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Dynamics of two mutually coupled semiconductor lasers: Instantaneous coupling limit
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We consider two semiconductor lasers coupled face to face under the assumption that the delay time of the
injection is small. The model under consideration consists of two coupled rate equations, which approximate
the coupled Lang-Kobayashi system as the delay becomes small. We perform a detailed study of the synchro-
nized and antisynchronized solutions for the case of identical systems and compare results from two models:
with the delay and with instantaneous coupling. The bifurcation analysis of systems with detuning reveals that
self-pulsations appear via bifurcations of station@us., continuous wavesolutions. We discover the connec-
tion between stationary solutions in systems with detuning and synchrgalsasantisynchronofdisolutions
of coupled identical systems. We also identify a codimension 2 bifurcation point as an organizing center for the
emergence of chaotic behavior.
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[. INTRODUCTION Recently, there has been new interest in lasers with a short
cavity [16], which is motivated by several arguments: First,
The goal of the present paper is to study nonlinear dynamthe study of the dynamics in this regime has become experi-
ics of two mutually coupled semiconductor lasers. We conmentally accessible. Also, such a regime is very interesting
sider the face to face configuration, i.e., the output of eaclirom the dynamical point of view, since it has an intermedi-
laser is injected into the other laser. The study of such couate complexity, allowing to analyze directly the mechanisms
pling setup is motivated among other facts by the perspectivef either synchronization or the appearance of pulsations and
of using masked signal transmissif2] as well as investi- chaotic dynamics. The same arguments seem to be applicable
gation of the dynamics of two-section laser devi¢gs In ~ When the delay in the coupling is small, i.e., there shart
addition to the app"cation perspectives for the Specific degxternal cavity.For instance, this is the case in a two-section
vices, models for coupled lasers turn out to be sources fdftegrated devicg3], where both lasers are parts of the same
new physical phenomena such as anticipated or lag synchré€vice and are close to each otlaguriori. The instantaneous
nization, and chaos appearance for already weak couplingPuP!ing limit may serve as an appropriate starting point for
since the isolated lasers operate in a stable stationary regim'€ Study of such systems. Of course, the smaliness of the
From the general perspective of coupled nonlinear oscillator, er|1ay, Wh'(ih qllowione TO ngglﬁct i, |s|_a separate question.
[4], coupled semiconductor lasers usually are modeled b% en neglecting the delay in the amplitude terms, it turns

coupled systems with additional symmetry properties which E;;O %ZJQ;%OSG‘?; et% etlzkeléné? dgfigggiettm?s pvrvoepg?g'%l
have to be taken into account. Moreover, the significant difPnases y Y- '

: i . _optical frequencyw,,~10**Hz and the relaxation frequency
ference betw'een' carrier and photon lifetimes brings mult|-Vr~109 Hz. If, for example, the length of the external cavity
scale properties into the models.

; _ .. is 1 mm, then the propagation phase can be estimated as
The dynamics of mutually coupled lasers with large injec- propag P ad

~ 103X 271,/ 3X 108~ 10° while the phase change of the
tion feedback timgcorresponding to distances from about o Fop s p g

. . slow amplitude will begs~ 103X 2771,/3x 108~ 1072 and
10 cm between_the Ia_se)ns/as stucﬁed recently n Re{fS—_7]. can be neglected. From the more general perspective it is still
The case of unidirectional coupling was investigated in Ref

. h d h an open problem of modeling: what kind of phenomena in
[8,9]. Various new phenomena were reported such as répq oo pled face to face lasers can be described at least quali-
tarded or anticipated synchronizati¢h0—13, inverse syn-

. . L . tatively by instantaneously coupled rate equations?
chron!zat!on[14], localized synchronizatiof6], and antisyn- It is the main purpose of the present paper to give a com-
chronization of power drop oufd5].

prehensive description of the dynamical regimes arising in a
model of instantaneously coupled rate equations. For the
case of identical lasers, we provide analytical conditions for

*Email address: yanchuk@wias-berlin.de the stability of synchronized and antisynchronized regimes,
"Email address: schneider@wias-berlin.de where the injection phase shift is the key parameter to deter-
*Email address: recke@mathematik.hu-berlin.de mine the dynamics. Similar calculations are compared for
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two models: the model with small delay and that with instan- NS =e[J— Ny — (N, + V)|E2|2]v

taneous coupling. Further, we consider the case when there is ) )

a detuning between two lasers. It is shown how the injectiorfvhere we use the same notations for the new variables. The
phase affects the existence and stability of continuous Wa\,glfferentlatlon is assumed to be made with respect to the new
solutions and of self-pulsations. It follows that one of thetime, and the parameters are

organizing centers for chaotic dynamics is a codimension -2 _ _ _
ze%o—Hop? bifurcation point. g 7=k, 827 IZ RO~ No)/2,

=7r, v=05, &=0or,.
IIl. THE MODEL =TT i

o ) ) Note thatx=r/7,, wherer? is the fraction of the power

The model, which is extensively used to describe the dyjniacteqd from one laser to another anglis the diode cavity
namics of .mutually coupled single-mode Iasegaﬁ Refs. round-trip time (cf. Refs. [19,20). Therefore n=rr,/ 7.

[5,9,8,17), is the system of coupled rate equations: Taking valuesr,,=8 ps andr,=2 ps as for INGaAsP long
wavelength laser diodécf. Ref. [19]) we obtain thaty

@:iEEl"'l<gl(Nl1|E1|2)_i>El+ KETPE,(t=7), ~r/4. This relation is useful to have in mind for physical
dt 2 Tp, interpretation of the bifurcation diagrams and dynamical re-
gimes described in the paper.
dN N In the caser=0, we obtain the coupled rate equations
d_tl =1, - — —R{G1(Ny,[E;P)]|Ey%, with instantaneous coupling:
Tc )
l (1) E;=i0Ey + (1 +ia)N.E; + e '?E,,
dg, 1 1 B
@ E(QZ(NZ"EZ'Z) - E)Ez* KB (=), NG = o[- Ny = (Ny + DIES?],
2

_ ©)
E;= (1 +ia)N,E;, + 7€' 9Ey,
aN, N, 21E 12
at P o Re Go(Ny,|E[)]|ESf?,

C2

Nj = [ = Np = (N, + 1) | E[2].

whereE; , andN, , denote the complex optical fields and the SyStem(3) is the main object of this study. In Sec. VI we
. S . — compare some of the obtained results with the ma@gl
carrier densities of the lasers, respectively. The tedE, L
. which includes small delay.
accounts for the frequency detuning. By, we denote the
pumping current, an@i; o(N; »,|E; 4% is the complex gain
function. 7, , and 7,  are photon and carrier lifetimes . SYMMETRIES: SYNCHRONOUS AND
and 7 characterize the injection rate and the injection delay ANTISYNCHRONOUS SOLUTIONS
time, respectively. The coupling strengthshould be small Let us first examine the mode8) without detuning, i.e.,

enough in order to perturb weakly the Ion_gitudinaq reSO-5-0, and note some properties due to inherent symmetries:
nances of the system. We do not address this question quan-

titatively, since it can be resolved only using multi-mode Ej’ =(1+iaNEj+ ne“‘PE3_j,
models as, for example, in Refl8], and may be device (4)
specific. N/ =e[J-N; - (N;+»)[E[*], j=1,2.

In system(1), we introduce the following simplifications _ _ _ _
and rescalings. First of all, we assume that all parameters for (1) Since the subsystems are identical, there is a symme-

both lasers are the same except the detuning parameter Y With respect to indices interchangée,,Ni, Bz, No)

Neglecting nonlinear gain saturation we linearize the com-— (E2,N2,E1,Ny). This implies that the invariant subspace
plex gain function as follows: of synchronous state§;=E, and N;=N, is invariant with
respect to the flow corresponding to Eg).

1 (2) The symmetry (E;,N;,E5,Ny) — (-E»,N,,-E;,N;)
G(N,|E[) - T_i =Gn(L +ia)(N=Np). implies the existence of the invariant subspace of antisyn-
P chronous stateg;=-E, andN;=N..
With the rescaling Epey=VGn7cE, Nnew= 2 7Gn(N—No), (3) The following symmetry allows us to establish a one-
thew=t/ 7, We obtain from Eq(l), to-one corresp_ondence between synchron(_)us and antisyn-
chronous solutions. IfE;(t),N;(t),Ex(t),Ny(t)) is a solution
E;=i0E; + (L +ia)N,E; + e E,(t - 1), to (4) then(E;(t),N;(t),—E,(t),N,(1)) is also a solution pro-

vided ¢ is replaced byp+ 7. In other words, the symmetry
transformation is of the form(E;(t),N;(t),E,(t),Ny(t), ¢)
— (Eq(t),N4(t), —Ex(t) ,Ny(t), @+ ). This implies that all an-
. (2 tisynchronous solutions and their properties can be obtained
E;= (1 +ia)NoEy+ ne ' ?Eq(t— 1), from the corresponding synchronous solutions and their

N; = 8[J= Ny = (Ny + )|E4[?],
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properties, which have to be considered for the same param- 0.5

eter values except that is shifted by. r 1
Let us remark that the coupling, which is present in Eq. i A/ |
(4), influences the dynamics in the synchronization and anti- S S |
P %L S

.

025

synchronization subspaces. This, in particular, makes our = //P

situation different from the setup in Refgl,21].

The phase-shift invariance  (E;,Ny,E;,N,) L \//
—(E4€%, Ny, E-€¥,N,) is common to optical devices with- -
1 1, B2 2 p %L /
/_4 1
0.5

out phase conjugation, and, in particular, to the systgm I i
for any parametes and ». This symmetry implies that for 00 1 1.5 P
suitable laser parameters there exist continuous wews o/m

solutions, i.e., solutions of the typE;(t):onei“",Nj:Noj (
=1,2;w e R). These solutions are also called “stationary,” FIG. 1. Region of transverse stability for synchronous S and
because they correspond to stationary intensity regimesntisynchronous A cw solutions, respectively. P denotes the curves
Moreover, this symmetry implies that for suitable laser pa-of transverse pitchfork bifurcations and H Hopf bifurcations for the
rameters there exist modulated wagdW) solutions, i.e., Pparameter&¥=2,J=1,=0.03.

solutions of the typdEj(t)=EOj(t)ei“’t,Nj=N0,(t) with Eq (t

+T)=E, (t) and Noj(t+T)=N0j(t) for all te R (j=1,2;0,T X$(A) =[A%+4Ancoso+ AP [A+e(1+S)]

e R). These solutions are also called “periodic” or “self-

pulsations”, because they correspond to time-periodic inten- +2eS(v - 7 CoS@)[A + 27(coS ¢~ a sin ¢)]

sity regimes. =0, (6)
where
IV. SYNCHRONOUS cw SOLUTIONS AND THEIR
STABILITY J+ 7cose
A. Dynamics in the synchronization subspace - nCOSqD'

After substitutingN;=N,=:N and E;=E,=:E into Eq.  Thjs equation is derived in Appendix A. We shall note that
(4), we obtain the following equations for the dynamics inthe roots ofy?(A)=0 determine only transverse stability of

the synchronization subspace: the synchronous cw solutions, since the general characteris-

E' = (1+ia)NE+ 7e ¢E, tic _equation can _be factorized into _two_equations one of
5) whlch cor.respon.dlr)g to transverse d|r_ect|ons and another to
N’ = [J= N= (N + )|E[?] the directions within the synchronization subspace, cf. Ap-
' pendix A. Transverse pitchfork bifurcation takes place if
A qualitative analysis of Eq5) with e>0 andv>0 yields there is a zero eigenvalue, i.Q%(O)zo, and transverse Hopf
the following: bifurcation corresponds to the existence of pure imaginary
(a) For n cos¢p<-J the “off state”"E=0, N=J is as-  eigenvalues, i.e.)(-?(iQ):O, where() #0 is some real pa-
ymptotically stable. rameter. These bifurcations can be identified and path fol-
(b) For -J< % cos¢<v, there exists a globally stable lowed with respect to the system parameters. Here we choose
cw solutionE(t) =Eqe“e", N(t) =N, with the coupling strengthy and injection phase to be the key

parameters with respect to which we want to study the dy-
namics. Typical bifurcation diagram is shown in Fig. 1. The
figure shows regions for transverse stability of the synchro-
Eo=(J+ 7 cosg)/(v—1nCosSg). nous cw solution(marked by $ and antisynchronous cw
tsolution (marked by A, respectively. Note that in order to
obtain the result for antisynchronous solutions, we used the
rsymmetry arguments of Sec. lll, i.e., the region Ais an image
&f the region S, which is shifted by along the parameter
axis ¢. The transverse bifurcations that mediate the loss of
synchronization are marked as P for pitchfork and H for
Hopf, respectively. Note that we do not show in Fig. 1 all the
bifurcation lines, but only those which mediate the stability
Since the synchronous cw solution is stable within theloss of cw solutions.
synchronization subspace, its stability in the whole phase There are also small regions where stable synchronous
space is determined by itsansversestability, i.e., the stabil- and stable antisynchronous cw solutions coexist. They are
ity with respect to perturbations transverse to the synchronilocated atp=arctarfl/«a) and ¢=arctaril/«)+m and their
zation subspace. The analysis of the transverse stability @fize is of orders, cf. Fig. 2.
synchronous cw solutions can be carried out by inspecting The bifurcation diagrams, cf. Figs. 1 and 2, also reveal
the characteristic equation that the first destabilization threshold, i.e., destabilization of

wo=—nla cose+sing), No=-7cose,

Summarizing, let us note that for all physically relevan
parameter values, i.eJ>0, £>0, 0< »<v=0.5, there ex-
ists a unique stable cw solution inside the subspace of sy
chronous solutions. The same is true for the subspace
antisynchronous solutions.

B. Transverse stability of the synchronous cw solutions
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T T T T T
0.04 -
0.2 [~ asynchronous _ —$ synchr. CW _
| » cw s ™ -
P R . , b \/ ,
0.03 . b ! N /
— VA y ! /
=y H 1 Z \ Vi \ Ny
\ N \ \
0 \ / \ / 4
0.02 N Yoo
\ ;N \ v ( \
\ l/ L Ha \ ( / Hs
0.01 /\ b \ -/\J"Pa
-0.2 antisynchr, CW
L1 1.15 12 0 0.5 I 13 >
o/T o/n
7 .
//% stable CW antisynchronous FIG. 3. For fixedy=0.2, there are two branches corresponding
w to the synchronous and antisynchronous solutions and the connect-
&\\\ stable CW synchronous ing branches of unstable asynchronous unstable periodic solutions.

P, and P4 are pitchfork andH,, Hg are Hopf bifurcations. Index s
FIG. 2. Zoom of the small part of Fig. 1. The regions of stability stands for the synchronous and a for antisynchronous solutions,
of synchronous and antisynchronous cw solutions are overlappedespectively.
creating multistability. Here the bifurcation curves are shown com-
pletely, i.e., not only those parts that bounds the stability regions Ofeducing

_ X is to use the following transformatiof;(t)
the corresponding cw solutions.

=a,(1)e"1V, Ex(t)=ay(t)é¥2V. HereaZ andaj are intensities
) o ) ) . of the first and the second laser, respectively. We assume
the cw solutions with increasing of the couplimgfor f|xe_d a; # 0 anda, # 0. A=, — i, is their phase difference. Then
¢, may occur already for coupling strength of ordewvia  \yith respect to the new real variablag,a,,N;,N,, and Ay
Hopf bifurcation. we obtain the system of equations
V. ASYNCHRONOUS cw SOLUTIONS 8 = Nydy + 78,C0849+ ),

Synchronous and antisynchronous cw solutions are not N = e[J = N; = (N; + v)a?],

the only possible stationary solutions in the syst@m An-

other set of cw solutions, which we calkynchronouscan , 3
be obtained from the following ansatz: 2= Nad, + 729C08¢ ~ Ay), (8)

Eq(t) = a,€ @™, Ny(t) =N; = const, Ny = e[J— N, — (N, + v)a2],
_ (7
Ez(t) = azelwt, Nz(t) = N2 = const,

- _ — @ i ﬁ 1 —
wherea;,a,,N;,N,, w, ¢ are real constants to be determined. Ay’ =0+ (N = Np)a nals'n(A¢+ 2 naZSIn((,D AY).

After substituting it into Eq(4), we obtain a set of nonlinear )

equations, which afterward can be effectively studied nu-SYyStem(8) no longer possess the phase-shift symmetry, and,

merically. We refer the reader to Appendix B for details. Astherefore,. all cw solutlons. be_c;ome stationary states and all

a result we present the one-dimensional bifurcation diagrafY!W solutions become periodigf A is considered modulo

in Fig. 3, which corresponds to the parameters as in Fig. £7) in terms of new variables.

but with fixed =0.2 (cf. horizontal line in the figure In Let us introduce the frequenciék, and (), by

addition to the synchronous and antisynchronous solutions, _ o

we observe branyches of unstable asy)r/mhronous orbits con- 00 =0, Qo0 = y5(0).

necting synchronous and antisynchronous cw solutionsthe following quantity is often used to determine the locking

These branches emerge from the subcritical pitchfork bifurpetween two weakly coupled oscillators:

cationsPg and P, respectively. Although these solutions are

unstable their role may be important in forming the boundary

of the attracting region of stable synchronous cw solutions.
In the following section, we study syste(8) for 6+ 0,

_ T
AQ =AY (1)) :Tllnl_li_f Ay’ (t)dt= lim @

0 T—w

i.e., we investigate the influence of the detuning. AQ can be treated as averaged frequency difference between
two weakly coupled lasers. o
VI. INFLUENCE OF THE DETUNING Figure 4 shows results of computation &f) depending

on the detuning’. Three different curves were obtained for

different values ofe with fixed »=0.3. At each point, we
Since systen{3) has the phase-shift invariance property, integrated over the transient intervg}=1000 and averaged

we can reduce it to a five-dimensional system. One way obver T,,=1000. Initial conditions were chosen at random.

A. Preliminary study

056221-4
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Zﬂ ok ' v \\ J ' i . / o]
WP AH \p, \LLP)
-0.2F ;\’, \/, 7
-0.4r cf. Fig. b
1 05 0 05 i
¢/
FIG. 4. Averaged frequency difference vs detuning parameter (b)
for different values ofp (7=0.93). =0 350 ,
\\ AY 7
. . S \\ // \\ "
One clearly observes the locking intervAl® =0 as plataues v N )
near 6=0. Moreover, the width of these intervals strongly o ! J/
. . AY
depend on the phase parameteie will inspect the depen- \ I’P \\LP //
dence of the locking orp in more details in the following ” L
sections by studying bifurcations that are involved in the loss

of locking and appearance of pulsations. Additionally, we

have to note that the use of frequency differedx@ for FIG. 5. (@ Stationary states for syste@) with detuning.

investigating of the locking between two coupled oscillators=0.01,7=0.2. Stable branches are depicted by solid lines, unstable

can be justified in the case of weak coupling, i.e., smallby dashed(b) Perturbation of the pitchfork bifurcation by the de-

enoughy. Therefore, we have to consider Fig. 4 as a prefuning, zooming of some part ¢&).

liminary result, which has to be accompanied by an addi-

tional bifurcation analysis in the following sections. possess these symmetry properties. Nevertheless, as we shall
see in Sec. VID, some parts of these branches still keep
being close to the synchronous state and some to the antisyn-

B. Stationary states for the case with detuning chronous.

The cw solutions of syster(B) are equilibria of system Comparing the bifurcation diagram in Fig. 5 and its sym-
(8). Hence, one can use the standard path-following techmetric counterpart in Fig. 3 we note that similar stability
nique to follow their dependence on the parameters. As startegions for stationary states, which are limited by the Hopf
ing data, we use the known stationary states for the symmetH) and saddle-nodg_P) bifurcations, exist in both cases. In
ric system(see Fig. 3. The resulting bifurcation diagram is fact, they can be obtained from each other by continuation
shown in Fig. 5, which is computed for the detunifig0.1.  along the parametes. Moreover, as we will see in Sec.
Before analyzing the obtained bifurcation diagrams, it is im-VI D, the corresponding branches are close to the synchro-
portant to realize that detuning breaks two symmetries in oufous (those that contairp=0) and to the antisynchronous
system (cf. Sec. Il): 7, symmetry (E;,N;,E;, N, one(containinge=+1). It is evident that for these stationary
—(E,,N,,E;,N;) and the symmetry (E;,N;,E,,N,)  States correspond thyi(t)=const. In the following, by the
— (~E,,Np,—E1,Ny). Therefore, exactly synchronous and locking between coupled systems with detun{8ywe un-
exactly antisynchronous solutions do not exist anymorederst'and the existence of the stable stationary states, i.e., CW
Moreover, the pitchfork bifurcations that partially determine Solutions(for them we haved=cons}.
the synchronization region of the system without detuning is , ,
no longer admissible fof+ 0. Two questions arise naturally: C. Regions of locking
What happens with the synchronous and antisynchronous so- The only parameter in our model, which induces mis-
lutions after the symmetry breaking by detuning? How is thematch between the lasers is the detundh¢n order to study
pitchfork bifurcation perturbed in this case? The observedhe influence ofs on stable frequency-locked states, we in-
scenario, cf. Fig. 5, clarifies the situation. In particular, asvestigate the boundaries of the stability region, i.e., the bi-
can be seen from Fig.(B), instead of the pitchfork bifurca- furcation points LP and H in Fig.(8), depending ors. The
tion we have a saddle-node bifurcati@enoted as “LPj. In resulting bifurcation diagram is shown in Fig. 6. There we
the nonsymmetric case this saddle-node bifurcation connectienote byD, and D, two regions, corresponding to the ex-
the previously synchronous solutions via the unstable brancistence of stable stationary states. We distinguish between
of asynchronous solutions to the antisynchronous, cf. Figthese two regions because the first one is connected to the
5(a). Note that such a perturbation of the pitchfork bifurca- synchronous stationary states and the second one to the an-
tion is common for symmetrically coupled systems with atisynchronous a=0. For more details about these states we
parameter mismatcf22]. As a result, instead of the separate refer to the following section. The Hopf bifurcation line is
branches of synchronous and antisynchronous solutions, fenarked by black color and the saddle-node bifurcation by
6#0 there are closed branches of solutions, which do nogray.
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(@) n (b) n
0.5 0.5
LP
LP
0.2 £/0.25
¢=0 ¢=05
-1 0 1 -1 0 1
© o °
15 1 1 1 n 0.3 ()] niti
0 0.5 1 1.5 2
@/n
FIG. 6. Stability regions for the stationary states of coupled H :
systems with detuning. LP and H denotes saddle-node and Hopf Lo.
bifurcations, respectively. ZH is a codimension-2 zero-Hogf —_084 zH LP
; . . ; : . . =-0. ZH
Guckenheimer-Gavrilov bifurcation point. PD—period-doubling . ; Lp
bifurcation curve for rotations of Eq8). -1 0 1 -1 0 1
3 5

Note that the diagram in Fig. 6 is obtained for fixed cou-  F|G. 7. Bifurcation diagrams with respect to coupling strength
pling strength. Another way of representation is to con- and detunings for fixed ¢=0 (a), ¢=0.5 (b), ¢=-0.84, ¢=1.41.
sider detuningy and coupling strengtly as the active param- Hopf bifurcations H are denoted by thin lines and saddle-nodes LP
eters. Figure 7 shows such bifurcation diagrams for fixecby more heavy lines. Stability regions for stationary states are
values ofe. The different values of correspond to qualita- marked in gray. ZH are zero-Hopbr Guckenheimer-Gavrilgvbi-
tively different bifurcation diagrams. The regions of stability furcation points of codimension 2.
of cw solutions are marked by gray color. As it is expected,
for sufficiently small couplingy in Figs. 1a)-7(c), the sta-  plitudesa,/a, and a phase shifhy as a function ofp for
bility region is bounded by saddle-node bifurcation lines. Fors=0.2, i.e., parameters belong .
¢=-0.84 andp=1.41, in addition to saddle-node bifurcation
mechanism, Hopf bifurcation lines appear to confine par- E. Self-pulsations
tially the locking regions. The codimension-2 bifurcation

points(ZH) appear where Hopf and saddle-node bifurcation Sglf—pulsation,si.e., periodic oscillations of 'ghe field in-
lines meet. tensity, appear as a result of the Hopf bifurcation of the sta-

; ; ; - tionary locked states. In terms of the original syst@nthey
The symmetry of the bifurcation diagrams in Figs. 6 and 7are invariant tori, while for systen®) these solutions be-

with respect to interchangé— -4 can be explained by the th iodi luti i hich
fact that systen(3) is invariant under the following transfor- come either a periodic solutions, or rotations, which are pe-
riodic with respect to the variables;,a,,N;,N, but with

H i ot j ot -
mation (By, Bz, Ny, Na, ) = (B8, B8, N, Ny, =9). unbounded variabledy such that Ag(t+T)=Ay(t)+ 2k

, ) with some integeik. Such solutions can be studied either
D. Properties of the stationary states after the symmetry

breaking

By definition, cw solutions have the form

El(t) = alei(“’”A‘”), Ez(t) = azeiwt,

N;(t) =N; =const, N,(t) =N, = const.

Now we show that their particular shape, i.e., the values of 0.4 0.2 o 0 0.2
a;,a,,Ay, is influenced by the symmetry that is broken by 1 — —
the detun.ingé. PartiCl_JIarIy, in the regiorD_S (see Fig. B we = 0.8 _
have stationary solutions that are close in some sense to syn- 2 o6k ]
chronous and in the regiod, close to antisynchronous g r ]
states. This becomes clear when one notes that the r&gion § 04r
contains the set of synchronous states wiser® and D, g 021 7
contains antisynchronous states. In other wordsi-a® the o
stable locked solutions from the regi@y continuously ap- 02 ' I I

; 04 02 0 0.2
proach the synchronous cw states and fiogthe antisyn- om

chronous, respectively. For the synchronous solutions one

hasa;/a,=1 andAy=0 and antisynchronous,/a,=1 and FIG. 8. Characteristics of some locked solutions from the region
Ay==xm. As an example, we plot in Fig. 8 the ratio of am- D, of Fig. 6.
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:; FIG. 10. Nearly amplitude-synchronous state &or0.01m7, &
=0.6.

N AN AN AN AR AR A o : -
SUOVAYALVALALALAL of such solutions isp=0. In this case, substitutinly: =N,
HRARARARAR AR AR =N, anda: =a;=a, into Eq.(8) we obtain

A a’' =Na+ na cosAy, (9
N’ =e[J-N-(N+wv)a?], (10
Ay =65-275sinAy. (11

FIG. 9. Different types of self-pulsation&), (b), and(c) show . .
time dependence of the amplitudas and a, of both lasers. The The phase differencay(t) can be explicitly found from Eg.

corresponding parameter values:0.7, ¢=0 (a), ¢=m/4 (b), and (11). Namely, we have

¢=1/2 (C). , _
t ———=
Ay=2 arcta{—n—tank(—\m]z_a?) (_’7) _1}
directly by auTo continuation softwar@23] or can be treated é 2 S

as bounded limit cycles after appropriate coordinate transfor- (12
mation, which allows us to consideéxy modulo 27. Both

approaches allow one to make bifurcation analysis of suclfor 5<2» and

solutions. In this way we detected a period-doubling bifurca-

tion, which, together with a Hopf bifurcation of the station- 27 t 5 27\?
ary solutions, restrict the region where stable self-pulsations A= 2arctan| — + tar(é\’b‘z— 4 ) 1- <F>
occur, cf. Fig. 6.

We have noticed that near the period-doubling bifurcation (13
self-pulsations appear, which are close to the diagonal in the . ,
space(ay,ay), cf. Fig. 9, orbitA. Such pulsations appear for 5? 2. Soll_mon (13) corresponds to a relatively small
when there is no phase shift between the amplitajesnd ~ 9€tuning. In this casehy converges to the constant value
a, of the lasers, cf. Fig.(@). On the contrary, near the Hopf A¥—Awo=2 arctah2y/6-(27/6)°~1] with t—c and
bifurcation, we observe that self-pulsations are close to théyStém settles on a stable cw soluti@. also Fig. 6 with
“antidiagonal.” Such a phenomenon was reported in Ref®=0).- When the detuning5 becomes larger Z then Ay
[14] and called “inverse synchronization.” In this casgjs ~ Pehaves periodically (13) with the frequency wsy,
shifted with respect ta, by a half of the period, cf. Fig.@).  =V& —47". In this case, Eqs9) and (10) may be regarded
The orbitB in Fig. 9 corresponds to the intermediate regime.@s periodically forced system, which has a stable fixed point
In the following two sections we consider these phenomen} the absence of forcing aj=0. Thus, we generally expect
in more detail and show that the phase propagation parant24] that self-pulsations occur in Eq®)~(11) with the same
eter ¢ determines the possibility to observe identical or in-frequencyws, Note that their period tends to infinity &%
verse amplitude synchronization. —27. _ _ _

To summarize, there exists far=0 a set of amplitude-
synchronous periodic solutions f@>27. We believe that
F. Identical amplitude synchronization approximate chaotic synchronization of intensities occurs as
a result of further bifurcations of these solutions wheis

It is a remarkable fact that coupled systems with detuninglose to 0. As we will see in Sec. VI H there is a complicated
(8) still admit solutions for which the amplitudes behave dynamical mechanisms leading to the destabilization of self-
identically, i.e.,a;=a,. An example of such a solution is pulsations. An example of such chaotic motion is shown in
shown in Fig. 9a). The necessary condition for the existenceFig. 10.
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FIG. 12. Neighborhood of the zero-Hopf bifurcation. T denotes

4 the Neimark-Sacker bifurcation curve emerging from the zero-Hopf
point.

FIG. 11. “Inverse synchronization” fop=m/2. The solutions
are located near the ae¢+a3=J/v. Other parameters arg=0.3,
J=1,£=0.03,a=2.

G. Inverse amplitude synchronization
12

H. Appearance of chaotic oscillations near zero-Hopf
bifurcation point

In the vicinity of the zero-Hopf bifurcation point, cf. Fig.

, there is a branch of Neimark-Sacker bifurcations emerg-

When the propagation phageis close tom/2, we nu-  jng from ZH point (see general case in ReR5]). When
merically observe solutions for which, anda; behaves an-  ¢rossing this curve from above, the stable limit cycle under-

tiphase, cf. Fig. &). Such a phenomenon was reported alsoyoes Neimark-Sacker bifurcation. It is a general observation
in Ref.[14] and called inverse synchronization. To start Wlth,(cf_ Ref.[25], p. 302 that the torus created by the Neimark-
let us substitute= /2 into Eq.(8). We obtain the following  sacker bifurcation exists only for parameter values near the

system:

corresponding bifurcation curve. If one moves away from the

curve, the torus losses its smoothness and will be destroyed.

a; =N.a, — 7a, sin Ay, The complete sequence of events is likely to involve an in-
finite number of bifurcations, since any weak resonance

point on the Neimark-Sacker curve is the root of an Arnold

N =2[J=N; - (N; + v)ai], phase-locking tongue. In view of this fact, we did not try to
resolve the bifurcations numerically below the curve T in

Fig. 12. Instead, for randomly chosen initial conditions, we

a5 =N,a, + nassin Ay, (14

calculated Lyapunov exponents for different parameter val-

ues. Figure 13 shows the parameter values for which the

Ny = e[J— N, — (N, + v)a3],

largest Lyapunov exponent is positive, i.e., the complex dy-
namics is present. We can see that, in particular, such region

comes arbitrary closewith the given precisionto ZH point.

a a
Ay =65+ (N - Npa+ n(—l - —z)cosA:/;,
8 a

which again can be considered as a perturbed uncoupled sysz
tem with coupling parameter acting as a perturbation pa-
rameter. The unperturbed systgine., »=0) has an asymp-
totically stable fixed pointN;=N,=0, &;=8,=J/v. The
perturbation termyp(a,sin Ay, 0,a;5in Ay, 0)T is tangent to

the arcN,=C, N,=C, a?+a5=R? with some fixedR and C.

We numerically observe that the resulting oscillations are
close to the arc wittrR=\J/v, and C=0, i.e., they appear

around the poin&;,N;, cf. Fig. 11. Note that the sé&;=N,
=0, a2+a3=J/v is not invariant for Eq(14) with nonzeroe.
Thus, we have observed that for two distinct cage
and ¢=7/2 the coupling terms naturally appear in the dy-
namical equationg9)—(11) and (14) in such a way that for
¢=0 they act along the diagonal,=a, and result in the
appearance of amplitude-synchronous solutions. kor
=1/2 the coupling term in Eq(14) acts transversely to the
diagonal and tangentially to the am§:+ a§:R2 and results in

VII. THE CASE OF A SMALL DELAY

In this section we discuss some properties of the symmet-
system with small delay,

0.5 1
o/t

FIG. 13. Parameter values for which an attractor with positive

the appearance of the antiphase solutions. largest Lyapunov exponent exists.
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Ej () = (1 +ia)N;(DEj(t) + ne™ *Eqj(t - 7),

(15 0.4t
Nj (1) = e[3= Nj(O) = {N;(O + HE; (017, [=1,2, i

and compare them with the corresponding properties of the =
instantaneously coupled systés). The zero-delay approxi- 0.2}

mation (4) would give a correct representation for the dy-
namics of delayed systeid5), provided that the delay “is
small enough.” Mathematically, it can be regarded as exis-
tence of the stable finite-dimensional invariant manifold in 0 0.5
the phase space of E(L5) for small enoughr such that the
dynamics on this manifold is described by the system of

or_dlnary differential E_:quatlon$4) (cf. Ref. [26]). Th.'s im- synchronous cw solutions of systefh5) for different values of
p“es. that sglf-pulsauons as W‘?” as more complicated dyHelay (similarly as in Fig. 1 without delgy The corresponding
nam'cal reg,'me$b0unded Ch_aOt'C attractorthat have been boundaries for antisynchronous cw solutions can be obtained by
discovered in Eq4) have their counterparts in EQLS). The shifting along they axis by .

main problem-specific question is then for which values of
system(4) approximates reasonab($5). In this section, we
give some partial answer to this problem concerning cw so

FIG. 14. Boundaries of the region for transverse stability of

_ The transverse stability of the unique synchronous cw so-
lution is determined by the solutions of the characteristic

luu?ﬂcse'dynamics of Eq(15) With'in the synchronization sub- equation
SK%?)(;e)/iéiiEéazaEt,iol\@ljl_;]Nz: =N is governed by the Lang- XHA) =[A2+ 279 cos (e + DA + 7A€+ 1)?]
' X[A+e(l+9]+2sS(v— 75 cosb)
E'=(1+ia)NE+ 7 ?E(t- 1), . X[A + 7(cos 0— a sin B)(€ M+ 1)]=0, (20)
N’ =g[J-N-(N+v)|E?]. where

The parameters of the synchronous cw solutida®) S = J+ pcosé
=ad“!,N(t)=N=const of Eq(16) satisfy the following set of " v—-175cosé

equationgcf. Refs.[27,28):

and
N="n codetwn, 0:= wr+ o,
w-aN=-gsin(¢+ w7, (17) The derivation is given in Appendix A. The condition
Xx7(0)=0 determines the pitchfork ang(iQ2)=0 Hopf bifur-
a2=(J-N)/(N+ 1) cation, respectively. It turns out that for the values uprto

=2 the regions in thé¢p, ) parameter plane for the trans-
One can obtain sufficient conditions for systéb) to have verse stability of synchronous cw solution of Ed5) are
only one external cavity mode, i.e., a unique solution of Eg.qualitatively the same as in the case of zero déayln Fig.

(17). For this, we shall write the equation far as 14 we plot the curves which delineate this stability region.
) All the remaining parameters are taken to be the same as in
®=-yla code+ w7) +sine + w7)]. (18 Fig. 1. The effect of delay for this range afcan be only

The saddle-node bifurcation, which gives rise to additionaS€€N by continuous changing of the slope of the curves.

external cavity modes, can be identified. Ref. [27]) as a
double root of Eq(18). Hence, differentiating it with respect

to w, we obtain VIIl. DISCUSSION AND CONCLUSION

In this paper we studied a model for a single-mode lasers

1=rlasin(e+ wr) - codp+ w)]. which are optically coupled in a face to face configuration.

It is clear that the condition The external cavity length is assumed to be short. We have
derived conditions for the stability of synchronous cw solu-
1 tions in terms of the coupling parameters. As a result of
< — (19 . . h . f . h
V1+a2 symmetry considerations, the properties of antisynchronous

solutions can be determined by those of the synchronous. We
guarantees that a double root does not exist. Hence, the ilave shown that when a detuning is present between two
equality (19) roughly provides the limit within which one lasers, there exist stable stationary states under some param-
might expect that the delay does not qualitatively change eter constellations, which can also be considered as a phase-
the dynamics within the synchronizatiqantisynchroniza- locked states with\¢/=const. Moreover, the connection be-
tion) subspace. tween these states and the synchronous solutions of the
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symmetric systen(i.e., without detuningis shown. We also N TN C o 2 2
investigate the mechanisms of appearance of :self—pul:sationsl,v|2 = e[~ Mz = (M1 + )(FiFo + FaFy) = M(Fyf*+ [F5).
which are quasiperiodic solutions in terms of the originalF, and M, are the coordinates within the synchronization
system(3) and represent periodic solutions of the reducedsubspace, while the coordinatesandM, are transversal to
system(8). These mechanisms include Hopf bifurcation ofit [4,21], i.e., we haveF,=0,M,=0 for synchronized solu-
the stationary phase-locked states and period-doubling bifutions.
cation. We have shown that one of the organizing centers of System(Al) is again autonomous due to the phase-shift
chaotic pulsations in the considered system is a zero-Hophvariance of the original systei5), and cw solution under
(or Guckenheimer-Gavrilgv codimension-2 bifurcation consideration is transformed into the equilibriufm =Es,
point. From the point of view of modeling, we studied the M;=Ng, F,=0, M,=0 with respect to it. We will linearize
possibility to use the mod&B) with instantaneous coupling (Al) in the vicinity of such poin{32]. To perform this, we
for the study of coupled semiconductor lasers with short exfirst decompose
ternal cavity. .

In our analysis, we confined ourselves to the deterministic Fi2=X12% 112
model. The spontaneous emission may cause additional efenoting with
fects to appear such as noise-induced cljd8ék coherence-
resonanc¢30], or excitability[31]. We believe that there are v:=(vy, .- Vo)
certain topological configurations in the phase space that.i”\?ariations inx;,y1,My,%,Y,M,, respectively, we obtain a
ply the existence of these effects. For example, one Conf'gqinearization of the form
ration assumes an S-shaped slow manifold like in Fitz-Hugh-
Nagumo model, anothgB1] assumes that both separatrixes R R .
of a saddle point tend to an attractor, which is located nearby. d_tv(t) =Au(t) +Bo(t- 1),
In many cases, the necessary condition for the excitability is
closeness to some bifurcation point or existence of a compliwith the 6X 6 matricesA andB having the block structure,

cated topological structure in the phase space. Thus we may A A B 0
roughly anticipate that near the bifurcation lines and, espe- A:< L 2>, —( ! ) (A2)
cially, near the zero-Hopf bifurcation point, there is a rich Ay Ay 0 -B

potential for the necessary topological configurations to OCAt a svnchronized state. we have=v-=M.=0 and M
cur. We hope that the presented analysis will help one thl 2:):/N and obtain ’ Va=Y2=Me !

localize such parameter regions.

N ws— aN Xp — ay,
ACKNOWLEDGMENTS A=| —(ws=aN) N axy +y; ,
—2ex;(N+v) —2ey;(N+v) —e(1l+x°+Yy?)
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“Komplexe nichtlineare Prozesse” ncode+wsr) 7 sine+wsr) O
Bi=| —7sin(e+ws) mcodeo+wsr) 0. (A4)
APPENDIX A: DERIVATION OF THE CHARACTERISTIC 0 0 0

EQUATIONS FOR SYNCHRONOUS SOLUTIONS The coupling terms inA, disappear for synchronized cw

states and the system splits into two invariant subspaces,
corresponding teynchronizedand transverse variations. As

and(4) is the same, therefore, we present here the derivatioft consequefnce, Tthe ch.aracteristic function can be factorized
in detail for the delayed syste5). Finally, the character- 35X (A)=x((A)xr(A) with
istic equation for Eq(4) will be obtained by setting=0. T(A) = defA | = A, — e \B A5

Let Ey=E,: =E€“<, N;=N,: =N, be the synchronous cw XL(A) = det ! J (A5)
solutions under consideration. By ,=(E;+E;)/2e"“s and  and
M; ,=(N;£N,)/2 we introduce new coordinates such that

The algorithm for the derivation of the characteristic
equations for the synchronous cw solutions of systéhas

T — _ —AT
Eq. (15) takes the form Xr(A)=de(A | - A +eBy). (AB)
_ Herel is identical 3x 3 matrix. The functiony, is the char-
Fiat) = (1 +ia)[MyFq o) + MoFy o(1)] acteristic function of the Lang-Kobayashi systéf) and
) (ot has been investigated in R¢R7]. It determines the stability
~iogF H(t) £ 7€ TR at-7), properties of the synchronous cw solution of coupled system

(2). The functiony] determines its transverse stability prop-
- 5 ) - = erties. Taking into account equatiot7), we can rewrite
My =e[J =My = (My+ 2)([Fyf* + [Fo%) = Ma(F1Fo + FiF))], transverse characteristic equations in terms of the parameters
(A1) in the form(20).
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Similarly, the characteristic equations for the transverse XN, + 7 cog¢— @) =0, (B10)
stability of synchronous solution to E¢4) have the form

(6). X(aN, — w) + 7 sin(— @) =0, (B11)

APPENDIX B: SET OF EQUATIONS FOR DETERMINING
ASYNCHRONOUS cw SOLUTIONS U=NJNy*+9) _ (B12)

Here we obtain a set of equations for determining asyn- (I~ NNz + )

chronous cw solutions of Eq4). We also present an algo- where Eq.(B12) is obtained from Eqs.B6) and(B7). Now

rithm of reducing it to a single nonlinear equation with onewe eliminate x from the following equations pairwise:

unknown variabley € [0, 27r]. (B8),(B9); (B10),(B11); (B8),(B10); and (B8),(B12). As a
After substituting Eq(7) into Eq.(3), we obtain the fol- result we obtain equations for unknowtsw, Ny, N,

lowing set of equations with respect to unknowns )

ay,8y, ¥, ®,Nq, Ny Ny sin(e + ) + (aNy -~ w)cosp + ) =0,  (B13)

- i i (o)
allw—(1+|a)N1a1+7]aze Hore) N2 Sin(¢—¢)—(aNz—w)COS(zﬂ—qJ):O, (Bl4)
Aiw=(1+ia)Nya,+ 7a,6V 9,
dw= (1 +1aN2,+ 72y - NiN, = 77cog(¢ + ¢)cos ¥~ @), (B15)
J-N; - (N, +v)az=0,
1= (M @-N)(Ny*+v) N2
= — . (B16)
J=N,— (N, + »)a2=0. (I=N)(N2+v)  7°coS(¢+ @)
In real form it reads N;,N, can be determined using Eq813) and (B14):
a;N; +apn coge + ¢) =0, (B2) N; = wl[a + tan(e + )], (B17)
ay(aN; - w) —ayn sin(¢ + ) =0, (B3) N, = w/[a+tan¢ — ¢)]. (B19)

(B4) After substituting Eqs(B17) and (B18) into Eq. (B15), w

aN, +a,;7 cofy— ¢) =0, :
oo + 847 COSY = ¢) can be expressed as a functionyof

3y(aN, =~ w) + a7y siny— ¢) =0, (BS) 2= sPcod o+ h)cod e - y) X [tan(e + y) + a][tan(¢ - i)
J-Ny- (N, +)a2=0, (B6) *al. (B19)
Final step is to substituti; andN, from Eqs.(B17) and

J=N,- Ny + v)a2=0. (B7)  (B18)into Eq.(B16):

Sincea; # 0, we may sek=a,/a,. In the following we per- [Jtan(e + ) + a] — o][Vtan(@ — ¢) + a] + w]

form a formal prqcedure WlthouF checl'<|'ng signs and zeros of [J[tan(e — ) + a] - o][tan@ + ¢) + a] + o]

some functions, in order to avoid additional nonessential de- 7

tails. As a result some spurious roots for new equation will _n 2

appear which can be eliminated afterward. The system for —w20052(¢+ Ylattare+ Pl (520

unknownsx, ¢, w,N;,N, has the form
After substituting Eq(B19) into Eq. (B20), we arrive at a

Ny +x7 code+#) =0, (B8  nonlinear transcendental equation orThis equation can be
treated numerically more easylly sinog is determined
(aNy— w) = xy sin(p+ ) =0, (B9) within a bounded interval0, 27).
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