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Comparison between theoretical predictions and direct numerical simulation results
for a decaying turbulent suspension
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A recently developed theoretical model for a turbulently flowing suspension has been applied to a homoge-
neous, isotropic, and decaying turbulent suspension. The predictions are compared with results from direct
numerical simulations. The agreement is reasonable. Special attention is paid to a physical explanation of the
influence of the particles on the turbulence of the carrier fluid.
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[. INTRODUCTION kinetic energy spectra in an air flow with small particles
through a horizontal channel. Tsuji, Morikawa, and Shiomi
In the past much attention has been paid to the study of pL1] extended this work to a vertical channel flow. Schreck
turbulent fluid flow with particles. From these studies it isand Kleis [12] studied turbulence modulation by particles
known that when the mass loading of the particles is considin grid-generated turbulence in a water channel. Kulick,
erable the two-way coupling effect of the fluid on the par-Fessler, and EatofiL3] carried out experiments with small
ticles and vice versa must be taken into account. This twoeopper particles in an air flow through a channel flow. Sato
way coupling effect has been studied by means of direcand Hishida[14] performed PIV measurements in a water
numerical simulationgDNS9, experiments, and theoretical channel flow with three types of particles. Similar to Schreck
models. Below a listing of some important publicationsand Kleis, Hussainowt al. [15] also investigated a grid-
about this topic is given. A more detailed description aboutgenerated turbulent flow with particles, but they used a wind
their content can be found in the publication of L'vov, Ooms,tunnel. Some of these experiments seem to support the con-
and Pomyalo\{1]. For an even more detailed overview we clusion given above with respect to the influence of the par-
refer to the coming review article by Ooms and Poel@ja  ticles on the turbulence spectrum based on DNS simulations.
We have restricted ourselves to publications about homogddowever, more detailed experimental work is needed.
neous and isotropic, turbulently flowing suspensions, as the Also theoretical models have been developed for a homo-
research presented in this publication also deals with such geneous, isotropic, and turbulently flowing suspension. Baw
suspension. We will pay special attention to the influence oind Peskir{16] derived a set of balance equations to study
the particles on the turbulent kinetic energy spectrum of thehe effect of the particles and the turbulent kinetic energy
carrier fluid. spectrum of the fluid. Al Taweel and Land§li7] calculated
Several authors have applied DNS to particle-laden hothe rate of additional energy dissipation due to the presence
mogeneous, isotropic turbulent flows. For instance, Squiresf the particles, in order to study the two-way coupling ef-
and Eaton[3] used DNS to study a force@o statistically fect. Felderhof and Oon{48] developed a theoretical model
stationary homogeneous, isotropic turbulent suspensionbased on the linearized version of the Navier-Stokes equation
Elghobashi and Truesddlt] examined turbulence modula- and pay particular attention to the influence of the hydrody-
tion by particles in decaying turbulence. Similar DNS studiesnamic interaction between the particles and the influence of
(for a stationary or decaying turbulent suspensisith more  the finite size of the particles. Yuan and Michaelidé$9]
details were carried out by Boivin, Simonin, and Squigls  presented a model for the turbulence modification in particle-
Sundaram and Colling], Druzhinin[7], ten Cate[8], and laden flows based on the interaction between particles and
Ferrante and Elghobaski®]. From these studies it can be turbulence eddies. Also the turbulence generation in the
concluded that in the low wave number part of the turbulentvake behind the particles was taken into account. Boivin,
kinetic energy spectrum the turbulent fluid motion transfersSimonin, and Squire$s] extended the model of Baw and
energy to the particles, i.e., the particles act as a sink oPeskin. Druzhinirf7] studied the two-way coupling effect on
kinetic energy. At high wave numbers of the spectrum thehe decay rate of isotropic turbulence laden with micropar-
particles(when their response time is small enougine ca- ticles whose response time is much smaller than the Kolmog-
pable of adding kinetic energy to the turbulence. This energyprov time scale.
“released” by the particles, is not immediately dissipated by Recently L'vov, Ooms, and PomyaloM] developed a
viscous effect but is in fact responsible for the relative in-one-fluid theoretical model for a homogeneous, isotropic tur-
crease of small-scale energy compared to the particle-freleulently flowing suspension. It is based on a modified
case. Navier-Stokes equation with a wave-number-dependent ef-
Several articles about experimental investigations ofective density of suspension and an additional damping term
particle-laden turbulent suspensions have been publishedepresenting the fluid-particle frictiofdescribed by Stokes’
For instance, Tsuji and Morikawgl0] measured turbulent law). The statistical description of turbulence within the
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model is simplified by a modification of the usual closurethat creates turbulence in case a stationary suspension is
procedure based on the Richardson-Kolmogorov picture oftudied.p.(Kk) is the wave-number-dependent effective den-
turbulence. A differential equation for the budget of turbulentsity of suspension given by

kinetic energy is derived. For the case of a stationary turbu-

lent suspension L'voet al. solved this budget equation ana- _ 1+ ZTE'y(k)

lytically for various important limiting cases and numerically peii(K) = p| L -+ d)[l + 79K ]2/ (@)

for the general case. The model successfully explains ob- P
served features of numerical simulations and experimentah which p; is the density of the carrier fluidy the volume
results of stationary turbulent suspensions. For instance, forfaaction of the particles in the suspensiahthe mass frac-
suspension with particles with a response time much largetion of the particles;, the particle response time, andk)
than the Kolmogorov time the main effect of the particles isthe frequency of a turbulent eddy with wave numkey,(k)

suppression of the turbulence energy of fluid eddies of alls an additional damping term representing the fluid-particle
sizes(at the same energy input as for the particle-free xaseiction (described by Stokes’ law

However, for a suspension with particles with a response
time comparable to or smaller than the Kolmogorov time K = ¢rp[y(k)]2 3
scale, the Kolmogorov length scale will decrease and the Yp (1+ L+ 2m (K] + [7 W
turbulence energy of eddies ¢fiearly) all sizes increases.
For a suspension with particles with a response time in beThe damping termyy(k) is due to the internal friction within
tween the two limiting cases mentioned above the energy ahe carrier fluid and is given by
the larger eddies is suppressed whereas the energy of the )
smaller eddies is enhanced. We think that the model of Y0(K) = ver(KK®, (4)
L'vov, Ooms, and Pomyalov gives a good description of the;i,
physical mechanisms taking place in a turbulent suspension.
Therefore, we have extended their model in this publication. Vert(K) = vpil pesi(K), (5)
In their paper L'vovet al. do not apply their model to ) ] ] ] ) ) )
a decaying turbulent suspension. Recently Ferrante ari@l Which v is the viscosity of the carrier fluidN{u,u};y is
Elghobashi[9] published results concerning very accuratethe nonll_nea_r term. The expl|c!t form that is derived _for itin
direct numerical simulations of a decaying, homogeneoudh€ publication of L'vovet al. is not given here. It is not
and isotropic turbulent suspension. In their work they agairfeéquired for the simple closure procedure that was used in
found the phenomena described above for the influence df€ original publication and which is also used here. For the
the particles on the turbulencén some earlier publications introduction of the energy flux in the used closure procedure
these phenomena were already discussed for a decaying sifsiS enough to use the fact that the modeled nonlinearity
pension, but with less detail and less attention to their physiust be conservativgThe explicit form for the nonlinear
cal explanatior). Therefore we decided to extend the theoret-term is needed, however, for more advanced closure proce-
ical model in such a way that it can be applied to a decayingdures) .
homogeneous, and isotropic turbulent suspension and to From Eq.(1) L'vov et al. derive for(a homogeneous and
compare model predictions with the DNS data of FerrantdSOtropig turbulent suspension the following budget equa-
and Elghobashi. The results are given in this publication. tion for the spectrum of the density of turbulent kinetic en-
Section Il is devoted to a brief summary of the one-fluid €9y Es(t,k) of the suspension:
theoretical model, with attention for the extension which is

necessary for the application to a decaying suspension. In 1Btk +[0(K) + (K TES(t,k) = W(t, k) + R(t,K).
Sec. Ill the relevant DNS resultg@and their explanation 2t
given in the publication by Ferrante and Elghobg&jiare (6)

summarized. In Sec. IV predictions made with our theoreti- _ ) o )
cal model for a decaying turbulent Suspension and a ComThe left-hand side of this equation includes next to the time-

parison with the DNS results of Ferrante and Elghobashi aréependent term two damping termg(k)Eq(t,k) caused by

given. The results are discussed in Sec. V. the effective viscosity ang,(K)E(t,k) caused by the fluid-
particle friction. The right-hand side includes the source of
Il. THEORETICAL MODEL energyW(t,k) due to a possible stirring forogocalized in

Starting from the Navier-Stokes equation for the carrierthe energy containing interval of the spectjuamd the en-
fluid and Stokes’ friction law for the particles Lveat al.[1] ~ ergy redistribution terniR(t, k) due to the interaction between
derive first the following equation of motion for the suspen-turbulence eddies. Using the assumption that the modeled
sion: nonlinearity is conservative the energy redistribution term
can be written as

Jd
peﬁ(k)<5 ol + Vo(k))U(t,k) =~ N{u, Uy + F(LK). et
Rtk =———
(1) dk

In this equationu(t,k) represents the suspension velocity, in which e(t,k) is the energy flux through the turbulence
the time, andk the wave vectorf(t,k) is the stirring force eddies of the suspension.

()
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As mentioned above, a simple closure relation is usedthe calculations the ratio of the particle density and fluid
Applying dimension analysis the following relation is found density is assumed to be larfer instance, a suspension of
for the density of turbulent kinetic energy in terms of the solid particles in gas so that although the mass fraction was
energy flux considerable the volume fraction was negligible. From the

calculated spectrum for the energy flux the energy spectrum
Eq(t,K) = Col €(t,K) per(t, KT, (®) of the(stationary suspension is determined using the closure
C, is a constant of order unity. The inverse lifetiniee- ~ relation.
quency of eddies 'y(t,k) is determined by their viscous As Qiscussed in thlS publication we will inves_tigate the
damping and by the energy loss in the cascade process behavior of a decayinf\(t,k)=0] homogeneous, isotropic
suspension. To that purpose we have to include the time-
Y(t,K) = yo(t,K) + c(t,K). (9 dependent term in the balance equation for the energy flux

The inverse lifetime due to viscous damping has alread _q.(ll). Using the closure relations and dimensionless func-

been introduced by Eqg4) and (5). Applying dimension lons defined above we find now aft_er some lengthy .bUt
analysis the inverse lifetime oflaeddy due to energy loss in straightforward calculations the following balance equation

the cascade process is given by for the (dimensionlessenergy flux:

Ye(t,K) = Co[Ke(t, K)/ peselt, K) M2 (10) Hr.10 9 €(T,K) A K)
T 0K

+9(7,x) =0, (15
C, is again a constant of order unity.

After introducing the integral-scalg) related parameters \here
K:kL,EL:E(llL), 'yL:'y(llL), PL:peﬁ(llL)! and WL

=W(1/L) the following dimensionless functions are defined: ; _ }C 513 113113 }i(a d/ie,) 16
GKZG/ELI Y= 7/ YL pK:p/va and WK:W/WL' USing the (T, K) B 3 1 Pic €x - pr (an/t?PK) ( )
closure relations and the dimensionless functions defined
above, the resulting budget equation for the dimensionlesgnd
energy flux for the case of a stationd@E(t,k)/ot=0] tur- 13
bulent suspension reads g(r,K) = Ci‘TK + &( K€, ) (1+T)), (17)
©\ 1/3 K Re\ p,
de, €, C, [ ke
-t C_TK ool T (1 +TK) = WK’ (11) with
k kK Rel\p;
where P d
—=- C3¢[25(1 +38y,)(2+ 368y,) YK} (18)
Jde Jde
b6V “ “
T.= > (12
(1+ @)1 +25y,) + (5y.) and
and in whichC=C,C; and 6=,y is the dimensionless par- oD P
. . - . Vi
ticle response time. The suspension Reynolds number is de- —=1 —C3¢{25(1 +6y,)(2 + 35yK)—] (19
fined by Re=Luv, /.. L is the integral length scale and J € 9P
the integral velocity scale defined by =(e L/p)Y3. v_is in which

the effective kinematic viscosity of the suspension kor
=Lt and is given byy =wv(p¢/p,) with p, the effective den- 1 (2B

sity of the suspension fok=L"1 given by p, =p{1+a(1 =325, 1B (20)
+28)/(1+6)?]. The fluid Reynolds number is defined by K €x P

Re=Lv /v and is related to the suspension Reynolds numgnd

ber in the following way Re=Rev/ v, .The functionsp, and

v, can be shown to be given by Y _ K 1e MR 1)
- 2 3 43 -
1+ 28y, 1+28 ap.  Cap” 3 pi
pe=|1+d——5 1+ ——5 (13
(1+5y,) (1+9) The constantC; and C, are equal toCs=[1+¢p(1+26)/(1
and +0)?]"t andC,=C,Re, 7 is the dimensionless time defined
as 7=t/ r, with 7,.=L?3/(eL/p)*’3. The new budget equation
K2 Pl (15) for the energy flux has some interesting features:ghe
Y= C,Rep, + Pila . (149 termin the equation represents the energy dissipation due to

the particle-fluid friction and the internal friction because of
L'vov et al. solve Eq.(11) together with Eqs(12)—«14) as a  the fluid viscosity. The first two terms describe the influence
function of the relevant dimensionless parameters: the paoef the cascade process of turbulence. Whengherm is
ticle mass fractiong, the dimensionless particle responseneglected Eq(15) becomes a kind of wave equation in
time &, and the fluid Reynolds number R&lso the particle  space with a time- and wave-number-dependent wave veloc-
volume fractiony is a dimensionless parameter. However, inity f(7,«)™%.

056311-3



G. OOMS AND C. POELMA PHYSICAL REVIEW E59, 056311(2004)

In order to be able to solve E@L5) an initial condition E(tV/E(0)
and a boundary condition are needed. We will study that part 10 . . . .
of the spectrum that runs from=1 (the small-wave-number T S
side of the inertial subrangevia the inertial subrange well osh ]
into the dissipation range. We assume also thatfo0 the
stirring force is still feeding turbulent energy at 1 into the N\
inertial subrange. Atr=0 the stirring force is stopped, the osr N ]
energy flux atk=1 disappears and the decay process starts. "'~\\j§.:\
So the boundary condition is, far=0, the energy fluxe, 04 ‘\.::\.: S ]
=0 at k=1. As initial condition(7=0) we choose for the "'\--\,f:'\:;\
energy flux the following spectrum fot=1: o2f \“"-\-:.'.Iji_'.;-
3 3
6K2<1—&K4/3> /(l—&> . (22 ool L L L + ]
4Reg 4Re i

For values ofx considerably smaller thaf#Rg/C,)%* this
spectrum is approximately equal¢p=1. So thgdimension-
lesg flux is for such x values equal to its value at

=1 (or k=L™).This behavior can be expected for stationary( = 1) for four different types of particles, classified by their
turbulence in the inertial subrange for the case without pari4tig of the particle response tinfe,) and the Kolmogorov

ticles. For larger values the energy flux, decreases due to e seale of turbulencer,). From the values of the volume
viscous dissipation. The spectrum of K@2) is derived by fraction and mass fraction it follows, that the ratio of the

L'vov et al. using certain approximations. We use this spec-__ .. . . : .
- - . ~particle densit and the fluid densit is 10°. The
trum as our initial condition and calculate its development in® Y(pp) %pr)

time due to the decay process. According to the idea of uni[atio !/ 7, has the values 0.1, 0.25, 1.0, and 5.0. As the mass
: yp ) oraing fraction is kept constant, the number of particles per unit of
versality of turbulence the properties of the energy flux

though the energy spectrum become independent of the in}/_olume decreases in the numerical simulation with increas-
tial condition after a relaxation tim&This is due to the lo- Ing particle response time. The total number of particles is

cality in the energy transfer in wave number space, L.e., e considerablg80 million for a typical case The particles are

dies which effectively interact have similar wave numbgers reated as point particles. Their simulations are carried out
y " with and without including the effect of gravity. The numeri-

So \_Ne__do not expect a strong dependence of our results ki study has been performed with high resolution.
the initial condition.

After e, has been calculated for a certain case from Eq. In their publication Ferrante and Elghobashi discuss a

(15) the energy spectrum of the suspension can be deten_umber of interesting physical effects. Here we will concen-
; Energy sp . P frate on one particular effect and compare their results with
mined using the closure relation

our theoretical predictions for this effect. In Fig. 1 we show
E, = €,.2% 375, (23 the result for the time evolution of the decaying turbulent
' _ kinetic energy of the carrier fluid(t), normalized by its
L'vov et al. have shown that the energy flux of the carrieritial value E(0) at t=0, for the case without gravity. The

fluid can be calculated from the suspension spectrum in thg icles are released in the turbulent flow field=at. [Their

following manner: notation for the turbulent kinetic enerdyis in our notation
E( = E. Jp.= €2, 2355, (24) g_iven by E_f. Their notationt represents 'Fime made dimen-
' ' sionless withr,=0.2144 s. In our calculations we have made
(Es« and E  have been made dimensionless by means ofime dimensionless by means L%/ (¢ /p)*”®. So when
their values ak=1.) In this way it becomes possible to study e want to compare their numerical results with our predic-
the decay of the turbulent energy spectrum of the fluid as gons, we have to translate our dimensionless tire their
function of the relevant dimensionless groups, namely the ] n Fig. 1 the result indicated by case A is for the particle-
particle mass fractiop, the dimensionless particle responsefree flow, the results indicated by cases B, C, D, and E are
time 4, and the fluid Reynolds number R& computer pro-  for the carrier fluid in the suspension with particles of in-
gram has been developed to carry out the calculations. creasing response timey,/7,=0.1, 0.25, 1.0, and 5)0re-
spectively. It is clear that the smallest particl@sgth 7,/ 7,
Ill. DNS RESULTS FOR A DECAYING TURBULENT ='0.1)' reduce the_ decay rate of tIﬁémqnsmnles}sturbulent_
SUSPENSION kinetic energy with respect to the particle-free flow, resulting
in E(t)/E(0) being larger than that for the particle-free flow.
Ferrante and Elghobasi®] present a study to analyze This is the particular effect, that we mentioned aba¥er-
their recent direct-numerical-simulatigbNS) results to ex-  rante and Elghobashi call the particles of case B “micropar-
plain in some detail the main physical mechanisms resporticles.”) The particles with a considerably larger inertia
sible for the modification of decaying homogeneous, isotro{cases D and Einitially enhance the decay rate of the tur-
pic turbulence by dispersed solid particles. In their studybulent kinetic energy resulting in values of the kinetic energy
they fix both the volume fractiofy=107%) and mass fraction being smaller than for the particle-free flow at all times. The

FIG. 1. Dimensionless turbulent kinetic energy as a function of
dimensionless time. From Ferrante and Elghobf8hi
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E(x) larger than that of the surrounding fluid. Since the micropar-
10° T ticles’ trajectories are almost aligned with fluid points’ trajec-
tories, and their kinetic energy is larger than that of the sur-
rounding fluid, the particles will transfer part of their own
energy to the fluid. On the other hand, the microparticles
increase the viscous dissipation rate relative to that of the
particle-free flow. The reason is that the microparticles re-
main in their initially surrounding vortices, causing these
vortical structures to retain their initial vorticity and strain
rates longer than for the particle-free flow. The net effect is
positive for the turbulent kinetic energy of the carrier fluid,
as the gain in energy due to the transfer of energy from the
particles is larger than the increase in viscous dissipation.

For large patrticles the explanation is different. Because of
their significant response time large particles do not respond
FIG. 2. Dimensionless kinetic energy of the carrier fluid as func-to the velocity fluctuations of the surrounding fluid as
tion of dimensionless wave number &t5.0. From Ferrante and quickly as microparticles do, but rather escape from their

Elghobashi[9]. initial surrounding fluid(crossing the trajectories of fluid

pointy. Large particles retain their kinetic energy longer than
larger the particleqthe larger their inertia and response the surrounding fluid. However, because of the “crossing tra-
time), the stronger the damping of the turbulence. After ajectories” effect the fluid velocity autocorrelation is larger
certain period the difference between the turbulent kinetidhan the correlation between the particle velocity and the
energy for the suspension with the large particles and th#uid velocity, causing a transfer of energy from the fluid to
turbulent kinetic energy for particle-free flow does not in- the particles. On the other hand, large particles reduce the
crease anymore. Ferrante and Elghobashi give particles fdifetime of eddies, causing a viscous dissipation rate which is
which the response tims, is equal to the Kolmogorov time smaller than for the particle-free flow. The net result of the

7, (case D the name “critical particles.” The still larger par- two opposing effects is a reduction of turbulent kinetic en-
ticles (case B are called “large particles.” There is a special ergy for a suspension with large particles at nearly all wave
case(case @, for which the damping rate is nearly the samenumbers relative to the kinetic energy for the particle-free
as for the particle-free case. For this reason Ferrante artdrbulent flow.

Elghobashi denote the particles of case C as “ghost par- It is emphasized that the explanation given above is a
ticles,” since their effect on the turbulence cannot be detecteldrief summary of the explanation given in the publication of
by their temporal behavior of the turbulent kinetic energy. Ferrante and Elghobashi. For more details their publication

Figure 2(Fig. 3 of Ferrante and Elghobagtshows the should be studied.
energy spectr&(t, «) for the carrier fluid in the suspension
for the five cases¢A, B, C, D, and B at dimensionless time
t=5. Microparticles(case B increaseE(t, ) relative to the IV. THEORETICAL PREDICTIONS

particle-free flow(case A at wave numbers=12, and re- As mentioned in the Introduction the idea of this publica-
duce E(x) relative to case A fork<12, such thatE(t)  tion is to compare predictions made with the theoretical
=JE(t,x)dk in case B is larger than in case A as shown inmodel (extended for the application to a decaying turbulent
Fig. 1. Also for the cases C, D, and E the particles dampesuspensionwith the DNS results of Ferrante and Elghobashi
the turbulence at small wave number compared to thend to explain the results in terms of our model. To that
particle-free flow and enhance the turbulence at high wav@urpose we have repeated with our model the Ferrante-
number. However the crossover wave numitre wave Elghobashi calculations shown in Figs. 1 and 2. The results
number where the influence of the particles changes from are given in Figs. 3—-10. In Fig. 3 we first show the compari-
turbulence-damping effect to a turbulence-enhancing mre  son between the time development of the turbulent kinetic
creases with increasing particle response time. As can benergy of the carrier fluidhormalized by its initial valugfor
seen from Fig. 2 large particlésase B contribute to a faster the particle-free flow as found from the numerical simula-
decay of the turbulent kinetic energy by reducing the energyions and as predicted by the model. In order to compare our
content at almost all wave numbers, exceptdor87, where  predictions with the DNS results we have made time dimen-
a slight increase oE(t, k) occurs. sionless in Fig. 3 withr.=0.2144 s, as used by Ferrante and
We will now repeat briefly the explanation given by Elghobashi. As can be seen the agreement between model
Ferrante and Elghobashi for the mechanisms responsible f@redictions and DNS results is reasonable.
the modification of decaying turbulence as shown in Figs. 1 Of course, much research has been carried out on the
and 2. We start with the microparticles. Because of their fastlecay of a homogeneous, isotropic turbulent flow of a fluid
response to the turbulent velocity fluctuations of the carriewithout particles. For instance, in Hinze's book on turbu-
fluid, the microparticles are not ejected from the vorticallence[20] a review is given about this topic. It is stated that
structures of their initial surrounding fluid. The inertia of the in the initial period of decaywhen the inertial effects are
microparticles causes their velocity autocorrelation to beémportany the turbulent energy decreases with timetds

10+
10°*
10°
107
10*
10°

10"

1o
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FIG. 3. Dimensionless turbulent kinetic energy of the fluid as FIG. 5. Dimensionless turbulent kinetic energy of the carrier

function of dimensionless time for the particle-free case. Compari—fIUId in a suspension as a function of dimensionless time

son between model predictions and DNS results. (0<7<0.7).

and in the final periodwhen viscosity effects domingtéhe flgid E_f(r), normali_zed by its initigl value, for suspensions
energy decreases &2 In more recent work, see, for in- with dn‘f_erent particle response tl_me_also the energy for
stance, Stalp, Skrbek, and Donalg1], it is reported that the partlcle_z-free flow is sh(_)Wn S|m|;ar to Ferrante a_md
initially the energy decays as®, then in case that the en- Elghobash|_the volume fractiofy=10"°) aqd mass fraction
ergy containing length scale saturatbecause it reaches the (#=1) are fixed and the four types of particles correspond to
size of the containing vesgeét decays as ™2, and in the final  the following values of the rati¢r,/7,): 0.1, 0.25, 1.0, and
period again ag™2 In our future work we will make a 5.0. So the results for cases A-E in Figs. 4 and 5 can be
detailed comparison between predictions made with ougompared with those for cases A-E in Fig. 1. In Fig. 4 the
model and the results literature results mentioned above for #me development of the turbulent kinetic energy is given for
particle-free turbulent flow. In this study we were, in particu- (0<7<3.5). To see the initial development in more detail
lar, interested in a comparison with the DNS results ofwe show in Fig. 5 the result in the smaller interval
Ferrante and Elghobashi. Our model predictions for the tur{0<7<0.7). It can be seen from the figures, that with in-
bulent decay rate for the particle-free case agree reasonabiyeasing particle response time the turbulent energy of the
well with their numerical results. carrier fluid decreases. The larger the partidléde larger
Figures 4 and 5 show model predictions for the time evotheir inertia and response timehe stronger the turbulence
lution of the decaying turbulent kinetic energy of the carrierdamping. However, as found in the DNS calculations, after a
certain period the difference between the turbulent energy of

o ' ' —— case A
0oF -~ case B |
—- case G
0.8} 4~ case D |
0.7} -
0.6
- O J
05} .
w
0.4f -
0.3}
0.2f E
10° single—phase 1
0.1 -~ case B
~— case E
o0 0.5 1 15 2 25 3 3.5 107" .
T 1°° 10' 102

K
FIG. 4. Dimensionless turbulent kinetic energy of the carrier

fluid in a suspension as a function of dimensionless time FIG. 6. Dimensionless turbulent kinetic energy of the carrier
(0<7<3.5. fluid as a function of dimensionless wave numbe0.5).
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10
LAl
107}
107}
g g,")-\ZI
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I B B single-phase .
107F] |-~ caseB . 1
107 — caseE :
kN
\
10 X ~
< 10

K
FIG. 7. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numlfer0.5). (En-
largement of Fig. 6.

FIG. 9. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numiper1.5). (En-
largement of Fig. §.

the suspension for the large particles and the energy for the There is a difference between our results and the DNS
particle-free case does not seem to increase anymore. For thesults at small values of (k= 1). As discussed we assume
smallest particle$r,/ 7,=0.1) there is a reduction in the de- that at7=0 the stirring force is stopped, the energy flux at
cay rate during the perioD< r<1). Also the DNS results «=1 disappears and the decay process starts. So=f@rthe
show this behaviorsee Fig. 1, but during a larger period €nergy fluxe,=0 at k=1. Due to the cascade process of
(1< r<5). So qualitatively the theoretical predictions agreeturbulence the area wherg'(r,«) is influenced by the
well with the DNS results, although quantitatively there arePoundary condition ak=1, grows towards largex values
some differences. We will come back to this point later on, With increasing timgsee the development of the spectrum
We have also calculated the energy speEfta, ) for the oM 7~0.5, via7~1.5 to 7=3.0 in Figs. 6-18 In the
carrier fluid in the suspension for the five cagasB, C, D, DfNS c?lculatlo_ns an _mltlal spectrum is. selected with
and B and compared the predictions with the DNS resultss (r,#)=0 for «=0. At 7=0 the stirring force is stopped and
given in Fig. 2. We will only show the results for the the spectrum starts to decay. As can be seen from Fig. 2 this
particle-free flow(case A, the microparticlegcase B, and leads to a different boundary conditiont 1. There is ob

. , viously still an energy input into the spectrum at1 for
the large particlegcase B. The results for ghost particles ;~ ¢ from the larger eddies. This may explain the detailed

(case G and critical particlegcase D are in between those jfferences between model predictions and DNS results.
for cases B and E. Far=0.5 the results are shown in Fig. 6 However, as discussed the main conclusions are in our opin-
(with an enlargement in Fig.)7for 7=1.5 in Fig. 8(with an  joy independent of the precise formulation of the initial con-

enlargement in Fig. 9 and for7=3.0 in Fig. 10. dition.
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FIG. 8. Dimensionless turbulent kinetic energy of the carrier FIG. 10. Dimensionless turbulent kinetic energy of the carrier
fluid as a function of dimensionless wave numbes 1.5). fluid as a function of dimensionless wave numbet 3.0).
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It is clear from Figs. 6—10 that the particles dampen thesubrange: an energy suppression due to the fluid-particle fric-
turbulence for small values of (large eddiesand enhance tion and an energy enhancement during the cascade process
the turbulence for large values gf(small eddies However,  due to the decrease of the effective density of the suspension
there is a difference. The micropartickesise B enhance the  with decreasing eddy size. Particles become less involved in
turbulence over a much larger range ovalues than the the eddy motion with decreasing eddy size. A more detailed
large particlegcase B. For microparticles the enhancement jhyestigation of this effect has been made by Lahal. and
is so strong, that for & 7<1 the total energy over all eddies jt js shown that this effect can lead to a significant enhance-

is larger than for the particle-free flow. That is not the casenen of the turbulence in the inertial subrange dependent on
for the large particles. The crossover wave nunilfe wave  he conditions such as the ratio of the particle response time

number where the influence of the particles changes from &nd the integral time scale. It is the combination of the two

turbulence_—da_mpmg _effect to_aturbulence-e_nhancm_g PRE  effects mentioned above, that explains the phenomena ob-
creases with increasing particle response time. This result |

the same as found in the DNS calculations and as shown i erved in Figs. 6-10 in terms of our model.
Fig. 2.

We will now give an explanation of the observed phenom- V. DISCUSSION
ena in Figs. 6-10 in terms of our theoretical model. In prin-
ciple the explanation is similar to the one given for the case An interesting conclusion of this work is that it seems
of a stationary turbulent suspensi¢see L'vovet al). An  possible to give two different physical explanations for the
important effect of the particles is that they increase the efinfluence of particles on éecaying homogeneous, isotro-
fective density of the suspension. As the dynamic viscosity igic turbulent suspension. One explanatigiven by Ferrante
not much influenced at low values of the particle volumeand Elghobashiis based on a “microscopic” picture about
fraction, the kinematic viscosity of the suspension will de-the interaction between individual particles and their local
crease compared to the kinematic viscosity for the particlefluid flow environment. The other or{given in this publica-
free case. This will decrease the Kolmogorov length scaléion and earlier by L'vowet al)) uses a “macroscopic” picture
and hence elongate the inertial subrange of the energy spegith eddy-size-dependent suspension properties, such as ef-
trum. Mathematically this can be seen in the following way.fective density, effective viscosity, effective damping, etc.
For instance, for particles with a very small response timeéBoth pictures give a satisfactory explanation, not only in
(7,) EQ. (15) reduces to the equation for the particle-freewords but also mathematically.
flow apart from the fact that the fluid Reynolds number Re
is replaced by the suspension Reynolds numbey Rer

small particle response time ReRe(1+¢), so Re>Re. ACKNOWLEDGMENTS
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