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Probability density functions of decaying passive scalars in periodic domains: An application
of Sinai-Yakhot theory
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Employing the formalism introduced by Sinai and YakfBhys. Rev. Lett.63, 1962(1989], we study the
probability density functiongpdf’s) of decaying passive scalars in periodic domains under the influence of
smooth large scale velocity fields. The particular regime we focus on is one where the normalized scalar pdf’s
attain a self-similar profile in finite time, i.e., the so-called strange or statistical eigenmode regime. In accor-
dance with the work of Sinai and Yakhot, the central regions of the pdf's are power laws. However, the details
of the pdf profiles are dependent on the physical parameters in the problem. Interestingly, for small Peclet
numbers the pdf'sesemblestretched or pure exponential functions, whereas in the limit of large Peclet
numbers, there emerges a universal Gaussian form for the pdf. Numerical simulations are used to verify these

predictions.
DOI: 10.1103/PhysReVE.69.056302 PACS nunid)erd7.52:+j
[. INTRODUCTION Physically, the ingredients in the balance responsible for this

. . . . , self-similar state aré) a limit on how thin filaments can get
We examine the probability density functionsdf's) of 35 ,.~ 0) and(ii) the “folding and filling” of filaments in-
decaying passive scalars without mean gradients under thg,ceq by the finite domaih.

action of smooth, incompressible, and time aperiodic flows For clarity, we introduce the following scalet:—the
in bounded periOdiC domains. In th|S Situation the eVOIUtionsca|e Of the domainv_the Sca|e of Variation Of the Ve|ocity
of a passive scalag(x,y,t), is governed by the advection- field, andl(t)—the maximum scale of variation of the scalar

diffusion (AD) equation: field. In terms of these scales the self-similar strange eigen-
mode is characterized byt) ~1,~t. Due to this similarity
¢ +(0- V)= V2 (1) of scales the problem possesses a global ngsee FH and
at ' SP). Hence, approximations based on scale separésioch

- ~as shifting to a comoving reference framavhich have

Here « represents the molecular diffusivity of the passiveyielded excellent results in other smooth advection-diffusion
scalar andi(x,y,t) is the advecting velocity field. The do- regimes—sometimes referred to as the Batchelor regime
main (D) under consideration is periodic, specifically we Ref.[15], [16], or [17] for a recent review—cannot be fruit-
take D to be[0,27]x[0,27] with opposite sides identified fully utilized. Also, whenlyt)<l,~%t (i.e., the Batchelor
(i.e., a 2-torug regime, it has been demonstrated that the pdf’s are nonuni-

In this work, we consider time aperiodic velocity fields versal, i.e., their shape evolves in tirfit6]. Obviously, in
whose spatial scale of variation is comparable to the scale afuch a situation there is no limiting scalar pdf and the theory
the domain. Essentially, the flows are of the type encounteregf Sinai and Yakho{18], which a priori assumes the exis-
in chaotic advectior[1] and the parameters correspond totence of such a limit, fails.
relatively large Peclet numbers. We focus on the case where |ndeed, it is the attainment of a self-similar, i.e., limiting,
the normalized scalar pdf’s attain a self-similar profile. Thispdf profile in finite time that makes the strange eigenmode
self-similar regime was first described by Pierrehumberfegime a suitable candidate for applying the Sinai-Yakhot
[2,3] (who named it a strange or statistical eigenmoaied  formalism.
has recently been examined in detail by Fereday and Haynes
[4] (hereafter FH, Liu and Haller[5], and also by Sukhatme Il. THE PDF EQUATION
and Pierrehumbef6] (hereafter SP These studies indicate Consider the dimensionless normalized variabte

that the self-similar regime is the appropriate long-time so— /(#?)1/2, where(-) represents a spatial average. By as-
lution to the AD equation in bounded periodic domains.

ous presentation, anfP] for an interpretation in terms of the
Perron-Frobenius operator induced by the underlying trajectory
*Email address: jai@ucar.edu problem. Also, see Ref410,1] for similar ideas in the case of
Note that, in contrast to the present statistical or strange eigersteady(3D) and(2D) flows, respectively.
mode, when the velocity fields atene periodic at long times the 2t is worth mentioning that this self-similar regime is different
scalar field represents a periodic eigenfunction of the AD operatofrom that noted in decaying scalar turbulende—-14. In those
Regarding these periodic eigenfunctions, or spatially repeating pastudies the advecting velocity field is turbulette., spatially
terns, see Ref7] for experimental results, SP for a physical inter- “rough”) whereas here we are concerned with smooth velocity
pretation,[8] for more recent work[5] for a mathematically rigor- fields.
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suming the stationarity in time gfx?") for all n, Sinai and  thatg(X,t) is even led Sinai and Yakhot to propose the ex-

Yakhot[18] showed pansion(in the vicinity of X=0) [18]
_ 2n—2(V¢))2 — 2n — — 2 24 ... Q= } @
(2n 1)<x o =(X", (2 g(X,t) =g(X) = ((VX)%) + BX" + B=5 e o
where Q,;=((V¢)?). Further utilizing Eq.(2), they showed (8)

that the pdf ofX is given by (denoting the sample space Substituting from Eq(6), we have(to orderX?)
variable by the same symbol

C X
P(X)=—1exp[—f Ldu], (3)
g(Xx) o 9(u) . . e -
Furthermore, the normalized conditional diffusion and dissi-

whereg(X) represents the conditional expectation of the nor-pation areR(X)=r(X)/{(VX)?) and G(X)=g(X)/{(VX)?), re-
malized dissipation, i.e.g(X)=((V¢)?/Q,|X). As it turns spectively. Using Eqg(7) and(9),
out, later work| 19-27 (see Ref[23] for an overview clari-

g(X) = %(1 + Zﬁ;%). 9)

ap

fied that the pdf of any statistically homogenous twice dif- RX)=-X: G(X)=1 +2LBX2_ (10)
ferentiable random field, say(X,t), is given by[22,24 ' a,
C, Yr(u,t) Recent numerical worksee FH suggests that, tends to a
P(t) = ————exp J ——du|. (4)  nonzero limit ask— 0, hence Eq(10) gives G(X)—1, as-
g(lllyt)/QZ 0 g(u,t)

suming thatB does not overwhelm the limit. In other words,
Q,=((VX)? and r(y,t)=((V?P)|4), 9(,t)=((V)?|4) rep-  keeping the assumption regardiggn mind, X and VX tend
resent the conditional diffusion and conditional dissipationto become independent &s—0 and we expect the core of
respectively. Furthermore, it was shown that if the momentghe pdf to tend to a universal Gaussian profile.

of ¥(X,t) are stationary, the[Q4,25:|,3 Further substituting Eq$7) and(9) in Eq. (4) yields (the
R central part of the pdf of X to be
iy =- 002, (5) 268, ]" «
' W P(X) :c2{1+—x2] Coy=1l+—2. (11
%) 4Kﬁ

Of course, Eq(5), when substituted in Eq4) yields a pdf o )
similar to the Sinai-Yakhot expression, i.e., E8). Note that, even though the power law is in agreement with

the work of FH, their arguments apply to the tail of the pdf
whereas the above expression is valid in the vicinityXof
=0. For further elucidation, defining=2«p/ a,, let us ex-

In the strange eigenmode regime, starting wiiti=0) amine how the shape &f(X) behaves withs. In terms of§,
~IU~L,4 after a transient period, it is seen tl{ate SP and

FH) P(X) = C1+ 5, y=1+— (12)

_ 26
(|p(xy,b|" ~ e t>T, (6)

_ _ , For larged we havey— 1, INP(X)]— -In(1+58X?). As both
whereT represents the duration of the transient period. Moreg 2 nd X are 0(1) quantities, all powers oX contribute to
importantly,a,,=nay; this linearity implies the stationarity of IN[P(X)]. On the other hr;md for smalb we have
the moments of the normalized scalar figl@f course, given . 1/28 ;':md ITP(X)]~ -X2/2 vx;hich is the expected oyut—
the stationarity, we .are.justified in using E(), with X come from the earlier ,discussion Profiles fof
replacingy. Substituting in Eq(5) from Eq. (6) we get =10,0.7,0.001 areshown in Fig. 1. the that, as de-

A. Conditional statistics in the strange eigenmode regime

B VXD, @ creasesP(X) goes fromresemblinga stretched exponential
rXt) =r(x)=- o3 " o (7 to pure exponential téexpectedl Gaussian function.
Regarding the conditional dissipation Xfand VX are inde- Il. NUMERICAL INVESTIGATION

pendent, therg(X,t)=((VX)?). This coupled with the fact . ] )
The AD equation was approximated by a lattice niap

followed by diffusion in Fourier space. The velocity field is

SChlng and KraiChnam24] hint at the pOSSlblllty of attaining sta- of a Sing'e |arge Sca|e; Speciﬁca”y’ we emp|oy the sine flow
tionary normalized moments by utilizing a cyclic domain; the self- (26,27

similar strange eigenmode appears to be precisely this case.

“Other initial conditions, especially(t=0)<I|,~L entail an evo- u(x,y,t) = f(t)Asin(y + p,),
lution of the scalar field through distinct regim@ee SP and FH for
detaily v(xY,t) =[1 - f(O]AeSIn(X + qp), (13)

°The exponential decay of moments is also valid whén <1, _
but in this casey, is a nonlinear function of the moment order ~ Wheref(t) is 1 for nT<t<(n+1)T/2 and 0 for(n+1)T/2
i.e., the moments are not stationdmg. <t<(n+1T. p,,q, (€[0,27]) are random numbers se-
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lected at the beginning of each iteration, i.e., for each periodarriers which may, and generally do, exist in 2D area pre-
T. A1, A, control the strength of the flow. The flow is imple- serving mapping$28].

mented as a 2D lattice map,,Yn) — Xni1,Yner) [3,27]. A A typical example Starting with a mean zero checker-
key feature is that the randomness duepter,, breaks any board initial condition on a 258 256 grid (A;=A,=2,«

|
3333

AWON =

100 150 200 250 300 350 400 . .
iteration FIG. 2. Typical evolution sce-

10 nario with k=9.33x 104, Upper
panel shows I(X?) vs iteration
for n=1,2,3, and 4. The mdle

Ef; 5l panel shows the pdf's from itera-
= tions 10—11Q(solid lines at itera-
tions 10 and 110The lowermost
0 . | panel shows the pdf's from itera-
-5 4 5 tion 150 to 350, i.e., when the nor-
. malized moments have become
stationary.
;
a 5r
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i FIG. 3. Self-similar pdf's for
k=2X 1078 (dasheyl and k=5.78
X 1074 (solid).

In[P(X)]
($)]

=9.33x 10, a typical evolution scenario is shown in Fig. Also, from Fig. 4 we see that for smadl the range ofX is

2. As is seen, the normalized moments attain constant valuggiite small, hence in this situation the Gaussian form de-

after a transient period of about 70 iteratiGnBuring this  scribes a fairly large part of the complete pdf. Next, in Fig. 5

transient periodP(X) evolves (a remnant of the initial we show the pdf's for a number of small diffusivities.

doubles pdf can be seen at iteration YL(Finally, after the  Clearly, the core oP(X) tends to a universal Gaussian form.

moments become stationaf(X) attains a self-similar pro- (2) Varying the strength of the flow: Fixing=10"° we

file as is seen in lowermost panel of Fig,7 2. vary A;,A,. The decay of the scalar variance for different
Peclet number dependencEo investigate the effect of flow strengths can be seen in Fig. 6. Evidenty flow

changing the Peclet number, we run a set of simulations witistrength, therefore for a fixed, 5= 1/(flow strength. The

(a) fixed flow strength and varying diffusivity ang) fixed  implication being that the core dP(X) should tend to a

diffusivity and varying flow strengths. Gaussian function for stronger flows. Figure 7 shows the
(1) Varying the diffusivity: KeepingA;,A, fixed and uti- pdf's (in the self-similar stage for two different flow

lizing the same checkerboard initial condition, we varyin  strengths—note the similarity to Fig. 3. Furthermore, Fig. 8

each case the evolution of the pdf is similar to that shown irshows the pdf's for a number of simulations with stronger

Fig. 2. The pdf's fork=2x 1072 and k=5.78< 10 in the  flows. Once again, the emergence of a universal Gaussian

self-similar stage are displayed in Fig. 3. With respect to thecore is evident. Also, note the similarity to Fig. 5.

analytical pdf, i.e., Eq(11), even thoughB is an unknown

the qua_litative similarity between Figs. 3 and 1 is evident IV. CONCLUSION AND DISCUSSION

(essentially, the dependence®f on « is fairly weak; when

k changes by an order of magnitude, as in the above simu- By applying the formalism introduced by Sinai and Ya-

lation, a, changes by a much smaller amourithe corre- khot[18] to a decaying passive scalar obeying the AD equa-

sponding plots of the normalized conditional dissipation ardion in a periodic domain, we obtained an expression for the

shown in Fig. 4. Note that for smakt, we haveG(X)~1.  pdf of the normalized scalar field. Broadly categorized as a

power law, the core of the pdf was shown to be dependent on

®The transient period may appear large, but it is important to notéhe physical parameters in the AD problem. Moreover, we

that the strange eigenmode appears only after the scalar field thW the emgrgence of a. unlyersal Gau_ssian core for the paf
folded and filled the domaifsee SP and FH for detajlsNVhereas, in (& the I'm't, of small diffusivity f(_)r a fixed ﬂO,W_ strength
significant decay of the variance starts much before this time, speand(b) the limit of strong flows for fixedc. Combining these
cifically when the diffusive scale is reached. observations we infer the emergence of a universal Gaussian

It is important to keep in mind that these results are for largeCOre in the limit of large Peclet numbers. Note that, the de-
Peclet numbers. In fact, in numerical runs with smaller Peclet numtailed dependence on Peclet number is not straightforward as
bers, even at large time€®") fluctuates with a fairly large ampli- P(X) is a function of botha, and « [Eq. (11)]—in turn a,
tude. depends both ork and flow strength. Interestingly, for
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smaller Peclet numberge. largers) the power-law pdf pro- put forth a plausible connection between the eigenmode re-
file resembles a pure or stretched exponential function. Wgime and homogenization theory, with the hope of shedding
believe that this is the reason for the misidentification of pdfsome light ona,. Broadly, in the realm of homogenization
profiles in earlier wor3] (and also SP theory it has been possible to show the convergence, in a
An intriguing, though poorly understood, feature of the coarse grained sense, of the AD equation to a pure diffusion
strange eigenmode regime is the actual decay rate of thequation for a variety of advecting velocity fielgsee Sec. 2
scalar variance—i.eq,. Before concluding we would like to of Ref. [29] or [30] for recent reviews The most common
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= 4 - and 5.78<10°“. The emergence
of a universal Gaussian core.
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! \
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situation is wher, <I4(t), i.e., velocity fields changing rap- [30]. Recent work has shown that such a diffusive limit ex-
idly in space but combined with either steadiness or periodists for a broader class of velocity fields, though the formula
icity in time [29,37. The opposite limit, along the lines of for the effective diffusivity may not be analytically tractable
the work by Kubo[32], is where the velocity fields have [33,34. Noting the long range spatidl, ~L) and short time
longe range spatial correlations but change rapidly in timgrandomness at each iteratjocorrelations of the velocity

(see Sec. 2.4.1 of Reff29] or [30]).

field required for the emergence of the self-similar eigen-

Indeed, it is this second limit where the effective diffusiv- mode, we conjecture that the strange eigenmode may be un-
ity of the scalar field is given by the Taylor-Kubo formula derstood as a homogenization phenomenon. Hence, at long

10 T

In(P(X))
o

T T T T
(A,A,)=(11) : dashed

(A, A,)=(26,2.6) : solid

FIG. 7. IMP(X)] vs X in the
self-similar stage for (Aq,Ay)
=(1,1) (dashed curvgs and
- (A1,Ar)=(2.6,2.6.
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