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semiclassical trace formula for star graphs, and on diagrammatic techniques. The appropriate spectral form
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accordance with the corresponding random-matrix theories which supports a properly generalized Bohigas-
Giannoni-Schmit conjecture.
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I. INTRODUCTION

Since Bohigas, Giannoni, and Schmit conjectured in a
seminal paper[1] that the spectral fluctuations in quantum
systems with a chaotic classical counterpart follow the pre-
dictions of the Gaussian unitary(GUE), Gaussian orthogonal
(GOE), and Gaussian symplectic(GSE) ensembles of
random-matrix theory(depending on the behavior of the sys-
tem under time reversal and spin rotations) a lot of numerical
data have been gathered that strongly support this conjecture
(see Refs.[2,3] and references therein). While an analytic
proof of the conjecture and a precise statement of its limits
are still lacking there has been a continuous advance in un-
derstanding the universality of spectral statistics. The main
tool in the semiclassical approach is Gutzwiller’s trace for-
mula [4] which expresses the fluctuating part of the density
of states as a sum over classical periodic orbits. The main
object of interest is the spectral form factor which is the
Fourier transform of the spectral two-point correlation func-
tion (below we will call this the second-order form factor)
which is expressed semiclassically via the trace formula as a
sum over pairs of periodic orbits which share the same ac-
tion. In the diagonal approximation introduced by Berry[5]
only those pairs for which both periodic orbits are either
equal or the time reverse of the other are summed over. The
assumption of hyperbolic chaos is then sufficient to prove
that the leading linear order in a short-time expansion for a
quantum system follows the random-matrix predictions.
Various approaches to universality beyond the diagonal ap-
proximation have since been performed[6–9]. Recently Sie-
ber and Richter[10] started new progress for a semiclassical
approach beyond the diagonal approximation with the obser-
vation that self-crossing trajectories in a billiard of constant
negative curvature have a partner orbit of the same action
that avoids this self-crossing. In the form factor these Sieber-
Richter pairs give the quadratic order in time as predicted by
the GOE. Their approach has been generalized to general

hyperbolic billiards[11] and later in a phase space approach
to hyperbolically chaotic Hamiltonian systems with two
[12,13] and finally any number of degrees of freedom[14].
Finally, the cubic order in the short-time expansion has been
calculated[15].

The first nonvanishing order int is known as thediagonal
approximationin the Wigner-Dyson classes which is linear
in t. For the chiral and Andreev classes the first nonvanish-
ing order ist0 and has been calledthe self-dual approxima-
tion [16]. So far the fidelity to the predictions of Gaussian
random-matrix theory has been derived for the classesC and
CI—here, we will give a complete account of star graphs in
all symmetry classes. Though we restrict to graphs here, the
following calculation shows what types of periodic orbits
and which of their properties are responsible for universality
in more general Hamiltonian system.

The next-to-leading order(the weak localization correc-
tions) will also be calculated for all ten ensembles of star
graphs. For fully connected Wigner-Dyson graphs in classAI
(GOE) these have recently been calculated to ordert3 (based
on much earlier work ont2) by Berkolaikoet al. [17]. These
authors generalized the Sieber-Richter approach to graphs
and introduced diagrammatic techniques similar to those
used in this paper. The relation between the corresponding
expansion for quantum systems in classAII (GSE) and the
AI (GOE) expansion has been considered recently[18,19].

The corresponding ensembles of star graphs have been
constructed in the first paper of this series[20]. Each of these
ensembles obeys the symmetry conditions of one class in the
tenfold classification of quantum systems. There, we have
also introduced the first-order and second-order spectral form
factors as the Fourier transforms of the fluctuating part of the
density of states and the two-point correlation function and
related them to the scattering matrix of the star graphs via an
exact semiclassical trace formula. We have also shown nu-
merically that these spectral form factors follow the predic-
tions of the corresponding Gaussian random-matrix en-
sembles. The second-order form factor of graphs in the
Wigner-Dyson classes follows the predictions of the well-
known Wigner-Dyson ensembles GUE, GOE, GSE. For the
remaining seven “novel” symmetry classes the first-order
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form factor for star graphs coincides with the corresponding
Gaussian random-matrix prediction. For the novel ensembles
the fidelity to Gaussian random-matrix prediction is the con-
tent of a properly generalized Bohigas-Giannoni-Schmit con-
jecture[20].

The (generalized) Bohigas-Giannoni-Schmit conjecture
states that the spectral fluctuations of asingleclassically cha-
otic physical system follow the predictions of Gaussian
random-matrix theories. Here, we have explicitly introduced
ensemblesof star graphs. It has been shown however[21]
that ensemble averages over certain phases in graphs are
equivalent to a spectral average of asingle spectrum in a
graph with incommensurate bond lengths.

For the first-order form factor for chiral and Andreev star
graphs the generalized Bohigas-Giannoni-Schmit conjecture
is slightly weaker in as much as not a single spectrum is
conjectured to follow the random-matrix predictions but a
one-parameter average over different values of an effective"
(an average over different values of the Fermi level or dif-
ferent quantizations of the same system). We leave it open
here to what extent the ensemble averages for the graphs in
the novel symmetry classes are equivalent to such a one-
parameter average.

In Sec. II we introduce the diagrammatic representation of
the form factors: the section starts with a general description
in Sec. II A; there we give the vertex(“d vertex”) and bond
(“line” ) contributions to a diagram for each of the ten sym-
metry classes in Sec. II B and also give the diagrammatic
expansion of the ensemble averaged form factors in Sec.
II C. In Sec. III we calculate the diagonal and self-dual ap-
proximations and one order beyond for the form factors of
the ten ensembles: this section first introduces a systematic
diagrammatic short-time expansion of the form factors in
Sec. III A and then explicitly gives all diagrams of the lead-
ing and next-to-leading order which are calculated explicitly
in Sec. III B.

II. THE DIAGRAMMATIC REPRESENTATION OF FORM
FACTORS FOR STAR GRAPHS

Star graphs are simple quantum systems with an exact
semiclassical trace formula for the density of states[22].
They consist ofV vertices connected byB bonds of lengthLi.
A particle propagates freely on the bond and is scattered at
the vertices according to prescribed unitary vertex scattering
matrices.

In a star graphB bonds emanate from one central vertex
and connect it toB peripheral vertices[20,22,23]. We have
generalized previous star graph models by allowing for a
wave function withM components. In our model all bonds
have the same length and the free propagation along the
bonds and the scattering at the central vertex do not mix the
components(but have to obey some symmetry conditions).
The central vertex scattering is thus a unitaryMB3MB ma-
trix of the form SC,a j ,a8,j8=daa8SC,j j 8

sad [20]. Here, j , j8
=1, . . . ,B is an index for the bonds anda ,a8=1, . . . ,M
counts the wave-function components. In addition, propaga-
tion along the bonds and the central scattering are time-
reversal invariant. The proper choice of the scattering pro-

cess at the peripheral vertices fixes the symmetry class(and
breaks time reversal if necessary). All peripheral scattering
processes can be described by a single unitaryMB3MB
matrix of the formSP,a j ,a8,j8=d j j 8saa8

s jd [20]. For graphs in the
novel symmetry classes this process involves an equivalent
of Andreev scattering(electron-hole conversion).

A. Diagrammatic representation of the form factors

Prescribing the central and peripheral scattering matrices
SC andSP leads to a quantization of the graph. Their product

is the reduced bond scattering matrixS̃B;SPSC. The density
of states is represented exactly by the semiclassical trace
formula

dskd = 1 +
2

MB
Reo

n=1

`

ei2pksgn/MBdsn. s1d

Here, k is the wave number in units of the(macroscopic)
mean level spacing and

sn = trS̃B
n = o

j i,ai

sa1an

s j1d SC,j1jn

sand
¯ sa2a1

s j2d SC,j2j1

sa1d s2d

is the trace of thenth power of the reduced bond scattering
matrix. The latter may be represented by diagrams[17]

s3d

In order to distinguish between a bond or vertex in a star
graph and in a diagram we will use the termslines and d
verticesfor the diagrams and reservebondsandverticesfor
star graphs. Thed vertices in the above diagram correspond
to the peripheral vertices in the star graph which are visited
one after another. Eachd vertex contributes a factor

s4d

to the diagram. This describes the scattering of a particle that
moves outwards on bondj in the statea8 to a particle mov-
ing inwards on the same bond in statea. The lines in the
diagram carry a factor

s5d

A diagram is calculated by summing over all indicesjk
=1, . . . ,B and ak=1, . . . ,M—obviously for Eq.(3) one ar-
rives back at Eq.(2). We have defined the first-order form
factor [20] as the Fourier transform of the(ensemble aver-
aged) fluctuating part of the density of states. The first-order
form factor in discrete timet=gn/MB (g=2 in classesAII,
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DIII, and CII which have Kramers’ degeneracy, elseg=1) is
upto a constant given by the ensemble average

K1,n =
2

g
ksnl. s6d

After an additional time average(over a small intervalDn
!B) which is needed for comparison with random-matrix
theory the first-order form factor(in continuous time) is
K1st=gn/MBd=s1/Dndon8=n

n+Dn−1K1,n. Equivalently there is
discrete and continuous time second-order form factors. In
the Wigner-Dyson case they are given by

s7d

and K2st=gn/MBd=s1/Dndon8=n
n+Dn−1K2,n. In the diagram for

sn
* we have indicated the complex conjugation by dashed

lines. Most contributions tosn and usnu2 do not survive the
ensemble average. The remaining contributions can be writ-
ten as a sum over various diagrams involving the same lines
andd vertices but have less summation indices. This expan-
sion will be explained in Sec. II C.

B. The line and d-vertex factors for the ten symmetry classes

In the preceding section we have not specified the central
and peripheral scattering matrices for the different symmetry
classes. Let us now give the explicitd-vertex factors and line
factors for each of the ten symmetry classes that are equiva-
lent to the construction in Ref.[20]. The lines in the diagram
correspond to the central scattering process. In our model
each component of the wave function is either scattered in
the center by theB3B discrete Fourier transform matrix
SDFT,kl=s1/ÎBdei2pskl/Bd or by its complex conjugate for
which we will use the lines

s8d

For some classes the line carries an additional index for the
component of the wave function—the line factor however
does not depend on it.

In the Wigner-Dyson classes only full lines exist in the
representation ofsn while there are only dashed lines insn

* .
The wave function has only one component in classAI. It
has two components in classA which we will call “spin up”
with the symbol↑ and “spin down” with the symbol↓ for
convenience. Finally, it has four components in classAII—in
addition to the spin labels↑ ,↓ we use the symbols⇑ ,⇓ and
call the latter “isospin” up and down for convenience. The
three star graph ensembles in the Wigner-Dyson classes are
defined by thed-vertex factors to be given now. We only

give thed-vertex factors for in-going and outgoing full lines.
The corresponding factor ford vertices connected to dashed
lines is just the complex conjugate. In classAI eachd vertex
carries a random phase factor

s9d

In classAI we have four different scattering processes cor-
responding to incoming and outgoing spin directions

s10d

Thus spin flips with probability12. In classAII isospin always
flips at ad vertex while spin flips with probability12. Thus
there are altogether eight different processes

s11d

For the novel symmetry classes the wave function has either
two (classesC and CI) or four components(D, DIII, AIII,
BDI, andCII ). In either case the components are divided in
“electron” and “hole” components. Electrons are represented
by full lines and holes by dashed lines. Additionally for the
four-component wave functions, electrons(holes) have a
“spin” up and down component. For each ensemble of star
graphs the peripheral scattering involves complete electron-
hole conversion(Andreev scattering). Thus, eachd vertex is
connected to one dashed and one full line. For the graphs in
the classesC and CI there are two different scattering pro-
cesses at ad vertex: one for an incoming electron and the
other for an incoming hole. The correspondingd-vector fac-
tors are given by

s12d

where 0øb j ,2p is a random phase in classC andb j =0 or
b j =p with equal probability in classCI. In the remaining
classes spin flips with probability12 at eachd vertex. There
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are altogether eight scattering processes and theird-vertex
factors are given by

s13d

where 0øg j ,b j ,2p are random phases ands j ,t j = ±1 with
equal probability.

C. Diagrammatic expansion of the ensemble
averaged form factors

For the Wigner-Dyson classes we are only interested in
the second-order form factor as the first-order form factor
vanishes exactly under the ensemble average. For the graphs
in the novel classes the ensemble average is nontrivial for the
first-order form factor. The second-order form factor in the
novel classes would contain additional contributions propor-
tional to ksn

2l and its complex conjugate which vanish in the
Wigner-Dyson case. We will not consider the second-order
form factor for other classes than the Wigner-Dyson here.

Though the second-order form factor is a sum over pairs
of periodic orbits and the first-order form-factor contains a
single orbit the diagrammatic expansion is based on similar
observations. We will start with the Wigner-Dyson case.
Most pairs of periodic orbits do not survive the ensemble
average. A contribution can only survive if alld vertices have
a partnerd vertex such that the product of their factors does
not depend on the random phases or random signs. This con-
dition can only be fulfilled if the two orbits visit the same
peripheral vertices with the same multiplicities. The order
may however be different and one may introduce diagrams
to denote the various appearing permutations. Let us start
with the diagrams for classAI and later introduce the spin

degrees of freedom. An example of such a diagram forn
=6 is given by

s14d

In this diagramd vertices have been joined to pairs in a gray
area to indicate that they carry the same indexkm. We will
call these gray areasscattering regionsand, in the sequel, we
will drop the indiceskm (as well as line indices for multi-
component wave functions). Themultiplicity factorj will be
explained later in this section.

Any diagram that contributes toK2,n has 2n d vertices
connected by 2n (directed) lines that define two periodic or-
bits of lengthn. One of the orbits has only full lines and the
other only dashed lines. Eachd vertex and each line contrib-
utes with the corresponding factor to the diagram—since by
construction the phase factorseib j each have a partnere−ib j

the phases all cancel. The numberw of scattering regions
may range inw=n,n−1, . . . ,1. Each of thew scattering re-
gions carries a single indexkmsm=1,2, . . . ,wd for all d ver-
tices which it contains. The number ofd vertices in a scat-
tering region is always even—half of thed vertices are part
of each of the two periodic orbits. Ifw,n we will call the
diagram asubdiagram—in subdiagrams some scattering re-
gions contain more than twod vertices.

In the classesA andAII each line gets an additional index
a js j =1,2, . . . ,2nd for the different(spin and isospin) com-
ponents of the wave function. The sum overa j collapses to a
sum over allowed component configurations when under the
averages overd j and g j. An allowed component configura-
tion is a set of line indicesa j for which all phasesd j andg j
along the diagram cancel exactly. Then the product of all
phase factors is ±1. The sum over thew indiceskm for the
different encounter regions and the sum over allowed com-
ponent configurations factorizes such that the value of a dia-
gramDn falls into three parts,

Dn = jnCnPn. s15d

Here,jn is the multiplicity factor,Cn is thequasispinfactor,
and Pn the principal part. The latter contains only the line
factors s1/ÎBde±is2p/Bdkmkm8 and is summed over thew scat-
tering region indiceskm. The quasispin factorCn contains all
thed-vertex factors which are summed over all allowed qua-
sispin (component) configurations—in classAI one hasCn

=1 and in the classesA andAII it is given by ±1/2n for each
allowed configuration. In classA the sign is always positive,
soCn is 1/2n times the number of allowed configurations. In
classAII quasispin configurations a negative sign appears if
an allowed configuration contains an odd number ofd verti-
ces where the incoming spins and isospins are antiparallel
and both flip[see Eq.(11)].
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Finally, the multiplicity factorjn= j̃ /n is the numberj̃ of
times the diagram appears as a subsum in the original form
factor (7) before the average was performed divided by the
length of the orbitn. In general the sum over the indiceskm
is a sum over pairs of points on two different periodic orbits.
However, any pair of two points along the same orbits will
give exactly the same contribution. Thus, in general the sum

over km appearsj̃=n2 times in the original one—in the dia-

gram (14) one has indeedj̃=n2=36 times. There are excep-
tions whenever one orbit is a repetition of a shorter orbit or if
the diagram is invariant with respect to some cyclic permu-
tation of the indiceskm. For example, the diagrams

s16d

only appearn times in the original sum such thatj̃=n and
j1

s0d=j2
s0d=1. These are the two diagrams of the diagonal ap-

proximation to be discussed in the following section.
Obviously every pair of periodic orbits visiting the same

scattering regions defines a diagram. However, if one sums
over all the scattering region indiceskm without restriction
the same pair of periodic orbits may appear in different dia-
grams and we have to face the problem of double(or mul-
tiple) counting of periodic orbits. One way to get rid of the
double-counting problem is to restrict the sum overkm such
that ki Þkj for i Þ j and add all subdiagrams where the num-
ber w of scattering regions is smaller thann (with the same
restriction in the sum over indices). The form factorK2,n can
then be written as a sum over all diagrams withw=n,n
−1, . . . ,1 scattering regions and every pair of periodic orbits
is counted exactly once.

It will be more convenient for us to keep an unrestricted
sum over the scattering regions and subtract the multiply
counted orbits. Any diagramD contains many subdiagrams
which can be obtained fromD by combining some scattering
regions to a single one. This is equivalent to restricting the
sum in the diagram toki =kj. Multiple counting occurs when
either two (or more) diagramsD1 and D2 have the same
subdiagram or when one subdiagram appears more than once
in the same diagramD. If the wave function has one com-
ponent we just have to subtract the overcounted subdia-
grams. In the presence of more than one component only the
overcounted quasispin configurations have to subtracted. It
may happen that a subdiagram allows new quasispin con-
figurations that have not been counted in the original
diagram—then the corresponding configurations have to be
added. Luckily we will not encounter such difficulties in the
sequel.

Finally, we may write the second-order form factor as a
sum over diagrams,

K2,n =
1

gMB
kusnu2l =

n

gMBSon

Dn − o
n8

Dn8
subD . s17d

The sum over diagramsDn only contains diagrams withw
=n scattering regions. The sum over subdiagramsDn8

sub ac-

counts for the corrections due to multiple counting—it con-
tains diagrams withw=n−1,n−2, . . . ,1 scattering regions
and we include the number of times it has been overcounted
in the multiplicity factor. Note the factorn outside the
parentheses—this factor appears due to the definition of the
multiplicity factor j.

The diagrammatic representation of the first-order form
factor in the novel symmetry classes is analogous. The main
difference is that there is only a single periodic orbit connect-
ing n d vertices in any diagram that contributes toK1,n. As a
consequence of complete Andreev scattering at the periph-
eral vertices, thed vertices in the diagrams always connect a
full line with a dashed line. Diagrams can thus only be drawn
if the lengthn of the orbit is even and

sn = 0 if n is odd. s18d

Similar as before for the second-order form factor most con-
tributions to the tracesn do not survive the average over the
phasesg j ,b j (and signss j ,t j). The nonvanishing contribu-
tions can again be grouped in diagrams where at mostn/2
d-vertex indices remain independent. In a nonvanishing dia-
gram eachd vertex has again a partner such that the product
of their d-vertex factors does not depend on the random
phase factors or signs. We again introducescattering regions
that are defined as in the diagrams to the second-order form
factor. Each scattering region has a single index which is the
same for alld vertices it contains. A scattering region always
contains an even number ofd vertices.

A general diagram will be drawn without indices and has

a value D̂n= ĵnĈnP̂n where the definitions of the principal

part P̂n and the quasispin factorĈn are as before. The hat
serves as a symbol to distinguish between the contributions
to the first-order form factor(with hat) form those to the
second-order form factor(no hat). The principal part is inde-
pendent of the symmetry group and given by the line contri-
butions summed over the indices of the scattering regions.

The quasispin factorĈn is the sum of thed-vertex factors
over allowed spin and electron-hole configurations. The qua-
sispin factor may also vanish. If there is no spin it will be ±2
where the factor 2 is due to interchanging all electron and
hole lines.

The multiplicity factorĵ is here defined as the number of
times an equivalent sum appears in the original sumsn—note
that here we have not divided this number byn as in the case
of the diagrams for the second-order form factor. As an ex-
ample the two diagrams

s19d

have multiplicity factorsĵ1
s0d=1 andĵ2

s0d=n/2. The difference
is due to the different symmetry in the two diagrams. For the
second diagram the rotational symmetry is broken by the
turning point of the periodic orbit. These two diagrams cor-
respond to the self-dual approximation to be discussed in the
following section.
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Multiple countings have to be accounted for in the same
manner as for the second-order form factor which results in

K1,n =
2

g
ksnl =

2

gSon

Dn − o
n8

Dn8
subD s20d

by including the corresponding subdiagrams. For finiten the
sum over diagrams is finite for both types of form factors and
the expansion converges absolutely. As every periodic orbit
(pair of period orbits) defines some diagram no contribution
is neglected and the expansion is formally exact.

III. THE DIAGONAL AND SELF-DUAL APPROXIMATIONS
AND BEYOND

While the calculation of the principal part, quasispin fac-
tor, and multiplicity factor for any given diagram is quite
simple, the sum over all diagrams defined in the preceding
section is quite nontrivial. We will now give a systematic
short-time expansion of this sum in the ergodic limitB→`.
In the leading order only two diagrams have to be accounted
for in each symmetry class. More diagrams have to be taken
into account for the next-to-leading order where multiple
counting of periodic orbits leads to additional complexity.

A. The diagrammatic short-time expansion
of the form factors

We will be interested in the short-time behavior of large
graphs such that we may assume 1!n!MB/g. The first
inequality 1!n assures that we are in the universal regime—
the ultra-short-time behavior wheren=Os1d is known to be
dominated by the system-dependent shortest orbits. The sec-
ond inequality can be rewritten ast;gn/MB!1 which
shows that we are interested in times much shorter than
Heisenberg time.

We want to calculateK1,n and K2,n in the limit n,B→`
wheret=gn/MB!1 is constant. For that aim we will ex-
pand the form factors in orders oft:

K1St =
gn

MB
D =

2

g
ksnl =

2

g
o
m=0

`

K1
smd, s21d

K2St =
gn

MB
D =

1

gMB
kusnu2l =

t

g2 o
m=0

`

K2
smd, s22d

whereK1,2
smd are expansion coefficients proportional totm that

we have to calculate—in this expansion we have anticipated
that the leading order will be a constant forK1std and will be
linear in K2std.

Each of these coefficients is a time-averaged sum over
some diagrams(and subdiagrams). The time average is per-
formed over a short discrete time intervalfn,n+Dng and has
to be performed before we take the limitn,B→`. The in-
terval has to be chosen such thatDt=gDn/MB vanishes in
that limit.

Let us shortly summarize the procedure:(i) find all dia-
grams and subdiagrams that contribute to a given orderK1,2

smd

for finite B@n@1; (ii ) for every subdiagram withw vertices

count how often it appears as a subdiagram of other
(sub)diagrams in the same orderK1,2

smd and in all smaller or-
dersK1,2

sm−1d , . . .; (iii ) calculate the values of the diagrams and
add them and subtract the overcounted subdiagrams;(iv)
take the time average overn; (vi) finally take the limitn,B
→`. Obviously the procedure is recursive and one has to
start withm=0.

The rest of this section will be devoted to the description
of the diagrams that contribute to a given orderK1,2

smd. Since
t=gn/MB this is equivalent to finding the diagrams with
values of orderB−m. A single diagram which is of orderB−m

in B may have a very different order inn—such that the limit
n,B→` cannot always be performed for a single diagram.
Our procedure will be self-consistent if this limit existsafter
we have summed over all(sub)diagrams.

As the multiplicity factor and the quasispin factor do not
depend onB we have to look at the principal part which does
not depend on the symmetry class. The resulting expansion
for the first-order form factor can be used for all graphs in
the novel symmetry classes while the diagrams in the expan-
sion of the second-order form factor are the same for all
three Wigner-Dyson graphs. The difference between the en-
sembles is mainly due to different quasispin factors. Note
that these may vanish.

The principal part of a(sub)diagramDn for K2
smd (D̂n for

K1
smd) with 2nsnd d vertices and lines andwønswøn/2d

different scattering regions is bounded from above,

Pn ø
1

Bn−w, P̂n ø
1

Bn/2−w . s23d

Indeed, the absolute value of the summand in the principal
part is 1/Bns1/Bn/2d stemming from the 2nsnd amplitudes of
the line contributions when one sums overw indices km
=1,2, . . . ,B. In Eq. (23) equality holds if all the phases ac-
quired along the lines cancel exactly. This is the case in
complete(sub)diagrams for which every full line that con-
nects two scattering regions is accompanied by a dashed line
connecting the same two scattering regions. We will call
such a pair of lines acomplete diagonal (antidiagonal)pair
of lines if they start and end at the same(opposite) scattering
region.

Every complete(sub)diagram withw=n−msw=n/2−md
scattering regions contributes as a(sub)diagram to K2

smd

3sK1
smdd. If w,n−msw,n/2−md no subdiagrams exist that

contribute.
It remains to find the noncomplete(sub)diagrams. For

noncomplete diagrams the sum is oscillating due to the ap-
pearing phase factors. An oscillating sum over one index is
of the form

o
k=1

B

es2pi/Bdksk8−k9d = Bdk8k9, s24d

where dk8k9 is the Kronecker symbol. The subsequent sum
over k8 does not give an additional factorB. Thus noncom-
plete(sub)diagrams can only contribute toK2

smdsK1
smdd if they
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have a complete subdiagram withw=n−m scattering re-
gions.

All (sub)diagrams forK2
smdsK1

smdd are thus found by first
finding all complete(sub)diagrams withn−msn/2−md scat-
tering regions and then finding all(noncomplete) diagrams
with n−m+1, . . . ,nsn/2−m+1, . . . ,n/2d scattering regions
which contain one of the complete subdiagrams.

B. The diagonal approximation and beyond for star graphs
in the Wigner-Dyson classes

We will now find all diagrams that contribute to the diag-
onal approximationsm=0d and one order beyond in the
second-order form factor of star graphs in the Wigner-Dyson
classes. The coefficientsK2

s0d andK2
s1d will be calculated. The

resulting form factors will be in accordance with the random-
matrix predictions[20] (for t!1):

K2std =5
t GUEsA-GEd
2t − 2t2 + Ost3d GOEsAI-GEd
t

2
+

t2

4
+ Ost3d GSEsAII-GEd.

s25d

1. The diagrams

For the diagonal approximationsm=0d, we just have to
find all complete diagrams with two periodic orbits of length

n andw=n scattering regions. There are two such diagrams:
D1

s0d and D2
s0d given by Eq.(16). In D1

s0d the two periodic
orbits are the same and inD2

s0d one orbit is the time-reversed
orbit of the other. We have

K2
s0d = D1

s0d + D2
s0d s26d

which gives the diagonal approximation. The multiplicities
of the two diagrams arej1

s0d=j1
s0d=1 and their principal parts

P1
s0d=P2

s0d=1. Only the quasispin contributions depend on the
symmetry class such that

D1
s0d = C1

s0d and D2
s0d = C2

s0d. s27d

We will see in Sec. III B 2 that for broken time reversal the
quasispin contribution of the diagramD2

s0d vanishes in the
limit n→`.

For the first order beyond the diagonal approximation
sm=1d we have to find all complete subdiagrams withn−1
scattering regions and then all new noncomplete diagrams
with n scattering regions that contain one of the complete
subdiagrams. The diagrams can be grouped into three fami-
lies. Each of the families contains complete and noncomplete
diagrams. The complete diagrams of the first two families
appear trivially as a subdiagram of the diagonal diagrams
D1

s0d andD2
s0d by joining two of their scattering regions,

s28ad

s28bd

where we have already included the principal partP=1/B
and the multiplicityj=n. The integerl =0,1, . . . ,n−2 gives
the number of scattering regions in the left loop(the central
scattering region is not counted). The diagram withl vertices

in the left loop is equivalent to the one withl vertices in the
right loop. The noncomplete diagrams of the first two fami-
lies each contain one of corresponding complete
subdiagrams,

s29ad

s29bd
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Again, l =0,1, . . . is thenumber of scattering regions in the
left loop (the two central scattering regions are not counted).
Let us now assume that the quasispin factors within one
family of diagrams is the same,C1,l

s1d=C1,l
sub,s1d;C1

s1d and
C1,l

s1d=C2,l
sub,s1d;C2

s1d. In the limit n,B→` this can indeed be
shown for each of the symmetry classes. The contribution of
these two families then vanishes due to overcounting. Each

of the subdiagrams has been counted once in the diagonal
approximation and is also a subdiagram of the new noncom-
plete diagrams.

The third family contains all nontrivial diagrams that cor-
respond to the Sieber-Richer pairs. They consist of two loops
as well, however in one loop the two orbits are parallel while
in the other they are time reversed:

s30d

In these diagrams it is irrelevant if we draw the crossing on the left or on the right of the central scattering region. If the left
or the right loop has either zero or one vertex it is indistinguishable from one of the corresponding previous diagrams(28a) or
(28b). Thusl =2,3, . . . ,n−4 and there aren−5 new diagrams of this form. Note that these diagrams arenot subdiagrams of the
diagonal diagramsD1

s0d andD2
s0d.

The corresponding noncomplete diagrams are

s31d

The number of vertices in the left loop(left of the crossing)
runs from l =4 to l =n−4—all other diagrams are indistin-
guishable from corresponding diagrams in the families(29a)
and (29b). Thus there aren−7 new diagrams in this family.

Each of the subdiagramsD3,l
sub,s1d is contained once in the

diagramsD3,l
s1d and D3,l+2

s1d if 4 ø l øn−6 while for l =2,3sl
=n−4,n−5d they are contained once in oneD2,l

s1d andD3,l+2
s1d

(D1,l+2
s1d and D3,l

s1d). Thus each subdiagramD3,l
sub,s1d has been

overcounted once. Again one can show thatC3,l
s1d=C3,l

sub,s1d

;C3
s1d in the limit n,B→`. The contributions then do not

vanish if C3
s1dÞ0 and one has

K2
s1d = − 2C3

s1d. s32d

2. Wigner-Dyson class AI (GOE)

Since the graphs in symmetry classAI have a one-
component wave functionsM =g=1d the quasispin contribu-
tion to any (sub)diagramDn is Cn=1. In the diagonal ap-
proximation each of the two diagrams has the valueD1

s0d

=D2
s0d=1 and we have

K2
s0d = 2. s33d

For the next order we haveD3,l
s1d=Dsub,s1d=t which gives

K2
s1d = − 2t. s34d

Altogether the leading terms of the second-order form factor
give K2std=2t−2t2+Ost3d in accordance with the GOE pre-
diction (25).

3. Wigner-Dyson class A (GUE)

In class A we have defined star graphs with a two-
component wave function(M =2, g=1) and we have to cal-
culate the quasispin contributions for all diagrams.

Let us start with diagramD1
s0d where both periodic orbits

are the same(parallel). Only spin configurations survive the
average over the phasesgk anddk for which the spins on two
parallel lines is the same. The spins on lines that connect
different scattering regions are independent. Thus there are
2n allowed spin configurations and the quasispin contribution
to the diagram isC1

s0d=1 which results in

D1
s0d = 1. s35d

In the diagramD2
s0d the two orbits are antiparallel. Here,

the spins on different lines are not independent for configu-
rations that survive the phase average. If at any pair of anti-
parallel lines the two spins ares1 for the full line ands2 for
the dashed line the spins on the neighboring lines ares1 for
the dashed line ands2 for the full line. If n is evens1 ands2
are independent while for oddn they are equal. So there are
only four (two) allowed spin configurations for even(odd) n
which gives

D2
s0d =

3 + s− 1dn

2n . s36d

This value is exponentially suppressed in the limitn→`—a
consequence of breaking the time-reversal invariance in this
symmetry class.
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In the first order beyond the diagonal approximation the
contribution of the first family vanishes because the qua-
sispin factor is the same throughout the family(see Sec.
III B 1 ). The contribution of the second family vanishes be-
cause their quasispin factors all vanish in the limitn,B→`.
For the third family the quasispin factors are not equal for
each diagram in the group. Its value is small if it contains a
big antiparallel loop. There are however diagrams with a
short antiparallel loop. It is however not difficult to calculate
the quasispin factor of each diagram which gives

D3,l
s1d=

3 − s− 1dn−l

2n−l−1

n

B
,

D3,l
sub,s1d=

3 − s− 1dn−l

2n−l−1

n

B
. s37d

The sum over all these contributions(including the correct
accounting for multiple counting) is

o
l=4

n−4

D3,l
s1d − o

l=2

n−4

D3,l
sub,s1d = − D3,2

sub,s1d − D3,3
sub,s1d = −

9 + s− 1dn

2n−3

n

B

s38d

which also vanishes in the limitn→`. Thus Sieber-Richter
pairs do not contribute for broken time-reversal symmetry.

Only the diagrams of the diagonal approximation contrib-
ute to the form factor which has the valueK2std=t as pre-

dicted by the GUE(25) for t,1.

4. Wigner-Dyson class AII (GSE)

In classAII we have a four-component wave function on
the star graphssM =4,g=2d. At eachd vertex isospin flips
while spin may either flip or not. As an immediate conse-
quence the length of every periodic orbit is even andsn=0 if
n is odd.

For the diagonal approximation we have to recalculate the
quasispin factors of the two diagramsD1

s0d andD2
s0d with the

additional spin and isospin freedoms. Let us start with the
first diagram where both orbits traverse the scattering regions
in the same order. The isospins on parallel lines are either
always parallel or always antiparallel. If isospins on parallel
lines are parallel only the spin configurations which are ev-
erywhere parallel as well survive the average. As the spins
on lines connecting different scattering regions are indepen-
dent there are 2n+1 such configurations with parallel isospins
(n factors 2 from the spins and one factor from the isospin).

If the isospins are all antiparallel there are allowed con-
figurations with either all spins parallel or all antiparallel
between two scattering regions. If the spins are all antiparal-
lel they never flip and if they are parallel they both flip at
every scattering region. Altogether there are only eight con-
figurations with antiparallel isospins, which implies that
these contributions are negligible in the limitn,B→`. Note
that antiparallel isospins imply that the two orbits are differ-

ent and not related by time reversal. At eachd vertex with an
incoming spin that is antiparallel to the incoming isospin a
factor −1 is gathered if the spin flips. All factors −1 within
one scattering region cancel because the twod vertices have
the same configuration.

Due to time-reversal invariance the two diagrams in the
diagonal approximation have the same value,

D1
s0d = D2

s0d = 2 + 2−n+3. s39d

Note that time reversal implies changing the directions of
arrows flipping the spins while isospins do not flip. In the
time-reversed diagramD2

s0d the factors −1 cancel in a slightly
different way. As on neighboring lines spins are always an-
tiparallel and isospins always parallel, one gets a factor −1 at
every scattering region where both spins flip. Sincen is even
so is the number of spin flips along each orbit.

For the calculations of the diagrams that contribute be-
yond the diagonal approximation we will neglect all contri-
butions that are exponentially suppressed. The first two fami-
lies have a vanishing contribution as their quasispin factors
are the same within each family in the limitn,B→`. Again,
we only have to consider the Sieber-Richter family with the
diagramsD3,l

s1d and D3,l
sub,s1d. In both families only evenl can

give contributions that are not exponentially suppressed as
isospins have to remain parallel in the left and right loops.
There aren/2−3 contributing diagrams in the familyD3,l

s1d

and n/2−2 in the family D3,l
sub,s1d (each of them has been

overcounted once). They all have the same value,

D3,l
s1d = D3,l

sub,s1d = −
n

B
. s40d

For any quasispin configuration an odd number of factors −1
is gathered along the orbits—also the spins on the lines that
connect the left and right loops are not independent.

Altogether we get

K2,n =
n

8B50 if n is odd

4 +
n

B
+ OS n2

B2D if n is even.
s41d

As t=n/2B the time average yieldsK2std=t /2+t2/4
+Ost2d in accordance with the short-time expansion of the
universal result(25) from the GSE.
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C. The self-dual approximation and beyond for chiral
and Andreev graphs

Now we will consider the self-dual approximationsm
=0d and one order beyondsm=1d for the first-order form
factors in the novel symmetry classes. We will give all dia-
grams and show that they add up to the corresponding
random-matrix predictions[20] for t!1:

K1std =5
− 1 C-GE

− 1 +
t

2
+ Ost2d CI-GE

1 D-GE

1

2
−

t

8
+ Ost2d DIII-GE

−
t

2
+ Ost2d chGUEsAIII-GEd

1 −
3t

2
+ Ost2d chGOEsBDI-GEd

−
1

2
−

3t

8
+ Ost2d chGSEsCII-GEd

s42d

1. The diagrams

The self-dual approximation takes into account all com-
plete diagrams forK1,n (wheren is even) with n/2 scattering
regions. The approximation has been called self-dual because
the diagrams contain those orbits which are invariant under
either a chiral symmetry or charge conjugation(in combina-
tion with time reversal).

There are two self-dual diagrams which have been given
in Eq. (19) where their multiplicity factors have been given.

Their principal part isP̂1,2
s0d =1. In the first diagram the same

scattering regions are visited twice in the same order but
with electrons replaced by holes in the second traversal. It
vanishes exactly ifn/2 is even(no complete diagram can
then be drawn) while

D̂1
s0d = Ĉ1

s0d, s43d

for odd n/2. In the second diagram the same orbits are tra-
versed in opposite(time-reversed) direction. It contains one
scattering region where the direction is changed. Its value is

D̂2
s0d =

n

2
Ĉ2

s0d. s44d

If n/2 is odd the turning point region has one incoming
electron and one incoming hole as drawn in Eq.(19). The
diagram has to be changed slightly for evenn/2— then the
turning point region has either two incoming electrons or two
incoming holes.

To calculate the linear order of the form factor we need all
families of diagrams that contribute toK1

s1d. Most of these

diagrams will have a multiplicity factorĵ=n/2 because there

is no symmetry. The exceptions haveĵ=n/4 due to some
twofold symmetry. When we explicitly give the value of a
family of diagrams they always refer to the generic case
where no twofold symmetry is present. The cumbersome ac-
counting for all these cases will only be done for those fami-
lies of diagrams that do not vanish for different reasons.

The diagrams have eithern/2 scattering regions, are not
complete or they haven/2−1 scattering regions, are com-

plete. In all cases the principal value isP̂n
s1d=1/B. One may

group the diagrams into seven different families.
The first two families have complete diagrams that are

subdiagrams of the self-dual approximation. Joining two
scattering regions in the two diagrams(19) gives

s45ad

s45bd

wherel is the number of scattering regions in the right loop. The first type of diagrams only exists ifn/2 is odd. For the second
type of diagramsk is an index for the different positions of the turning point.

There are two types of noncomplete diagrams in each of the two families. For the first family they are given by
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s46d

The difference between the two diagrams is that two central
scattering regions have two incoming lines of the same type
for the first diagram and two different incoming lines in the
second. Both diagrams only exist for oddn/2.

For the second family one has

s47d

which differ in the direction of the lower line. Both diagrams
have been drawn for an even numbern/2−l −2 of scattering
regions in the left loop. Then the two central scattering re-
gions have one incoming dashed and one incoming full line
each. For an odd number of scattering regions in the left loop
the central scattering regions have two incoming lines of the
same type.

Each of the subdiagramsD1,l
sub,s1d or D2,l,k

sub,s1d has been
counted three times: Once in the self-dual approximation and
twice in the diagramsD1a/1b,l,k

s1d andD2a/2b,l,k
s1d . If the quasispin

factors do not differ in the limitn,B→` the diagrams cancel
due to overcounting. This is indeed the case for all seven
ensembles of star graphs in the novel symmetry classes.

The third family contains diagrams with two parallel com-
plete loops. The complete diagrams in this family,

s48d

cannot be obtained as subdiagrams of the self-dual diagrams.
In the second traversal of each loop the roles of electrons and
holes are interchanged. A complete diagram can only be
achieved if bothl =0,2, . . . andn/2−l −2=0,2, . . . areeven.
Thusn/2 is even. The noncomplete diagrams in this family
are given by

s49d

In both casesn/2 is even whilel is odd in the first type and
even in the second type. If all quasispin factors within this
family are equal the contribution of this family vanishes due
to overcounting. Indeed for fixed evenl the complete sub-
diagramsD3,l

sub,s1d have been counted three times. It appears
once inD3b,l

s1d and twice in the diagramD3a,l+1
s1d because there

are two ways of joining diagonally opposite scattering re-
gions. As the values of all diagrams are equal and the com-
plete subdiagram has been overcounted twice for each fixed
evenl the contributions cancel.

By introducing turning points in both loops or just in the
right loop of the third family one arrives at the fourth and
fifth family of diagrams. The complete diagrams in the fourth
family are given by

s50d

and the corresponding noncomplete diagrams are

s51d

Here we need two indiceskl,r to account for the positions of
the two turning points which makes counting quite cumber-
some. Luckily for fixed values ofkl,r andl one can show that
the contribution of this family vanishes due to multiple
counting if all quasispin factors are the same. The argument
is analogous to the third family.

The same argument also cancels the contribution of the
fifth family with the complete subdiagrams

s52d

In this diagramn/2−l −2 must be odd and the diagrams with
1, l ,n/2−3 give a new diagram. The corresponding non-
complete diagrams are

s53d

All nontrivial contributions to the first-order form factor
come from the two remaining families of diagrams. They
contain no turning point but do contain loops of antiparallel
lines. The complete diagrams of the sixth family,
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s54d

contain one parallel and one antiparallel loop while the com-
plete diagrams

s55d

of the seventh family contain two antiparallel loops. In both
types of complete diagramsl is odd. In the sixth family
n/2−2−l is even while it is odd in the seventh family. Thus
the sixth family only exists for oddn/2 and the seventh only
for evenn/2. If l =1 the diagramsD6,1

sub,s1d andD7,1
sub,s1d are the

same asD2,1,k
sub,s1d (with k such that the turning point is on the

scattering region in the right loop). For l =n/2−2 thedia-
gramD6,n/2−2

sub,s1d is the same asD1,n/2−2
sub,s1d . Thus for the sixth fam-

ily l =3,5, . . . ,n/2−4 which gives 1
2sn/2−5d different dia-

grams. In the seventh family the diagramsD7,l
sub,s1d are the

same as D7,n/2−2−l
sub,s1d such that l =3,5, . . . ,n/4−2 (or l

=3,5, . . . ,n/4−1) if n/4 is odd (even) which gives 1
2sn/4

−3d [or 1
2sn/4−1d] different diagrams. Ifn/4 is even andl

=n/4−1 themultiplicity factor should ben/4 instead ofn/2
as given in the formula above. In both cases the sum of the
multiplicity factors over all different diagrams issn/4dsn/4
−3d for the seventh family.

The noncomplete diagrams of the sixth and seventh fami-
lies are given by

s56d

and

s57d

In both familiesl is odd whilen/2 is odd(even) in the sixth
(seventh) family. The diagramsD6a,1

s1d , D6a,3
s1d , D6a,n/2−2

s1d , D6b,1
s1d ,

D6b,n/2−2
s1d , D7a,1

s1d , D7a,3
s1d , and D7b,1

s1d are not new(they can be
found amongD1a/1b,l

s1d andD2a/2b,l,k
s1d ). Thus l =5,7, . . . ,n/2−4

(or l =3,7, . . . ,n/2−4) for D6a,l
s1d sD6b,l

s1d d which gives 1
2sn/2

−7d [or 1
2sn/2−5d] new diagrams in the sixth family.

For odd(even) n/4 the multiplicity factor of the diagram
D7a,n/4

s1d sD7b,n/4−1
s1d d is reduced ton/4 due to the symmetry of

these diagrams. Ifn/4 is odd (even) l =5,7, . . . ,n/4−2 (or
l =3,5, . . . ,n/4−3) for the diagramsD7a,l

s1d sD7b,l
s1d d and the sum

over the multiplicities issn/4dsn/4−4d [or sn/4dsn/4−2d].
Assuming that within each family the quasispin factors

have all the same valueC6,7
s1d almost all diagrams in the sixth

and seventh families are canceled by subdiagrams in the cor-
responding families. The mechanism is similar to the third,
fourth, and fifth families. The main difference is that some of
the subdiagrams in the sixth and seventh families also appear
as subdiagrams in the first and second families of diagrams
which leads to additional overcounting. Each of the subdia-
grams actually appears three times as a subdiagram—e.g.,
D6,l

sub,s1d for n/2−6ù l ù5 is subdiagram ofD6a,l
s1d , D6a,l−2

s1d , and
D6b,l

s1d , thus each has been overcounted twice. The sum over
all diagrams with corresponding corrections due to over-
counting gives

o
l

D6a,l
s1d + o

l

D6b,l
s1d − 2o

l

D6,l
sub,s1d = −

n

2B
C6

s1d, s58ad

o
l

D7a,l
s1d + o

l

D7b,l
s1d − 2o

l

D7,l
sub,s1d = −

n

4B
C7

s1d, s58bd

where the contribution of the sixth family only exists for odd
n/2 and the contributions of the seventh family only for even
n/2. These will be responsible for the leading order beyond
the self-dual approximation in all seven ensembles.

2. The Andreev class C

In classC there are no additional spin components of the
wave function. The ensemble average leads to the condition
that every scattering region has as many incoming electron
lines as hole lines andC= ±2 for all quasispin factors. The
sign is positive for evenn/2 and negative for oddn/2 (two d
vertices within a scattering region carry a factor −1) while
the factor 2 corresponds to interchanging electron and hole
lines. In the self-dual approximation only the diagramD1

s0d

=−2 fulfills the stated condition which leads to

K1,n =5
0 n = 2s+ 1

0 + OS 1

B
D , n = 4s

− 4 +OS 1

B
D , n = 2s2s+ 1d,

s59d

where s is some integer. Time averaging gives the correct
leading orderK1std=1+Ostd. In the next order all diagrams
in the first five families are canceled due to overcounting
since the quasispin factors are equal while in the sixth and
seventh families(and also some among the other five) each
diagram contains at least one loop with antiparallel lines.
Along these any scattering region has two incoming lines of
the same type. Thus they do not survive the ensemble aver-
age and we haveK1std=1+Ost2d as predicted by random-
matrix theory(42).
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3. The Andreev class CI

In classCI the quasispin factors are the same as for class
C as no spin is present. The ensemble average leads to the
weaker condition that every scattering region contains an
even number ofd vertices. In the self-dual approximation
thus both diagrams contribute. In the next-to-leading order
only the contribution from the sixth and seventh families
contributes. Altogether this gives

K1,n =5
0, n = 2s+ 1

2n −
n

B
+ OS 1

B2D , n = 4s

− 4 − 2n +
2n

B
+ OS 1

B2D , n = 2s2s+ 1d.

s60d

Since t=n/2B time averaging yields K1std=−1+t /2
+Ost2d in accordance with the random-matrix theory result
(42).

4. The Andreev class D

In classD we have to take the spin components into ac-
count. The ensemble average leads to a set of conditions on
the scattering regions. It will suffice to consider one large
complete open loop to identify all allowed configurations.
The complete open loops can be obtained from the two self-
dual diagrams by cutting two(anti)parallel lines. We will
neglect contributions which are exponentially suppressed in
the limit n,B→`. First consider an antiparallel loop and put
either two parallel or two antiparallel spins on two antipar-
allel lines. For antiparallel lines with parallel spins both spins
are always flipped from one side of the scattering region to
the other. Antiparallel spins on antiparallel lines are never
flipped. In both cases we can only choose the spins on one
pair of parallel lines and the spins onall lines in the loop are
fixed. Since ever scattering region carries a factor ±1

2 any
configuration with antiparallel lines is suppressed exponen-
tially with a factor 2−m for a loop of lengthm.

In a loop of parallel lines the situation is different. Only
configurations of parallel spins on parallel lines survive the
ensemble average. However the spins may either flip or not
when parallel lines hit a scattering region. Since there are 2m

such configurations on a loop withm scattering regions and
2m lines, the factor 2−m of the scattering regions is canceled
(in this configuration the factor from each scattering region is
positive). For a loop we thus have the same conditions on a
scattering region as in classC. Only the diagramsD1

s0d, D1b,l
s1d ,

D3a,l
s1d , andD3b,l

s1d fulfill this condition. However, the contribu-
tions of the first and third families have been shown to van-
ish under the given conditions such that contributions to the
ordert remain. Altogether

K1,n = 2ksnl =5
0, n = 2s+ 1

0 + OS 1

B2D , n = 4s

4 + OS 1

B2D , n = 2s2s− 1d

s61d

and time averaging yields the corresponding result from
random-matrix theoryK1std=1+Ost2d upto the order we
have calculated in Eq.(42).

5. The Andreev class DIII

After the ensemble average in classDIII the spins have to
be parallel in a parallel loop where the scattering regions
carry a positive factor12. In consequence, the first self-dual
diagram has the valueD1

s0d=2 as the quasispin factor is
Cs0d=22n/22−n/2=2. For an antiparallel loop only configura-
tions with antiparallel spin need to be counted(the sum over
some remaining contributions is exponentially suppressed).
At any scattering region the spins may then either flip or not
— every time they both flip the scattering region carries a
negative sign(else the factor is positive). A turning point
inside a loop has antiparallel spins on two connected lines
and always carries a positive sign whatever allowed spin
configuration on both sides. As a consequence, for any qua-
sispin configuration that contributes toD2

s0d there is another
configuration with opposite sign which has a different spin
on one pair of lines connected to the turning point region. We
thus haveD2

s0d=0. The same is true for any diagram which
contains a turning point.

The argument for the cancellation of almost all diagrams
but the contributions given in Eqs.(58a) and (58b) in the
preceding section assumed the same quasispin factor for all
diagrams. It can be generalized to classDIII (and also all
other classes) if one properly only subtracts those quasispin
configurations in the subdiagrams that actually have been
overcounted(the subdiagrams may contain allowed configu-
rations that have been counted properly). The overcounted
configurations that appear in the quasispin factorsC6,7

s1d are
the corresponding quasispin factors of the diagramsD6a,l

s1d and
D7a,l

s1d . For configurations that contribute toC6
s1d the number of

spin flips in the left loop is necessarily positive which gives
a positive sign to each contribution. Altogether one gets
C6

s1d=1. Indeed, all the scattering regions give a factor 2−n/2,
the electron-hole interchange gives a factor 2 and the spins
2n/2−1 (the spins on the four lines connecting the two loops
are determined by a single spin index). The other quasispin
factor isC7

s1d=−1. The different sign is due to an odd number
of spin flips along both antiparallel loops here. The complete
result for the form factorK1,n=ksnl is

K1,n =5
0, n = 2s+ 1

−
n

2B
+ OS 1

B2D , n = 4s

2 +
n

4B
OS 1

B2D , n = 2s2s+ 1d.

s62d

As t=n/2B time averaging yieldsK1std= 1
2 −t /8+Ost2d

which is again the corresponding random-matrix theory re-
sult (42).

6. The chiral class AIII

Parallel loops do not survive the ensemble average in the
chiral classAIII. Thus the first self-dual diagram vanishes,
D1

s0d=0. Long loops with antiparallel lines only have weight
if the spins are always parallel. At each scattering region they
may either flip or not—in both cases the scattering region
carries a positive factor. Turning points inside a loop carry a
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negative sign if the two incoming lines have opposite spin,
else the sign is positive. By flipping spins on one side of a
turning point one can thus change the overall sign of a con-
figuration. Eventually all diagrams with a turning point van-
ish. There is no contribution at all to the self-dual approxi-
mation. Among all diagrams that contribute to the linear
order only the seventh family has to be considered—all other
diagrams either contain a turning point or a long loop of
parallel lines or they cancel due to overcounting. In Eq.
(58b) the factorC7

s1d is the quasispin factor of the diagrams
D7,l

s1d which is C7
s1d=1. Altogether we have

K1,n =5
0, n = 2s+ 1

0 + OS 1

B2D , n = 4s

−
n

2B
+ OS 1

B2D , n = 2s2s+ 1d.

s63d

Heret=n/4B such that time averaging gives the form factor
K1std=−t /2+Ost2d as predicted by random-matrix theory
(42).

7. The chiral class BDI

In the next chiral class,BDI long loops of parallel lines
survive the ensemble average in addition to the antiparallel
loops of classAIII. For loops of parallel lines all scattering
regions carry a positive sign. For antiparallel loops and turn-
ing points the discussion of classAIII can be taken over
completely. The only additional contributions to the form
factor are due to the first self-dual diagramD1

s0d=2 and due
to the contribution(58a) of the sixth family of diagrams for
the linear order. Here,C6

s1d=1 and we arrive at

K1,n =5
0, n = 2s+ 1

0 −
n

2B
+ OS 1

B2D , n = 4s

4 −
n

B
+ OS 1

B2D , n = 2s2s+ 1d.

s64d

Again, with t=n/4B and time averaging we get the random-
matrix result(42) K1std=1−3t /2+Ost2d.

8. The chiral class CII

Finally, in classCII the discussion is almost equivalent to
the preceding one. Loops of parallel lines have antiparallel
spins and in such a loop a scattering region carries a negative
sign if both spins flip. In conclusionD1

s0d=−2 since an odd
number of spin flips occurs. For antiparallel lines the spins
are always parallel and the scattering regions carry a positive
sign. Turning points inside such a loop can have either sign.

For C6
s1d the number of spin flips along the parallel loop is

always even, thusC6
s1d=C7

s1d=1 and we have

K1,n =5
0, n = 2s+ 1

0 −
n

4B
+ OS 1

B2D , n = 4s

− 2 −
n

2B
+ OS 1

B2D , n = 2s2s+ 1d.

s65d

Here, t=n/2B and the time average yieldsK1std=−1
2

−3t /8+Ost2d. Needles to say this is in accordance with the
random-matrix theory prediction(42).

IV. CONCLUSION

We have given a systematic diagrammatic short-time ex-
pansion of the first-order and second-order form factors for
ensembles of star graphs in the ten symmetry classes. The
leading orders(diagonal and self-dual approximations) have
been calculated explicitly along with the first order beyond
the diagonal and self-dual approximation. The fidelity to the
predictions of Gaussian random-matrix ensembles has been
established to this order. Though we have explicitly used a
very simple central scattering matrix the results are valid for
a large class of central scattering matrices and can also be
expected to expand to more general types of quantum graphs
in the various symmetry classes. These issues are discussed
in more detail in the Appendix.

For each symmetry class we have identified the diagrams
that give the first orders of the form factor in accordance
with the predictions of Gaussian random-matrix results. For
Wigner-Dyson graphs the contributing diagrams to first order
beyond the diagonal approximation correspond to Sieber-
Richter pairs of periodic orbits in Hamiltonian flows.
Wigner-Dyson graphs and their fidelity to Gaussian random-
matrix theory have been discussed in detail in the literature
[17,19,24] — our results on these symmetry classes are a
particularly simple special case.

For the remaining Andreev and chiral symmetry classes
the equivalent of Berry’s diagonal approximation — theself-
dual approximation— and of the Sieber-Richter contribu-
tions have not been discussed before in completeness for all
novel symmetry classes(with the sole exception of the self-
dual approximation for magnetic Andreev billiards in classC
[16]).

Our results support the proper generalization of the
Bohigas-Giannoni-Schmit conjecture to the novel symmetry
classes. The contributing diagrams for the ensembles of star
graphs can be expected to carry over to Hamiltonian flows. A
general discussion of the self-dual approximation for chaotic
Hamiltonian flows in the novel symmetry classes will be
given in a future work[25].

A theory for flows beyond the self-dual approximation for
the novel ensembles will follow the paths of the Sieber-
Richter theory for time-reversal invariant Wigner-Dyson sys-
tems. In one respect our results for quantum graphs are more
systematic than the existing work on Wigner-Dyson flows as

S. GNUTZMANN AND B. SEIF PHYSICAL REVIEW E69, 056220(2004)

056220-14



we could show that no other contributions exist that contrib-
ute to the calculated order of the form factors.
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APPENDIX: ON THE GENERALIZATION TO MORE
GENERAL QUANTUM GRAPHS

In the first paper of this series[20] we stated the general-
ized Bohigas-Giannoni-Schmit conjecture that Gaussian
random-matrix theory for any of the ten symmetry classes
can be expected provided the corresponding classical dynam-
ics is chaotic. In this appendix we discuss how this statement
is related to the diagrammatic expansions of this paper. We
will restrict the discussion to classAI for most of this section
— as the generalization to other symmetry classes is straight-
forward we can give some general conclusions.

For a star graph withB bonds in classAI with reduced

bond scattering matrixS̃B=SCdiagseib jd the corresponding
“classical” dynamics is defined by theB3B bistochastic ma-
trix

Ti j = uS̃B,i j u2 = uSC,i j u2 sA1d

which acts (similar to the Frobenius-Perron operator for
Hamiltonian flows) as a time evolution operator on a discrete
probability distribution on the bonds of the graph. The matrix
Ti j always has one eigenvalue unity — all other eigenvalues
are inside the unit circle and describe the decay of the prob-
ability distribution. It has been conjectured by Tanner[24]
that the spectral statistics of(general) quantum graphs is pre-
dicted by Gaussian random-matrix theory if the spectral gap
between the(single) unit eigenvalue and the second largest
in modulus vanishes slower than 1/B in the limit of large
graphsB→`. Note that for classical flows a corresponding
gap in the spectrum of the Frobenius-Perron operator is a
sufficient condition for(strong) chaos.

We will discuss this conjecture for the diagonal approxi-
mation and the first order beyond for star graphs in classAI
with a general symmetric central scattering matrixSC,i j . With

sn=trS̃B,i j
n the trace formula for the discrete time second-

order form factor is given by

K2,n =
1

BKusnu2l =E dBb

s2pdB o
k1,. . .,kn,l1,. . .,ln

SC,k1k2
. . .SC,knk1

3 SC,l1l2
*

¯ SC,lnl1
* expSi o

m=1

n

sbkm
− blm

dD sA2d

which can be interpreted as a sum over pairs of periodic

orbits. The average over phases cancels most contributions in
the sum over the indiceskj andl j — only if the indicesl j are
some permutation of the indiceskj the contribution survives
the average. Let us consider the diagonal approximation —
where the indicesl j are either a cyclic permutation of the
indiceskj or of the indiceskj in reversed order(time-reversed
pair). Each of these 2n permutations has the same contribu-
tion to the form factor which we can now write in terms of
the classical dynamics as

K2,n
diag=

2n

B
trT n =

2n

B
o
k=1

B

lk
n, sA3d

wherelk are the eigenvalues ofTi j . If there is a gap in the
spectrum ofT one getsK2,n

diag=2t+Rsnd where

Rsnd , 2tsB − 1dul2un = 2tsB − 1de−B lns1/ul2udt sA4d

(here, ul2u,1 is the second-largest eigenvalue). If the gap
1−ul2u vanishes slower than 1/B in the limit B→` the re-
mainder vanishes(for fixed t) and the diagonal approxima-
tion coincides with the linear order of the second-order form
factor as predicted by the Gaussian orthogonal ensemble.

Our choice of the central scattering matrix has a particu-
larly simple classical dynamics defined byTi j =1/B — this
matrix has one eigenvalue unity while all others vanish ex-
actly. This simply means that after one central scattering
event the particle is on any bond with equal probability.

The first order beyond the diagonal approximation can be
discussed in a similar way — we refer to the literature
[17,24]. For the self-dual approximation and beyond in the
novel symmetry classes the argument can be performed with
some more effort but it does not contain any new ingredient.

The gap in the spectrum ofT can only give a sufficient
condition for universal spectral statistics. Indeed, due to the
complete Andreev reflection at the peripheral vertices our
star graph ensembles do not have a spectral gap in the cor-
respondingMB3MB matrix T. However the reduced classi-
cal dynamics for the probability to find the particle on a bond
regardlessof the component of the wave function has the
required spectral gap. There have been various diagrams for
the novel symmetry classes with values that are systemati-
cally different if the discrete time is twice an even or twice
an odd number and the right contribution to the form factor
is only obtained after an average over a small time interval.
By changing the complete Andreev reflection to a partial
Andreev reflection one may introduce at the same time a
spectral gap in the complete matrixT and the time average is
no more needed(this is consistent with the symmetry class).
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