to the special initial condition of
planar shock front deformed by a sinusoidal ripple, expl
expressions forFL andKL can be easily derived using Eq
~A2!–~A5! in the Appendix. The result is that the transfor
of the ripple amplitude can be written as

gL~s!

g~0!
5

As21a21bs

sAs21a21b s21G
, ~51!

where we have introduced the definitions

b [
12h

2M1
, ~52!

G[
~11h!h

2M1
. ~53!

Our principal task in this section is to invert Eq.~51!, and
thus determine the time-dependent ripple amplitudeg(t)
5L 21$gL(s)%, where the symbolL 21 denotes the inverse
Laplace-transform operator. Since this equation involves
quotient of irrational functions, though, such an inversion
not a trivial exercise, and requires special consideration.

The first step to finding the inverse Laplace transform
gL(s)/g(0) is to rationalize the denominator in Eq.~51!,
which yields

gL~s!

g~0!
5

~b221!s31~bG2a2!s1GAs21a2

~b221!s41~2bG2a2!s21G2
. ~54!

To proceed, we must now adopt a particular solution me
odology. One obvious approach is to seek a solution of
~54! by analyzing its poles and then computing the appro
ate Bromwich integral using well-established methods fr
analytic function theory@39#. This procedure is somewha
involved, however, owing to the square root term in Eq.~54!,
which necessitates consideration of a branch cut in the c
plex plane. A slightly more-attractive possibility for invertin
Eq. ~54! is to factor it into a series of paired multiplicativ
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expressions~partial fractions!, each of which can be recog
nized as a Laplace transform of a known function; the pr
ucts of terms in this series can then be inverted through
of the convolution theorem. In this paper, we choose to p
sue the latter strategy. In so doing, we must make sure
the result has no imaginary component, sinceg(t) is strictly
a real quantity. This consideration leads to two ways of f
toring Eq. ~54!, which in turn yields two families of solu-
tions.

For reasons that will become clear shortly, the factor
method appropriate for a given ripple-shock system is de
mined by the sign of the quantity

L[a424bGa214G2. ~55!

Plotted as a function ofa2, this expression forms a parabol
as shown in Fig. 5. The roots ofL50 are easily shown to be

a6
2 52G~b6Ab221!.

Note that the inequalityL,0 is consistent with the value o
a2 lying betweena2

2 and a1
2 . The conditionL.0, on the

other hand, implies thata2,a2
2 or a1

2 ,a2, but apparently
only the former inequality is physical. In the derivation th
follows, we shall assume thata2 never exceedsa2

2 when
L.0. Additionally, we require thatb .1 andG.0 always—
conditions that appear to be satisfied for most well-beha
equations of state. Let us now discuss the derivation of
solution for each sign ofL separately.

A. The caseL Ì 0

If the sign of L is positive, the denominator in Eq.~54!
can be written as (b221) times the product@s21(a1b)2#
3@s21(a2b)2#, where

~a6b!25
1

2~b221!
@2bG2a26Aa424bGa214G2 #,

~56!

anda andb are real constants given by

FIG. 5. Plot ofL as a function ofa2. The roots ofL50 are
denoted bya2

2 and a1
2 , as indicated in the figure. IfL,0, the

value ofa2 lies between these two limits. For physical equations
state withL.0, the value ofa2 is apparently restricted to be les
thana2

2 .
3-9
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a5A2bG2a2

4~b221!
1

G

2~b221!1/2
,

b5A2bG2a2

4~b221!
2

G

2~b221!1/2
.

SinceL.0, the right-hand side of Eq.~56! is a real quantity
whose sign is positive by virtue of the inequalitya2,a2

2 .
Equation~54! can then be factored as

gL~s!

g~0!
5

1

s21~a1b!2 F c1

s1As21a2
1c2 sG

1
1

s21~a2b!2 F c3

s1As21a2
1c4 sG , ~57!

where the~real! constantsc1 , c2 , c3 , andc4 are given by

c15
2a2G

Aa424bGa214G2
52c3 ,

c25
1

2
2

G2a2/2

Aa424bGa214G2
512c4 .

Consulting Eqs.~A6!–~A8! in the Appendix, we see that Eq
~57! is in the form of products of transforms involving trigo
nometric and Bessel functions. Using the convolution th
rem @Eq. ~A9!#, this expression can be inverted to give

g~t!

g~0!
5

c1

a1bE0

t

sin@~a1b!~t2z!#
J1~az!

az
dz

1c2 cos~a1b!t 1
c3

a2bE0

t

sin@~a2b!~t2z!#

3
J1~az!

az
dz1c4 cos~a2b!t,

where the symbolJ1 denotes a Bessel function of order on
In the case thata6b.a ~which holds for all ideal gases!
one can show using Eq.~A10! that all purely oscillatory
terms in the above expression cancel. Ifa1b and/ora2b
are/is less thana, some oscillatory terms persist andstation-
ary perturbations—which neither grow nor attenuate
time—result. We shall not discuss this unusual phenome
further here, but simply remark that it is likely associat
with the D’yakov-Kontorovich instability of shock wave
@5,42–45#.

Assuminga6b.a, the solution forL.0 can be written
after some manipulation as
05631
-

.

n

g~t!

g~0!
5

2a2Ab221

Aa424bGa214G2

3E
0

`

~bsinazcosbz2a cosazsinbz!

3
J1„a~t1z!…

a~t1z!
dz, ~58!

where the relation*0
t
•••dz5*0

`
•••dz2*t

`
•••dz has been

used. Employing Eq.~A10! in the Appendix, one can show
that the right-hand side of Eq.~58! has the correct normal
ization ~i.e., assumes the value unity! for t 50. Furthermore,
from the asymptotic form of the first-order Bessel functio
J1(q);A 2 /(pq) cos@q23/(4p)# for q→`, we see that
the amplitudeg(t) undergoes oscillations that die out a
t23/2 late in time. This asymptotic dependence, which h
been observed previously in both shock-tube@16,46# and
laser-driven ICF@12# experiments, is apparently a gener
property of perturbed shock fronts that extends beyond
isolated variety considered in this paper@13#.

B. The caseLË 0

If the discriminantL is negative, Eq.~54! must be fac-
tored differently to yield a real expression forg(t)/g(0). In
this case, we find that Eq.~57! should be written as

gL~s!

g~0!
5

1

~s1s!21a2 F d11d2 s

s1As21a2
1d3 s1d4G

1
1

~s2s!21a2 F d51d6 s

s1As21a2
1d7 s1d8G ,

~59!

where the quantitys52 ib is real and positive. The con
stantsd1 , d2 , d3 , andd4 in Eq. ~59! are given by

d15
a2

2 Ab221
5d5 ,

d25
a2

2Aa222bG12G~b221!1/2
52d6 ,

d35
1

2
5d7 ,

d45
G1@a22~11b!G#~b221!21/2

2Aa222bG12G~b221!1/2
52d8 .

Once again, Eq.~59! has the form of products of transforme
functions that can be easily recognized. Using the convo
tion theorem and Eqs.~A6!–~A8! in the Appendix, we find
that the solution forL,0 is
3-10
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INITIAL-VALUE-PROBLEM SOLUTION FOR ISOLATED . . . PHYSICAL REVIEW E69, 056313 ~2004!
g~t!

g~0!
5

1

2
e2stcosat 2F G

b221
2

a2

2~b221!
G e2st sinat

4as

1
a2

4sAb221
H E

0

t

e2s(t2z)Fcosa~t2z!

1
s

a
sina~t2z!G J1~az!

az
dz

1E
0

`

e2szFcosaz1
s

a
sinazG J1„a~t1z!…

a~t1z!
dzJ .

~60!

In arriving at this expression, we have made use of E
~A11! and ~A12! to cancel all nonevanescent terms. T
presence of decaying exponential functions in Eq.~60! tends
to enhance the initial damping of shock-ripple oscillation
and thereby serves to distinguish this family of solutio
from that in Eq.~58!. Note, though, that for both families th
asymptotic dependence ast→` is the same, namely,t23/2

times an oscillatory function oft.
The same asymptotic behavior holds if the discriminanL

vanishes—an event that can occur at isolated points a
the Hugoniot curve for realistic equations of state. In t
case, the roots (a6b)2 in Eq. ~56! are identical and the
factoring of gL(s)/g(0) is somewhat different than in Eq
~57! or ~59!. We shall not provide the details of the calcul
tion for L50, but simply quote the final result, which is

g~t!

g~0!
5Aa22a2

3E
0

`

~sinaz2azcosaz!
J1„a~t1z!…

a~t1z!
dz,

~61!

wherea5a2 . It should be emphasized here that the ripp
amplitudeg(t) undergoes acontinuoustransition from one
family of solutions to the other asL changes sign. That is, in
the limit that L→0, both Eqs.~58! and ~60! smoothly ap-
proach the solution appearing in Eq.~61!.

We should also remark that although Eqs.~58! and ~60!
were obtained by analyzing asingle Fourier mode of the
shock-front perturbation, the same solutions apply to all n
malized amplitudes in a linearized multimode descriptio
Since g(t) and g(0) are both proportional tok, the wave
number enters the normalized solutiong(t)/g(0) only
through the independent variablet5Dkt/h. As a result, we
see that shorter-wavelength perturbations die out earlier
longer ones. This property has been verified through num
cal simulations of the type described in the following se
tion, although we shall not present evidence of it in our d
cussion. Instead, we limit our attention to the considerat
of single-mode perturbations only. This is done in an effor
underscore the differences in the attenuation properties o
two families of solutions, as well as facilitate comparis
with our numerical results.
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V. COMPARISONS WITH NUMERICAL RESULTS

In this section, we wish to test the validity of Eqs.~58!
and~60! by comparing their predictions against results fro
two-dimensional computer simulations. Several examp
are considered for this purpose that illustrate behavior fr
both families of solutions. The simulations were perform
on a fixed, two-dimensional numerical grid using a Cartes
version of NRL’s ICF codeFAST2D @21#, with the thermal
conduction and radiation transport modules turned off. U
in this way, theFAST2D code solves the conservation equ
tions of hydrodynamics in Eulerian form via a flux-correct
transport algorithm~FCT! @47#. All nonideal EOS data re-
quired for this study were derived from theCALEOS material
database.

A typical initial condition for our simulations appears i
Fig. 6, which shows a sinusoidal perturbation superimpo
on a two-dimensional shock front moving into a quiesce
homogeneous fluid medium on the right. The size of
computational grid was approximately 7003100 cells, but in
Fig. 6, only the first 100 cells in thex direction are shown.
Also note that this figure shows only a perturbed dens
profile, but the pressure andx component of velocity sur-
faces ~not shown! were initially deformed with the same
sinusoidal ripple. They component of velocity was left un
perturbed and initially set to zero everywhere.~We should
point out that our choice of initial conditions here implie
that the Rankine-Hugoniot relations@29# were not strictly
satisfied in the simulations att 50; this unphysical situation
was quickly remedied by the FCT hydroalgorithm after a fe
time steps, however, with no noticeable corruption of t
numerical results.! The simulations were allowed to evolv
from this initial state for a duration equal to at least one-a
a-half ripple-oscillation periods. The output from the simu
tions were then postprocessed to measure the evolutio
the ripple amplitude as a function of time.

A schematic of the method used to determine the temp

FIG. 6. An example of a perturbed density surface at the star
a FAST2D simulation. The ratio of ripple amplitude to wavelength
this study is 5%. Periodic boundaries are assumed in the transv
direction, and inflow and outflow conditions are imposed at the
and right ends, respectively, of the computational domain.
3-11
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FIG. 7. Schematic of the method used for determining
shock-ripple amplitude in theFAST2D simulations~a! initially and
~b! at a later timet . 0.
05631
evolution of the shock-ripple amplitude appears in Fig.
The first task was to determine the position of the deform
shock front by computing a contour midway between t
unperturbed upstream and downstream density states. S
the representation of a smoothly varying corrugation to
shock front on a two-dimensional Cartesian grid is on
piecewise continuous—i.e., discontinuities exist between
jacent transverse grid cells—the initial contour in Fig. 7~a!
has a ‘‘stair-step’’ appearance, and was Fourier transform
and filtered to extract the fundamental mode. The same
tering procedure was performed at every subsequent stag
the calculation, as shown in Fig. 7~b! for a time t .0. The
fundamental modes appear as solid curves in the figu
along with the positions of the unperturbed fronts~solid ver-
tical lines!. The evolution of the shock-ripple amplitude wa
then found by computing—at a fixed transverse location
the distance between these curves as a function of time. O
normalized by the initial shock-ripple amplitude, this di
tance~indicated by a double-headed arrow in each subfigu!
gives an estimate forg(t)/g(0), which can then be com
pared to theoretical predictions based on either Eq.~58! or
~60!.

Such a comparison is shown in Fig. 8 for four differe
rippled-shock systems. They are~a! a shock withM053
propagating through an ideal gas withg 55/3, whereg is the
ratio of specific heats;~b! a 1 Mbar shock in polystyrene;~c!

e

re
FIG. 8. Comparison of theoretical predictions~solid lines! and FAST2D simulation results~open circles! for the normalized ripple
amplitude of a perturbed shock wave propagating through~a! an ideal gas,~b! polystyrene,~c! aluminum, and~d! deuterium-tritium ice. In
~a!, the ratio of specific heats isg 55/3 and the unperturbed Mach number isM053. In ~b!, ~c!, and~d!, the unperturbed shock strengths a
1, 5, and 0.5 Mbar, respectively. The example in~a! belongs to the family of solutions for whichL.0; those in~b!, ~c!, and~d! correspond
to L, 0.
3-12



ls CH,
t three

INITIAL-VALUE-PROBLEM SOLUTION FOR ISOLATED . . . PHYSICAL REVIEW E69, 056313 ~2004!
TABLE II. Parameters for the isolated rippled-shock examples considered in this paper. The labe
Al, and D-T stand for polystyrene, aluminum, and deuterium-tritium, respectively. The entries in the las
columns were computed using theCALEOS database.

Ideal gas (g55/3,M053) CH ~1 Mbar! Al ~5 Mbar! D-T ~0.5 Mbar!

r0 1.07 g/cm3 2.71 g/cm3 0.25 g/cm3

r1 3 r0 2.350 g/cm3 6.257 g/cm3 0.7903 g/cm3

T0 300 K 300 K 19 K
T1 11T0 5.2903103 K 1.8793104 K 8.9693103 K
p0

a 1.77931022 Mbar 1.81331022 Mbar 8.91731024 Mbar
p1 11p0 1 Mbar 5 Mbar 0.5 Mbar
D A15p0 /r0 1.2983106 cm/s 1.8013106 cm/s 1.7093106 cm/s
c A55p0 /(9 r0) 1.2363106 cm/s 1.5233106 cm/s 1.2073106 cm/s
h 3 2.197 2.309 3.161
h 20.1111 20.1647 20.2071 28.44831022

M0 3 5.868 3.355 11.72
M1 0.5222 0.4782 0.5120 0.4478
a2

2 3.577 2.006 1.983 3.413
a2 2.667 3.375 2.812 3.988
a1

2 7.289 7.343 6.449 12.24
b 1.064 1.218 1.179 1.211
G 2.553 1.919 1.788 3.232
a 2.961 1.433 1.527 2.103
b 1.316 0.8412i 0.7303i 0.5551i
(a2b)2 2.706 1.34622.411i 1.79922.230i 4.11522.335i
(a1b)2 18.29 1.34612.411i 1.79912.230i 4.11512.335i
s 21.316i 0.8412 0.7303 0.5551
L 4.214 25.419 23.015 24.747

aAssumingr0 andT0 are independent, we havep05Rr0T0 /m, whereR58.3173107 erg/deg mole is the
universal gas constant andm is the molecular weight of the gas.
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a 5 Mbar shock in aluminum; and~d! a 0.5 Mbar shock in a
cryogenic mixture of deuterium and tritium.~The Mach
numbers in the latter three cases were chosen so tha
internal energy of the shocked material would exceed
many times the binding energy of the constituent atoms, t
warranting a hydrodynamic analysis, and justifying our u
of the term ‘‘fluid medium’’ to describe material initially in a
condensed state@29#.! In Fig. 8, theoretical predictions ar
indicated by solid lines and simulation results are denoted
open circles. The relevant shock parameters for each sy
are listed in Table II. For the ideal-gas shock, we see that
value ofL is positive, while the other three examples belo
to the family of solutions for whichL is negative. In all
cases, the agreement between theoretical prediction and
merical simulation is quite good, which supports the valid
of Eqs. ~58! and ~60!. Note that for the examples show
in Fig. 8, the initial period of oscillation is the time require
for the shock to travel a distance of about one to two per
bation wavelengths into the fluid ahead of it. This peri
does not remain constant, of course, but changes over
and asymptotically approaches the value 2ph /(akD)—a
result that applies to both families of solutions.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have generalized an earlier analysis
Roberts@3# to derive explicit expressions governing the te
05631
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poral evolution of perturbations to an isolated planar sho
propagating through a material with an arbitrary EOS. It w
shown that under most circumstances, at least two fam
of stable solutions exist. Membership in one family or t
other for a particular shock-wave system is determined
the sign of the dimensionless quantityL @defined in Eq.
~55!#, which is a function of the strength of the shock, a
the EOS properties of the material through which it prop
gates. ForL.0, one family of solutions applies@Eq. ~58!#,
while for L,0, a slightly different family@Eq. ~60!# governs
the evolution of the rippled shock wave. Both families
solutions share the same late-time behavior in that the e
lope of oscillations falls off asymptotically ast23/2, but dif-
fer in the degree of damping that is present initially. In ge
eral, solutions for whichL,0 are more strongly dampe
than those withL.0.

It is interesting to note that the attenuated shock-fr
oscillations discussed in this paper qualitatively resemble
damped vibrations of a plucked string immersed in a visc
liquid @48#. In the latter case, the dynamics are governed
a differential equation similar to Eq.~40!, where the fric-
tional term2n r 8(t) accounts for Newtonian drag forces
the surrounding liquid that oppose the string’s motion. Wo
done against these viscous forces by the string drains kin
energy from the vibrating system and converts it into he
resulting in oscillations that evanesce over time.~We assume
3-13
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JASON W. BATES PHYSICAL REVIEW E69, 056313 ~2004!
here that the ‘‘radiation resistance’’ of the string@49#—which
determines the amount of energy converted into sound
negligible by comparison; since strings are known to be
efficient radiators of acoustic energy@48#, this approximation
appears to be well justified.! As the temperature of the liquid
is raised, the magnitude of the viscous term diminishes@50#,
which lessens the damping experienced by the string.

The analogy of a vibrating string in a viscous liquid pr
vides some insight into the difference between the two fa
lies of rippled-shock solutions in Eqs.~58! and~60!. Bearing
in mind the conventional microscopic theory of liquids@51#,
this analogy suggests that the strongly damped shock-f
oscillations for equations of state withL,0 are likely a re-
flection of appreciable forces of molecular interaction in t
downstream medium, particularly at high densities and re
tively low temperatures@29,52#. At higher temperatures
such ‘‘viscous’’ interactions become less significant, and
behavior resembles that of a perfect gas for whichL.0.
These assertions are supported by the fact that one se
eventual~and continuous! transition from the family of solu-
tions with L,0 to that with L.0 for sufficiently strong
shocks, as shown in Fig. 2~c! for the case of deuterium
tritium ice. Although not indicated in Fig. 2, it was note
during the course of this study that a similar sign change
L occurs for shocks in polystyrene and aluminum at appro
mately 23 and 50 Mbars, respectively, according toCALEOS.
@It should be emphasized here that we are not suggesting
the damping of rippled shocks is due to thephysicalviscos-
ity of the downstream medium, since accounting for t
fluid property lies beyond the Eulerian description adopted
Eq. ~12!. Thus, while a vibrating string in a viscous liquid
a suggestive simplified model of rippled-shock behavior
should not be taken too literally in the present context.# In
the future, it would be desirable to better elucidate the
derlying physical mechanisms and associated EOS chara
istics that are responsible for the bifurcated nature of so
tions to this class of problems.

The objective of the present investigation was to deve
a better understanding of the dynamics of rippled sh
fronts in substances with nonideal equations of state. St
simply, our principal conclusion is that ripple attenuati
properties are EOS dependent, and can differ appreci
from those of a perfect gas, even for moderately stro
shocks. This result could have important consequences
the realistic modeling of shock-compressed ICF-fuel pelle
since they contain materials whose equations of state ar
from ideal ~and often poorly understood!. Because of their
potential for ‘‘seeding’’ hydrodynamic instabilities, a tho
ough knowledge of how shock ripples evolve during t
compression stage of an ICF implosion is crucial for desi
ing successful high-gain targets. The findings of this stu
represent a significant first step towards this goal. In sub
quent investigations, it may be possible to apply the so
tions derived herein to understand better the Richtmy
Meshkov instability@23# for realistic equations of state, or t
extend the calculation to incorporate the influence of s
effects as convergent geometries, and nonuniform driv
mechanisms~e.g., initial target roughness and/or varying l
ser intensity in the case of direct-drive ICF! that can launch
05631
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perturbed shocks@11#. Additionally, a more complete under
standing of the dynamics of isolated rippled shocks may
useful in the study of certain type II supernova phenome
@53#, and forms the basis for developing a new analyti
benchmark to validate the performance of ICF and ‘‘hig
energy-density physics’’ codes@17–20#.
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APPENDIX: LAPLACE TRANSFORMS
AND MATHEMATICAL IDENTITIES

We cite in this appendix particular Laplace-transform
lations and miscellaneous mathematical identities that w
useful in our analysis of the isolated rippled-shock proble
Following convention, we let the symbolL represent the
Laplace transform of a functionF~t!, defined as

L $F~t!%5E
0

`

e2st F~t! dt [ FL~s!, ~A1!

where the subscriptL is a practical shorthand notation ands
is the Laplace-transform variable. The inverse transform
erator is denoted byL 21, such thatL 21$FL(s)%5F(t) . In
terms of these definitions, the following results can be est
lished @54#:

L $1%51/s, ~A2!

L $J0~a t!%51/As21a2, ~A3!

L $J1~a t!%5a21S 12
s

As21a2D , ~A4!

L H E
0

a t

J0~w! dwJ 5
a

sAs21a2
, ~A5!

L 21H 1

s1As21a2J 5
J1~at!

at
, ~A6!

L 21H 1

~s2m!21V2J 5emt
sinVt

V
, ~A7!

L 21H s

~s2m!21V2J 5emtS cosVt1
m

V
sinVt D .

~A8!

Note that the constantsa, V, andm appearing in the equa
tions above are real quantities. An important consequenc
Laplace-transform theory is the convolution theorem@41#,
3-14
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which asserts that any two continuous and sufficiently well-behaved functionsF~t! andC~t! obey the relation

L 21$FL~s!CL~s!%5E
0

t

F~z!C~t2z! dz. ~A9!

Stated differently, the convolution theorem says that the productFL(s)CL(s) is the Laplace transform of the function define
by the right-hand side of Eq.~A9!—a result that plays a central role in the derivation of the solutions presented in Se
Other important mathematical identities for this study were@55#

E
0

` J1~az!

az
sinl~t2z! dz55

Al22a22l

a2
coslt if l>a

Aa22l2

a2
sinlt2

l

a2
coslt if l,a,

~A10!

E
0

` J1~az!

az
e2sz cosaz dz5

$A@s21~a2a!2#@s21~a1a!2#2a21s21a2%1/2

A2a2
2

s

a2
, ~A11!

E
0

` J1~az!

az
e2sz sinaz dz52

$A@s21~a2a!2#@s21~a1a!2#1a22s22a2%1/2

A2a2
1

a

a2
, ~A12!

wherel, s, anda are positive real parameters, and the conditiona .0 is assumed in Eq.~A10!.
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