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Falling films and the Marangoni effect
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The instability of a falling liquid film of an aqueous surfactant solution along a vertical slope with surfactant
adsorption-desorption at its open surface originating surface strédseangoni effectis investigated. The
diffusion of surfactant to the film surface from the bulk and desorption of surfactant to the gas phase are taken
into account. The Navier-Stokes and Fick equations are reduced to a system of simpler hence, analytically and
numerically, more tractable nonlinear evolution equations albeit with nine dimensionless parameters. The linear
stability analysis yields a dispersion equation that is numerically solved and eigenvalues are obtained for
various values of significant dimensionless parameters. A very rich picture of instabilities appears. In addition
to the earlier known(Kapitza) hydrodynamic mode there are up to four néWarangoni-driven diffusion
modes. Two modes travel with the liquid velocity on the film surface and the other two travel on their own
downstream and upstream, respectively. One diffusion mode could be identified, in the reference frame moving
with the liquid on the film surface, as a monotonic instability mode hence leading to a patterned film surface.
All other modes are oscillatory ones. Resonance of modes is also predicted for suitable combinations of the
parameters of the problem. The mode observed depends upon the surfacérstasss of a dimensionless
Marangoni number the particular choice of the adsorption-desorption kinetics, and the surface tension state
equation at the open surface of the film.
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I. INTRODUCTION has been carried out by Lii8]. More recently the eigenval-

Surface tension gradients due to mass or heat transféteS Of the stability problem for vertical film flows with dif-
along or across a liquid-gas or a liquid-liquid interface gen-fusion and evaporation of surfactaih fact desorption of
erate surface stress@hermocapillary or solutocapillary Ma- surfactant from liquid to the gas phaseas done by Ji and
rangoni effect that either create flow, alter an existing one, Setterwall [24]. These authors found in addition to the
or trigger instability eventually leading to flow motions, (Kapitzg hydrodynamic mode a weak diffusion instability
steady or otherwis@l-3§. Most publications dealing with mode. This analysis was extended to the flow with mass and
the role of the Marangoni effect in hydrodynamic problemsheat transfer in a later publicatiqi28]. A similar problem
have been devoted to study the instability of initially motion- concerning the thermocapillary instability of a flowing film
less liquid layers or drops under conditions of stationarydown an inclined plane was investigated for small wave
heating or mass diffusion. Here we shall consider the probnumbers by Lin[11]. Kelly, Davis, and Goussi$l4] and
lem that arises when the Marangoni effect influences the hyGoussis and Kelly{18] extended the theory to account for
drodynamic modes in an already existing flow in a verticallyfinite wave numbers. They obtained two thermocapillary
falling liquid film with deformable open outer surface. Thus (diffusion) modes of instability in addition to the hydrody-
we consider the surface tension gradient-driven extension afamic mode. Here we further extend their linear stability
the problem long ago experimentally studied by the Kapitzasinalysis to account for surfactant adsorption-desorption. As
[39,40 with theory provided by Shkadoj#1,42; see also  already shown by Ji and Setterwf24] the stability analysis
Refs.[43-63. We confine our analysis only to the solutal of the falling film implies several parameters even for very
Marangoni effect, when there is mass transfer of a surfacelow adsorption and desorption processes. Thus it is a very
active solute(hereafter called surfactgnin the vertically  complicated task to obtain the full spectrum of eigenvalues.
falling film. Sternling and Scrivef2] pointed out the impor-  To avoid this difficulty we shall make use of a method intro-
tance of the solutal Marangoni effect in determining whetheiduced in Refs[41,47 that has been shown useful in a vari-
and under what conditions instabilities may develop at thesty of problems[33,64—71. This method reduces the prob-
interface separating two fluids of different material and transiem to a system of time-dependent one-dimensional
port propertiegsee also Refg§16,17,2Q). On the other hand differential equations and it allows to study instability for
the stabilizing effect of surfactants on growing waves in fall-small and moderately large wave numbers. Palmer and Berg
ing films has been observed in experiments and predicted by 0] have analyzed a rather general case of mass transfer at
theory([3,5,8,63. an interface(see also Ref[19]). The following quantities

A theoretical analysis of the stabilizing effect of soluble were introduced: bulk concentration of a surface active sol-
and insoluble surfactants on growing waves in falling filmsute (surfactant, c(x,y,t), bulk concentration in the fluid su-

blayer (macroscopically near the interfagcee(x,t), surface
excess concentration in the adsorbed layer on the interface,
*Electronic address: velarde@fluidos.pluri.ucm.es I'(x,t), and mass flux of surfactant from the bulk liquid to the
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interface, j(x,t). At the quasisteady state these quantities For a more general adsorption-desorption kinetics one
were assumed to be connected by the following adsorptionreeds to apply the nonequilibrium relatigh with, e.g., the
desorption kinetics: equilibrium Langmuir adsorption isother(). Alternatively
_ , one could use nonlinear kinetics rather than @g. For in-
c—kil'=]j, (1) stance, Boyadjiev and Beschkg¥3] have used the relation

where only linear adsorption and desorption processes with r

rate constantk, andky are considered. There are two limit- ka<1 - —w>E_ k' =j. (7)
ing cases: fast and slow adsorption-desorption kinetics. For r

fast enough kinetics a local adsorption-desorption equilib—M
rium could be introduced. As it follows from Eql), equi-
librium in the system with adsorption-desorption corre-
sponds toj=0. There is local equilibrium of the surface
excess solute with the solute in the adjacent subphase a
hence thelocal) equilibrium values ot andI" are connected
by the relation

ore general forms of nonlinear relations have been dis-
cussed in the literaturf27,74 but we shall not use them
here in view of the additional complexity they add to the
already very complex problem we have with many param-
"Wers involved.
The local equilibrium linear approximatiof2) for sys-
tems with surfactants has been widely exploited to investi-
I'=kikyIc (2)  9ate various nonequilibrium mass transfer problems. Ward
and Tardai[75] have investigated the time-dependent prob-
which formally corresponds to th@deal) Gibbs adsorption |em for one-dimensional solutal systems, with nonequilib-
isotherm for very dilute solutions. rium adsorption-desorption caused by the initial condition
Deviations from equilibrium of the system with surfactant '=0. They used the Langmuir isother(8) to close the
may be due to various reasons, namely, initial nonequilibmathematical formulation. However, deviations from the lo-
rium conditions, intense adsorption and desorption of surfaccal equilibrium conditions for small’ values could be sig-
tant, chemical reaction at the interface, etc. With diffusion tonificant. Nonequilibrium conditions also arise at the initial
the interface we have# 0 [19,72. The mass transfer pro- parts of the falling film or for the jet flowing out of the
cess is determined by the valueskgfky,c, andl'. If every  grifice. The surface excess concentratidrincreases from
term on the left-hand sidéhs) of Eq. (1) exceeds greatly the the initial valueI'=0 as the distance from the flow orifice
diffusion flux j, then the mass transfer process could begrows. Defay and Pet{&6], Balbaertet al.[77], and Bechtel
treated as locally in equilibriurtthenj is a small difference et al.[78] have used one-dimensional unsteady formulations
between two large values on the jhin this case, the rela- together with the time-space analogy to obtain the dynamic
tion (2) at local equilibrium betweer and I', which are  surface tension theoretically for these flows and to compare
functions of space and time, is fulfilled and the adsorptiontheoretical results with experiments. In an initially motion-
and desorption processes are controlled by bulk diffusion. |ess liquid layer the deviations from equilibrium are con-
For simple surfactant molecules and moderately dense s@rected with desorption to air or adsorption of surfactant on
lutions the Langmuir adsorption isotherm is the interface. Fojj # 0, Brian [9] investigated the hydrody-
namic instability of a motionless layer of solute under the
— (3) assumption of local equilibriun{2). He only considered
atc small deviations from the initial equilibrium stateee also

Cc
r=r—e

and the corresponding equation of state for the surface terB_efs.[ZS,ZE]).
sion is the Szygzkowsgky qequation The second limiting case of Palmer and Beifd'8] analy-

sis refers to very slow adsorption and desorption processes
" [ so thatk, and ky are practically zero, angl vanishes. The
o= 0o=-RT '”(1 +j)v (4) mass transfer in the sublayer near the interface is kinetically
frozen, so the surface excess concentrafiois effectively
where I corresponds to a complete coverage, the surfacenchanged, hence
excess saturation or maximum realizable of surface excess
concentration, ana is constant for a given surfactacad- I'=Tq=const. (8)

sorption coefficient[19]. From Eq.(4) follows the relation Ji and Setterwal[24,29 have applied Eq(8) to study the
1 do\— stability of a falling film of solute with the Marangoni effect.
I'= _E'd_? c. ©) They computed’y using Eq.(2), although this relation in
fact corresponds to the case of fast adsorption-desorption ki-
Note that for small deviations from an initial equilibrium netics.

state Besides the simplification in the solution procedure both
1 do approximationg?2) and(8) have the advantage that the Ma-
- —-— = =const. rangoni stress calculations are made simpler as the functional
RTdc dependencer=o(c) is appropriate for both cases. The situ-
Then Eq.(5) takes the form of the Gibbs equati¢®), ation is. not_so _clear when the nonequilibrium adsorption-
desorption kinetics is governed by Ka) or Eq.(7). There is
I'=Lc. (6)  the choice between one of the three possibilitig&), o(I),
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or o(c,I'). The latter case is the general one and, formally, ah  ah

solves the difficulty, but due to lack of experimental data this y=h(x1), ot ax o

relationship is not so useful. The first two possibilities have

been used in most publications. Palmer and Béf used 5
the relationo(c) in most of their computations, although they D= Pt 20 {(1 b2)<9v ah( dv Q)] B Ui&_h
started considering(I"). Hennenbergt al. [20] usedo(I) Ay dx\ax ay b9 x%’
in their discussion of the stability of a motionless horizontal

liquid layer with surfactant adsorption barrier. Ryabitzkiy u dv v odu\ldh do

[29] has also done a similar study. Feinermatnal. [79] u(l - b2)<— + —) + 2,u<— - —)— -b—=0,
investigated the complicated problem of filling the adsorbed 28 ay dx/dx  IX

layer with molecular chains of two types. They had to intro- (11

duce two surface excess concentratidisand I',. At the
same t!me the depen_denoéa was consu_jered to compare JT 19 {F( ah)] 19 (10F> .
theoretical and experimental results. In view of all these ear- — + = u+rv— || -Dg—|(-——|+—-c=j,
lier studies here both functional possibilities or surface equa- 9t bdxLb box\bax/ m
tions of stateg=(c) anda(I'), are considered separately one
after the other, and results are compared at the end. ) 1/d¢c dhac

In Sec. Il we state the mathematical problem. Sections IlI I=- B( )
and IV are devoted to a description of the reduced evolution
and stability problems, respectively. In Sec. V we present the
results obtained and we discuss the various unstable modes _ ah\? |2
found for positive and negative values of the Marangoni b= 1+ ' (12

p g g X
number, and two different adsorption-desorption kinetics and
surface tension equations of state. In Sec. VI we provide &lote that in Eq(9) d/dtis the material derivativel denotes
summary of results and conclusions. here the Laplacian. In view of the long wavelength approxi-
mation to be used here a term due to the expansion of the
curved interfacq80] is omitted in Eq.(12). In Eq. (11) p,
Il. MATHEMATICAL FORMULATION denotes the outside air or gas pressure.

In the initial section of the film a uniform distribution of

surfactant concentration is assumed,

We consider a falling liquide.g., an agueous solutipn
with flow and diffusion connected together by the
adsorption-desorption of surfactant on the open deformable X=X, C=C.=const. (13)
surface.

Let x,y,z be the orthogonal coordinate system with origin Equationg9)—13) have been employed by Palmer and Berg
located on the rigid solid wall. The axisis directed along [10] and by Hennenbergt al. [20]. Equation(12) also ap-
the wall, positive down in the direction of gravity. The film pears in the formulation for the falling film done in RE24]
flow of the aqueous solution is described by the Navierwith, however,I'’=const. The last term on the left-hand side
Stokes equations, and for the bulk concentration of surfacef Eq.(12) accounts for the desorption of the surfactant from

tant, c, we use Fick’s equation the liquid phase into the gas phasgjis the gas phase mass
transfer coefficient of the surfactanty is the ratio of the
gu + Jv =0, concentration in the liquid phase to the concentration in the
ax dy gas phase at equilibrium. Two assumptions when deriving
this boundary equation are that the concentration of the sur-
dv lop factant in the gas phase far from interface is zero and that
dt = ;&_y +vhv, there is equilibrium at the interface between the concentra-
tion in the gas phase and the concentration in the liquid film.
du 19p To obtain(do/dx) an equation of state far must be speci-
—=-=—+vAuUu+g, fied thus leading to a closed mathematical formulation. As
dt  pox already mentioned, two relationship$c) and (") will be
used here.
dc “DAC 9) Let us consider that the surface tenstors a linear func-
dt tion of the bulk surfactant concentration on the free surface,
together with the following boundary conditions on the rigid cx.b.
wall, do
o=« +—(C—cC.). (19
ac dc
y=0, u=0, v=0, a—:O, (10)
y To state the problem in dimensionless form we introduce
and on the film open surface suitable scales and hence
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1 | film flows worked precisely in such interval of Re numbers
x,y,h,t-»n—lx, ly, Ih, U t, [40].
’ o To investigate the multiparameter problem E(@—(13)
let us make use of a simplifying methd4il,42. Let us also,
uv,cl'— U, nUwc(l+e), I(1+D). (19 49 already noted, consider thgt< 1. For wavy motions this
Dimensional quantities stand on the left sides of @) and ~ condition means that the wavelength is larger than the film
their corresponding dimensionless values are contained dhickness. Thus for a wave numberwe have the condition
the right sides. The scalesU.,c.,I. together with a N-a<1.We intend now to omit those terms in E¢@)~(13),
stretching or contracting parametar are yet to be pre- Which have an ordeo(n.?) and which are negligible for
scribed. n.2<1. For example, from Eq(12) it follows b=(1
After introducing Eq.(15) in Egs. (9)«13), the dimen- +n.?h,®"2 whereh,=0(1) in accordance with the choice of
sionless formulation of the problem yields the correspondinghe factorn.. Then the cumbersome boundary conditions
equations. The following ten dimensionless parameters havdl) and (12) could be simplified by takingp=1 to order

been introduced: o(n?). At the same time we retain the productdRe, n-Ma,
5 5 n.Fr, n.2We™, andn.?Di, which could have order unity or
Re :U*| Pe :U*| We :& Fr= Us even higher, i.e., of the order af Pe andh.G in accordance
v’ D’ o’ gl’ with the magnitudes of the full dimensionless parameters.

Thus we can consider values Gf Re, Pe, Ma, Fr, We, and
do ¢ IU. [ Di in a broad range.

Ma=-———, G . : After omitting all terms in Eqs(9)—(12) of ordern?, the
boundary layer approximation, with self-induced pressure, is
obtained. Such an approximation includes hydrodynamic and

._ Ddl'. _kdl _ kals! diffusion parts which are connected by the Marangoni stress
D| - y T = y Ty — . (16) . . .
Dlc.« D ¢.D due to the boundary condition for tangential forces in Eq.
11),
Re,Pe,We,Fr,Ma, and Bi stand for Reynolds, Peclet, Weg )
ber, Froude, Marangoni, and Biot numbérscall that here du dJu . Ju_ Jp 1 Fu 1
Bi refers to mass transfer only and it plays a similar role to FTRPVA Yoy T ax " n-Redy? T hEr

the usual Bi number in heat transf¢i3,15,37,38 G gives
an indication of the relative value of the surface excess con-

centration to the bulk concentration. Di refers to diffusion. 9P _ 0,
We shall consider film flows when the capillary forces are ay
of the same order as the viscous and the gravitational ones.
Let us introduce for these flows the relations Ju  dv
—+—=0, (20
P 3 1 1 Ix ay
(17)

We: n*Re: n*Fr: 55°

gc  dc dc_ 1 #c

From Eq.(17) the three quantitiek n., and 6 are found, gp TU Y Jy  n.Peqy?’
1
Ne = ,y—1/3(3 ReZ/Q, 5= — —1/3(3 Rell/Q, 9h Jh
45 =h(xt), —+u—= 21
y=h(x), IR TRLE (21)
3 2\ 1/3
y=2(gs 1= (—) RS (19 n? (- MaWe ) #h
p g p=- ( - C)_za
We Re IX

The parameten. which plays a crucial role in the proce-
dure of simplification of the Navier-Stokes and Fick equa-

tions, Eq_s.(9)—_(12), can be expressed in terms of the capil- Ju - n*Maa—E, (22)
lary or crispation number Ca, ay aX
/.LU* We 2
== — Jdc _ JI' ou(d+TI T
ca o Re (19 —+Bi(1+c)+n*G<—+—( )>—n3Di—2:0,
ay at P p%

and thusn.=(3 Ca3. The relevance of the above intro-
duced quantities and approximations can be seen by consid- Jc _
ering a water filmy=2850 for a sequence of Re values. The ———=m(l+c) - my(1+I) (23)

- . Jd
conditionsn?< 1 andn®We 1~ 1 are fulfilled for Re values, y

30>Re>5, or for § values, 0.4~ §>0.043. Noteworthy is together with the boundary conditio0) and initial condi-
that the Kapitzas in their pioneering experiments on wavtions
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x=0, h=1, c=0.

If rather the relationo=o(T") instead ofo=0(c) is consid-
ered then in Eq(22) the term Mal’, appears instead of Ma
with Ma; =—(do/dI") (I / wU-).
From Eqgs.(17) and(19) we obtain
We

1
Ma— = =n’Ma.
Re 3

For n?<1 this product is small, of orden(n?) for Ma
< 10. Thus MaWe/Re in Eq. (22) could be omitted for all
6 values under consideration. Due to Ef7) only the pa-
rameter$ enters the formulation Eq$20)—23) instead of

Re,Fr, and We. Then the formulation given applies for any

liquid provided y>1.

Ill. THE REDUCED EVOLUTION EQUATIONS

To investigate the solutions of the differential equations

with boundary and initial conditions, Eq$20)<23), the
Galerkin method is applied in coordinage For the spectral

representation of the unknown functions a system of polyno-
mials is used as a basis set. For the coefficients of spectral

representations which are functions>ofindt, a system of

one-dimensional time-dependent differential equations fol-
lows from the Galerkin method. Direct numerical integration N

of the initial problem[Egs. (20«(23)] for Ma=0 by De-

mekhinet al. [69] and experimental measurements by Alek-

seenkoet al. [54] have shown that the velocity profile in
coordinatey for the wavy film flow could be approximated

by the simplest polynomial satisfying the boundary condi-

tions. Thus for the spectral representatiorudtfis enough to

take into account only the first term. Here we take advantage
of their results and use them, as a working approximation,

also for velocity profiles in wavy film flows with concentra-
tion profilesc, when Ma# 0.
The small parametes=(n.Pe 2 in Eq. (21) estimates

the diffusion boundary layer near the outer open surface of

PHYSICAL REVIEW EG69, 056310(2004)

The velocity fieldu(x,y,t) is assumed to be represented

according to boundary conditiori$0) and(22) as follows:

ac
ax’
(27)

where we have rescaled the Marangoni number,n.Ma.

By inserting Eqs(26) and(27) in Egs.(20) and by inte-
grating the resulting expressions frgm 0 toy=h, the equa-
tions for h, u, c, I, andA as functions of(x,t) are ob-
tained. With the help of Eq17) we have

u=u2n- 79 +Mh(n-7°)c,, y=nh ©C=

ah, 9o
at = ax
9q 9Q _ 1( #h 2 _>
—|lh—+h-—(U+Mh
<?t ax 53\ ax3 3h(U G}
I Cc

- a_[(AU+ BMhG)¢]= 2",

at A’

ar o au &21“> C
Gl —+—(@W)+— -n’Di— | +Bi(1+¢) = - 2—,
(&t &x(_) J Ix? (1+0) eA

the liquid film. Let us introduce the stretched coordinate near

the surfacey=h(x,t),
y=h-gl. (24)

For the concentration field&(x,y,t) inside the diffusion

c
7 (1+0) = my(1+T) = - 2—, (28)
eA
where
h 2 1
q= fo udy=_uh+ 6Mhzc_x,
1 _
Q= f u’dy = —_2h+—Mh uc, + %h(Mh c)?,
A 1
<p:J cd¢==cA (29
0 3

with

A=

_1ih i(ﬁ)z _
—4h h hl—SA.

h1>
1 10( h

In what follows we shall take approximate values

boundary layer the following boundary conditions can be
used:
=0, c=c(xt),
=A(x,t), ¢=0, —=0. 25
{=AX1), c PY: (25)

The simplest polynomial representation «fx,y,t) which
satisfies the boundary conditio(®5) is

e
C—E(l A)'

Note that in Eq(25), A(x,t) accounts for the thickness of the
diffusion boundary layer, hence from Eq24) and(25) fol-
lows c=0 for h—-eA>y>0.

(26)

1h
4h

A=1, B=

and for the thickness of the diffusion boundary layer

(h;/h)y<1. The system of equation®8) and (29) must be

solved with the initial conditions
x=0,¢c=0,T=0, ¢=0,A=0. (30)

The first two conditiong30) together with Eq.(13) imply
that the dimensional quantitiesandI" at the pointx=0 are
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taken as reference values=c(0,t) andI~=I'(0,t), respec- Thus we deal with the evolution and subsequent effects of

tively. the surfactant transfer from the equilibrium conditions at the
In the systen{28) for surface tension, gravity, and viscous initial sectionx=0. To estimate the accuracy of the approxi-

forces stand the termish,,,,h,—(2/3 h)(u+Mh c,), respec- mate solution(34), comparison of Eq(34) with the exact

tively. As expected, for Ma=0, Eqé28) reduce to the origi- solution of the stationary diffusion problem given by Ji and

nal result obtained in Ref§41,42 for wavy film flows inthe ~ Setterwall[24] can be done. For Pe=4®i=10, andc,

absence of surfactants. FbMhc,=7, wherer is prescribed, =-0.25 the exact solution gives=1000 andh,=0.09[h, is

we recover the equations derived by Esmail and Shkado@btained only approximately from the graphical dependence

[81]. Most of the Kapitzag39,4Q experiments and more c(y)]. The appropriate values from E@4) arex=1012 and

recent experimental observations on regular wave film flowd; =0.0666.

have been explained theoretically on the basis of periodic

sqution_s of the nonlinear syste(ﬁS)' for Ma=0. A de_tailed IV. STABILITY ANALYSIS

comparison of theory and experiments concerning wavy

films has been recently provided by Shkadov and Sisoev Let us now consider the response of the base state to

[71]. infinitesimal disturbances. The base state corresponds to the
The base state of the flow with surfactant mass transfer idiffusion boundary layer near the surface of the falling film.
expressed by the stationary solution of E28), The linear or nonlinear behavior of the aqueous solution film
with surfactant desorption to air is described by the Egs.
ho = 1,U0:§, o To. (3 (28). For the base state we take E@81), (34), and (35)
2 combined with

Using the stretched variables,=e°x and ¢;=¢¢, the sys-

_:— 2 , 1—\ :_ 2 ’
tem (28) becomes Co=CleXp), T'o=cle™%o)

do; 1 d [Cco— L 2¢c2
ua_xl_ESZMa_xl(?l x)=—S, So=Bi(1 +¢p), cpozéi. (36)
AT AT For the hydrodynamic stability analysis the base states
s=Bi(1+¢C) + &’n.Gu— — s4n*2Di—2, (31) and (36) are assumed to have no dependence as
9% 28 c(e2xo) is a slowly varying function and henseenters in Eq.
(36) as a parameter.
s=a(1+C) — m(1+1), Thus we assume thafy=const]';=const and then we
proceed to investigate the stability of the base stafg to
22 infinitesimal disturbances. The stability analysis must be re-
$="35" (32)  peated for various sections=x, asx grows from the initial

sectionx=0. Thus we now introduce

Neglecting the terms of ordes, from Eq.(32) follows that o o
u=ug+tu’, h=1+h', c=cy+c’, I'=Ty+T",

d{ )\ _,
—| ——) =Bi*(1 +0),
dx\1+c S=5+S, ¢=¢ot ¢ (37)
7(1+0) — my(1 +T) = Bi(1 +0) After linearizing Eq.(28) the equations for disturbancé3r)
are
s=Bi(1+c). (33 ﬁ—h/+a—q,—0
The differential equatioi33) with the initial condition(30) at  ax
has a solution in closed form,
1/ 1 \2 1 (ﬁq’ o7Q’> &’ 2., 2.,
=) == 4R 5| —/—+— | =——=+2h'--u - -Mc,,
In(1 +¢) + 2(1+?> = 2+B|x1. (34 at - ax @ 3 3
From the second equation, E@3), we obtain ie +U&_¢, . v EM%E e
m-m=Bi, I'=c. (35) ot Pax  Ogx 2 s o
Now the concentrations andI" for the stationary diffu-
sion conditions can be calculated from E@) and(35) for 1, ar’ au" _al”
everyx, value, if the value of the parameter Bi is specified. oo Bic'+n.G at 1 +F0)H Tl
From Eq.(33) follows that the desorption of surfactant to the ,
gas phase is the only reason for the adsorption-desorption to — n2Di &)
deviate from the equilibrium state corresponding to Bi=0. ax?’
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=s' =’ =l (39
€

where
F 2 2,4 1 ’
q' =h"+3u +5 Mc,,

P =6 g 87, 7T ’
Q' =z h' +zu+3;Mc,.

For the solutions of E(.38), moving or stationary waves
periodic inx (normal modeg we consider
(0, I")=WhEDexpia(x-wt), (39

wherew is a complex quantityw=w, +iw;).
Using Eqs.(38) and(39) we get the following equations
for the unknown amplitude§j,h,¢,T", andg;:

2+ (1 - wh+ 27¢

0 12 3(.6 6 ~
(——w+—)u——(2——a20—g+w>h

_0'

B 5 2\ B
(0 1 21)~
+7l = -Zw+—=|E=0,
B 4 40

BEpy —[BS + Mya’(1+Co)[E - BlGl<B§+ %)f‘

+B(1-B;Gy)(1 +¢cli=0,

2+co~ G,

o ;. S pe+ I o =

Co

- (L+TRE+d)T - TB(L +Co)U=0. (40)

We have introduced in Eq40) the following quantities
0=1/56, B=ia, andz=MpB. We also have

B, = &VBi, G; = en.VG, D; = en.?Di,

___ncMa
1 —ZBi(1+?0)’(P Y2®1,
V_\/§1+c0 _2+G 2
nG
T= , d=TD;a?. (41)
T2

Let us now assume th&tandl obey the following rela-
tionship:

where the factof? is to be obtained from the diffusion part

of Eq. (40).

PHYSICAL REVIEW EG69, 056310(2004)

As the problem is homogeneous, the existence of non-
trivial solution to Eq.(40) demands that the determinant of
this system vanishes. From this condition the dispersion
equation is obtained fof=1.5-w:

—gﬁ§2+<g,8—20)§+ iﬂ—9+gﬁa20
3 5 3 10 3

+Z£)c{|:_1ﬁ§2+ (EB_ ga)g.,_ }ﬁale] =0
6 200 3 6 '
(42

From Eq.(40) the relation connecting andt follows. The
factor® is

_ Dgp+ EDgy + EDs,
W3+ £V + EV3

Inserting Eq.(43) into Eq. (42) leads to the dispersion
equation in the form of a fourth-order algebraic problem

(43

Do+ ED g+ EDpp+ Z( Doy + EDyy
Do+ EDgy + EDg,
W+ EWg + EV3

+ &) =0. (44)
The dispersion equatio@4) determines four eigenvalues
&, depending on the wave numberand on the dimension-
less parameters Bg, T, Di, 8,n., ¢g,Ma, ande.
The coefficients®,, and &, ,k=0,1,2 in Eq.(44) are
known from EQ.(42). The coefficientsb,, and V4, for the
caseo=o(C) are

D30= (=BG + 1 +d)(1 +cp)B,

G _
Dy = (B_l ‘T)(l +Co)a?, 3,=0
1

_ d
W3p=[By?+ My(1 +Cp)a?](1+d) + GlBl?,

2+¢g _
Wa=- /3[ - %(1 +d) - [B,? + My(1 +Co)a?]T - GB,
0
_Gd

B T '

2+cy. G

Wgp= a{ —T- —1]. (45)
Co B,

When the Marangoni number is set to zero, Ep) re-
duces to the corresponding equation for a falling film with no
Marangoni effect, as expectddee, e.g., Refd41,42,63).
From Eg. (42) the instability interval is determined,
0< a< ay, with neutral curve

ap=V1548 (46)

and with w,=3 as wave velocity of the neutral disturbance.
Later on expecting no confusion in the reader we shall@jse
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rather thanw, to denote wave velocity. The relatiod6) for ~ termine the mean film thickneds mean velocityU., flow
neutral disturbances together with the growth or amplificatatelU«, as well as the parameter. The diffusion param-
tion factor («aw;)max Of the fastest growing disturbances have etersc, and Pe determine the local thickness of the diffusion
been compared with the direct numerical solutions of the fulboundary layer,h;, and the smallness parameter Two
Navier-Stokes formulatiofiEgs. (9)<13)] and to the results quantitiesT andD; characterize the mass transfer of surfac-
of Ref. [69] for the boundary layer with self-induced pres- tant by the adsorption-desorption and the intensity of dissi-
sure approximatiofiEgs.(20)—(23)]. These three approaches pation by the surface diffusion. The intensity of the surfac-
give practically identical results for €5<0.5. Such an tant desorption to the gas phase is determined by the
agreement shows the utility of the approximations used tg@arameter Bi. Recall tha& gives an indication of the typical
obtain the dispersion equatio@4). Needless to say, the value of surface excess concentrationrelative toc..
above given methodology for the derivation of the evolution For every prescribed set of parameter valg€g the ei-
equations and their spectral analysis could be extended afenvaluesw(a) could be computed for arbitrarg>0 val-
most verbatim to the instability of the film flow with heat ues. But we must keep in mind that the assumptions made
transfer. for the long wave approximation introduce limitations @n
Demekhinet al. [70] have shown that Eqg38) give a  For the problem under consideration there exist indeed two
very good approximation to the Orr-Sommerfeld formulationlength scale andh;. This distinction is significant for the
of the instability problem for prescribed and for low understanding of our results. Indeed, due to the inequality
enough values of. h, <h, short waves in thé scale could be considered as long
waves in theh; scale. In view of this a cutoff value for

practical purposesy < 10, is used in the numerical study that
V. NUMERICAL RESULTS: EIGENVALUES we describe below.

Too many particular cases can be considered in view of A few remarks about the parametare pertinent. Actu-

the dispersion equatiaq@4) which includes nine independent 2lly: the last equatiort40) is the disturbed equation of the

dimensionless groups. It is convenient to take the following?dSorption-desorption kineti¢). This equation contains,
quantities as free parameters D,, andc, together with the wave numbes From Eqs(16)

and(41) we obtain

Re, Ma, Peyy, Bi, G, Cy, T, D;. (47)
Then the values o andn. implicit in the coefficients of T= n*E D, = nE& (48)
Eg. (44) could be computed using E¢L8). For every speci- Kyl 7 g

fied set of parameter valué47), the roots of equation can be
obtained and hence the phase velo€tya) and the corre-
sponding growth ratew;(«). If the parameter Ca is specified

From Eq.(48) follows that the parametéf characterizes
the ratio of rates of the surface excess concentratign,
. : . transfer by two processes: one is convective flow along the
instead ofy, then the value of could be obtained using Eqs. film surface, and the other is desorption inside the liquid

(18 and_(19). . . . bulk. For T— 0 the case of diffusion controlled adsorption-
Relations exist to assign numerical values to free paramy . qorotion kinetics from Eq40) is obtained
eters. For example, we have P i '

F* [
Pe :<3)Re, G=—Pe. I'=c, (49)
D il

A classification of parameters in view of their physical or k€ EQ. (6) for the equilibrium Marangoni effect. Equation
mechanical significance is useful. The main parameter corf49 corresponds to a fast desorption process leading to local
necting the hydrodynamic and diffusion parts of the film !<|net|c equilibrium. In the opposite limiting situatioh— oo,
flow problem with surfactant is the Marangoni number Ma. it follows from Eq. (40),
Both cases positivéMa>0) and negative(Ma<0) Ma-
rangoni numbers have been considered. Considering both ~  l+c
cases is not a matter of mere academic interest. Schwhrz I T - w- D u. (50)
studied two-phase systems Cyclohexanol/Water with diffu- 0 !
sion substances MethanokPropanoln-Butanol,n-Amylol, _ L i
andn-Hexanol in concentrations from 2% to 8%. These Sys_Equat|on(50) corresponds to kinetically frozen desorption.

tems are characterized ly/dc< 0, Ma> 0 (the first threg Only for 1+c,=0 it is possible to consider the surfacg excess

and bydo/dc>0, Ma< 0 (the latter twg. Other cases show- concentration of surfactant;, as constant and hendé=

ing positive growth in the surface tension or a minimum infor j#0. Besides the limiting cases of fast desorptidn

the surface tension which can be considered as anomalog)) and slow desorptioiT—«) the more general casg

behavior,do/dc>0 or do/dT>0, relative to that of pure ~1 is also considered here. Note that the difference between

water have been described by several autfi@gs-84. For  Egs.(1) and(7) may be important only whehy/I"* is not

instance, the mixture 2-butoxyethanol-water dagdT> 0. small. Yet the two approaches are equivalent at the linear
The most significant hydrodynamic parameters are Re anstability level in spite of various coefficients appearing in Eq.

v, or equivalentlyd and y. Their corresponding values de- (40).
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FIG. 1. (a) Phase velocityC, and (b) growth ratef =maw;, as

PHYSICAL REVIEW EG69, 056310(2004)

creases. The growth ratew; is positive in the interval
0<a<a and has a maximum valugww;),, inside this in-
terval. Other growing mode@,4), which are referred to as
diffusion (Marangoni-drivel modes, appear only if M&O0.
The term “diffusion” is applied to any mode which disap-
pears as Ma-> 0. Diffusion modes in the case under consid-
eration exist as solutions of the dispersion equatisf) for
high enough wave numbers> a., wherea. is to be de-
termined by computations. The wave velocity of a diffusion
mode is equal to 3/2 with great accuracy. Thus this wave
moves with the velocity of the liquid on the film surface.
This mode, which can be identified as a monotonic instabil-
ity mode of the liquid open surface, leads to a patterned
interface. The growth ratew; of this diffusive mode is two

functions of the wave number for constant surface excess con- to three orders below that of the hydrodynamic mode and

centrationl". Bi=10, y=29.4, G=1.3X 10°, Pe=0.66< 1, Re
=13.33,D,=10°3, Cy=-0.25; Ma=0(0), 0.015(1,2), 1.5(3,4: m
=1 for (0,1,3, 10 for (2,4).

A. Constant surface excess concentratiolf

First of all we have cross-checked our method to obtain

the eigenvalues given by the dispersion equatié#) by

tends to its maximum value asgrows.
For «=1.355, the eigenvalues are

w0;=1.313-0.106 00 w,=1.253-0.112 50

»w;=0.999 +0.000 45 w,=1.000+ 0.001 6Gi7

comparing our results with the exact numerical solutions of The solutions of Eq(44) are on the right side while the
the Orr-Sommerfeld formulation given by Ji and Setterwallsolutions obtained by Ji and Setterwg2H] of the full Orr-

[24] for T'=const. Note that in this work we are dealing with Sommerfeld formulation are on the left side. There is reason-
a more general formulation of the instability problem as weable agreement between the results obtained using the two
include nonequilibrium surfactant adsorption-desorption ki-approaches.

netics. Besides, their particular case is somewhat artificial as The eigensolutions have been obtained for variewsnd

it does not follow from the general formulatiqd9) as T
— o, Furthermore, whef — % the term(1+cp) in Eq. (49)

must be set to zero. Fdry=0 andT'=0 in Eq. (40) the
coefficients®,, andWy, in the dispersion equatiof@4) are

— G
(I)30=B(1 +Co— B1Gy), (ORVES az—l,

d5,=0,
Bl 32
2+0¢
‘I’gl:_Tﬂ, \I’32:0.
Co
The dispersion equatio@4) with coefficientg51) is a third-
order algebraic equation for this case. For ¥a two of

V3= B, (51)

three roots yield unstable modes. For illustration and com

parison we choose the following numerical values:

40 2 _ _
Re =g Pe :5106, Bi=10, ¢,=- 0.25.

Ma values andD;=0.01 and 0.0001. The structure of the
spectrum,w(«) (Fig. 1), is valid for all values Ma> 0. The
existence of hydrodynamic and diffusion Marangoni instabil-
ity modes is the main feature of that spectrum. The influence
of the surfactant and the Marangoni effect on the hydrody-
namic instability model(1,3) can be seen in Fig. 1. The
growth rate of the most unstable mode diminishes with Ma
increasing.

If &is small enough and Ma is sufficiently high the dif-
fusion mode grows faster than the hydrodynamic mode
grows. The critical value of the wave number moves to
zero and, as a result, the region of the long wave instability
shrinks. The phase velocity of the hydrodynamic wave tends
to diminish. The salient features of the surfactant influence
on the hydrodynamic instability mode which follow from
solutions of Eq(44) agree with the results of Lif8].

Results for the cas€=const and Ma<0 have been ob-
tained. As seen in Fig. 2 there are three unstable modes ac-
cording to the values of, which can be identified by their

This set of parameter values fits well a |IQUId metal with phase velocities. The growth rate of the diffusion mQﬁp
¥=29.24 and Ca=0.2. The calculations of eigenvalues havgith phase velocityC,=1.5 does not appreciably vary when

been done for several values of Ma a@din Fig. 1, typical

we change from Ma=1.5 to Ma=-1.5. There is a second

curves forC,=Ci(a) and aw;=awj(a) are plotted. As the particular diffusion mode(3) on the finite interval wave
growth rateaw;(a) of various instability modes could differ numbers whose phase velocity varies linearly in the vicinity

by several orders, a normalized growth rdtemaw(a),

of the pointC,=1 anda=0.5. The third branch of solutions

wherem is the appropriate scale used in figures. One of thesél) begins ate=0 as a hydrodynamic instability mode with

growing modeg0,1,3 is easily identified as théKapitzg

phase velocityC,=3, but then converts into a mode of ex-

hydrodynamic mode of the falling film with small wave plosive growth asy tends to the critical valuey,, i.e., aw;
number and it is indeed the same when Ma=0. The phase:» asa— «.

velocity C, of this wave mode diminishes froi§, =3 asa

Let us show that the appearance of an explosive growing

grows from «=0, takes a minimum value, and then in- mode is genuine of film flows for the cadé=const and
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2.5

0.5 T T 0

0 1 2 0 1 2
o o

FIG. 2. Ma=-1.%1,2,3; m=1 for (1), 1¢? for (2,3). Other
parameters as in Fig. 1.

Ma< 0. By setting to zero the coefficient ¢t in Eq. (44) we
obtain

© ;W3 + 205,03 = 0. (52
Using Eq.(18), from Eq.(52) follows
2+cy Bi 1
ql=4—2—— (53)
co N“GMa

For the values given to the dimensionless parameters i

Fig. 2, EQ.(53) becomes

0.385
Ma

(54)

2 _
ay =

PHYSICAL REVIEW E 69, 056310(2004)

The unstable mode actually represents a longitudinal or
dilational wave since surface deformations are negligible as
it is clear from Eq(55). The disturbancesg’ andc’ are phase
shifted by ¢=7/2 as it follows from Eq.(56). They can be
expressed in the following way:

1
¢’ =|clexdix;], u' = Za|Ma C|eXp|:i <x1 - g)} ,

X1 = a(X— wt). (57)

As Eq. (57) shows the longitudinal oscillations' carry
surfactant away from the points wheeé is minimal and
bring it to the points where’ is maximal. Some sort of
resonance takes place. Unbounded solutions appear at the
critical wave numbewy,, defined by Eq(53). When Ma<O0
and|Ma| is small enough the critical wave numbey of the
explosive mode is outside the interval for hydrodynamic
mode instability(e,.> o). When|Ma| grows, oy approaches
ax (Figs. 2 and 3

A transformation of the transverse hydrodynamic instabil-
ity wave into the longitudinal Marangoni-driven wave under
resonant conditions ag grows in Figs. 2 and 3 could be
seen. The phase veloci§, and growth rateaw; increase
with « approachingy, so that the conditiohw|>1 is gradu-
glly attained. By virtue of Eq(55) the amplitude of the film

thickness oscillation$ diminishes and resonant conditions
(56) and (57) for the wave under consideration occur. Such
eigensolutions of Eq44) are a form of combined modes. A
resonant interaction based on a frequency coalescence point
for (transversg capillary and(longitudina) dilational Ma-

and Eq.(54) gives o4~ 0.507. For the values in Fig. 3, Eq. rangoni modes for insoluble surfactants has been described
(53) gives=5.07. Let us introduce the smallness parametepy Rednikovet al. [32,36. This singular behavior for the

g1, SO thatw=¢,71(, &, <1, and|Q|=0(1). Then from Egs.
(40) follows that

h=e2h, ([, =e,I,3), T=¢ U=, (55

where all quantities), ', &, U, and& have the same order.

Neglecting term®(s,?), from the first equatiori40) we ob-
tain

0+ ziMa a¢ =0. (56)

¢ (a)] (b)

FIG. 3. Ma=-0.0161,2,3,4; m=1 for (1,4), 10 for (2), 10t
for (3). Other parameters as in Fig. 1.

growing coefficient sets limitations to the validity of the
model I"'=const that, as earlier mentioned, is a somewhat
artificial case. Accordingly, we proceed to examine the more
realistic casel” # const for Ma<O0.

B. Soluble surfactant transfer accompanied by adsorption-
desorption processes

Taking now adsorption and desorption into account we
return to investigate the general case of the film flow with
surfactant. It is worth noting that the method used leading to
Egs.(38) and then to the dispersion equatigt) is highly
efficient for largey values and for small Ca values. Accord-
ing to Eq.(19) the crucial parameter. is small for small Ca
values. For watery=2850 while y=29.241 for a liquid
metal, and Ca=0.0024 instead of Ca=0.2 in the discussed
case. For our numerical study the following parameter values
have been used:

v=2904, 6=0.412, n.=0.193.

These values fit well a water film flow with a soluble volatile
surfactant. We shall sequentially consider the two earlier
mentioned surface tension equations of stateg(c) and
o=o().

Case (i): o=0(c). For this case the coefficientss, and
W, of the dispersion equatio4) are obtained using Eq.
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FIG. 4. (a) Phase velocityC, and (b) growth ratef=maw; as
function of the wave numbez for adsorption-desorption controlled FIG. 6. Ma=0(0); Ma=10,T=0.5(1,2,3; m=1 for (0,1,2,3.
surfactant transfer witho=c(c). Bi=10, y=2904, G=2000, Pe Other parameters as in Fig. 4.
=1(f, Re=32,D,=1072 ¢,=-0.25; T=5: Ma=1 (1,2); Ma=-1
(3,4,9; m=1 for (1-5). drodynamic waves is rather weak for this value of the Ma-
rangoni number. The curvé}(«) andaw;(«) are practically
(45). The parameteiT in Eq. (45 estimates the role of the same for Ma=0 and Ma=+1. A pair of diffusion modes
adsorption-desorption kinetics on the hydrodynamic instabilexists in the intervabv> a++ (as+ =4). For one of them the
ity. For finite values ofT the mass rate transfer of the ad- wave phase velocity is slightly above the val@e=1.5,
sorbed surfactant concentratibhby convective flow is of  while for the other(2,3) it is slightly below this value and
the same order as that by desorption inside the liquid bulkboth are growing.
From the dispersion equatiq#4) we obtain four eigenval- A drastic modification of the instability curveS, («) and
ues &.=Ug— wy With corresponding rates for growing or de- aw;(a) with increasing(absolutg values of the Marangoni
caying modes. The salient features of film flow instability number is shown in Fig. 5. New instability modes for Ma
obtained in numerical experiments with aqueous solutions-10 andT=1.0 are observed. There exists a slow diffusion
for various Ma, T, and & values are depicted in Figs. 4-9. mode(2) at @> a« (aw =1) which moves with the liquid
Results were obtained for positiida>0) as well as for  gn the film surface(C,=1.5). Its growth rateaw, is about
negative(Ma<0) Marangoni numbers with soluble surfac- that of the similar modg2) in Fig. 4. Another diffusion
tants. _ mode(3) appears atr> a,, (a,=~ 1.5) which has very differ-
For every value of the Marangoni number, one hydrody-ent nature. The corresponding disturbances represent fast
namic instability(Kapitza) mode exists together with one t0 \aves with phase velocitg,(«) linearly growing whena
three growing, unstable diffusioMarangon) modes. For  jycreases. For example, the phase velocity varies f@&m
Ma=1 in addition to the hydrodynamic mod&), only one < g C,~8 asa increases fromx=2 to @=10. The growth

diffusion mode(2) with a..~1 on Fig. 4 could be seen. rate of the fast diffusion modes) is about one order higher
Note that on the wave number interval <« <10 the dif-  than that of the slow diffusion mode).

fusion modes have a growth rate of the same order than the The salient effect of the Marangoni number on the insta-
hydrodynamic mode. Figure 4 shows, for small negative Mayjjity of film flow in Fig. 5 is the appearance of a strong
rangoni numbers(e.g., Ma=-3, three unstable modes,

namely, the hydrodynamic modg3) and two diffusion 5

modes(4,5). The influence of the Marangoni effect on hy- . (a) 1 041

(b) ]

I 0.3
17

0.2+

2,4,5

0.1

o

. . . . , . FIG. 7. (a) Phase velocityC, and (b) growth ratef=maw; as
0 4 8 0 4

o o 8 function of the wave numbet for adsorption-desorption controlled
surfactant transfer withr=o(I"). Bi=10, y=2904, G=2000, Pe
FIG. 5. Ma=-10,T=1.0 (1,2,3; m=1072 for (1), 1 for (2,3. =1, Re=32,D,=107, ¢,=-0.25; T=5: Ma=1 (1,2), Ma=-1
Other parameters as in Fig. 4. (3,4,5; m=1 for (1,3), 10 for (4), 1% for (2), 10°* for (5).
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¢ ' ' ' corresponding value for Ma=0. Accordingly, the Marangoni
effect generates the diffusion mode which exists dor au«

(ax» =0.7) and for which the growth ratew, is the same
order as that of the hydrodynamic mode. It should be noted
that for Ma>0 the hydrodynamic and the diffusion modes
do not interact to form a combined mode at variance with the
earlier discussed case for Ma.

The third unstable mod@) at a> «, in Fig. 6 is unusual
because its phase velocity is negative. Accordingly, the cor-
responding wave moves upstream. These waves have short
_ — 7 lengths(a,~8.5), are fast moving|C,|>5), and grow fast
0 4 8 0 4 « 8 [aw; is of the same order as for the hydrodynamic m@bé

As |w|>1 these waves are longitudinal ones in accordance

FIG. 8. Ma=-10,T=0.5(1,2,3; m=1 for (1), 10" for (2,3.  wijth results described earlier.
Other parameters as in Fig. 7. The fast surface waves at> «,, deserve to be discussed

] o ] _in more details. From the dispersion equatidd), to order
combined hydrodynamic-diffusion (Kapitza-Marangoni o(1/a?) we obtain
mode (1) with growth rate two orders higher relative to the
case of low Ma values. This strong combined mode begins at
a=0 as an ordinary hydrodynamic mode with phase velocity
C,=3 and then diminishes t€,~2 asa grows toa=1.5.
But then instead of growingg, falls down toC,~1.5 with ~ For the purely hydrodynamic instability case, Ma=0, the co-
subsequent asymptotic behavidr— 1.5 for a growing as it~ efficientsA, and A, are
occurs for the diffusion mode. Such transverse hydrody-
namic wave gets over to a longitudinal wave duddap> 1 Ag=- i, __ 31 19‘ (59)
as shown above. In the vicinity ak=1.5 this instability 10

mode exhibits features of both transverse and Iongitudinaﬁelaﬂons(%) and(59) determine two waves moving up and

waves. A j“”?p fromT;l to".I':O.S does not appreciably down the main flow with corresponding phase velocitizs
change the picture of instability modes. Transverse and Ion;3,+a/b These waves are slightly damped since

gitudinal waves for a horizontal initially resting film in the T2

1
. . . =->6<0.
resence of an adsorption barrier were discussed by Hennen- 2~ ~. . . . . .

b P y The inclusion of the Marangoni effect in the dispersion

berget al. [20]. ;
: _ : ; equation(44) makes these fast waves to grow. For #1@,
In Fig. 6 the curve£, () andaw;(@) from eigensolutions we obtain from Eq(44) A=A, +iA., where SgA =sgrN,

of Eq. (44) for Ma=10 andT=0.5 are shown. Three insta-
bility modes can be distinguished noting their phase velocity. 2+C, G N .
The first two modes were discussed for negative values of N=- n*bMa(TT - B—><T— B—)(l +Co).
the Marangoni number, namely, a hydrodynamic m¢tle Co 1 1
with phase velocity 3-C,>2 in the interval 6<a<ax and  Two waves determined by the eigenvalu@&s®) now will
a diffusion mode(2) with phase velocityC,~1.5 in the in-  grow if A >0, sincew,=A;+0(1/a). For all cases in Figs.
terval a> a... A strong damping effect of the Marangoni 5_g the instability condition, >0 is fulfilled if bMa<0.
number Ma>0 on the hydrodynamic waves) is shown i Thys we have a fast upstream growing wave when>\da
Fig. 6. The maximum growth rate is equal to one-half andyngp=—/g, while it is a downstream wave with Ma0 and
the boundary value of the wave numberis one-third of the -4 /5,
The resonance mechanism of amplification is seen from
c, 0.2 Eq. (57) derived for|w|> 1. According to Eq(57) the veloc-
25{\1,3 (a) 4 7 (b) ity perturbationu’ changes the concentratian by transfer-
ring surfactant from points of minimal’ values to points of
maximalc’ values. Then the perturbations of surfactant con-
centration amplify the velocity perturbation thanks to the
Marangoni effect. Thus the fast wave disturbances are sur-
face longitudinal convective-concentration waves accompa-
nied by very small liquid surface deformations. The wave-
length correlates with the smallest of the two characteristic
lengths, diffusion boundary layer thickness, and film
) thicknessh. Wave numbersy based orh; are one order of

o 4 8 o 4 8 magnitude lower, namelyr=1 instead ofa~10 because
h=0, 1h;, as noted earlier.

FIG. 9. Ma=10:T=1 (1,2,5, T=0 (3,4,5; m=1 for (1,3,5, 10 Case (ii): o=0o(I'). Let us examine now the role of the
for (2,4). Other parameters as in Fig. 7. functional relationoc=o(I") for the surface tension. Instead

3 1
w—E:ab+AO+A1—, b=+v6, 6=—. (59
a

2,4
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of ZCwe must havall~“ in the amplitude equation88) with VI. SUMMARY AND CONCLUSIONS

The linear stability analysis of a falling film flow of an
do T aqueous surfactant solution endowed with mass transfer and
dar U (60) surfactant adsorption-desorption processes has been investi-
o _ ) gated. Hence we have dealt with a two-phase, three-

For the coefficientsbg in Eq. (43) we obtain from Eq.  component system liquid-air where mass transfer of a vola-
(40) the following expressions: tile surfactant occurs through the interface from the liquid
into gas. Changes of the solute component concentration
along the interface induce changes of the surface tension and,
eventually, generate surface stregdé¢arangoni effectlead-
ing to interfacial instability and flow changes. Two model
G 24T equations relating the surface tensioto the surfactant con-

(61 2+G — 2 _ centrationso(c) and o(I') have been examined. The math-
q)?’l_( < T>(1 teat, D=0 (61 o - ical formulation of the interaction of the mass transfer
process with hydrodynamics includes the Navier-Stokes and
i i ) Fick diffusion equations together with the equations for the
W3 from Eq. (45), determines four eigenvalu@s The pic-  ,qsorption-desorption kinetics on the film surface. The non-
ture of instabilities for the case=o(I) resembles that for  yimensional form of the corresponding nonlinear boundary
o=0(c) though less diverse. In Fig. 7, for low Mabsolut¢ 31y problem contains nine independent parameters, includ-
for Ma=1; namely, a hydrodynamic mod#) and the diffu- (), and Biot(Bi) numbers, excess of surfactant concentra-
sion mode(2) with phase velocityC, ~1.5. There are three (o in a sublaye(G), local surfactant concentration on the
instability modes(3,4,9 for Ma=—1. This picture is essen- film surface(c,) co-efficient for desorption intensity), and

gﬁ”i’h?eoﬁznﬁzss t?ﬁ; Osf'caFtl)giIiz?ﬁ8uéftfgi'[eo?rteh;\Nr?eoggg\ﬁnlfﬂfsurface diffusion(D;). An approximate nonlinear system of
rangoni number, M&0, on the diffusion moded) is stron- the Galerkin type not containing coordinates normal to the

er, and, on the other hand, the only slow diffusion m@je interface was derived. In the linear approximation the model
gt Ma>0 exists on the finité interva{ equations have been used for systematic computations of ei-

In Fig. 8 the curve<C,(a) and aw;(a) for Ma=-10 and genvalues. The full Navier-Stokes formulation has also been

T=05 are shown. We see a combined hydrodynamic-used for cross-checking methodology and accuracy esti-

- o mates.
Marangoni-driven model) at «>0. Near the beginning of For Ma=0 hence in the absence of Marangoni stress with
the curve, the phase velocity changes frépa= 3 atae=0, as (ﬂ ’

Z; = n*Maﬁ,M]_: -

D30= B{1 = B1G; ~ T[By? + My(1 +Co)a?T}H(1 +Cp),

Equation(44), with coefficients®4, from Eq. (61) and

. ; N owever, mass diffusion included, there exists only one hy-
it must be for a hydrodynamic mode, then diminishes an y y

_ ; . P rodynamic mode in the finite interval of wave number val-
tends 10G,=1.5 with & growing as_for the base d|ffus!on ues Osa<qp. This is the Kapitza mode. Thus, the mass
mode. The growth rate of this combined mode monomn'ca”%ransfer process alone does not significantly influence the

grows with « increasing and reaches the high value Ofﬂow of an aqueous solution. Inclusion of M<0 in the dis-

(aw;)=30 ata=8. It could be compared withaw)=20 in ;o qion equation results in damping of hydrodynamically un-
Fig. 5, for the caser=o(c). According to results earlier gapie waves and in the appearance of new Marangoni-driven
given the disturbances defining this combined mode are |0nEinffusion) modes. Contrary to the hydrodynamic long wave,
transverse waves for smailand for higha short longitudi-  he diffusion waves obey the conditian> a.. and must be
nal waves moving with the liquid on the film surface. The copsigered as short relative to the other one. A lower cutoff
second instability mod€2) is represented by the fast short ,,, has been determined by numerical calculations, while an
length waves ata>ay, (ay~4). The corresponding fast pper one is not formally considered in our mathematical
wave modg(3) in Fig. 5 for the other surface tension model model. All Marangoni-driven modes could be classified ac-
is shown for wave numbers,=1.5. The third mod&3) i cording to their phase velocitg,. For every positive value
Fig. 8 is the Marangoni-driven slow diffusion mode with of the Marangoni number, MaO0, there exists a slow mode
phase velocityC, ~ 1.5. N which has phase velocit, =~ 1.5. In the coordinate system
The numerical results for positive values of the Ma-moving with the liquid on the film surface these waves are
rangoni numbe(Ma=10, T=0,1) are shown in Fig. 9. We practically stationary. This mode can be considered weak,
see the hydrodynamic modgk 3) which are attenuated t0 @ pecause its growth ratew, is two orders of magnitude lower
large degree by the Marangoni effect. The maximal value ofhan the corresponding growth rate of the hydrodynamic
its growth rate(aw;),,=0.095 is less than half that for Ma mode. For negative values of the Marangoni number,
=0. Accordingly, the short length diffusion modé) is very  Ma<0, there exist two additional modes. One of them ap-
weak with (aw;)y,~0.016 for «=9. It could be compared proaches the hydrodynamic mode|&&| grows and a com-
with (@w;)=0.025 in Fig. 6 for a solutal system with  bined (Kapitza-Marangoni mode appears. The correspond-
=o(c). Note the absolutely unstable wai® with negative  ing eigenvalues exist for wave numbe#s=0. This mode
phase velocity shown in Fig. 9 for the caseo(I’) with T begins as a transverse hydrodynamic long wave with phase
=0,1. velocity C,=3 at@=0, then asy increases transforms into a
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longitudinal Marangoni-driven short wave with phase veloc-ity behavior. Only for low positive values of the Marangoni
ity C,~1.5. The main property of the combined mode is itsnumber, Ma> 0, both models provide about the same results.
very high growth rate which is two orders of magnitude The more complete model is better suited to obtain results
higher than that of the slow diffusion mode. The third type ofamenable to experimental observation. The change from one
Marangoni-driven instability is a fast wave diffusion mode. to the other of the surface tension equations of state with
Its corresponding phase velocity is positive and growsras syrfactant concentration has weak effect on the instability

increases to value§, ~ 10 in the interval of wave numbers pictyre and the results of numerical computations of eigen-
a,<a<10. For the fourth diffusion modéMa>0,a> «,) values are about the same.

the phase velocity is negative. These short length upstream
moving waves could generate absolute instability. All four
types of instability modes arising from the influence of the
Marangoni effect appear for both surface tension models,
o(c) ando(T"), but their corresponding Ma andvalues are The authors acknowledge fruitful discussions with E. De-
different. mekhin, S. Kalliadasis, A. A. Nepomnyashchy, Y. Pomeau,
The role of two surfactant transfer kinetics has been studb. Quere, C. Ruyer-Quil, Yu. S. Ryazantsev, A. de Ryck, B.
ied. The first is the model with the adsorbed surface excesScheid, G. M. Sisoev, V. M. Starov, and R. Kh. Zeytounian.
concentration artificially set constant, but with diffusion V.Ya.S. is grateful to the Spanish Ministry of Education and
taken into account. The second is the more complete mod&ulture for a Sabbatical position at the Instituto Pluridisci-
with an adsorption-desorption barrier, with surfactant diffu-plinar (Madrid, Spain. This research was supported by DGI-
sion to the bulk liquid and desorption to the adjacent gas o€YT (Spain under Grant No. PB96-599, by RFHARussia
air. Numerical results for both models show significant dif-under Grant No. 00-01-00645, and by the European Union
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