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A genuinely three-dimensional system, viz. the hyperbolic four-sphere scattering system, is investigated with
classical, semiclassical, and quantum mechanical methods at various center-to-center separations of the
spheres. The efficiency and scaling properties of the computations are discussed by comparisons to the two-
dimensional three-disk system. While in systems with few degrees of freedom modern quantum calculations
are, in general, numerically more efficient than semiclassical methods, this situation can be reversed with
increasing dimension of the problem. For the four-sphere system with large separations between the spheres,
we demonstrate the superiority of semiclassical versus quantum calculations, i.e., semiclassical resonances can
easily be obtained even in energy regions which are unattainable with the currently available quantum tech-
nigues. The four-sphere system with touching spheres is a challenging problem for both quantum and semi-
classical techniques. Here, semiclassical resonances are obtained via harmonic inversion of a cross-correlated
periodic orbit signal.
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I. INTRODUCTION When solving two- and three-dimensional systems with

The breakthrough for the semiclassical quantization off0th quantum and semiclassical methods it is interesting to
chaotic systems was the development of periodic orbit theorgtudy the scaling properties of the quantization methods with
[1,2]. In Gutzwiller's trace formula the density of states is the number of degrees of freedom, and to compare the effi-
expressed as an infinite sum over all isolated periodic orbitsiency of the various algorithms. The numerical effort for the
of the classical system. Although the periodic orbit theory isquantization of nonintegrable systems usually increases
in principle valid for systems with an arbitrary number of strongly with the number of degrees of freedom, and there-
degrees of freedom, applications have, for practical reasonfpre efficient quantization techniques are highly desirable. A
so far mostly been restricted to two-dimensional systemsarge variety of quantum mechanical and semiclassical meth-
The main difficulties are, first, the numerical periodic orbitods have been developed. The direct solution of
search, which becomes more difficult in multidimensionalSchrodinger’s equation is possible, e.g., by time-dependent
systems, and, second, the fact that the semiclassical traggye packet expansions or numerical diagonalization of the
formula usually does not converge. The convergence probamiltonian in a complete basis set. Exact quantum me-
lems can be solved, e.g., with cycle expandi@aS] or har-  chapical calculations usually require storage of multidimen-

monic inversion[6-8] techniques, and both methods have i) wave functions and a computational effort that grows
been successfully applied to the three-disk billiard as a proéxponentially with the number of coupled degrees of free-

totype model ofa tvyo-dimensiona_l hyperbqlic scattering SYSWom. These methods are therefore feasible for systems with
tem. Practical applications of periodic orbit theory to three- :

dimensional systems are very rare. For the three-dimensiony 20vely few degrees of freedom. As an alternative to exact
Sinai billiard extensive quantum computations have beefuantum calculations, apprquate, €.9., sem|cIaSS|caI,.meth—
performed and the quantum spectra have been analyzed s can be.used. Gut;wﬂlerstrace formula can be applied to
terms of classical periodic orbi{®,10. However, no semi- SyStems with an arbitrary number of degrees of freedom,
classical eigenstates have been calculated from the set Bpwever, the number of periodic orbits and the numerical
periodic orbits. Semiclassical resonances have been obtain&§0rt needed to find them usually increases very rapidly with
for the three-dimensional two- and three-sphere scatteringjicreasing dimension of the phase space. As a matter of fact,
systemg11] but for these systems all periodic orbits lie in a Gutzwiller’s periodic orbit theory has been applied almost
one- or two-dimensional subspace. exclusively to systems with two degrees of freedom, viz. the

In this paper we investigate the scattering of a particle orainisotropic Kepler problenil,14], the hydrogen atom in a
four equal spheres centered at the corners of a regular tetreragnetic  field [15], and two-dimensional billiards
hedron. Classical and semiclassical as well as quantum m¢3,4,16,17. For these systems direct quantum mechanical
chanical methods will be applied to the four-sphere system atomputations are usually more powerful and efficient than
various center-to-center separations of the spheres. The fouhke semiclassical calculation of spectra by means of periodic
sphere system can be regarded as the simplest extensionabit theory. The four-sphere system is an example where
the three-disk repellor to three-dimensional space with a setemiclassical methods turn out to be superior to direct quan-
of genuinely three-dimensional periodic orbits. Chaotic prop{tum mechanical computatiorj48], i.e., semiclassical reso-
erties of the four-sphere system have been verified experhRances can easily be obtained even in energy regions which
mentally by the observation of fractal structures via opticalare unattainable with the presently known quantum tech-
light-scattering on the spher¢$2,13. nigues.
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labeling the spheres d#,B,C,D}, it is possible to code a

periodic orbit as the infinite cycles of a limited length string

consisting of the sphere labels which we call here the itiner-

ary code of the orbit. For a given string length, all combina-
A tions of the lettergA,B,C,D} correspond to a physical orbit,

B with the exception that two consecutive letters in the itiner-
ary code cannot be identical and, for short center-to-center
separatiorR= 2a, some orbits may be excluded by pruning
(see Sec. Il ¢ Several itinerary code strings may represent

D e the same periodic orbit or a similar orbit obtained by a sym-
metry operation, i.e., rotation or reflection. For example, the
itinerary codesABC and BCA correspond to the same peri-

(a) ) odic orbit by cyclic permutations, and the orb&R8C, ACD,
ABD, andBCD can be mapped onto each other by rotations.
FIG. 1. The four-sphere system consists of four equal spheres By using the symmetry properti€g; of the tetrahedron
centered at the corners of a regular tetrahed@rLarge center-to-  the system can be reduced to its fundamental domain. The
center separatioR>2a. (b) Touching four-sphere system wiR  symmetry reduced orbits can be described by a ternary al-
=2a. phabet of symbols “0,” “1,” and “2,” which are the three
fundamental orbits, i.e., the symmetry reductions of the
The paper is organized as follows. In Sec. Il we investi-shortest orbits scattered between two, three, and four

gate the classical dynamics of the four-sphere system. Thepheres, respectively. Therefore, we shall use the symbol 0

symbolic code is introduced and its symmetry reduction byfor returning back to the previous sphere after one reflection,
means of the tetrahedra grolip is discussed. The periodic Ssymbol 1 for the reflection to the other third sphere in the
orbits are found in a systematic way by an efficient numeri-same reflection plane of the orbit, and symbol 2 for the re-
cal periodic orbit search, and the pruning of orbits at smallflection to the other forth sphere out of the reflection plane of
separations of the spheres is analyzed. In Sec. Il we introthe orbit. The reflection plane is defined by the centers of the
duce the semiclassical techniques for periodic orbit quantifirst threedifferentspheres toward back in the history of the
zation, viz. the cycle-expansion method, the harmonic inveritinerary code of the orbit. The primitive periodic orbits of
sion method, and the extension of harmonic inversion tecycle lengthn, in the fundamental domain are now given by
cross-correlated periodic orbit signals. In Sec. IV we presenthose periodic sequencesmfsymbols 0, 1, and 2 which are
the method applied for the exact quantum mechanical calcuree of subcyclese.g., the cod@101 with subcycl®1 is not
lation of the resonances. In Sec. V we show the results foprimitive, we will neglect the line indicating periodicity in
the semiclassical and quantum resonances at various sepatide following). The periodic orbits do not change by cyclic
tions of the spheres. The results are discussed with specipermutations of the code. We will choose the code word with

emphasis on the comparison of the efficiency of the varioushe lowest numerical value as the representatézg., 0112

methods. Some concluding remarks are given in Sec. VI. instead of 112§ With these rules every symmetry reduced
periodic orbit of the four-sphere system is uniquely described
by a symbolic code. However, at small separations of the

Il. CLASSICAL DYNAMICS: THE PERIODIC spheres some physical orbits are pruned as discussed below
ORBITS OF THE FOUR-SPHERE SYSTEM in Sec. Il C

The four-sphere system is a genuinely three-dimensional From the{0,1,2 code of the symmetry reduced orbits the
billiard where the systematic periodic orbit search is a non{A,B,C,D} itinerary code can be obtained as follows. We
trivial task. In this section we first develop the symbolic choose the plane spanned by the sphéfe8,C) as the
dynamics of orbits and the symmetry reduction using thenitial reflection plane and start the journey with the se-
tetrahedra group, and then discuss the numerical periodiguenceAB. Then the rules given above are applied for the
orbit search and the calculation of the periodic orbit paramsymbols 0, 1, and 2 to guide the orbit to the subsequent
eters. spheres. Note that symbolic codes which contain only the
symbols 0 and 1 lie in the two-dimension@,B,C) plane,
i.e., they correspond to the set of orbits with a binary sym-
bolic code, which has been well established for the three-

The four-sphere system discussed here consists of foufisk [3,4] and three-sphere systdil]. Orbits including the
equal spheres with radigscentered at the corners of a regu- symbol 2 are genuinely three-dimensional orbits. In Table |
lar tetrahedron. We choose=1 in what follows. The system we present the symbolic codes of all periodic orbits up to
is then solely determined by the center-to-center separatiogycle lengthsn,=3 of the symmetry reduced code. Note that
R. The four-sphere system with large center-to-center separo subcycles and cyclic permutations exist on the list. In the
ration R>2a and with touching sphere®R=2a) are shown second column, the corresponding itinerary cofesf the
in Figs. Xa) and Xb), respectively. symbolic codes of column 1 are given, which have been

In full coordinate space each orbit can be described by thebtained by following the rules explained above. The last
infinite sequence of spheres where the orbit is scattered. Bgolumn in Table | shows the symmetry classes of the orbits.

A. Symbolic code and symmetry reduction
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TABLE |. Symbolic codep of the symmetry reduced periodic As mentioned above the length of periodic orbits in full
orbits with cycle lengths),<3 and the itinerary codep of the  coordinate space can be two, three, or four times the length
orbits in full coordinate space. The colurhg gives the symmetry  of the corresponding symmetry reduced orbit in the funda-

type of the orbits.

mental domainsee Table)l As the required computational
effort for the quasi-Newton method increases rapidly with

p P hs the dimensionality of the problem, it is desirable to exploit

the symmetry properties of the tetrahedra group and to di-
0 AB gy, C2 . . . .
1 ABC rectly search for the periodic orbits in the fundamental do-

G main. To this end for a symmetry reduced orbit with cycle

2 ABDC S lengthn, the reflection point on the spherg+1 is associ-
01 ABAC gt ated with the reflection point on the first sphere by an appro-
02 ABADAC G priate transformation, i.e., one of the 24 possible symmetry
12 ABCDBADC S transformations of the tetrahedra grotip The length mini-
001 ABABCBCAC G mization is now applied to the trajectory segments between
002 ABABDBDCDCAC $ the first sphgr_e gnd_spheng+_1, i_.e., the c_iimensionality of

the length minimization of periodic orbits in the fundamental
011 ABACBC gy LY S . .

domain is reduced torf for all primitive orbits with cycle
012 ABACDC G lengthn

o

021 ABADBDCBC G Once a periodic orbit has been found its orbital param-
022 ABADCDBABCDC 3 eters required for semiclassical periodic orbit quantization
112 ABCADC oy can be calculated. The most important ones are the mono-
122 ABCDACBDC G dromy matrix and the Maslov index of the orbit. The Maslov

index increases by 2 at each reflection on a hard sphere, i.e.,
Mpo=2N,, for an orbit with cycle lengtm,. The calculation of
The T4 group has Je, 3C,, 8 C;, 6 S,, and 60y, in total 24  the monodromy matriM ,, for the periodic orbits of three-
different symmetry elements. Each orfgcept the one rep- dimensional billiards has been investigated in R¢gs21].
resented by Dcan be assigned by one and only one of theM, iS @ symplectic(4xX4) matrix with eigenvaluesi,,
symmetry element$e, o4,C,,Cs,S,} of the groupTy. Note  1/Ag, Ny, and 1A,. For the hyperbolic four-sphere system
that periodic orbits in the fundamental domain, and thus theiand\, are either both real or the orbits are loxodromic, i.e.,
symmetry reduced symbolic codes, are two-, three-, or fourthe eigenvalues oM, are a quadruplgx,1/x,\",1/\"}
times shorter than the orbitand the itinerary codgsn the  with N being a complex number. For the four-sphere system
full coordinate space when they belong to the symmetrywith radiusa=1 and center-to-center separatier 6 the or-
class{oy,C,}, Cs, Or Sy, respectively. The symbolic length of bital lengths and stability parameters for all primitive peri-
orbits belonging to symmetry class i.e., the identity is odic orbits with cycle lengtm,<3 are presented in Table II.
unchanged under symmetry reduction. For that sphere separatiqR=6a) we have calculated the
complete set of primitive periodic orbits with symbol lengths
np= 14, numbering 533 830 orbits in total. For sphere sepa-
rationR=2.5a we also calculated all primitive periodic orbits
Each trajectory of the four-sphere system is completelyyith symbol lengthsn, <14, and in addition all orbits with
determined by the reflection points on the surfaces of thgymbol lengthsn,<22 and physical lengths<12, which
spheres, which on each sphere can be described by twflows for the construction of a periodic orbit signal with

spherical coordinate$ and ¢. For a given itinerary code |ength L,,,=12 used for the semiclassical quantization in
arbitrarily chosen reflection points on the spheres connectedec. V B.

by straight lines in the correct order result in a periodic but
not necessarily a physical orbit. The true physical orbit, for . '
which the incident and reflection angle at each reflection C. Pruning of orbits

point must coincide, can be obtained by direct application of Egr center-to-center separatioRs> 2.0482 between the
Hamilton’s principle, i.e., the orbital length, which is propor- spheres there is a one to one correspondence between the
tional to the classical action, becomes a minimum when thgympolic codes and the primitive periodic orbits. However,
reflection points are varied. The length function of an orbityhen the separation is reduced below that value some orbits
with a total number oN reflection points depends on thBl2  pecome unphysical, i.e., the symbolic dynamics is pruned.
variables{6;, ¢} with i=1, ... N. Numerically, the minimiz-  The pruning of orbits has been investigated in detail for the
ing of the length three-disk scattering systef#2,23. For the four-sphere sys-
_ tem the mechanism is similar: As illustrated in Fig. 2, an

L= L0, b1, 02, b2, - O ) @ orbital segment maya) pass through one of the spheres, or
can be achieved by applying the well established quasitb) a reflection may occur inside one of the spheres. For a
Newton method[19], which is implemented, e.g., in the periodic orbit search at small separation between the spheres
NAG-library [20]. The required gradient of the length func- all orbits obtained numerically by minimizing the length
tion VL has been derived analytically. must be checked whether pruning occurs or not. For touch-

B. Numerical periodic orbit search
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TABLE II. Parameters of the symmetry reduced primitive periodic onpitgth cycle lengthn,< 3 of the

four-sphere system with radiws=1 and center-to-center separati@r 6.

p h, L Ren, Imhq Rexn, Im\,

0 04,Cy 4.000000 9.89898 0.00000 9.89898 0.00000
1 Cs 4.267949 -11.7715 0.00000 9.28460 0.00000
2 Sy 4.296322 -4.52562 9.49950 -4.52562 —-9.49950
01 oy 8.316529 -124.095 0.00000 88.4166 0.00000
02 Cs 8.320300 -37.1479 98.0419 -37.1479 -98.0419
12 S, 8.567170 117.644 0.00000 -102.992 0.00000
001 Cs 12.321747 -1240.54 0.00000 868.915 0.00000
002 S, 12.322138 -353.853 976.176 -353.853 -976.176
011 oy 12.580808 1449.55 0.00000 824.981 0.00000
012 C, 12.617350 1192.83 0.00000 -1020.66 0.00000
021 Cs 12.584068 1201.43 0.00000 -996.800 0.00000
022 S, 12.619948 -755.582 804.976 -755.582 -804.976
112 oy 12.835715 -496.339 1038.46 -496.339 -1038.46
122 Cs 12.863793 -1100.56 0.00000 1219.28 0.00000

ing spheregR=2a) all pruned orbits with symbol lengths Ill. SEMICLASSICAL PERIODIC ORBIT THEORY

n,=<7 and their pruning typea or b are presented in Table

. : . . . We now wish to calculate semiclassically the resonances
l1l. Pruning exists for orbits with symbol lengtimg =5, i.e.,

of the four-sphere scattering system by application of peri-

the symbolic dynamics is complete only fog<4. Further- g bt theory. Gutzwiller's trace formulgl] expresses
more, periodic orbits with long heads of 0 symbols in thethe quantum mechanical response function

code can have accumulation points at finite values of the
physical lengthL. It is impossible to find all orbits beyond
the first accumulation point. We have searched for all peri-
odic orbits of the touching four-sphere system with physical
lengthsL < Lyna,=3.6, symbol lengths), <60, and with the  in terms of the periodic orbits of the underlying classical
total number of 1 and 2 symbols in the symbolic code resystem, i.e.,
stricted ton, +n,=< 10, resulting in about 2.8 10° primitive
periodic orbjts. . o o ' Jso(E) = 9o E) + > ApO(E)eiSpo(Eﬂh, (3)

The semiclassical quantization by harmonic inversion of a po
cross-correlated periodic orbit signake Sec. Il Grequires _ i
the knowledge of the expectation values of various IinearIQ’Vherego(E) is a smooth function of the energy andy(E)
independent classical observabiealong the periodic orbits 2NdSy(E) are the periodic orbit amplitudgscluding phase
[24,25. We have chosen the observabResr2 and A,=L2, mformaﬂon given by the' Maslov |ndlc¢and cla§S|caI ac-
i.e., we have calculated the averaged squared distance aHans respectively. For bllllards_ the classical action depends
squared angular momentum of the periodic orbits of thdinearly on the length of the trajectory and the wave number
touching four-sphere system.

1
ggm(E) = % E-E.+ic (2)

TABLE IlI. All pruned orbits with cycle lengtm,<7 and their
pruning typesa or b (see Fig. 2 of the four-sphere system with
touching spherefR=2a.

Symbolic code Pruning type

00021 a

000011 a

000021 a

000002 b

@ ® 0000001 b
FIG. 2. Sketch of the two types of pruning occurring in the 0000011 a
four-sphere system at small separation between the spliarés 0000021 a
orbital segment passes through one of the sphéog# reflection 0000002 b

occurs inside a sphere.
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TABLE IV. Weight factorsw,, for the periodic orbit suniEq. A. The cycle-expansion method

(4)] of the four-sphere system with symmetries of the tetrahedra The periodic orbit sum in Gutzwiller’s trace formula does

group Tg. . - - .
usually not converge in the energy regions of physical inter-
est. However, for some systems, e.g., the three-disk scatter-

Td e Qg Cz S4 (o] . P . . .
ing billiard, semiclassical energies, or resonances can be ob-

A 1 1 1 1 1 tained with the help of the cycle-expansion mettigds). If

A, 1 1 1 -1 -1  the periodic orbits can be associated to a symbolic dynamics

E 2 1 2 0 0 the Gutzwiller-Voros{ function [1,30] can be expanded ac-

T 3 0 1 1 1 cording to increasing cycle length of the orbits. In this ex-

Tl 3 0 . 1 pansion the contributions of long periodic orbits may be ap-

5 - -

proximately shadowed by the combined contributions of
shorter orbits. In this case the cycle expansion can converge
— PME : . . rapidly.

k_—\eZME/h with M being the particle mass. For f[he three- “ror pilliards the Gutzwiller-Voros zeta function can be
dimensional four-sphere system the periodic orbit sum as gitten as

function of the wave numbeét reads

wy(— 1ML e Zokn =t - S 3 2L A g
: < (4) por=tl \/|de(|\/|;)— 1)|
with an additional parameterwhich must be setta=1. The

wheren, is the cycle lengthl, the physical length\,; are  cycle expansion is achieved by takiagas a bookkeeping
the eigenvalues of the monodromy matrix, an the rep-  variable and expanding E¢p) as a truncated power series in
etition number of the primitive periodic orbfi. The weight  z The semiclassical resonances are obtained as the @eros
factorsw, result from the symmetry decomposition of the the variablek) of the cycle-expanded function (5) with
system[26] and depend on the chosen irreducible subspacagainz=1. In our computations for the four-sphere system
of the spectrum and the symmetry of the periodic orbits. Fowe use cycle expansions up to oragy,,=12.
the tetrahedra groufy the values of the weight factors,
are given in Table IV. In the following we will concentrate
on the subspaca;, where the weight factors of all orbits are
wp=1. An alternative method for semiclassical quantization is

The semiclassical resonances of the four-sphere systehased on the observation that the extraction of eigenvalues
are given by the poles of the functiagtk). However, it is  from Gutzwiller’s trace formula can be reformulated as a
well known that the periodic orbit su) does not converge signal processing tagké—8|. The harmonic inversion method
in those regions where the physical poles are located, ang briefly explained as follows. The Fourier transform of the
special techniques must be applied to obtain an analyticdunctiong(k) in Eq. (4) yields the semiclassical signal
continuation of the periodic orbit sud). For the three-disk 1™l
system with large center-to-center separatiBr6a the s p _
cycle-expansion method3,4,27 and harmonic inversion L= %rEl VldetM|,-1)] L=y ©®
techniqued6,7] have proven to be powerful approaches for
overcoming the convergence problems of the periodic orbifS a sum ofs functions. The central idea of semiclassical
sum, and both methods can also be successfully applied @/antization by harmonic inversion is to adjust the semiclas-
the four-sphere system. However, when pruning of orbits setgical signalC*qL) with finite lengthL <L, to its quantum
in at small separations, and in particular in the case of touchmechanical analog
ing disks or spheres, the situation is much more difficult and
subtle, since the direct application of the cycle-expansion — cam(L) = _J E e kldk= ", de7n",
method fails. The two-dimensional closed three-disk billiard k tie n
is a bound system, where a few semiclassical eigenenergies 7)
have been obtained in RgfL4] using the cycle expansion in
combination with a functional equation. This method is notwhere the amplituded,, and the semiclassical eigenvallgs
valid for open systems and cannot be extended to the fougre free adjustable complex parameters. This is achieved by
sphere system which remains open even in the case of touchignal processing31,32 of the semiclassical sign&@®*L).
ing sphereg12,13. Nevertheless, the harmonic inversion of Numerical recipes for extracting the parametfs, k,} by
cross-correlated periodic orbit signd4,25 has been suc- harmonic inversion of theé function signal(6) are given in
cessfully applied to the closed three-disk sysf@®29 and  Refs.[8,33.
this method will also serve as a powerful tool for the three- Note that the cycle expansion does usually not work for
dimensional four-sphere system. We will now introduce thesystems that are highly pruned because the condition that
quantization methods. Applications to the four-sphere systemontributions of longer orbits are shadowed by combinations
and comparisons with quantum mechanical results will beof short orbits is not fulfilled. The shadowing is, however,
presented in Sec. V. not required for the harmonic inversion method which is

g(k) = EE

o |2 - N1 = N2 =Npo =N

B. Semiclassical quantization by harmonic inversion
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based on signal processing of the semiclassical periodic orbit 1 (e

signal C3(L) in Eq. (6), with L the orbit length. Therefore aa,p:L_f Ala(L),p(L)]dL, (12)

the periodic orbits are naturally arranged and truncated by p-0

the orbit length rather than symbolic length or Maslov indi- .

ces as for the cycle-expansion method. with A,(q,p) the Wigner transform of the operatdy,. Semi-
classical approximations to the eigenvalidgand eventually

C. Harmonic inversion of cross-correlated periodic orbit also to the diagonal matrix elemenfs|A,n) are now ob-
signals tained by adjusting the semiclassical cross-correlated peri-
odic orbit signal(11) to the functional form of the quantum
The method of semiclassical quantization by harmonic insjgnal (10). The numerical tool for this procedure is an ex-
version of cross-correlated periodic orbit signals is a genertension of the harmonic inversion method to the signal pro-
alization of the quantization scheme presented in Sec. Il Beessing of cross-correlation functiof85,36. The advantage
The idea is to use the classical average values of a set @f ysing the cross-correlation approach is based on the real-
linearly independent classical observables to construct gation that the total amount of independent information con-
cross-correlated signal, whose informational content is sigtained in theN x N signal isN(N+ 1) multiplied by the length
nificantly increased as compared to the one-dimensional sigsf the signal, while the total number of unknowtiereb,,
nal, and therefore should lead to semiclassical spectra withq k.) is (N+1) times the total number of polds, There-
improved resolution. o . fore the informational content of thi X N signal per un-
The numerical tools for the harmonic inversion of cross-ynown parameter is increase@ds compared to the one-
correlated periodic orbit signals have already been well esgimensional signalby roughly a factor o, and the cross-

tablished25], and therefore we only briefly review the basic .qrelation approach should lead to a significant
ideas and refer the reader to the literature for details. Fofmprovement of the resolution.

simplicity but without loss of generality, we focus on billiard

systems, where the shape of the orbits is independent of the

energyE, and the classical action of orbits reafisAkL, IV. QUANTUM CALCULATIONS
with k the wave number and the physical length. The start-

ing point is to introduce a weighted response function in Schrédinger's equation for the three-disk or the four-
terms ofk sphere system is a free wave equation in two or three dimen-

sions,[A+k?]¥(k)=0, with Dirichlet boundary conditions,
B0, i.e., ¥(k)=0 on the surface of the disks or spheres, respec-
P — (8) tively. Although the problem looks simple the solution is a
nontrivial task and, most importantly, the numerical effort
) ] ] increases extremely rapidly with the dimension of the sys-
wherek, is the eigenvalue of the wave number of eigenstatgem.
In) and For the three-disk system the exact quantum resonances
can be obtained as roots of the equatjiamn,37]

gaa’(k)zg k_kn+i€’

ban = (N[AJm) 9) |
, , , detM (>%*=0, (13)

are the diagonal matrix elements of a chosen sét lafearly
independent operatoss,, «=1,2, ... N. The Fourier trans-

form of Eq. (8) yields theNx N cross-correlated signal with m andm’ nonzero integer numbers which can be trun-

cated by an upper angular momentum,,,= 1.5ka [27].

With matricesM (k):’r;]'gfk of dimension up to~(400x 400,

H +oo
Cm,(L):I—f Ooo (K€K dk= D b b, e K0t Eq. (13) allows for the efficient numerical calculation of
27 ) n resonances in the region<tReka=<250. The matrix ele-
(10) ments ofM (k)ﬁ;gfk in Eq. (13) can be written analytically in
terms of Bessel and Hankel functions. Explicit expressions
A semiclassical approximation to the cross-correlated signaire given in Ref[27]. The quantum resonances are obtained
(10) has been derived in Refi24,34. The cross-correlated by a numerical root search in the compleylane[19].
periodic orbit signal reads Similarly, exact quantum resonances of the three-
dimensional four-sphere scattering system can be obtained as
“ a,.a. (- 1)L roots of the equation
C* (L) = b P PaL-rLy), (11
w=2X Jeeaar—my 2L @

detM (k)4-sphere: , (14)

Im,I’'m’
wherer is the repetition number counting the traversals of
the primitive orbit, andVl, is the monodromy matrix of the with O<I,I"<l,candm,m’=0,3,6,9, ...l for the sub-
primitive periodic orbit. The weight factors, , are classical ~spaceA; and A,. An explicit expression for the matrix ele-
averages over the periodic orbits ments ofM (k)*P"®"®nas been deriveflLl] and reads

Im,I"m’
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4-sph 3 —. . jika) tra with arbitraryR. However, the calculation of the matrix
M (k) o = O Omny + ~\4mi' ImGnr i i i i &
Im,l"m 2 hl(,l)(ka) elements in Eq(15) still requires the summation ovér
The second problem of solving E¢L4) is the scaling of
the dimension of the matriM (k)*SP""® which is anNx N

. ) Im,|’m’ *
matrix with

X X Cl,ml",m'T; 6, B (KR), (15)
=0
N= %(lmax"' 2)(Imax+ 3),
~ i.e., N scales as\~k? for the four-sphere system, as com-
C(l,m,1",m’,1; 65, Bo) pared toN~k for the three-disk system, E@l3). For ex-
" <~ C ) ample, in the regiotka~ 200 the required matrix dimension
(- M

with

- " / 5T is N=300 for the three-disk system, as comparedNo

Mz, I \/(ZI *DE"+ 1) +1) =15 000 for the four-sphere system. For the four-sphere sys-

tem with center-to-center separatid®s 6a, R=2.53, and the
><[d'n'1,M(,80) (- 1)m,dl_lm/,M(ﬂo)] touching spherek=2a we have computed the quantum
resonances in the regionsORe ka<60 by solving Eq(14)

1 |’ | with matrices of dimension up td751x 1751). The results
m-=M M -m will be presented in Sec. V. With currently available com-
_ puter technology it is impossible to significantly extend the
I " guantum calculations for the four-sphere system to the region
-m=M M m/l (16) Re ka>60 using Eq(14). The efficiency of the semiclassi-

cal and quantum methods for the four-sphere system will be

where the * signs refer to the subspaceand A, respec-  compared and discussed in Sec. V D.
tively. The angles), and B, in Eq. (16) are obtained from

0 0 O

X l(— D™ m-m (6o, 0)(

e g 0)(

2 1
cog6p) = - J_E, sin(6y) = ’_g, V. RESULTS AND DISCUSSION
V V

We will now present and discuss the results of our semi-
classical and quantum computations for the four-sphere sys-
tem with large sphere separati®* 6a intermediate separa-
tion R=2.5a, and touching sphereR=2a. In Sec. VD we
. ) o ) will compare and discuss the efficiency of the various quan-
and thed, (B) are the matrix elements of finite rotations tj;ation methods.

(38],

1 2 ~
cogBy) = - 3 sin(By) = év’Z,

dj;nm((ﬂ) =(jm|e”PY|jm’). A. Sphere separationR=6a

The gquantum mechanical and semiclassigatlesonances
of the four-sphere system with radigs=1 and center-to-
center separatioR=6 are presented in Fig. 3. The quantum
12 form=0 resonances marked by the squazeshhave been obtained by
6211 form=3.6.9, ...1 solving Eq.(14) with matricesM (k);-*""*"®of dimension up

Im,I’m’
0 otherwise.

The large brackets in E¢16) refer to 3§ symbols[38], and
the values ofy,, are defined as

to (1134x 1134, which is sufficient only to obtain con-
verged results in the region Res50 [see Fig. 8)]. By
Note thatg,-, should readg,=1/v2 instead of\2 in Eq.  contrast, the semiclassical resonances can easily be obtained

(38) of Ref. [11]. Similar as for the three-disk system the IN @ much larger region, e.g., Re< 250 shown in Fig. &).
angular momentuniquantum numbersand!’ in Eq.(14)] 1he crosses mark the zeros of the cycle-expanded
can be truncated df,,,= 1.5a to achieve convergence of Gutzwiller-Voros ¢ function (5). The cyclle expansion has
the calculation. been truncated at cycle length,,=7, which means that a

It is important to note that the computation of the quan_total set of j_ust 508 primitive periodic orbits are incl_uded _in
tum mechanical resonances of the three-dimensional foufh€ calculation. The plus symbols mark the semiclassical
sphere scattering system becomes much more expensive thi$onances obtained by harmonic inversion of the periodic
for the two-dimensional three-disk system. First of all, theOrbit signal(6) with signal lengthl,,=60 constructed from
calculation of each matrix eIemeM(k),“n;jp,:‘f,rein Eq. (15) fgﬁgtiestn o$f 11133 830 primitive periodic orbits with cycle
requires the summation over quantum numbensd[via Eq. In thepregion Rek<50 [Fig. 3a@)] the quantum and semi-
(16)] M. To accelerate the calculation of the mat(k5) at  ¢|assical resonances agree very well, with a few exceptions.
various values gk we have calculated and stored the valuestpe first few quantum resonances in the uppermost reso-
of C(I,m,l”,m’",1; 64,8, in Eq. (16) separately. Equation nance band are narrower, i.e., closer to the real axis than the
(16) does not depend on the sphere separd®oand there- corresponding semiclassical resonances. A similar discrep-
fore the storedC values can be used in calculations of spec-ancy between quantum and semiclassical resonances has al-
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FIG. 4. A, resonances in the complé&qplane of the four-sphere
system with radiusa=1 and center-to-center separati®s2.5.
Squares: Quantum computations. Crosses and plus symbols: Semi-
classical resonances obtained by cycle expansion and harmonic in-
version methods, respectively.

harmonic inversion method requires more and more periodic
orbit data. However, both semiclassical quantization tech-
nigues, i.e., cycle expansion and harmonic inversion can still
be successfully applied at significantly reduced separation
between the spheres.

As an example of an intermediate sphere separation we
discuss the case=2.5a, where the spheres are rather close,
however, the symbolic dynamics of the periodic orbits is still
complete, i.e., no orbits are pruned. The graphical compari-
son of the quantum mechanical and semiclassical resonances

FIG. 3. A resonances in the compléoplane of the four-sphere  in the region G<Reka= 100 is given in Fig. 4. The semi-
system with radiusa=1 and center-to-center separati®=6.  classical resonances shown as plus symbols have been ob-
Squares: Quantum computations. Crosses and plus symbols: Sergiined by harmonic inversion of a periodic orbit signal of
clas..c,ical resonances obtgined by cycle expansion and harmonic iﬂéngth Lma=12. The signal has been constructed using all
version methods, respectively. primitive periodic orbits with symbol lengths, <14 and
parts of the orbits with symbol lengths £5,<22, in total
a set of about 4.8 1P orbits. The crosses in Fig. 4 mark the
more, in the region R&<15 and Imk<-0.5 several semiclassical resonances obtained by 12th order cycle expan-
quantum resonances have been fo[s®k the squares in Fig. sion using the complete set of 69 706 primitive periodic or-
3(®)], which seem not to have any semiclassical analogbits with symbol lengths),<12. The exact quantum reso-
These resonances are related to the diffraction of waves @tances have been obtained in the regica Re k=60 by
the spheres, and its semiclassical description requires an egelving Eq. (14) with matrix dimensions up to(1751
tension of Gutzwiller’s trace formula and the inclusion of x 1751).
diffractive periodic orbits[39,4Q. The semiclassical reso- In the region Re&k=60 the resonances obtained by the
nances obtained by either harmonic inversion or the cyclenwo semiclassical methods are in excellent agreement except
expansion methofthe plus symbols and crosses in Figo)3  for the imaginary parts of some resonances very deep down
respectively are generally in perfect agreement, except forin the complex plane. In this region the semiclassical reso-
the very broad resonances that lie deep in the complex planfiances agree well with the exact quantum mechanical reso-
i.e., in the region Ink=<-0.8. nances, the deviations are due to the semiclassical approxi-
mation, i.e., the first-ordet expansion in the semiclassical
trace formula. As in the case=6a (Sec. V A some quan-
tum resonances in the region Re 10 are related to the

The semiclassical quantization becomes more and morgiffraction of waves at the spheres and do not have a semi-
demanding with decreasing separation between the spheresassical analog without the appropriate extension of the pe-
The reason is that the shadowing of longer orbits by combiriodic orbit theory[39,40. At Re k=60 the agreement be-
nations of shorter orbits in the cycle-expanded Gutzwillertween resonances obtained semiclassically via cycle
Voros ¢ function becomes less accurate and the constructiosxpansion and harmonic inversion becomes less perfect, es-
of the periodic orbit signal of length <L, used for the pecially for some broad resonances with kas —1.1. Unfor-

Imk

x X

R
i
+ xS("’)(
x

X X
150 200

(b) Re k

ready been observed in the three-disk systéya7]. Further-

B. Sphere separationR=2.5a
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tunately, no quantum results are currently available for 0% - - T harmonic imversion %
Re k> 60 to judge the quality and accuracy of the semiclas- HI of cross-correlated signal -~ +
sical computations in that region. . quantum =
C. Four touching spheres(R=2a) a . o7

The semiclassical quantization of the four-sphere systens o0 @+
becomes even more difficult when the spheres are furthe ., O °
moved together and the symbolic dynamics becomes prune 1= . s o]
(see Sec. Il @ In particular, the case of touching spheres H a g+ a
with R=2a is a real challenge for the following reason. For 2 x R * ° @
touching spheres the symbolic dynamics is pruned in a simi- 5| % °0 o
lar way as in the three-disk problef3]. The closed three- B . . . . .
disk billiard is a bound system, and some eigenenergies hav 0 10 20 30 40 50 60
been extracted by either combining the cycle-expansion Re k

method with a functional equatiofi4] or by the harmonic
inversion method28,29. However, contrary to the closed
three-disk system the four touching spheres do not form

FIG. 5. A; resonances in the compldéxplane of the touching
our-sphere system with radi@s=1 and center-to-center separation

bound system, which means that the method of Re4] =2. Square_s: Quantum con_pr_Jtatlon_s. Crgsses: nglclassmal reso-
nances obtained by harmonic inversion without using cross corre-

gomabtl'glr?gc;?]iofygf-gxp?gjIogng](attr?os(j t\rllvtlethtoa Cfﬁ.gcu?galrl_atior_]. Plus s_ymbols: Semiclassical resonances_ob_tainec_i by _the har-
quati pplied, 1 thus uching tou monic inversion of &3 X 3) cross-correlated periodic orbits signal

sphere system cannot be quantized with the help of thﬁsing the operators (identity), L2, andr?

cycle-expansion method. Nevertheless, we will now demon- T '

strate that the harmonic inversion method applied to a cross-

correlated periodic orbit signal can reveal at least some of th@S discussed above, i.e., they cannot be explained without

low-lying semiclassical resonances. extensions of the semiclassical theories applied in this paper.
For the construction of the periodic orbit signal we have
calculated about 2.8 10° orbits of the touching four-sphere  D. Efficiency of the semiclassical and quantum algorithms

system with lengthd. <L,,=3.6. (Note that the signal is g4 e four-sphere system as an example of a physical

incomplete as discussed in Sec. ) €or the applica’Eion of system with three degrees of freedom we now wish to dis-
the cross-correlation technique we use the operadgrsl  cuss and compare the efficiency of the semiclassical and
(the identity, the squared angular momentu=L2, and quantum computations. As mentioned in the Introduction

the squared distance from the origzhg:rz. Because the sig- (Sec. ) the _efficie_ncy of quantum computations usually de-

nal is incomplete and rather short the results of the harmoni€réases rapidly with the number of degrees of freedom of the
inversion are less perfectly converged than for the fourPhysical system. It is an interesting and important question
sphere system with larger sphere separation, i.e., the ampM‘-’hether semlclass[cal me'thO('js can 'beat.the e_ff|C|ency of
tudesd, in Eq. (7) may deviate from the ideal valuek=1 quantum computations Wlth increasing d|men5|_on of the
for true physical resonances amtj=0 for spurious reso- problem. Although there is not much hope and evidence that

nances which must be omitted. As a criterion to accept resd!is is generally true, because of the exponential proliferation
nances we have chosen the conditjdg-1|<0.5. of periodic orbits in chaotic systems, it can be true for certain

The results of our semiclassical and quantum COmputaspecific systems. An example for the superiority of semiclas-

tions for the four touching spheres are presented in Fig. 5sical over quantum mechanical calculations is the four-
The crosses mark the semiclassical resonances obtained Bjhere system with large sphere separation, &g.6a,
harmonic inversion of the one-dimensional periodic orbitWhere semiclassical resonances can easily be obtained even
signal. The low number of crosses indicates that the convefl' €Nergy regions which are out of reach for the presently
gence of the one-dimensional signal is not very satisfactory"oWn quantum techniqugd8]. To understand this it is in-
The plus symbols show the resonances obtained by harmonf¢'uctive to study the expense and scaling properties of the
inversion of the(3 3) cross-correlated periodic orbit signal duantum and classical computations for the three-disk and

. - - , four-sphere system.
— -1 2 —2
using the operator#, =1, Ay=L", and Ag=r®. With Fhe As explained in Sec. IV exact quantum resonances of the
cross-c_orr.e.latmn tgchmque the convergence properties ha\(ﬁree-disk and four-sphere systems can be obtained as roots
been significantly improved compared to the analysis of th f Egs. (13) and (14), respectively, with angular quantum
one-dimensional signal. The real parts of the semiclassic X '

. umbers truncated §t,,= 1.5a. The calculation of the ma-
resonances agree well with the real parts of the exact quan-. elementsM (K> 5""%in Eq.(14) is much more expensive
tum mechanical resonances marked by the squares in Fig. il dml’m’ 9 3-disk : P
The agreement between the imaginary parts is, however, ledan for the matrix elementd (k) ;™ in Eq. (13). However,
perfect. Some quantum resonances in Fig. 5 do not have the serious problem of solving E(l4) is the scaling of the
semiclassical counterpart. Those resonances with<R&0  dimension of the matriv (k)ﬁ;j‘?ﬂff? which is anNx N ma-

are probably related to the diffraction of waves at the spheresix with N=(I a5+ 2)(Imaxt 3)/6, i.e.,N scales adN~ k? for
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the four-sphere system, as compared\te k for the three- calculations for the touching spheres are therefore at least
disk system, Eq(13). For example, in the regioka~200 about the same or even more expensive than the quantum
the required matrix dimension =300 for the three-disk Ccomputations.
as compared tdl =15 000 for the four-sphere system. With
currently available computer technology it is, therefore, im-
possible to significantly extend the quantum calculations for In summary, we have investigated an open system with
the four-sphere system to the regid@a>60 using Egs. three degrees of freedom, viz. the four-sphere scattering
(14—<16). Note that the cost of the quantum computationsproblem with various sphere separations by means of classi-
does not depend on the separatRrbetween the disks or cal, semiclassical, and quantum mechanical methods. The
spheres. classical system has genuinely three-dimensional periodic or-
The expense of the semiclassical quantization is basicallpits- In the symmetry reduced fundamental domain, they can
given by the required number of periodic orbits which, in P& associated to a ternary symbolic alphabet, which allows
chaotic systems, increases exponentially with the s:ymbolii;)Or a systematic periodic orbit search. For large separations
or physical length of the orbits. For the three-disk system th@€tween the spheretR=2.53) semiclassical resonances
number of symmetry reduced primitive periodic orbits with @ve been obtained by application of the cycle-expansion
symbol lengthn, is given approximately byN~2"/n, technique and the harmonic inversion method. For touching
whereas it scaleps ad~3"/n, for the four-sphere system. spheres(R=2a), the symbolic dynamics is pruned and the

Contrary to the quantum computations the numerical exWCIIe expansion does QOt convlergek; h(r)]wever,_sqme sgmicl?s-
pense for the semiclassical quantization, i.e., the requireaIca resonances can be revealed by harmonic inversion ot a

. cross-correlated periodic orbit signal.
ngmber of orbits depends on the sepfaraﬂR)between the Exact quantum mechanical resonances have also been cal-
disks or spheres. For large separatiBr6a the cycle-

. : e 4 culated, however, the quantum computations for the three-
expansion method is most efficient for the calculation of ay;ansional four-sphere system are much more expensive

large number of resonances. The reason is that the assuma for the two-dimensional analog, viz. the three-disk scat-
tion of the cycle expansion that the contributions of longertering problem. Therefore, the quantum computations had to
periodic orbits in the expansion of the Gutzwiller-Vorgs pe restricted to the region with relatively low wave numbers,
function (5) are shadowed by pseudo-orbits composed of e, Reka< 60. By analyzing the scaling properties of both
shorter periodic orbits is very well fulfilled. The harmonic the quantum and semiclassical calculations we have demon-
inversion method also allows for the calculation of a largestrated the superiority of semiclassical methods over quan-
number of resonances, but requires a larger input set of pegum computations at least for large sphere separations, i.e.,
riodic orbits. While for the two-dimensional three-disk sys- semiclassical resonances can easily be obtained in energy
tem the semiclassical and quantum computations are vemegions which at present are unattainable with the established
efficient, the semiclassical methods are superior to the quaruantum method. These results may encourage the investiga-
tum techniques for the three-dimensional four-sphere systenion of other systems with three or more degrees of freedom
The semiclassical calculations can easily be extended to thgith the goal of developing powerful semiclassical tech-
region Reka=60 where no quantum results are availableniques, which are competitive with or even superior to quan-
because of the unfavorable scaling of the dimension of theum computations for a large variety of systems.

matrix M, |-y in Eq. (14). Of course, a more efficient quan-  In those regions where exact quantum results for the four-
tum method for the four-sphere system than that of Reéffi.  sphere system are lacking an assessment of the accuracy of
may in principle exist. However, to the best of our knowl- the semiclassical resonances is presently impossible. Higher-
edge no such method has been proposed in the literature toder? corrections have been calculated for two-dimensional
date. The four-sphere system therefore is an example of lilliard systems[41-43, however, the extension of the
three-dimensional system where semiclassical methods atReory to three-dimensional systems is a nontrivial task for
presently superior to exact quantum calculations. future work.

At reduced separatiorR=2.5a between the disks or Those quantum resonances which are related to diffrac-
spheres the semiclassical quantization requires an increasgdn of waves at the spheres have not yet been explained
set of periodic orbits to achieve convergence of the cyclesemiclassically. For the three-disk system diffractive reso-
expansion or harmonic inversion analysis. However, for thenances have been obtained with an extended periodic orbit
four-sphere system the semiclassical methods are still supereory by including the contributions of creeping orbits
rior to the exact quantum computations, i.e., semiclassicgi39,4Q. It will be interesting to generalize these ideas to the
resonances can be obtained in regions which are unattainakgenuinely three-dimensional four-sphere system.
with the quantum methods as can be seen in Fig. 4.

The situation is different for touching spher&s=2a,
which is a challenging system not only for the quantum but This work was supported by the National Science Foun-
also for the semiclassical computations. The construction oflation (Grant No. PHY0071742 Deutsche Forschungsge-
a long periodic orbit signal is impossible because orbits withmeinschaft (SFB 383, and the Deutscher Akademischer
increasing sequences of consecutive 0 symbols in the codeustauschdienst. E.A. thanks J.M. and G.W. for the kind
lead to accumulation points in the physical length similar ashospitality at the Institut fur Theoretische Physik during his
for the closed three-disk systefi8,29. The semiclassical stay in Stuttgart.
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