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Universal spectral statistics in Wigner-Dyson, chiral, and Andreev star graphs.
Il. Semiclassical approach
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A semiclassical approach to the universal ergodic spectral statistics in quantum star graphs is presented for
all known ten symmetry classes of quantum systems. The approach is based on periodic orbit theory, the exact
semiclassical trace formula for star graphs, and on diagrammatic techniques. The appropriate spectral form
factors are calculated up to one order beyond the diagonal and self-dual approximations. The results are in
accordance with the corresponding random-matrix theories which supports a properly generalized Bohigas-
Giannoni-Schmit conjecture.

DOI: 10.1103/PhysReVvE.69.056220 PACS nund)er05.45.Mt, 03.65-w, 74.50+r

I. INTRODUCTION hyperbolic billiards[11] and later in a phase space approach
. . . . . : . to hyperbolically chaotic Hamiltonian systems with two
Since Bohigas, Giannoni, and Schmlt.conjgctured in a[12,13] and finally any number of degrees of freeddid].
seminal papef1] that the spectral fluctuations in quantum ginay the cubic order in the short-time expansion has been
systems with a chaotic classical counterpart follow the prebalcula;ted[lﬂ.
dictions of the Gaussjan unita(@UE), Gaussian orthogonal The first nonvanishing order inis known as theliagonal
(GOdE)' and . Gﬂuss%n sy(rjnplectlciSIg hensemt;lehs of approximationin the Wigner-Dyson classes which is linear
random-matrix theorydepending on the behavior of the Sys-, - 't the chiral and Andreev classes the first nonvanish-
tem under time reversal and spin rotatipagot of numerical ing order is7° and has been calletie self-dual approxima-
data have been gathered that strongly support this conj_ectu%n [16]. So far the fidelity to the predictions of Gaussian
(see Refs[2,3 a}nd references thgre)mWhHe an analytlg: .. random-matrix theory has been derived for the clagsaad
proof of the conjecture and a precise statement of its limits)_pere e will give a complete account of star graphs in
are still Igckmg thefe has_been a continuous 30"’3”09 IN UNy| symmetry classes. Though we restrict to graphs here, the
derstanding the universality of spectral statistics. The maifyoying calculation shows what types of periodic orbits
tool in the semiclassical approach is Gutzwiller's trace for-p,q \yhich of their properties are responsible for universality

mula [4] which expresses the fluctuating part of the densityin more general Hamiltonian system

of states as a sum over classical periodic orbits. The main | 4 next-to-leading ordefthe weak localization correc-
Obje(.:t of interest is the spectral form factor Wh"?h IS thetions) will also be calculated for all ten ensembles of star
Fourier transform of the spectral two-point correlation f“nc'graphs For fully connected Wigner-Dyson graphs in clsiss
tion (below we will call this the second-order form factor GOE) fhese have recently been calculated to ordebased
which is expressed semiclassically via the trace formula as %n much earlier work on?) by Berkolaikoet al. [17]. These
sum Ioverr] pg!rs of plenodlc Qrb't.s Wh'Ch sharz tk?eBsame aC3uthors generalized the Sieber-Richter approach to graphs
tion. In the diagonal approximation introduced by Bef%Y  ,nq jntroduced diagrammatic techniques similar to those
only those pairs for which both periodic orbits are either, o iy this paper. The relation between the corresponding
equal or the time reverse of the other are summed over. Th@xpansion for quantum systems in clas$ (GSB and the
assumption of hyperbolic chaos is then sufficient to Provey) (GOE) expansion has been considered recefit8;19
that the leading linear order in a short-time expansion for a = 11,4 corresponding ensembles of star graphs have been
quantum system follows the random-matrix predictions..qnsyrcted in the first paper of this serj@s]. Each of these
Various approaches to universality beyond the diagonal apspgemples obeys the symmetry conditions of one class in the
Erommjtllzgnhhavleosmce b((jaen perfom{@;—%. Recentlly|S|ej Itenfold classification of quantum systems. There, we have
eran h It(; tef d]ﬁta(;t_e nevlv progress for a sghmur:]asstl)ca also introduced the first-order and second-order spectral form
approach beyon t € diagona appro'X|mat|.o.n with the obSetg, 45 as the Fourier transforms of the fluctuating part of the
vation that self-crossing trajectories in a billiard of constantdensity of states and the two-point correlation function and
negative curvature have a partner orbit of the same actiofyateq them to the scattering matrix of the star graphs via an
that avoids this self-crossing. In the form factor these Sieberg, -+ semiclassical trace formula. We have also shown nu-

Richter pairs give the quadratic order in time as predicted b?Lerically that these spectral form factors follow the predic-
the GOE. Their approach has been generalized to gener. ns of the corresponding Gaussian random-matrix en-
sembles. The second-order form factor of graphs in the

Wigner-Dyson classes follows the predictions of the well-

*Electronic address: sven@gnutzmann.de known Wigner-Dyson ensembles GUE, GOE, GSE. For the
"Electronic address: bseif@thp.uni-koeln.de remaining seven “novel” symmetry classes the first-order
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form factor for star graphs coincides with the correspondingcess at the peripheral vertices fixes the symmetry ¢kasd
Gaussian random-matrix prediction. For the novel ensemblelsreaks time reversal if necessanpll peripheral scattering
the fidelity to Gaussian random-matrix prediction is the con{rocesses can be described by a single unitdBx MB

tent of a properly generalized Bohigas-Giannoni-Schmit conmatrix of the fOrmSe 4.7 = 3 ,U(Li), [20]. For graphs in the

jecture[20]. _ _ _ _ _ novel symmetry classes this process involves an equivalent
The (generalizey Bohlgas-(_3|annon|-Schm|t_ conjecture ¢ Andreev scatteringelectron-hole conversion
states that the spectral fluctuations afimgleclassically cha-

otic physical system follow the predictions of Gaussian
random-matrix theories. Here, we have explicitly introduced
ensemblesf star graphs. It has been shown howe{2t] Prescribing the central and peripheral scattering matrices
that ensemble averages over certain phases in graphs agandS; leads to a quantization of the graph. Their product

equivalent to a spectral average ofsmgle spectrum in a is the reduced bond scattering mat?ﬂg(E S.Se. The density

graph with Incommensurate bond Iengths. of states is represented exactly by the semiclassical trace
For the first-order form factor for chiral and Andreev star formula

graphs the generalized Bohigas-Giannoni-Schmit conjecture
is slightly weaker in as much as not a single spectrum is 5 o
conjectured to follow the random-matrix predictions but a d(k)=1+——Re>, g2mK(VMB)g (1)
one-parameter average over different values of an effefitive n=1
(an average over different values of the Fermi level or dif-
ferent quantizations of the same sysjeiwe leave it open Here, « is the wave number in units of th@nacroscopig
here to what extent the ensemble averages for the graphs ihean level spacing and
the novel symmetry classes are equivalent to such a one- _
parameter average. s = trSp= >, ol S(ca,“)j g2 S(C“jl)j 2)

In Sec. Il we introduce the diagrammatic representation of g T mEn 2
the form factors: the section starts with a general description .
in Sec. Il A; there we give the vertekd vertex’) and bond 1S th_e trace of theath power of the reduced _bond scattering
(“line”) contributions to a diagram for each of the ten sym-matrix. The latter may be represented by diagraig
metry classes in Sec. Il B and also give the diagrammatic B ®
expansion of the ensemble averaged form factors in Sec. » o
II C. In Sec. lll we calculate the diagonal and self-dual ap- {
proximations and one order beyond for the form factors of
the ten ensembles: this section first introduces a systematic et %l 3)
diagrammatic short-time expansion of the form factors in

ing and next-to-leading order which are calculated explicitlygraph and in a diagram we will use the teriirees and d

A. Diagrammatic representation of the form factors

in Sec. Il B. verticesfor the diagrams and reser®ndsand verticesfor
star graphs. The vertices in the above diagram correspond
Il. THE DIAGRAMMATIC REPRESENTATION OF FORM to the peripheral vertices in the star graph which are visited
FACTORS FOR STAR GRAPHS one after another. Eaahvertex contributes a factor
Star graphs are simple quantum systems with an exact o .
sem|CIa55|_caI trace _formula for the density of staf2g]. {J — 0,(,’3/ = SP,ja,j’a’
They consist oW vertices connected by bonds of length;. Ao (4)

A particle propagates freely on the bond and is scattered at
the vertices according to prescribed unitary vertex scatteringp the diagram. This describes the scattering of a particle that
matrices. moves outwards on bondin the statea’ to a particle mov-

In a star graptB bonds emanate from one central vertexing inwards on the same bond in state The lines in the
and connect it td peripheral vertice$20,22,23. We have diagram carry a factor
generalized previous star graph models by allowing for a
wave function withM components. In our model all bonds
have the same length and the free propagation along the Rl é"? ;=S¢ jajla-
bonds and the scattering at the central vertex do not mix the P 77 (5)
componentgbut have to obey some symmetry conditipns
The central vertex scattering is thus a unit3 X MB ma- 5 diagram is calculated by summing over all indicgs
trix of the form Sc,aj,a',jfzfsaafs(g;jr [20]. Here, j,j’ =1,...B and=1,... M—obviously for Eq.(3) one ar-
=1,... B is an index for the bonds and,a’'=1,... M rives back at Eq(2). We have defined the first-order form
counts the wave-function components. In addition, propagafactor [20] as the Fourier transform of thensemble aver-
tion along the bonds and the central scattering are timeaged fluctuating part of the density of states. The first-order
reversal invariant. The proper choice of the scattering proform factor in discrete time=gn/MB (g=2 in classedll,

i
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DIll, and CIl which have Kramers’ degeneracy, elgel)is  give thed-vertex factors for in-going and outgoing full lines.

upto a constant given by the ensemble average The corresponding factor fat vertices connected to dashed
lines is just the complex conjugate. In claseachd vertex
Ky = E<Sn>- (6) carries a random phase factor
"9 .
After an additional time averag@ver a small intervalAn AL }j = olfi
<B) which is needed for comparison with random-matrix ' )

. . . S 9
theory the first-order form facto¢in continuous timg is ©
Kl(T:gn/MB):(llAn)Eﬂff:_lKlvn. Equivalently there is In classAl we have four different scattering processes cor-
discrete and continuous time second-order form factors. Ifesponding to incoming and outgoing spin directions

the Wigner-Dyson case they are given by

t t

4 &85 +75) &) &l(Bi1+55)

1 _— — = —

KZ,n =3B (SnS:,) t V2 L V2
' ' A

1 i

=1 Y el (B85 oi ei(ﬂj—'”rj)

B = =7
1

7) st (10

A1 _ Thus spin flips with probabilit)%. In classAll isospin always
and K(7=gn/MB)=(1/An)Z, ;" 'Ko . In the diagram for  flips at ad vertex while spin flips with probability. Thus
s, we have indicated the complex conjugation by dashedhere are altogether eight different processes
lines. Most contributions te, and |s,|> do not survive the

ensemble average. The remaining contributions can be writ- T_“ w Bitri)
ten as a sum over various diagrams involving the same lines = {’ = %
andd vertices but have less summation indices. This expan- i o
sion will be explained in Sec. Il C. " "
3 A (~1)x Y] — ei(B&;&j)
B. The line and d-vertex factors for the ten symmetry classes W w
. . . All: ;

In the preceding section we have not specified the central " | 14
and peripheral scattering matrices for the different symmetry %; — $; €6
classes. Let us now give the explidivertex factors and line 1 m V2
factors for each of the ten symmetry classes that are equiva- .
lent to the construction in Ref20]. The lines in the diagram it w Bt
correspond to the central scattering process. In our model (-1)x i = 9 =l T
each component of the wave function is either scattered in AT i V2 (12)

the center by theB X B discrete Fourier transform matrix . .
Sorr=(1/\B)g27M®) or by its complex conjugate for For the novel symmetry classes the wave function has either

two (classesC and Cl) or four componentgD, DIIl, Alll,
BDI, and Cll). In either case the components are divided in
“electron” and “hole” components. Electrons are represented

which we will use the lines

Eod

1 ‘ ° 1 ! by full lines and holes by dashed lines. Additionally for the
_ e27ri% and S ey four-component wave functions, electrofisoley have a
i \/E ik, vB “spin” up and down component. For each ensemble of star

(8

graphs the peripheral scattering involves complete electron-
hole conversiorfAndreev scattering Thus, eachd vertex is
Eonnected to one dashed and one full line. For the graphs in
the classe€ and Cl there are two different scattering pro-
cesses at a vertex: one for an incoming electron and the
other for an incoming hole. The correspondihgector fac-

tors are given by

For some classes the line carries an additional index for th
component of the wave function—the line factor however
does not depend on it.

In the Wigner-Dyson classes only full lines exist in the
representation o§, while there are only dashed Iiness'sﬁ
The wave function has only one component in classlt

has two components in clagswhich we will call “spin up” i |
with the symboll and “spin down” with the symbo| for C. CI: 0j _ —e 1B L = el
convenience. Finally, it has four components in clas—in ’ I 4 (12)

addition to the spin label$, | we use the symbolsl, [0 and

call the latter “isospin” up and down for convenience. Thewhere O< g; <2 is a random phase in clagsand 8;=0 or
three star graph ensembles in the Wigner-Dyson classes afg=7 with equal probability in clas€l. In the remaining
defined by thed-vertex factors to be given now. We only classes spin flips with probabilit% at eachd vertex. There

056220-3



S. GNUTZMANN AND B. SEIF PHYSICAL REVIEW EG69, 056220(2004)

are altogether eight scattering processes and thegrtex degrees of freedom. An example of such a diagramnfor
factors are given by =6 is given by

D DIIT AIll BDI Cll

o o o 9 =9

L = = B v W

?J' —elj —ig; e~ 1 eBi —e~18; i &

L % F = % Ta L atamlmmeeTieien)

' k. rkg=1 B B (19

At

L V2 2 V2 V2 V2 In this diagramd vertices have been joined to pairs in a gray
’ area to indicate that they carry the same inéigxWe will

é{ 55 55 . . o Callll ':jhese %ray 3rea§:;(attering re”gion?md, indthe s?quel, \l/ve
I &= = - = L will drop the indicesk,, (as well as line indices for multi-
L V2 vz vz V2 V2 component wave functioinsThe multiplicity factor & will be

R explained later in this section.

I,- e?i el gj aj gj Any diagram that contributes t&,, has 4 d vertices
it V2 V2 V2 V2 V2 connected by 2 (directed lines that define two periodic or-
; bits of lengthn. One of the orbits has only full lines and the
I* iy . —ig; —i8; —iB; other only dashed lines. Eachvertex and each line contrib-
j —e lo; e 7 e 7 e J . . . .

it V2 72 73 72 72 utes with the corresponding factor to the diagram—since by
construction the phase factoe#i each have a partner'#;

it the phases all cancel. The numberof scattering regions
L‘ e ioj ] e &% may range inv=n,n-1,...,1. Each of thev scattering re-
H vz v2 V2 V2 V2 gions carries a single indes,(m=1,2, ... w) for all d ver-

. tices which it contains. The number dfvertices in a scat-
ij e85 ] —a; ~a; —0; tering region is always even—half of tlievertices are part
é¢ V2 V2 V2 V2 Vv2? (13) of each of the two periodic orbits. #f<n we will call the

diagram asubdiagram—in subdiagrams some scattering re-

where O< y;, 5; <2 are random phases ang, 7=+ 1 with gions contain more than twa vertices.
equal probability. In the classe# andAll each line gets an additional index
ai(j=1,2,...,2) for the different(spin and isospincom-
ponents of the wave function. The sum owegrcollapses to a
sum over allowed component configurations when under the
averages ovep; and y;. An allowed component configura-

For the Wigner-Dyson classes we are only interested inion is a set of line indices; for which all phases; and
the second-order form factor as the first-order form factoralong the diagram cancel exactly. Then the product of all
vanishes exactly under the ensemble average. For the grapplase factors is +1. The sum over theindicesk,, for the
in the novel classes the ensemble average is nontrivial for thgifferent encounter regions and the sum over allowed com-
first-order form factor. The second-order form factor in theponent configurations factorizes such that the value of a dia-
novel classes would contain additional contributions proporgramD,, falls into three parts,
tional to(s?) and its complex conjugate which vanish in the
Wigner-Dyson case. We will not consider the second-order D,=¢,C,P (15)
form factor for other classes than the Wigner-Dyson here. vosvmm

Though the second-order form factor is a sum over pairdlere, &, is the multiplicity factor,C, is the quasispinfactor,
of periodic orbits and the first-order form-factor contains aand P, the principal part The latter contains only the line
single orbit the diagrammatic expansion is based on similafactors (1/B)et?™®kikm’ and is summed over the scat-
observations. We will start with the Wigner-Dyson case.tering region indice,, The quasispin facta€, contains all
Most pairs of periodic orbits do not survive the ensemblethe d-vertex factors which are summed over all allowed qua-
average. A contribution can only survive if dlivertices have  sispin (component configurations—in clas&\l one hasC,
a partnerd vertex such that the product of their factors does=1 and in the classes andAll it is given by +1/2" for each
not depend on the random phases or random signs. This coaHowed configuration. In clasa the sign is always positive,
dition can only be fulfilled if the two orbits visit the same soC, is 1/2" times the number of allowed configurations. In
peripheral vertices with the same multiplicities. The orderclassAll quasispin configurations a negative sign appears if
may however be different and one may introduce diagraman allowed configuration contains an odd numbed oErti-
to denote the various appearing permutations. Let us stades where the incoming spins and isospins are antiparallel
with the diagrams for clasal and later introduce the spin and both flip[see Eq(11)].

C. Diagrammatic expansion of the ensemble
averaged form factors
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Finally, the multiplicity factorgyzz/n is the numbeEf of  counts .for the cor_rections due to multiple cour.]ting—iF con-
times the diagram appears as a subsum in the original ford@ins diagrams withw=n-1,n-2,...,1 scattering regions
factor (7) before the average was performed divided by theand we include the number of times it has been overcounted
length of the orbi. In general the sum over the indicks ~ In the multiplicity factor. Note the facton outside the
is a sum over pairs of points on two different periodic orbits.Parentheses—this factor appears due to the definition of the
However, any pair of two points along the same orbits will multiplicity factor &.- _ _
give exactly the same contribution. Thus, in general the sum The diagrammatic representation of the first-order form
over k,, appearsé=n? times in the original one—in the dia- fa}ctor n th.e novel symmetry classes 'S analpgou;. The main

_ ~ difference is that there is only a single periodic orbit connect-
gram(14) one has indeeg=n“=36 times. There are excep- ing n d vertices in any diagram that contributeskg,.. As a
tions .vvhenev_er.one Qrblt is a repetition of a shorter.orbn or 'fconsequence of complete Andreev scattering at the periph-
the diagram is invariant with respect to some cyclic permu- g vertices, thel vertices in the diagrams always connect a
tation of the indices,. For example, the diagrams full line with a dashed line. Diagrams can thus only be drawn
e N T if the lengthn of the orbit is even and

s,=0 if nis odd. (18)

16
(16 Similar as before for the second-order form factor most con-
only appeam times in the original sum such th%tzn and tributions to the traces, do not survive the average over the
£Y=¢Y=1. These are the two diagrams of the diagonal apPhasesy;, 8 (and signsa;, 7). The nonvanishing contribu-
proximation to be discussed in the following section. tions can again be grouped in diagrams where at moat
Obviously every pair of periodic orbits visiting the same d-vertex indices remain independent. In a nonvanishing dia-
scattering regions defines a diagram. However, if one sumgram eactd vertex has again a partner such that the product
over all the scattering region indicés, without restriction ~ Of their d-vertex factors does not depend on the random
the same pair of periodic orbits may appear in different dia{?hase factors or signs. We again introdscattering regions
grams and we have to face the problem of doublemul- that are defined as in the diagrams to the second-order form
tiple) counting of periodic orbits. One way to get rid of the factor. Each scattering region has a single index which is the
double-counting problem is to restrict the sum okgrsuch same.for alld vertices it contains._A scattering region always
thatk; #k; for i # j and add all subdiagrams where the num-Contains an even number dfvertices. o
berw of scattering regions is smaller than(with the same A general diagram will be drawn without indices and has

restriction in the sum over indicgsThe form factoiK,, can  a value ISV:§VCVPV where the definitions of the principal

then be written as a sum over all diagrams Witn,n  part P, and the quasispin factdE, are as before. The hat
—1,...,1 scattering regions and every pair of periodic orbitsseryes as a symbol to distinguish between the contributions
is counted exactly once. ~ to the first-order form factofwith hafy form those to the

It will be more convenient for us to keep an unrestrictedgecond-order form factaqno haj. The principal part is inde-
sum over the scattering regions and subtract the multiply,endent of the symmetry group and given by the line contri-
counted orbits. Any diagrar® contains many subdiagrams pytions summed over the indices of the scattering regions.

Wh'.Ch can be qbtamed frorD_by comb_mlng some scattering The quasispin factoé:v is the sum of thel-vertex factors
regions to a single one. This is equivalent to restricting the

sum in the diagram t& =k;. Multiple counting occurs when over allowed spin and elec_tron—hole cc_)nfigurayio_ns. _The qua-
either two (or more diagramsD, and D, have the same sispin factor may aIsp vanish. _Ifthere is no spin it will be £2
subdiagram or when one subdiagram appears more than on\évehler? the factor 2 is due to interchanging all electron and
in the same diagrar®. If the wave function has one com- o€ fines. o ~ ]
ponent we just have to subtract the overcounted subdia- The multiplicity factor¢ is here defined as the number of
grams. In the presence of more than one component only tHéMes an equivalent sum appears in the original sy#anote
overcounted quasispin configurations have to subtracted. fpat here we have not divided this numberrbgs in the case
may happen that a subdiagram allows new quasispin corff the diagrams for the second-order form factor. As an ex-
figurations that have not been counted in the origina@MpPle the two diagrams
diagram—then the corresponding configurations have to be
added. Luckily we will not encounter such difficulties in the
sequel. 1= i
Finally, we may write the second-order form factor as a
sum over diagrams,

(19

L . have multiplicity factors£\”’ =1 andé)’ =n/2. The difference
Kyp=——(s)=—=(>2D,- > DS\ (17) is due to the different symmetry in the two diagrams. For the
" gMB gMB\ "~ o second diagram the rotational symmetry is broken by the
turning point of the periodic orbit. These two diagrams cor-
The sum over diagramB, only contains diagrams witiv  respond to the self-dual approximation to be discussed in the
=n scattering regions. The sum over subdiagrahj‘éb ac- following section.
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Multiple countings have to be accounted for in the samecount how often it appears as a subdiagram of other
manner as for the second-order form factor which results iqsubdiagrams in the same ordgﬁ‘lmz) and in all smaller or-
> > dersIC(er‘z_l),...; (iii ) calculate the values of the diagrams and
Kin=—(s,)= —(E D,-> Diﬁ’b) (20) add them and subtract the overcounted subdiagrdiwmg;
g g\ . o take the time average over (vi) finally take the limitn,B

. . , , . — o0, Obviously the procedure is recursive and one has to
by including the corresponding subdiagrams. For finitee ¢4t withm=0.

sum over diagrams is finite for both types of form factors and g rest of this section will be devoted to the description

the expansion converges absolutely. As every periodic orbife ., diagrams that contribute to a given oraréf‘). Since
(pair of period orbits defines some diagram no contribution 7=gn/MB this is equivalent to finding the diagzrams with
is neglected and the expansion is formally exact. values of ordeB™™. A single diagram which is of ordeB™
in B may have a very different order m—such that the limit
Ill. THE DIAGONAL AND SELF-DUAL APPROXIMATIONS n,B— = cannot always be performed for a single diagram.
AND BEYOND Our procedure will be self-consistent if this limit existier

While the calculation of the principal part, quasispin fac-We have summed over aubdiagrams.
tor, and multiplicity factor for any given diagram is quite As the multiplicity factor and the quasispin factor do not

simple, the sum over all diagrams defined in the preceding€Pend orB we have to look at the principal part which does
section is quite nontrivial. We will now give a systematic "0t depend on the symmetry class. The resulting expansion
short-time expansion of this sum in the ergodic liit> . for the first-order form factor can be u_sed for a_II graphs in
In the leading order only two diagrams have to be accountel?® Novel symmetry classes while the diagrams in the expan-
for in each symmetry class. More diagrams have to be takefio" Of the second-order form factor are the same for all
into account for the next-to-leading order where multiplethré® Wigner-Dyson graphs. The difference between the en-
counting of periodic orbits leads to additional complexity. S€mbles is mainly due to different quasispin factors. Note
that these may vanish.
A. The diagrammatic short-time expansion The principal part of gsubdiagramD,, for ’C(gm) (D, for
of the form factors IC(lm)) with 2n(n) d vertices and lines anv=n(w<n/2)

We will be interested in the short-time behavior of Iarged'ﬁerent scattering regions is bounded from above,

graphs such that we may assum&nid<<MB/g. The first 1
inequality 1< n assures that we are in the universal regime— P < ,
the ultra-short-time behavior where=O(1) is known to be " B™
dominated by the system-dependent shortest orbits. The sec-

ond inequality can be rewritten as=gn/MB<1 which  Indeed, the absolute value of the summand in the principal
shows that we are interested in times much shorter thaRart is 1B"(1/B"2) stemming from the @(n) amplitudes of

- 1
P <

v Bn/2—w .

(23)

Heisenberg time. the line contributions when one sums owerindices ki,

We want to calculat&; , andK,, in the limit n,B— oo =1,2,... B. In Eq. (23) equality holds if all the phases ac-
where 7=gn/MB<1 is constant. For that aim we will ex- quired along the lines cancel exactly. This is the case in
pand the form factors in orders of complete(subdiagrams for which every full line that con-

N nects two scattering regions is accompanied by a dashed line

_gn\ 2 2 - - connecting the same two scattering regions. We will call
Ka| 7= MB/ 5<Sn> - éz_:olc ' 2D sucha pair of lines @omplete diagonal (antidiagonapair
™ of lines if they start and end at the salo@posite scattering
- . region.
_gny_ 1 a_ T (m) Every completg(subdiagram withw=n-m(w=n/2-m)
K2<T_ MB) - gMB<Isql )= meE:OIC ' (22 scattering regions contributes as (subdiagram to IC(Zm)

- _ o _ x(IC(lm)). If w<n-m(w<n/2-m) no subdiagrams exist that
wherekC; ; are expansion coefficients proportionaldbthat  conripute.
we have to calculate—in this expansion we have anticipated |t remains to find the noncompletesubdiagrams. For
that the leading order will be a constant f61(7) and willbe  noncomplete diagrams the sum is oscillating due to the ap-

linear in Ky(7). pearing phase factors. An oscillating sum over one index is
Each of these coefficients is a time-averaged sum ovegf the form

some diagramgand subdiagramsThe time average is per-

formed over a short discrete time interyaln+An] and has B

to be performed before we take the limitB— . The in- > 2Bk K) =B g 10, (24)
terval has to be chosen such that=gAn/MB vanishes in k=1

that limit.

Let us shortly summarize the procedu(d:find all dia- where & is the Kronecker symbol. The subsequent sum
grams and subdiagrams that contribute to a given dfcﬁ} overk’ does not give an additional fact& Thus noncom-
for finite B>n> 1; (ii) for every subdiagram witkv vertices  plete(subdiagrams can only contribute t@‘zn”(ic({”)) if they
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have a complete subdiagram with=n—m scattering re-
gions.

All (subdiagrams forkS™ (k™) are thus found by first
finding all completg(subdiagrams withn—m(n/2-m) scat-
tering regions and then finding alhoncompletg diagrams
with n—-m+1,... n(n/2-m+1,... n/2) scattering regions
which contain one of the complete subdiagrams.

B. The diagonal approximation and beyond for star graphs
in the Wigner-Dyson classes

We will now find all diagrams that contribute to the diag-

onal approximation(m=0) and one order beyond in the

PHYSICAL REVIEW E 69, 056220(2004)

n andw=n scattering regions. There are two such diagrams:
D” and DY given by Eq.(16). In D the two periodic
orbits are the same and [m(z) one orbit is the time-reversed
orbit of the other. We have

KL =DP + DY (26)

which gives the diagonal approximation. The multiplicities
of the two diagrams ar¢”=¢"=1 and their principal parts
P?=pP=1. Only the quasispin contributions depend on the
symmetry class such that

second-order form factor of star graphs in the Wigner-Dyson DP=c” and DY =CY. (27)

classes. The coefficienl@(zo) andIC(Zl) will be calculated. The

resulting form factors will be in accordance with the random-We Wwill see in Sec. IIl B 2 that for broken time reversal the

matrix predictiong20] (for 7<<1):

T GUE(A-GE)

K = 27-272+0(7) GOHAI-GE) 25

: 2

1. The diagrams
For the diagonal approximatiofm=0), we just have to

quasispin contribution of the diagram(zo) vanishes in the
limit n— oo,

For the first order beyond the diagonal approximation
(m=1) we have to find all complete subdiagrams with1
scattering regions and then all new noncomplete diagrams
with n scattering regions that contain one of the complete
subdiagrams. The diagrams can be grouped into three fami-
lies. Each of the families contains complete and noncomplete
diagrams. The complete diagrams of the first two families
appear trivially as a subdiagram of the diagonal diagrams

find all complete diagrams with two periodic orbits of length D(lo) and D<20) by joining two of their scattering regions,

where we have already included the principal part1/B
and the multiplicityé=n. The integed=0,1, ... n—2 gives
the number of scattering regions in the left logpe central
scattering region is not counted he diagram witH vertices

__ suby(1) ﬁ
- Y1
B (283
__ suby(1) 2
- Y2l
B (28b)

in the left loop is equivalent to the one withvertices in the
right loop. The noncomplete diagrams of the first two fami-
lies each contain one of corresponding complete
subdiagrams,

nn
= Cf,l) B
(293
— wpn
= 2l o
B (29b)
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Again, 1=0,1,... is thenumber of scattering regions in the of the subdiagrams has been counted once in the diagonal
left loop (the two central scattering regions are not counted approximation and is also a subdiagram of the new noncom-
Let us now assume that the quasispin factors within onglete diagrams.

family of diagrams is the sameC)=C;”"=c{ and

cll=csuM=c. In the limit n,B— o this can indeed be

The third family contains all nontrivial diagrams that cor-
respond to the Sieber-Richer pairs. They consist of two loops

shown for each of the symmetry classes. The contribution oés well, however in one loop the two orbits are parallel while
these two families then vanishes due to overcounting. Eacitn the other they are time reversed:

(30

In these diagrams it is irrelevant if we draw the crossing on the left or on the right of the central scattering region. If the left
or the right loop has either zero or one vertex it is indistinguishable from one of the corresponding previous di28aaors
(28h). Thusl=2,3, ... n—4 and there ara—5 new diagrams of this form. Note that these diagramsateubdiagrams of the

diagonal diagram®? andDY".
The corresponding noncomplete diagrams are

P R T T

The number of vertices in the left lodjeft of the crossiny
runs froml=4 to |=n-4—all other diagrams are indistin-
guishable from corresponding diagrams in the fami(23a)
and(29b). Thus there ar@—7 new diagrams in this family.

Each of the subdiagranﬁé‘jb‘l) is contained once in the

diagramsDy; and D)., if 4<I<n-6 while for =2, 3
=n-4,n-5) they are contained once in o) and DS},

(D{},, and DS}). Thus each subdiagram3;”" has been

overcounted once. Again one can show tg}=C5""
EC(gl) in the limit n,B—<. The contributions then do not

vanish ifC” 0 and one has

K =-2cy. (32)

2. Wigner-Dyson class A(GOE)

Since the graphs in symmetry clagd have a one-
component wave functioM =g=1) the quasispin contribu-
tion to any(subdiagramD, is C,=1. In the diagonal ap-
proximation each of the two diagrams has the v
=D{=1 and we have

K =2. (33)
For the next order we ha\/la(g%l):DS”b‘l):r which gives

Ky =-2r. (34)

(31

3. Wigner-Dyson class A (GUE)

In class A we have defined star graphs with a two-
component wave functiotM=2, g=1) and we have to cal-
culate the quasispin contributions for all diagrams.

Let us start with diagrarﬁ)(lo) where both periodic orbits
are the saméparalle). Only spin configurations survive the
average over the phasegand 6 for which the spins on two
parallel lines is the same. The spins on lines that connect
different scattering regions are independent. Thus there are
2" allowed spin configurations and the quasispin contribution
to the diagram is’.t(lo):l which results in

DO=1. (35)

In the diagraer(ZO) the two orbits are antiparallel. Here,
the spins on different lines are not independent for configu-
rations that survive the phase average. If at any pair of anti-
parallel lines the two spins axg, for the full line ando-, for
the dashed line the spins on the neighboring linesoarr
the dashed line and, for the full line. If n is eveno, ando,
are independent while for oduthey are equal. So there are
only four (two) allowed spin configurations for evéndd) n
which gives

3+(-1)"

0) —
DZ)_ 2n

(36)

Altogether the leading terms of the second-order form factorrhis value is exponentially suppressed in the limit: c—a

give K,(7)=27-272+0O(7) in accordance with the GOE pre-

diction (25).

consequence of breaking the time-reversal invariance in this
symmetry class.
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In the first order beyond the diagonal approximation theent and not related by time reversal. At eachertex with an
contribution of the first family vanishes because the quaincoming spin that is antiparallel to the incoming isospin a
sispin factor is the same throughout the famiBee Sec. factor -1 is gathered if the spin flips. All factors —1 within
1B 1). The contribution of the second family vanishes be-one scattering region cancel because the dwertices have
cause their quasispin factors all vanish in the limiB—«.  the same configuration.

For the third family the quasispin factors are not equal for pye to time-reversal invariance the two diagrams in the

each diagram in the group. Its value is small if it contains agjagonal approximation have the same value,
big antiparallel loop. There are however diagrams with a

short antiparallel loop. It is however not difficult to calculate
the quasispin factor of each diagram which gives

(- p™ DY =Dy =2+2", (39
3-(-D)"'n
o= * -
D3,|_ 2n—|—1 B’

3-(-1)"'n Note that time reversal implies changing the directions of
DZS{MEWQ (37) arrows flipping the spins while isospins do not flip. In the

time-reversed diagrarD(ZO) the factors —1 cancel in a slightly
different way. As on neighboring lines spins are always an-
tiparallel and isospins always parallel, one gets a factor -1 at
every scattering region where both spins flip. Sinds even

The sum over all these contributiogigicluding the correct
accounting for multiple countings

-4 h—4 | so is the number of spin flips along each orbit.
S D - psubid) = _ psubly) _ psub(d) = _ 9+(-1"n For the calculations of the diagrams that contribute be-
=2 8l -2 3 3.2 33 2" B yond the diagonal approximation we will neglect all contri-

(38) butions that are exponentially suppressed. The first two fami-
lies have a vanishing contribution as their quasispin factors
are the same within each family in the linmtB — . Again,

which also vanishes in the limit— . Thus Sieber-Richter ) . . . .
pairs do not contribute for broken time-reversal symmetry. W& 0nly ha\ie to consider the Sieber-Richter family with the

: - . : 7 (1) b(1) il
Only the diagrams of the diagonal approximation contrib-diagramsDg; and D37*. In both families only ever can
ute to the form factor which has the valkg(r)=r as pre-  dive contributions that are not exponentially suppressed as

isospins have to remain parallel in the left and right loops.
(1)

dicted by the GUE25) for 7<<1. There aren/2-3 contributing diagrams in the famil{;
and n/2-2 in the family D?jb“) (each of them has been
4. Wigner-Dyson class A (GSE) overcounted onge They all have the same value,

In classAll we have a four-component wave function on
the star graphsM=4,g=2). At eachd vertex isospin flips

while spin may either flip or not. As an immediate conse- n
quence the length of every periodic orbit is even g0 if DY} =D3P = - B (40)
nis odd.

For the diagonal approximation we have to recalculate the
quasispin factors of the two diagrar@éo) and D(2°) with the

?dtzlgpnal spmhand t;sct)hsplr:){retedoms. tLﬁt us tsttaft with .theFor any quasispin configuration an odd number of factors -1
nrst diagram where both orbils traverse the scatlering regiong gathered along the orbits—also the spins on the lines that
in the same order. The isospins on parallel lines are eithe

X ; . Connect the left and right loops are not independent.
always parallel or always antiparallel. If isospins on parallel
i : : i ) Altogether we get
lines are parallel only the spin configurations which are ev-
erywhere parallel as well survive the average. As the spins
on lines connecting different scattering regions are indepen-

dent there are™?* such configurations with parallel isospins PR
; ! . 0 if nis odd
(n factors 2 from the spins and one factor from the isogpin n 5
If the isospins are all antiparallel there are allowed con- Kan= n L PR (41)
, ; N ) _ 8B|4+-+0[( 5| if niseven.
figurations with either all spins parallel or all antiparallel B

between two scattering regions. If the spins are all antiparal-

lel they never flip and if they are parallel they both flip at

every scattering region. Altogether there are only eight con-

figurations with antiparallel isospins, which implies that As 7=n/2B the time average yieldK,(7)=7/2+7/4
these contributions are negligible in the limifB—x. Note ~ +O(7%) in accordance with the short-time expansion of the
that antiparallel isospins imply that the two orbits are differ-universal resul{25) from the GSE.
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C. The self-dual approximation and beyond for chiral scattering regions are visited twice in the same order but
and Andreev graphs with electrons replaced by holes in the second traversal. It
vanishes exactly ifh/2 is even(no complete diagram can

Now we will consider the self-dual approximatidm
pp a then be drawpwhile

=0) and one order beyon@m=1) for the first-order form
factors in the novel symmetry classes. We will give all dia-
grams and show that they add up to the corresponding

random-matrix predictionf20] for r<1: DY =cy, (43
for odd n/2. In the second diagram the same orbits are tra-
( versed in oppositétime-reversegldirection. It contains one
-1 C-GE scattering region where the direction is changed. Its value is

-1 +g+ O(#) CI-GE

~ na-
1 D-GE Dy =5C2. (44)
1
=-Ti0(® DIIGE . . . . o
/]2 8 If n/2 is odd the turning point region has one incoming
Ka(7) = r (42) electron and one incoming hole as drawn in ELP). The
5t O(7) chGUHAIII-GE) diagram has to be changed slightly for evet2— then the

turning point region has either two incoming electrons or two
incoming holes.

37
1- E +0(7) chGOHBDI-GE) To calculate the linear order of the form factor we need all

1 37 families of diagrams that contribute ﬂ6<ll). Most of these
57" O(7) chGSECII-GE) diagrams will have a multiplicity factof=n/2 because there
\ is no symmetry. The exceptions hagen/4 due to some

twofold symmetry. When we explicitly give the value of a
family of diagrams they always refer to the generic case
where no twofold symmetry is present. The cumbersome ac-

The self-dual approximation takes into account all com-counting for all these cases will only be done for those fami-
plete diagrams foK, , (wheren is even with n/2 scattering lies of diagrams that do not vanish for different reasons.
regions. The approximation has been called self-dual because The diagrams have either/2 scattering regions, are not
the diagrams contain those orbits which are invariant undecomplete or they have/2-1 scattering regions, are com-
either a chiral symmetry or charge conjugatigmcombina-  plete. In all cases the principal valueRS"=1/B. One may
tion with time reversal _ _ ~ group the diagrams into seven different families.

There are two self-dual diagrams which have been given Tne first two families have complete diagrams that are
in Eq. (19) where their multiplicity factors have been given. sypdiagrams of the self-dual approximation. Joining two

Their principal part isls(f)zzl. In the first diagram the same scattering regions in the two diagrarfi®) gives

1. The diagrams

Asub,(1) T
= Ny (459

— ASUbv(l) n
;. 2,0k 2R : (45b)

wherel is the number of scattering regions in the right loop. The first type of diagrams only exi¢tsig odd. For the second
type of diagram is an index for the different positions of the turning point.
There are two types of noncomplete diagrams in each of the two families. For the first family they are given by
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In both case%/2 is even whild is odd in the first type and
even in the second type. If all quasispin factors within this
family are equal the contribution of this family vanishes due
to overcounting. Indeed for fixed evénthe complete sub-
diagramngffb(l) have been counted three times. It appears
once in Dgﬁl and twice in the di('jlgrzjlrﬂ(;ﬂ{|+1 because there
are two ways of joining diagonally opposite scattering re-
(46) gions. As the values of all diagrams are equal and the com-
plete subdiagram has been overcounted twice for each fixed
The difference between the two diagrams is that two centragvenl| the contributions cancel.
scattering regions have two incoming lines of the same type By introducing turning points in both loops or just in the

for the first diagram and two different incoming lines in the right loop of the third family one arrives at the fourth and

second. Both diagrams only exist for odé?2. fifth family of diagrams. The complete diagrams in the fourth
For the second family one has family are given by
A _ A1) Asub,(1) __ o N Asub,(1)
D2a,l,k = %Cza,l,k D4,l,k,,k, = R C T o T 4abkik
(50
and the corresponding noncomplete diagrams are
AL _ A(1)
D2b,l,k = - %Czb,l,k
(47) (1) _ _ n A
D4a:l7kl;k1‘ - - _2_B_C4a,l,k¢,kr
which differ in the direction of the lower line. Both diagrams
have been drawn for an even numipéR —| -2 of scattering
regions in the left loop. Then the two central scattering re- .
. . . . . . A1) _ _ LC(I)
gions have one incoming dashed and one incoming full line D4b,l,k¢,kr = = 550401k k-
each. For an odd number of scattering regions in the left loop (51)
the central scattering regions have two incoming lines of the
same type. Here we need two indicdg, to account for the positions of
Each of the subdiagram@ﬁb(l) or DZ‘?bk‘” has been the two turning points which makes counting quite cumber-

counted three times: Once in the self-dual approximation angome. Luckily for fixed values df ; andl one can show that

twice in the dia_gram@(lla)llbl_,k ffjmd[)<222b’|’k_ If the quasispin the cpntr_|but|on of thls family vanishes due to multiple

factors do not differ in the limit,B— the diagrams cancel €ounting if all quasispin facto.rs are the same. The argument

due to overcounting. This is indeed the case for all sevef§ @nalogous to the third family. .

ensembles of star graphs in the novel symmetry classes. _ 1he same argument also cancels the contribution of the
The third family contains diagrams with two parallel com- fifth family with the complete subdiagrams

plete loops. The complete diagrams in this family, ; 2o

l n A SUba(l)

2B 5,0,k

n C,sub,(l) \ .-

(48) | this diagranm/2 -1 -2 must be odd and the diagrams with

<l<n/2-3 give a new diagram. The corresponding non-

cannot be obtained as subdiagrams of the self-dual diagramjs .
mplete diagrams are

In the second traversal of each loop the roles of electrons and®
holes are interchanged. A complete diagram can only be

achieved if botl=0,2,... andh/2-1-2=0,2,... areeven. A (1) n AL
Thusn/2 is even. The noncomplete diagrams in this family D5a,l,k = = 3B%“s5a,l
are given by
AL A(1 AL — A(1)
Dt(ia),l = = Q%Ciga?l Dgp = = 35 b1k
(53
All nontrivial contributions to the first-order form factor
A (1) n AL come from the two remaining families of diagrams. They
D3b,l = 2B “-'3bl" contain no turning point but do contain loops of antiparallel
(49)  lines. The complete diagrams of the sixth family,
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For odd(ever) n/4 the multiplicity factor of the diagram

psub(®) _ T Asub(1) an,4(D7b va-1) IS reduced tan/4 due to the symmetry of
6.1 2B 6t these diagrams. Ifi/4 is odd(even 1=5,7,... n/4-2 (or
(54 |=3,5,... n/4-3) for the diagram®d aI(D(l)l) and the sum

over the multiplicities iSn/4)(n/4-4) [or (n/4)(n/4- 2)].
Assuming that W|th|n each family the quasispin factors
have all the same vaILIé 6.7 almost all diagrams in the sixth
and seventh families are ‘canceled by subdiagrams in the cor-
~sub, (1) responding families. The mechanism is similar to the third,
- 5“35 7.1 fourth, and fifth families. The main difference is that some of
(55)  the subdiagrams in the sixth and seventh families also appear
as subdiagrams in the first and second families of diagrams
of the seventh family contain two antiparallel loops. In bothwhich leads to additional overcounting. Each of the subdia-
types of complete diagramisis odd. In the sixth family grams actually appears three times as a subdlagram—e.g.,

n/2-2-lis even while it is odd in the seventh family. Thus psU?¥ for n/2-6=1=5 is subdiagram ODGaI' Dga)l ,» and

the sixth family only exists for odd/2 and the seventh only DL, thus each has been overcounted twice. The sum over
— sub(1) sub(l) b,l’

for evenn/Zb {“ 1 the diagram®3 P andD$7'™ are the  aIf diagrams with corresponding corrections due to over-

same aD;’ f( ) (with k such that the turning pomt is on the counting gives

scatterlng region in the right logpFor I=n/2-2 thedia-

contain one parallel and one antiparallel loop while the com-
plete diagrams

sub(1) sub(1) ; n
gram D6 -2 1S the same aBy »- 2, Thus for the sixth fam- E 552| + 2 D6b| 2 th;b(l) =-—c®, (589
ily 1=3,5,... n/2-4 which glvesz(n/2 5) different dia- I 2

grams. In the (s)eventh family the d|agrari)§“b‘l) are the

same asDjui,, such that1=3,5,...n/4-2 or | o

=3,5,...n/4-1) if n/4 is odd(even which gives3(n/4 E DR, +E D& - 22 D! >:_EC<71), (58b)
-3) [or 2(n/4 1)] different diagrams. I1h/4 is even and

=n/4-1 themultiplicity factor should ben/4 instead oih/2  where the contribution of the sixth family only exists for odd
as given in the formula above. In both cases the sum of tha/2 and the contributions of the seventh family only for even

multiplicity factors over all different diagrams i®/4)(n/4  n/2. These will be responsible for the leading order beyond

-3) for the seventh family. the self-dual approximation in all seven ensembles.
The noncomplete diagrams of the sixth and seventh fami-
lies are given by 2. The Andreev class C

In classC there are no additional spin components of the
wave function. The ensemble average leads to the condition

A A(L
D((iz),l = = % éa?l that every scattering region has as many incoming electron
lines as hole lines an@=+2 for all quasispin factors. The
sign is positive for even/2 and negative for odd/2 (two d
vertices within a scattering region carry a factor) -wthile
1’)(1) = = oAl the factor 2 corresponds to interchanging electron and hole
6b,! 2B -'6b, . o . )
(56) lines. In_ the self-dual approximation only the dlagrm{ﬁ
=-2 fulfills the stated condition which leads to
(
and 0 n=2s+1
0+ O(l) n=4s
AL _ — oA Kin=? B/ 59
D Ta,l — - % Ta,l 1n 1 ( )
—4+O<—>, n=2(2s+1),
B
\
1‘)(1) — — n AW wheres is some integer. Time averaging gives the correct
b 2BTbl leading ordeiK;(7)=1+0(7). In the next order all diagrams

(57) in the first five families are canceled due to overcounting
. . since the quasispin factors are equal while in the sixth and
In both familiesl is odd wh|len/2 |s od(rii)(eveg)ln the szll>)(th seventh familiegand also some among the other fieach
(sg)ventl) fa(rlr;lly -[Pe dlagram§)6a 1 Deaz Deaz-2 Dep1r diagram contains at least one loop with antiparallel lines.
Depnz-2 Drav D7a3’ and D7bl are not new(they can be  Ajong these any scattering region has two incoming lines of
found am0n931a/1b| and D2a, |- Thusl=5,7, n/2 4 the same type. Thus they do not survive the ensemble aver-
(or 1=3,7,...n/2-4) for Deal(DebI) which glves 2(n/2 age and we havi,(1)=1+0(?) as predicted by random-

-7) [or 2(n/2 5] new diagrams in the sixth famlly matrix theory(42).
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3. The Andreev class ClI 5. The Andreev class DIII

In classClI the quasispin factors are the same as for class After the ensemble average in cld3Bl the spins have to
C as no spin is present. The ensemble average leads to th@ parallel in a parallel loop where the scattering regions
weaker condition that every scattering region contains agary 5 positive factoé. In consequence, the first self-dual
even number ofd vertices. In the self-dual approximation diagram has the valu®®=2 as the quasispin factor is
thus both diagrams contribute. In the next-to-leading Ordeb(o):zznfzz‘“/zzz_ For anl antiparallel loop only configura-

only the contribution from the sixth and seventh familiest. ith anti el spi dtob b
contributes. Altogether this gives lons with antiparallél spin need to be coun_( sum over
4 some remaining contributions is exponentially suppressed

0, n=2s+1 At any scattering region the spins may then either flip or not
n 1 — every time they both flip the scattering region carries a
K =4 2”‘§+0<§>: n=4s (60)  negative sign(else the factor is positiye A tuming point
Ln inside a loop has antiparallel spins on two connected lines
—4-n+ 2n + O(iz) n=2(2s+1). and always carries a positive sign whatever allowed spin
L configuration on both sides. As a consequence, for any qua-

sispin configuration that contributes B)(ZO) there is another
configuration with opposite sign which has a different spin
on one pair of lines connected to the turning point region. We
thus haveD(zo):O. The same is true for any diagram which
4. The Andreev class D contains a turning point.

In classD we have to take the spin components into ac- The argument for the cancellation of almost all diagrams
count. The ensemble average leads to a set of conditions diut the contributions given in Eq$58a and (58b) in the
the scattering regions. It will suffice to consider one largepreceding section assumed the same quasispin factor for all
complete open loop to identify all allowed configurations. diagrams. It can be generalized to cld38l (and also all
The complete open loops can be obtained from the two selfether classesif one properly only subtracts those quasispin
dual diagrams by cutting tweantiparallel lines. We will  configurations in the subdiagrams that actually have been
neglect contributions which are exponentially suppressed igvercountedthe subdiagrams may contain allowed configu-
the limit n,B— . First consider an antiparallel loop and put rations that have been counted propgrijhe overcounted
either two parallel or two antiparallel spins on two antipar-oqnfigurations that appear in the quasispin factefs are
allel lines. For antiparallel lines with parallel spins both spinsy, corresponding quasispin factors of the diagr 5 and

are always flipped from one side of the scattering region tq_j, . ! i 1) >
the other. Antiparallel spins on antiparallel lines are nevefP7a,- FOT configurations that contribute @ the number of

flipped. In both cases we can only choose the spins on onePin flips in the left loop is necessarily positive which gives
pair of parallel lines and the spins aii lines in the loop are a(BOSItIVG sign to each contribution. Altogether one gets
fixed. Since ever scattering region carries a factgrany ~ Cg =1. Indeed, all the scattering regions give a factay? _
configuration with antiparallel lines is suppressed exponenthe electron-hole interchange gives a factor 2 and the spins
tially with a factor 2™ for a loop of lengthm. 2V2-1 (the spins on the four lines connecting the two loops
In a loop of parallel lines the situation is different. Only are determined by a single spin indeXhe other quasispin
configurations of parallel spins on parallel lines survive thefactor iscgl):—l. The different sign is due to an odd number
ensemble average. However the spins may either flip or nasf spin flips along both antiparallel loops here. The complete
when parallel lines hit a scattering region. Since there &re 2result for the form factoK; ,=(s,) is
such configurations on a loop with scattering regions and .
2m lines, the factor 2" of the scattering regions is canceled 0, n=2s+1
(in this configuration the factor from each scattering region is n 1
positive). For a loop we thus have the same conditions on a K. ={ 2B + O(?) n=4s
scattering region as in clags Only the diagram®}”, D}, Ln
DY, andDY), fulfill this condition. However, the contribu- 24 %O(é)’ n=2(2s+1).

Since 7=n/2B time averaging yieldsK(7)=-1+7/2
+0(7) in accordance with the random-matrix theory result
(42).

(62)

3a,l’ X
tions of the first and third families have been shown to van-

ish under the given conditions such that contributions to th
order 7 remain. Altogether
(

\.
As 7=n/2B time averaging yiE|dSK1(T):%—T/8+O(7'2)
which is again the corresponding random-matrix theory re-

0, n=2s+1 sult (42).
1
0+0O( =/, n=4s i
Kyn= (s = { (BZ) (61) 6. The chiral class Alll
1 Parallel loops do not survive the ensemble average in the
4+0(?>, n=22s-1) chiral classAlll. Thus the first self-dual diagram vanishes,
\ D(lo):O. Long loops with antiparallel lines only have weight

and time averaging yields the corresponding result fronif the spins are always parallel. At each scattering region they
random-matrix theoryK,(7)=1+0(7%) upto the order we may either flip or not—in both cases the scattering region
have calculated in Eq42). carries a positive factor. Turning points inside a loop carry a
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negative sign if the two incoming lines have opposite spinFor C" the number of spin flips along the parallel loop is
else the sign is positive. By flipping spins on one side of aalways even, thu@él):cgl):l and we have

turning point one can thus change the overall sign of a con-

figuration. Eventually all diagrams with a turning point van- 4
ish. There is no contribution at all to the self-dual approxi- 0, n=2s+1
mation. Among all diagrams that contribute to the linear n 1

order only the seventh family has to be considered—all other K. =4 0- e O(@) n=4s
diagrams either contain a turning point or a long loop of Ln

parallel lines or they cancel due to overcounting. In Eq. —2—1+O<i> n=2(2s+1)
(58b) the factorcgl) is the quasispin factor of the diagrams L 2B 2) '
DY which is C{"=1. Altogether we have

(65)

Here, 7=n/2B and the time average yi9|dK1(T):—%

p -37/8+0(7). Needles to say this is in accordance with the

0, n=2s+1 random-matrix theory predictio(%2).
1
K=< 0+O<§>’ n=4s 63) IV. CONCLUSION
n 1 _ We have given a systematic diagrammatic short-time ex-
" oB +0 g2) "7 2(2s+1). pansion of the first-order and second-order form factors for

N ensembles of star graphs in the ten symmetry classes. The
leading ordergdiagonal and self-dual approximatigrisave
been calculated explicitly along with the first order beyond
the diagonal and self-dual approximation. The fidelity to the
predictions of Gaussian random-matrix ensembles has been
established to this order. Though we have explicitly used a
very simple central scattering matrix the results are valid for
a large class of central scattering matrices and can also be
expected to expand to more general types of quantum graphs
In the next chiral classBDI long loops of parallel lines in the various symmetry classes. These issues are discussed
survive the ensemble average in addition to the antiparallgh more detail in the Appendix.
|00pS of classAlll. For |OOpS of parallel lines all Scattering For each symmetry class we have identified the diagrams
regions carry a positive sign. For antiparallel loops and turnthat give the first orders of the form factor in accordance
ing points the discussion of clagsll can be taken over ith the predictions of Gaussian random-matrix results. For
completely. The only additional contributions to the form wigner-Dyson graphs the contributing diagrams to first order
factor are due to the first self-dual diagrd{’=2 and due beyond the diagonal approximation correspond to Sieber-
to the contribution'58a) of the sixth family of diagrams for Richter pairs of periodic orbits in Hamiltonian flows.
the linear order. Herecgl):l and we arrive at Wigner-Dyson graphs and their fidelity to Gaussian random-
matrix theory have been discussed in detail in the literature
[17,19,24 — our results on these symmetry classes are a
0, n=2s+1 particularly simple special case.
) For the remaining Andreev and chiral symmetry classes

Here =n/4B such that time averaging gives the form factor
K, (7)=-7/2+0(7?) as predicted by random-matrix theory
(42).

7. The chiral class BDI

5|, n=4s the equivalent of Berry’s diagonal approximation — #wedf-
B (64)  dual approximation— and of the Sieber-Richter contribu-
n tions have not been discussed before in completeness for all
4- B + O(@) n=2(2s+1). novel symmetry classgsvith the sole exception of the self-
- dual approximation for magnetic Andreev billiards in cl&ss
[16]).

Our results support the proper generalization of the
Bohigas-Giannoni-Schmit conjecture to the novel symmetry
classes. The contributing diagrams for the ensembles of star
graphs can be expected to carry over to Hamiltonian flows. A
general discussion of the self-dual approximation for chaotic

Finally, in classCll the discussion is almost equivalent to Hamiltonian flows in the novel symmetry classes will be
the preceding one. Loops of parallel lines have antiparallegjiven in a future wor25].
spins and in such a loop a scattering region carries a negative A theory for flows beyond the self-dual approximation for
sign if both spins flip. In conclusioﬁ)(lo):—z since an odd the novel ensembles will follow the paths of the Sieber-
number of spin flips occurs. For antiparallel lines the spinsRichter theory for time-reversal invariant Wigner-Dyson sys-
are always parallel and the scattering regions carry a positiveems. In one respect our results for quantum graphs are more
sign. Turning points inside such a loop can have either signsystematic than the existing work on Wigner-Dyson flows as

n
Kin=y 2B

Again, with 7=n/4B and time averaging we get the random-
matrix result(42) K,(7)=1-37/2+0(7).

8. The chiral class ClI
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we could show that no other contributions exist that contrib-orbits. The average over phases cancels most contributions in

ute to the calculated order of the form factors. the sum over the indicdg andl; — only if the indicedl; are
some permutation of the indicés the contribution survives
ACKNOWLEDGMENTS the average. Let us consider the diagonal approximation —

. . - where the indiced; are either a cyclic permutation of the
J
We are indebted to FeI|>_< von Oppen and Martin .Z'mba.uerindicesk- or of the indice; in reversed ordeftime-reversed
for many helpful suggestions, comments, and discussion jair) Ea{ch of these 2 er]mutations has the same contribu-
We acknowledge the support of the Sonder-P2!": P

forschungsbereich/Transregio 12 of the Deutsche Fordion to the form factor which we can now write in terms of

chungsgemeinschatft. the classical dynamics as

APPENDIX: ON THE GENERALIZATION TO MORE B
GENERAL QUANTUM GRAPHS Kg[ﬁg: &trT“ _ @E A (A3)
In the first paper of this serig20] we stated the general- B =
ized Bohigas-Giannoni-Schmit conjecture that Gaussian
random-matrix theory for any of the ten symmetry classes
can be expected provided the corresponding classical dynamere\, are the eigenvalues of;. If there is a gap in the
ics is chaotic. In this appendix we discuss how this statemergpectrum of7 one getsk$29=27+R(n) where
is related to the diagrammatic expansions of this paper. We '
will restrict the discussion to clagd for most of this section
— as the generalization to other symmetry classes is straight- R(n) < 27(B- D|\,|"= 2AB - 1)e B 1o (A4)
forward we can give some general conclusions.
For a star graph witlB bonds in clasAl with reduced

bond scattering matrifé‘B:Scdiag(e‘Bi) the corresponding
“classical” dynamics is defined by ti&Xx B bistochastic ma-
trix

(here,|\,|<1 is the second-largest eigenvalué the gap
1-|\,| vanishes slower than B/in the limit B— < the re-
mainder vanishegor fixed ) and the diagonal approxima-
T = |:§ 2=1Sci? (A1) tion coincides with the linear order of the second-order form
IR cii factor as predicted by the Gaussian orthogonal ensemble.
which acts (similar to the Frobenius-Perron operator for  Our choice of the central scattering matrix has a particu-
Hamiltonian flowg as a time evolution operator on a discretelarly simple classical dynamics defined By=1/B — this
probability distribution on the bonds of the graph. The matrixmatrix has one eigenvalue unity while all others vanish ex-
7;; always has one eigenvalue unity — all other eigenvaluegctly. This simply means that after one central scattering
are inside the unit circle and describe the decay of the probevent the particle is on any bond with equal probability.
ability distribution. It has been conjectured by Tanii24] The first order beyond the diagonal approximation can be
that the spectral statistics @enera) quantum graphs is pre- giscussed in a similar way — we refer to the literature
dicted by Gaussian random-matrix theory if the spectral 9aPp17,24. For the self-dual approximation and beyond in the
between thesingle) unit eigenvalue and the second largestygye| symmetry classes the argument can be performed with
in modulus vanishes slower thanB.in the limit of large  some more effort but it does not contain any new ingredient.
graphsB—wo. Note that for classical_flows a correspondirjg The gap in the spectrum & can only give a sufficient
gap in the spectrum of the Frobenius-Perron operator is gondition for universal spectral statistics. Indeed, due to the
sufficient condition for(strong chaos. complete Andreev reflection at the peripheral vertices our
We will discuss this conjecture for the diagonal approxi-star graph ensembles do not have a spectral gap in the cor-
mation and the first order beyond for star graphs in chiss espondingviB x MB matrix 7. However the reduced classi-
with a general symmetric central scattering mafigg;. With  ca) dynamics for the probability to find the particle on a bond
sqztrsg’ij the trace formula for the discrete time second-regardlessof the component of the wave function has the
order form factor is given by required spectral gap. There have been various diagrams for
the novel symmetry classes with values that are systemati-
cally different if the discrete time is twice an even or twice
an odd number and the right contribution to the form factor
is only obtained after an average over a small time interval.
n . . .
* " . By changing the complete Andreev reflection to a partial
X Sci, " Sc X 'E_ (Bkm_ﬁlm)) (A2) " Andreev reflection one may introduce at the same time a
m=t spectral gap in the complete matfixand the time average is
which can be interpreted as a sum over pairs of periodi©io more needehis is consistent with the symmetry class

1 d®g
Kon==\ Is? = f — = Sckk, -+ S
2n= g Sl (ZW)Bkl,...,I;W}l,...,In Ckiky Clkoky
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