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Universal spectral statistics in Wigner-Dyson, chiral, and Andreev star graphs.
I. Construction and numerical results
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In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten
known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate
ensembles of star graphs in the ten symmetry classes. A generalization of the Bohigas-Giannoni-Schmit con-
jecture is given that covers all these symmetry classes. The conjecture is supported by numerical results that
demonstrate the fidelity of the spectral statistics of star graphs to the corresponding Gaussian random-matrix
theories.
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[. INTRODUCTION spectral fluctuations described by the three Gaussian Wigner-
Based on earlier ideas of Wigngk] Dyson introduced a Dyson ensembles of random-matrix theq@j. Though the
9 Y fidelity to the universal predictions of random-matrix theory

threefold classification of quantum systems according tchave 2N overwhelming supoort by both experimental and nu-
their behavior under time reversal, and spin and rotational g supp y P

invariance[2]. This symmetry classification turned out to be n::trtlaclalu?%t;lrgpoeoghyS|caI basis of universality is not com-
very useful, for instance in semiclassical, disordered, anf €Y ' .

. Quantum graphs have been introduced by Kottos and
random-matrix approaches to complex quantum system milansky [10] as simple quantum models with an exact
The success of random-matrix theory is based on universa y Pie g

features in spectra of complex quantum systems. While no%emmlassmal trace formula fof thg den§|ty of states which is
expressed as a sum over periodic orbits on the graph. They

capable of predicting single eigenvalues random-matri ; . . . .
theory has become one of the key ingredients in predictin)h"’we sw;]ce bepome an |mpqrtant.tool in the semlcl_assmrfll
pproach to universality. In this series of papers we will con

physical features that depend on nontrivial spectral statistic

[3.4]. In each symmetry class various universality classeﬁt{ua star graphs for all ten symmetry classes and investigate

have been identified—each described by some ensemble ilirlesttr)\?acftcr)ilov?/?;a\tlsngse:f)ﬂ?isngrenv%rtlgzut)é) Zns%n?ir(]:?;};té??z!?/ '
random matrices. Most prominent are the Gaussian unitar g pap

GUE, Gaussian orthogonéBOE), and Gaussian symplectic ﬁeriodic—orbit approach this paper focusses on t_he construc-
(GSE’) ensembles. They defin,e thergodic universality tion of approprlate_ §tar graphs _and some numerical results.
classesand they have been applied successfully to a wide We start with giving a short introduction to the ten sym-

range of quantum systenssee the recent reviefB] for an (TR L 0 e Tolowing Sec. I
overview and further references q grapnhs. g Sec.

an spectral statistics we introduce the spectral form factors,

Recently the threefold classification has been extended to . . .
a tenfold classification. The common feature of the sevel-" " the results of Gaussian random-matrix theory for the

novel symmety classes is a spectral miror symmiging: Sy SITCRR RS SIS O O
the spectrum is symmetric with respect to one pd&gt—if ) ' 9 q

E,+E is in the spectrum so &~ E. They are partly realized graphs in Sec. IV we construct one ensemble of star graphs

in quantum chromodynamics for a Dirac particle in a randomfor each of the ten symmetry clasgd,13. Numerical re-

gauge field, and for quasiparticles in disordered superco sults then show the fidelity of these ensembles to the predic-

ductors or normalconducting—superconducting hybrid syglons of the Gaussian random-matrix ensembles.

tems. The invention of the novel classes has become neces-
sary due to the impact such a symmetry has on spectral !l. THE TEN SYMMETRY CLASSES OF QUANTUM
correlations. These new universal features appear near the SYSTEMS

symmetry pointE, and they can be described by defining

_random-matrix_ensembles which incorporate the corresponcg-ome unitary operatord that commute with the Hamilton
ing spectral mirror symmetry. operatorH =UHU". Thus the operator& (or its Hermitian

It has been conjectured_ by Bohigas, Giannoni, and Schm eneratorsdescribe constants of motion and they lead to a
that the spectra of classically chaotic systems display th lock diagonal form of the Hamilton matrix in an eigenbasis

of U. If enough constants of motidd are available such that

the corresponding Hermitian generators form a complete set
*Electronic address: sven@gnutzmann.de of commutingobservables the Hamilton operator is eventu-
"Electronic address: bseif@thp.uni-koeln.de ally diagonalized in the common eigenbasis of the symmetry

In quantum mechanics most symmetries are described by
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operatorgor their generato)js However, for any Hermitian TABLE I. The ten symmetry classes of quantum systems. If a
Hamilton operatof there is always a complete set of com- symmetry class obeys time-reversal symmetry or a spectral mirror
muting Hermitian operator®, which also commute with the symmetry the entry £1 in the corresponding column indicates if the
Hamilton operatoi(e.g., projectors on eigenstatelh some  symmetry operator squares td.¥The entry O indicates that the
sense the notion of symmetry in this wide sense is obsoleteorresponding symmetry is broken. The last column gives the cor-
for a single quantum system. However, in most cases suchrasponding Riemannian symmetric sp&eecompact typg

set of commuting operators explicitly depends on the Hamil

tonian(practically, one has to diagonalize the Hamiltonian toSymmetry class 7 P C Symmetric space

obtain them. Also, they will usually not have any corre-

sponding classical observable and will only apply to a singlé® o 0 0 UN)

system. Any discussion of the impact of symmetries on specAl +1 0 O U(N)/O(N)

tral properties implies that the symmetry operators do nop| -1 0 0 U(2N)/Sp(N)

depend on the Hamiltonian. We will use the term symmetryy, 0 +1 0 U(p+g)/U(p) X U(q)

only in this restricted sense. If a Hermitian operator corre-,

sponds to a classical observable and commutes with th%DI *1o+1 +1 SQp+q)/SQAp) xSAQ)

Hamiltonian this is sufficient for a symmetry. Cll -1 41 -1 Spp+q)/Spp) X Spa)
If a system has a unitary symmetry the Hamilton operatof© o 0 -1 SKN)

can be brought to a block diagonal form. Each block can bel +1 -1 -1 SiEN)/U(N)

regarded as a new Hamilton operator on a reduced Hilbegp(p) 0 0 +1 SAaN)

space. Let us assume that the Hilbert space is completely,, 1 -1 o+ SQ2N)/U(N)

reduced such that there are no more unitary symmetries
What types of symmetry may such a reduced quantum sys-
tem still have? What are the possible structures of the Hamil.

ton operator(or the Hamilton matrix and what are the con- t'aés(g;i;hi'éalsﬁla:rscegn[dedc?gg pgrm};ljogr?:gifjlﬁgtmd—er?olrrr]nal-
sequences on its spectrum and its eigenvectors? sudfl P P P 9

questions were for the first time addressed and partially angonducting(SN) hybrid systemsthe Andreev classgsit is

swered by Wigner and Dysdi.,2]. Dyson proposed a sym- possiple to construct much more general systems in the ap-
metry classification based on the behavior of quantum sygeropriate symmetry classes, e.g., two coupled spins or a gen-
tems under time-reversal and spin and rotational invariancé&ralized version of the Pauli equatiewhich includes the
This leads to three symmetry classtee threefold way (i) ~ Bogoliubov-de-Gennes equation as a special caise quan-
systems that are not time-reversal invariginj,time-reversal  tum graphs. Quantum maps which incorporate the corre-
invariant particles with either integer spin or additional rota-sponding symmetries have been discussed recgilyDue
tional invariance, andiii) time-reversal invariant particles to their simplicity graphs will be the focus of this work. The
with half integer spin and broken rotational invariance. following discussion of symmetry classes is summarized in
Time-reversal symmetry has immediate consequences orable |.
the form of the Hamilton operator: spin-less particles can be
described by real symmetric Hamilton matrices in a time-
reversal invariant basis, while systems without time-reversal
invariance do not have any canonical basis and the Hamilton Quantum systems obey generalized time-reversal symme-
matrix remains complex. The influence of the symmetrytry if there is an antiunitary operatdf—the generalized
class on spectral properties such as level repulsion has beéme-reversal operator—that commutes with the Hamilton
investigated extensively within the field of random-matrix operator
theory [3-5]. We will give more details on random matrix-
theory in Sec. IIl. [H,7]=0. (1)
Recently the Wigner-Dyson symmetry classification has
been extended to a tenfold way by including all differentSuch an operator obeys
types of symmetries that lead to a symmetric spectitH8). 5
In the presence of such a spectral mirror symmetry every T°= %1, (2)
eigenvalueEy+E has a partner eigenvalue B§-E (we will
setEy=0 in the sequel without loss of generajitBelow we - _ *
will describe the various ways a mirror symmetry may ariselilinéarity Tlof§)+Blv)=a
and be combined with time-reversal invariance. This leads ta (¢ )"
the seven novel symmetry classes. As shown by Zirnbauer For time-reversal invariant systenischanges the direc-
[8] there is a one-to-one correspondence between Cartarf®n of time when applied to the Schrodinger equation.
tenfold classification of Riemannian symmetric spaces andquivalently, whenZ is applied to the retarded Green’s op-
the ten symmetry classes of quantum systems. We will userator
the convention to adopt the names given by Cartan to the
different classes of symmetric spaces for the according sym- G.(E) = 1 )
metry classes. * E+ie-H’
The novel symmetry classes are partly realized in quan-
tum chromodynamics for Dirac fermions in a random poten-one gets

A. Time-reversal invariance

This is shown in the Appendix. Antiunitarity implig$) an-
TE+ B |Tv)y and (i) (T¢|Tv)
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the properties of the time-reversal symmetry operator. This
TG.(B)T = E—ie-H G.(E)'=G(E), (4)  degeneracy is well known for spih-particles with conven-
tional time-reversal symmetry.
which is just the advanced Green’s operator.
Time-reversal symmetry also effects other dynamic

: . . B. Spectral mirror symmetries
operators—such as the unitary time evolution operator

The spectrum of a system is symmetric if for every eigen-
U(t) = rvh, (5)  value E>0 there is another eigenvalu€<0. In general,

) ) ~ there may be some vanishing eigenvalle=). If a symme-
Scattering problems can often be described by some unitafyy operator leads to a symmetric spectrum we will call this a
operatorS(E) that connects incoming and outgoing states ofspectral mirror symmetry. In this section we discuss the dif-
energyE. Time-reversal invariance leads to ferent types spectral mirror symmetries which finally leads to

1 B + classification of seven novel symmetry classes.
TUOT = =UC=1 =Ut)’, According to a theorem by Wigner any symmetry opera-
tion on Hilbert space is either represented by a unitary op-
TS(E)T 1=S(E)". (6)  eratorP or an antiunitary operata?. Now take any eigen-
state|v) such thatH|v)=E|v)—it is obvious thatP or C lead
These equations also define time-reversal symmetry folo a symmetric spectrum if eithet{P|v)=-EP|v) or
quantum maps. The transformation of the time developmeni(C|v)=-EC|v). This condition on any eigenstate leads even-
operator follows immediately from the conditigf) on the  tually to the condition that the Hamilton operator anticom-
Hamiltonian. In scattering problen®&E) can be related to a mutes with either a unitary or an antiunitary symmetry op-
unitary combination of Grelen’s functions — for definitenesserator
considerS(E)=G.(E)G_(E)*=1-2€G.(E) and Eq.(6) fol-
lows from the transformatiotd) of G.(E). [P,H],=0 or [CH].=0. (8)
We have used the tergeneralizedime-reversal operator Note, that this is a condition on the Hamiltonian—it will
becauseZ need not be the well-known conventional time- have effect on both the spectrum and the eigenfunctions.

reversal operator. For a particle #¥ the antiunitary conven- Spectral mirror symmetries may coexist with time-
tional time-reversal operator obeys reversal invariance. IP is a unitary spectral mirror symme-
Y R try in a time-reversal invariant system there also exists an
TeonPT conv="P -, antiunitary spectral symmetry operatds= P7 that anticom-
mutes with the Hamiltonian. Similarly, a system with both
Teon \)'(’Tgé-nvz % types of spectral mirror symmetries is also time-reversal in-

variant with respect t&="PC. One may assume that these
N . operators commute. This is shown in the Appendix where we
TeonST conv=~S, () also show that generally

wheres is the particle spin. This conventional time-reversal P?=+1 and (C?= %1 9

operator obeyg 2,,,=1 if the spin quantum number is inte-

gers=0,1,2,..., and’ 2, =-1 if the spin is half integes

conv™
=2,2,.... Thus the most relevant and simplest realization

are for spin-les§72 _ =1) and spin%(f’gon": -1) particles.

while in systems with broken time-reversal invariance one
Jmay always choos® such thatP?=1.
Spectral mirror symmetries relate Green'’s operators at en-

_ conv \ ) ergy E and £
When a given quantum system is studied one should be
aware that a generalized time-reversal operator may still ex- PG(E)Pl=-G.(-E),
ist which commutes with the Hamiltonian while the conven-
tional time-reversal operator may not commute with CG.(E)Ct=-G.(-E). (10)

The consideration of time-reversal symmetries leads to
three symmetry classes: either a system is not time-reverskor scattering problems this leads to
invariant or it is time-reversal invariant—in the latter case 1
the time-reversal operator either obe§$=1 or 72=-1. PSEP =SB,
These classes have been calMigner-Dyson classeand
their impact on the form of Hamilton matrices and universal CS(E)C=S(-E), (1)
spectral features will be discussed further in Secs. IIC 1 an

. ; ) gmd for the time development operator to
[ll. Additional spectral mirror symmetries lead to the novel P P

symmetry classes to be discussed below. PUOP=UC-t) =U)T, (12
Kramers’' degeneracy occurs in time-reversal invariant

quantum systems witl2=-1. If |y) is an eigenvector with CUMNC L= U(t)

eigenvalueE, then due to time-reversal invariand&y) '

=7[y) is an eigenvector with the same eigenvakielt is The seven novel symmetry classes are obtained by all

straightforward to show thdfy) is orthogonal toy) using  possible combinations of a spectral mirror symmetry with
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time-reversal symmetrgwith the additional requirement that with respect to a given basis. However, one may show that
[P,7]=0 or [C,7]=0 if both symmetries are supposed to the bases chosen here can always be constructed from the
hold). First, there are three novel symmetry classes that argeneral properties of the time-reversal and spectral mirror
not time-reversal invariant: either there is a unitary operatosymmetries. Our choice of basis is biased by their later ap-
with P?2=1 or an antiunitary withC?>=+1. In the time- plication to star graphs in Sec. IV.

reversal invariant systems one always has both unitary and In addition, some symmetry classes have a further divi-
antiunitary spectral mirror symmetry operators: if there is asion into subclasses. Though we will mention all subclasses
unitary operatofP that anticommutes with the Hamilton op- we will only give the scattering matrix in one of the sub-
erator we may define the antiunitary operaferP7 which  classes. In the following it will always be assumed that the
also anticommutes with the Hamiltonian. Similarly, if one scattering matrices are unitary which is an additional restric-
finds both a unitary and an antiunitary spectral mirror sym-ion to the forms of these matrices for each symmetry class
metry and they commute with each other their product degiven below.

fines a time-reversal symmetry operator that commutes with

the Hamiltonian. It follows that the system is also time- 1. The Wigner-Dyson classes

reversal invariant. For the classification of time-reversal in-
;ﬁ;;igtssﬁn g?;{dzlgszﬁg gltzsaqs—ggcit}rlagﬂrrcgr:sg{n tr::iitry IEong to one of the_z three Wigner-Dyson clasgedl, or AII._
leads to four symmetry classes that combine time-reversal CIassA contains_quantum systems that are not time-
symmetry with spectral mirror symmetry: T2=1 either reversal invariant. Th_ere is no preferred basis in Hilbert
C2=1 (P?=1) or (2=-1 (P?=-1), if T2=-1 either C2= space an_d the scattering mat$E) may be any unitaryN

-1 (7)2:]1) or C2=] (7)2=_])‘ X N matrix.

S . Atime-reversal invariant system belongs either to ckiss
For historical reasons these seven classes have been S[IDHItTZ:] or 1o classAll if T2=-1

into two groups, the first group is given by the thretural In classAl there are time-reversal invariant bases such

classes-the ones that have a unitary mirror symmetry with S . ; .

o o . S . _that7]iy=|i) for any basis state. In any such basis the time-

P<=1. Their importance has first been observed in investiga- .

. . ; . . reversal symmetry operator is represented by the complex

tions of Dirac fermions in quantum chromodynamics where ~ - .
: L . conjugation operator

the spectral symmetry is related to chirality. For this reason

we will call P a chiral symmetry operatothough in general Al T=K, (13

P need not be related to chirality. The four remaining classes ] .

have mainly been discussed in connection to mesoscopic digmhere the complex conjugation operator acts OVIL a general

ordered superconductors or superconducting—normal corgtate by complex conjugation of the coefficiem&;Z,ali)

ducting hybri iuni i =K= == i)

g hybrid systems where the antiunitary mirror symme- iz @)= 2= & 1), . o

try is connected to electron-hole conjugation. For this reason The condition(6) implies that a scattering matrix is rep-

we call C a charge conjugation symmetry operatdhough  resented by a unitary symmetfi¢x N matrix

again, in general need not be related to charge conjugation ) _ T

at all. Since Andreev reflection is a main ingredient in the Al SE) =SB (14

dynamics qf superconducting—normal conducting hyb(id sys- For classAll there is no time-reversal invariant basis. In-

tems we will call these classésidreev classedhe detailed  stead, there are always bases in which the time-reversal sym-

discussion of these symmetry classes and their impact ometry operator is be represented by

universal spectral features will be discussed in Sec. Il C 2,

Quantum systems without spectral mirror symmetries be-

0 -1
IIC 3, and Ill. All: T= K( ) (15
1 0
C. Explicit form of scattering matrices for each symmetry wherel is theN X N identity matrix. Hilbert space has even
class dimension due to Kramers’ degeneracy. In such a basis the

Time-reversal and spectral mirror symmetries restrict the’Caltering matrix has the form
form of Hamilton and unitary scattering matrices due to the X (E) A,(E)
relations(1), (6), (8), and(11). By choosing an appropriate All: - S(E) =( T),
Hilbert space basis for each symmetry class the symmetry A3(E) X(E)

operators are represented by a simple magombined with  \ith complex NXN matrices y; that satisfy X,(E)
the complex conjugation operator for antiunitary operators _ _ XH(E)T and X5(E)=—X4(E)".

These determine the explicit form of scattering matrices for
each symmetry class.

Note, that the following derivation of the scattering ma-
trices depends on the choice of the basis. There are many A system with a spectral mirror symmetry connected to a
choices for the Hilbert space basis in which the symmetryunitary chiral symmetry operatdP (with P2=1) falls into
operators have a simple form. As a consequence many of thane of the three chiral symmetry classd#l, BDI, or CII.
following identities are only valid in that special basis. Es- SinceP?=1 its eigenvalues are either +1 or —1. In gen-

pecially the “complex conjugation operatoil is defined eral, there will bep positive andy negative eigenvalues. The

(16)

2. The chiral classes

056219-4
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topological quantum numbew=|p-g|=0,1,2,... distin-
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guishes between different subclasses in each of the chiral

classeqv is always even for clas€ll). The integerv has
impact on both the form of Hamiltofor scattering matrices

and on the spectral statistics. Becau3eelates states with
positive energy to states with negative energy there:are
vanishing energy eigenvalues due to the chiral symmetry.

We will focus on the subclasses with=0 and setp=q
=N in classesAlll and BDI, p=g=2N in classClIl. Hilbert

space has even dimension in all three classes. There aygth

cll:  S(E)
Xy(E) X(E)  A(E)  A(E)
Xs5(E) XE)T X-BT A((E)
XE) -2 -5 -5
- X4(_ E)* Xs(E)T Xz(_ E)T Xl(_ E)*
(22)
additional  constraints X,(E)=-X,(E)T, X3(E)

many bases that can be used as reference basis, for example,(-E)t, X (E)=-X(E)T, and X4(E)=X4(-E)".

the one, wheréP is diagonal. Here, biased by our following

construction of star graphs we choose

_ _(o 1)
Alll, BDI,Cll: P= 1 o) (17)

which can be obtained from the diagonal representation by

simple rotation.

The chiral clasdAlll contains systems without additional
time-reversal invariance. The other two chiral symmetry

classes are time-reversal invariant wifR=1 for classBDI
and 72%=-1 for classCIl. In class BDI one may always
choose a time-reversal symmetry operator of the form

BDI: 7=K, (18)

which commutes with the chiral symmetry operafi17).
In classCll one may choose

0-10
|1 oo
Cli: 7=kl o o o -1 | (19
0 010

which also commute®.
Due to the conditiorill) a scattering matrixS(E) in class
Alll has the form

Alll:

Xi(E)  A(E) ) 0

‘S(E)=<X3<E) (- £

where (besides unitaritythe NX N matricesy; are further
restricted byX,(E)=X,(-E)T and X5(E)=X5(-E)".
In classBDI, due to time-reversal invariangé), S(E) is

symmetric, thus
_ [ X(E) XAE)
Bm"ﬂa'<xgaT(n&EY)’ (21)

where X;(E) =X, (E)T and X,(E) = X,(-E)™.
Finally, in classCll, S(E) is a 4N X 4N matrix of the form

3. The Andreev classes

A gquantum system with a spectral mirror symmetry that
does not belong to any of the chiral symmetry classes be-
longs to one of the four Andreev classesCl, BD, or DIII.

The spectral mirror symmetry for these classes is related to
n antiunitary charge conjugation operafowith C?>=-1 for
andCl while €?=1 for BD andDIIl. The classe< andBD

are not time-reversal invariant whilél and DIl are time-

reversal invariant wittZ =1 in Cl and 72=-1 in DIII.

The classe€ andCl do not split into subclasses. In ap-
propriate N-dimensional bases the charge conjugation op-
erator can be represented as

.
C.Cl: C=K . (23

10

In contrast the classeBD and DIl fall into two subclasses
each. The symmetry clag¥D allows for either an even- or
odd-dimensional Hilbert space. Due to spectral mirror sym-
metry there is always an eigenvalue on the symmetry point
E=0 in an odd-dimensional Hilbert space. The subclass with
odd- (eveny dimensional Hilbert space may be call&D
oddeven). In the following we will restrict ourselves to the
even-dimensional case and will follow the convention to call
it symmetry clasdD. Similarly DIl falls into the two sub-
classedDlll odd andDlIIl even. The dimension of the corre-
sponding Hilbert spaces is twice an odd or twice an even
number. Spectral mirror symmetry combined with Kramers’
degeneracy implies two eigenvalugs=0 on the spectral
symmetry point in clas®lll odd. In the sequel we will re-
strict to DIII even which is physically more relevant.

An appropriate choice of basis in the Hilbert space takes
the charge conjugation operator of the symmetry claEses
andDlIIl (we will not mention the “even” furtherto the form

(0 1)
D,DlI: C=K ,
10

where 1 is the NX N identity matrix for classD and the
2N X 2N identity for classDIII.

The time-reversal symmetry operators in the clasSes
andDlIIl have the representations

(24)

Cl: 7=K, (25

and
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0-100 sality classes in the same symmetry cl§34]. As in the

1 00 0 preceding section we will only discuss one subclass in each
DII: T7T=K , (26)  of these cases. In the symmetry clas&esl, All, C, andCl

0 0 0-1 there isone unique ergodic universality class. In the chiral

0 01 O classesAlll, BDI, and CIl we restrict to|p—q|=0 (see Sec.

Il C 2). Finally, the classeBD andDIIl have two subclasses

in an appropriate basis—hetes the N < N identity matrix. ~ (see Sec. Il C Band we will restrict ourselves to the sub-
These representations commute with the corresponding reptassesD (BD ever) andDIII even.

resentations of the charge conjugation operators. Let us mention that apart from the ergodic universality
The conditions(6) and (11) lead to scattering matrices classes there are a lot of other physically relevant universal-
S(E) of the form ity classes within each symmetry class. In random-matrix
theory these correspond to ensembles which are not equiva-
X,\(E) X,(E) . :
C,Cl: S(E)= X L, (27)  lent to the Gaussian ensembles. For instance ensembles of
- X(-E) Xi(-E) banded or sparse Hermitian matrices can describe quantum

systems in a localized reginjé5].

In Andreev systems more specialized random-matrix en-
sembles can describe the so-called hard gap in the quasipar-
ticle excitation spectrum that appears when a small part of
the boundary of a normal conducting chaotic billiard is
coupled to a superconductt6]. If no magnetic field is

in classexC andCl. There are no further restrictions on the
complexN X N matricesX; for classC (apart from unitarity.
Time-reversal invariance in classl requires S(E) to be
symmetric, thusY;(E)=X;(E)T and X,(E)=-X,(-E)™.

In the symmetry clas® the scattering matrix has the

form applied the resulting combined electron-hole dynamics near
( X, (E) X,(E) ) the Fermi level is no longer chaotic and the system does not
D: S(E)= . . | (28 belong to an ergodic universality class.
X(-E) Xi(-F)
without further restrictions on thid X N matricesA;. A. The fluctuating part of the density of states
For classDIll S(E) is a complex # X 4N matrix of the
form To reveal universality in the statistics of quantum spectra
the system dependent mean density of states has to be sepa-
Dill: rated. This is done by writing the density of states as a sum
“E e e LE d(E) = X O(E - E) = dwey(E) + 0(E). (30
Xs(BE)  Xi(E)'  A(BE) A(-E) i
S(E) = 5 1 6 3 (29

Y-B LR HEE LB In presence of Kramers’ degenera@ymmetry classeéll,

Xe(—B) X(-B)" X5(-E)° x(-B)' Cll, and DIIl ) we define the density of states such that every
- __ T v\t __ T doubly degenerate energy is counted only once in the sum

WItQXXZéEz__XXZfE)T’ B =28, A5(B)=-A5(B), d(E)=3,;8(E-E;). Let us also introduce a degeneracy factor

and 47(B)=~A7(~B)" g, whereg=2 for systems with Kramers’ degeneracy and

elseg=1.

I1l. UNIVERSAL SPECTRAL STATISTICS In Eq. (30) the first partdye,(E) is the average density of

i ) states which may be obtained by counting all st&ei an

In the previous chapter we have summarized the SYymM&gieryal E-F,/2<E <E+E/2. Then the numbel, of
try classification of quantum systems. It is completely geniaies in that interval divided b is the average density of
eral. We have not yet related it to universal spectral propergiates
ties. This will be done in this section. In each symmetry class
there are several universal regimes with respect to their spec-
tral statistics. A universality class is a subset of a symmetry Owey(E) = M_
class which share the same spectral statistirsat least E
some universal spectral correlation functipnBhe spectral
statistics of a given universality class can be descril@edi  For this to be well defined it is necessary to choBseself-
defined by some ensemble of random matricessually  consistently in range such th@j N,>1 which is equivalent
there will be a lot of different ensembles that share the sam# taking the energy interval much larger than the mean spac-
universal spectral statisticsin this paper we will focus on ing E;>AE=1/dyey, and(ii) E is small compared to the
the ergodic universality classes that can be described byscale on which the resultindy.,, changes.
Gaussian ensembles of Hermitian matrices in each of the ten In systems that allow for a classical limit one may con-
symmetry classes. Note, that three chiral symmetry classesder the semiclassical regime. The scBles then chosen
and the symmetry classeBD and DIII fall into various  classically smallE,— 0 as# — 0) but large compared to the
subclasses—as the universal spectral statistics is different imean level spacing. Thus the average density of states is well
each of these subclasses they define different ergodic univedefined in the semiclassical regime. It is given by Weyl's law

(31
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C. Spectral form factors

d'pd'q
d E)= f S[E-H , 32 i . ) )
wey(E) (2gmh)’ ! ciasdP-0)] 32 Let us now define the statistical functions that are in the
. . . . center of our investigation.
whereHgasdp, q) is the clqssucal H.am|lton function aridhe For a physical sygstem the following averages are either
numper of freedom;. This equatl,on shqws that the avera erformed over some system parameters or over different
den3|ty_of states defined by Weyls_law Is system depend_e arts of the spectrum. We will always use unfolded spectra
and universal features can only arise due to the qucFuatln ith unit mean level spacing. Spectral averaging is only pos-
part &d(E). Note, that Weyl's law gives the mean de”S'tY of ible if the universal results are invariant under shifts of the
states on scales much larger than the mean level spacing. ergyE—E+E’
the presence of mirfor symmetries t_he fluctuati_ng pa(E) There is an important difference between the Wigner-
may contribute tauniversalfeatures in the density of states Dyson classes where the universality was conjectured for a
on the scale of the mean level spacing. single spectrum of one system and the remaining seven sym-
_ For classically chaotichyperbolig systems the fluctuat- a4y classes where some universal features near efiergy
ing part of the density of states is given by Gutzwiller's tracezo can only be obtained by averaging over different spectra.
formula [17] as a sum over periodic orbits of the classical|, the classical limit of most systems one naturally obtains

system many spectra for the same physical system by formally
t W changing#. In that case one may average over different
S(E) = > —= A,cos—". (33 spectra for thesame physical systeaven for the seven novel
p.oa IR h symmetry classes.

Here,t, is the primitive period of the orbitthe time needed We will be interested in the two simplest correlation func-
o a’saingle traversal A :(e_wu(wlz)/\”de!a—tMred_M) is the tions and their Fourier transforms. We will call the latter
a v a

o : - . form factors The first correlation function is simply the av-
stability amplitude of the periodic orbitv'®®is thereduced . .
monod);omyp matrixand ﬂp the Masl‘i)vainde)( and W eraged fluctuating part of the density of statéd(e)). If the

=$.pdq is the (reducegl action. Note, that hyperbolic chaos spectral statistics is invariant under shifts this expectation
is ; strong condition on a classicéll system —all periodicvalue must vanislif not it would be a constant over scales

orbits are hyperbolically unstable and isolated in the energ uch larger than the mean level spacing—in contradiction to
shell. ts definition. The spectral statistics near a spectral mirror

The energy scale for universal features is given by the?YMMEWy is not invariant under energy shifts. Nontrivial
mean level spacindE=1/dy.,;. Introducing rescaled ener- contributions to the_ mean fluctuating part of the density of
giesE=€AE one obtains a density of states states may then arise. These have to appear on the scale of

mean level spacingelse it would be inconsistent with the
d(e)=1+4d(e) (34)  separation of the density of statesdgp,,+ &d).
The Fourier transform of the averaged fluctuating part of

for the unfoldedspectrum. the density of states is tHest-order form factor

B. Gaussian ensembles of random-matrix theory fw "
. . . . Ki(r) =2 dee™™(5d(e)). 36
Each ergodic universality class can be associated to a () e € (d(e)) (36)

Gaussian ensemble of random matrices. Within one class the
Gaussian ensembles differ only by the dimension of theiinverting the Fourier transform one may represent the devia-
matrices. The universal features of spectral statistics are exions from Weyl's law in the expectation value for the den-
tracted in the limit of large matrices. sity of states as

In each Gaussian ensemble the probability for a Hamil-

tonian matrixH (with symmetries according to one of the *
ten symmetry classgbas the form (d(e)) = . dr cog2men)Ky(7). (37
1 _,..2
P(H)du(H) = NE AT du(H), (35  Note, that forr>0 the first-order form factor is the expec-

tation value of the trace of the time evolution operator
whereN is a normalization constanf is an overall scale Ky(7)=(tr éH7%/") where t =274/ AE is the Heisenberg
that fixes the mean level spacing, and the meaduf@{) is  time.

given bylld Ref;dim H;; where the product runs over all The second-order correlation function is defined by
independent elements &f.
In general, one may denote the Gaussian ensemble C(e, €p) =(Sd(eg+ €/2) 5d(ey — €12)). (38)

(GE) for the symmetry clasX by X-GE. We will use this

notion for the Andreev classes. Note, that for some symmetr{f the spectral statistics is invariant under energy shifts it
classes one should distinguish various ergodic universalitpnly depends on the energy differenee-averaging over
classes. As we have restricted our investigations to just ondifferent parts of the spectrum for a given system is an av-
relevant subclass we will use the name of the whole symmeerage ovelre,. Its Fourier transform with respect is the

try class for the Gaussian ensembles. second-order form factor
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* _ lished name. The spectral statistics of these ensembles is not
Ka(7) :f de €7%™C(e, o), (39 invariant under energy shifts and, as a consequence, devia-
- tions from Weyl's law need not vanish neax 0. At energies
where we have suppressed the possible dependeney. on much larger than the mean level spacifeg>1 Wigner-
For physical spectra a time average over a small timéyson statistics is recovered. Thus, for the two-point corre-
interval A7<1 has to be added to the definition of the form lation function we have

factors. >1
s

0
CNCUH (€, ), CSCF(€, &), CPCF(€, &) — C°Y(e),
D. Spectral statistics for the Gaussian random-matrix
ensembles e>1

. . hGOl CI-GE, GO
We will now summarize the relevant results from random- CNCR, €),C (e,69 — C e,
matrix theory(for more details see Reff3—-9|).
e>1

0
1. The Wigner-Dyson ensembles CChGSE(f, fo),CCI_GE(Ey €) — CGOE(E)- (43

The ergodic universality classes for quantum systems iThe universal features near the symmetry pein® are most
the Wigner-Dyson classes are described by the well-knowRrominent in the density of states. Though there are universal
Gaussian ensembles of random-matrix theory GBESE),  deviations from Wigner-Dyson statistics in all correlation
GOE (AI-GE), and GSE(AII-GE). The universal spectral functions we will focus on the density of states. The univer-

statistics is invariant under shifts of the energy>e+e€,.  sal deviations from Weyl's law for the chiral ensembles are
Thus the expectation value of the fluctuating part of the dengjven by[4,7,8,18-22

sity of states vanishes and so does its Fourier transform
Ky(nW-P-=0. (40) (8dNCU ¢)) =

The two-point correlation functions are given by

e

7[33(776) +3(me)] -1,

- el
CoE(g = (g - ST (8dNCOK ¢)) = (UK ) + fJo(m(l - f dé Jo@)),
e 2 0
(7| €|lcos e — sin 7| €])[2Si( 7€) — 7] 27ld
C9=C"M9+ 2722 O (aOSG) = (U 20) - T2 fo d£ (8,
B 2m|€lcos 2me - sin 2m|e| .
CC5He) = COUH(2¢) + 122 Si(27|€]), (5dCCE(eyy = S 27TE,
(41) 2me
where Six)=[3dé £1siné is the sine integral. The corre- -
sponding second-order form factors are given by (5d°CE(€)) = (SdNCU ¢)) — EJO(WE)Jl(W|E|),
KGUE(T):{|T| for [7<1
? 1 for |7=1, (80P-CE(e)) = = (3d“CKe)), (44)

|A[2=In(2|7 +1)] for |74<1

a
KSOF(7) = o +1 (8d!"9%(0)) = (O 26)) + (2.
2—|7-|In2||—_1 for |T|21,
i The corresponding first-order form factors can be calcu-
lated explicitly in terms of the complete elliptic integrals of
s M(z —In|d-1)) for |74<2 first, second, and third kindC(x)=J7"2(1/\1-x sirP¢)de,
KSSHn =1 4 (42  £x)=[7"\1-x sirPg, and TI(y,x)=f771/(1
1 for |74=2. -y sirfp)\V1-x sirt¢lde (we use the convention that
I1(y,x) is real fory>1[23]). They are given by
2. The novel ensembles KENGUE 1 |7 +1 4|
The Gaussian random-matrix ensembles in the chiral 1 mld T\ (1 +|7)?
symmetry classes are known as chGUHII-GE), chGOE
(BDI-GE), and chGSE(CII-GE). The Andreev ensembles __1+7 ( 4|7 ) 45)
C-GE, CI-GE, D-GE, andDIII-GE do not have any estab- alA@+]d) "\ (@ +]|4)2)’
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1
KSNCOR 1) = KSMCVH 7) + ———=0(1 - 27
1 E() 1 E() \5’1—42( ||)

2y A _dd_)

S A+ DA+ \2d+ 11 +])?

1 T 1
s = 2o 2) Lo -
2 2) 21-7 FIG. 1. Sketch of a star graph with five bonds of equal
length.
(2 e ) 0
1 2 L
A+ 2+ 1) A7+ 172 +|7) average over various spectra is performed. This corresponds
C.GE to an average over some system parameter. We conjecture
Ko (D =-601-|[1), that for classically chaotic systems with a spectral symmetry
all correlation functions of the fluctuating part of the un-
KC-GE () = |7 +1 4|7 .\ |7 -1 47 N\ folded density of stateéd(e) as given by Eq(34) averaged
o (1)= mld T\ (|74 +1)? 77 (|7 + 1) ' overonesystem parameter coincid_e with those (_)f the corre-
sponding Gaussian random-matrix ensemble in the novel
KD-CE(7) = o(1-|4) symmetry classes. This includes universal deviations from
1 ' Weyl's law in the density of states itself. Note that though
CI-GE there are seven symmetry classes there are infinitely many
DIGE  _ Ly [ T _ _ ki ergodic universal classes due to the different subclasses.
KI5 (n =Ky +1-0(71-1)5—. ; : .
2 2 ViP-1 Though some average is certainly necessary we may still

conjecture the fidelity to ergodic random-matrix theories of a
single physical system by formally averaging over spectra
for different values of an effective Planck’s constdtitis
does not work for scaling systems where changingust

It has been conjectured by Bohigas, Giannoni, and Schmitescales the spectrum and the unfolded spectrum remains un-
that quantum system@n the semiclassical regimavith a  changegl In superconducting—normal conducting hybrid
chaotic classical limit have universal spectral fluctuationsstructures this corresponds to an average over Fermi energy
that coincide with the predictions of one of the Wigner- u.

Dyson Gaussian ensembles of random-matrix theory GUE,

GOE, or GSE. More precisely in an average over different IV. QUANTUM STAR GRAPHS FOR THE TEN

parts of the unfolded spectrum thepoint correlation func- SYMMETRY CLASSES

tions forn=2 of a single spectrum are conjectured to coin-

cide with the corresponding correlation functions of the Quantum graphs have been introduced by Kottos and
Wigner-Dyson ensemble. The mean density of states of &milansky[10] as simple quantum systems with an exact
given quantum system is nonuniversal and cannot be desemiclassical trace formula for the density of states. They
scribed by random-matrix theory. Semiclassically it is givenconsist ofV vertices and connected IB/bonds. Each bonk

by Weyl's law. connects two vertices and has a lengthA particle propa-

A lot of evidence has since been gathered both numericajates freely on the bonds and is scattered at the vertices by
and analytical that this conjecture is true in generic chaotigrescribed boundary conditions which leads to quantization.
systems[5] (though a few exceptions are knowg4,23). In their first approach Kottos and Smilansky considered ver-
Many approaches have been used to understand and praefk boundary conditions that implied current conservation
the fidelity to random-matrix theory in complex quantum and continuity of the wave function. The continuity condi-
systems [26—29. Recently there has been considerabletion is not always essential and has often been relaxed. In
progress in the semiclassical approach using periodic orbthat case the boundary conditions at a vertex are specified by
theory[30]. any unitary scattering matrix that transforms incoming waves

Bohigaset al. stated their conjecture before the impact of to outgoing waves—unitarity of the vertex scattering matrix
spectral mirror symmetries on spectral statistics has been reis equivalent to current conservation.
ognized. A proper generalization of their statement has to We will not discuss general graphs but limit ourselves to a
take into account that a spectral average will wipe out allvery simple class of graphsstar graphs
effects of a spectral mirror symmetry. Thus the original con-
jecture is expected to hold for the novel symmetry classes as
well: after averaging over different parts of a single spectrum
they will show the universal spectral fluctuations of GUE, A star graph consists oB bonds b; of length L; (j
GOE, or GSE. =1, ... B) emanating from one central vertey. The bond

The additional universal features in physical systems nedp; connects the central vertex with tperipheralverticesy;
the spectral symmetry point can only be observed when aj=0, ... B, see Fig. 1

E. The generalization of the Bohigas-Giannoni-Schmit
conjecture

A. Quantization of star graphs
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We will allow for a multicomponent wave function on the  Since different bonds are not coupled at the peripheral
graph. The number of componerikis assumed to be equal vertices
on all bonds. It may represent different spin components or _
electron and hole components of a quasiparticle. The Spoajarj’ = 5“,0—2;, = @j,ag)aa,eiwg,)w', (53)
M-component wave function on the bobgis '

o I Lo whereg')) is theM X M scattering matrix at the vertex.
W(xD) = g € + pif) HH), (46) We will not allow any dependence of the scattering ma-

trices S¢c and Sp on the wave numbek. Uniqueness of the
wave function and the boundary conditio®9) and (52)
lead to the quantization condition

where 0= x¥) < L; is the distance from the central vertex and

L
M A o2 . o = SpLKScLK) by = Sa(K) i, (54)
in (ous where we introduced theond scattering matrixSg(k). Non-
¢i(rj]) 0w M trivial solutions of these equations exist only when the wave

number belongs to the discrete spectrigiak, given by the
are M-component vectors of constant coefficients for the in-zeros of thespectral determinant
coming(outgoing waves on bondb; (“incoming” and “out-
going” will always be used with respect to the central ver- de{Sg(ky) —1]=0. (55
tex).
It is convenient to combine all the coefficients of incom-
ing (outgoing waves into two vectors of dimensidviB

The density of states for the graph is defined as

1 0
AV d(k) = =2 sk—ky), (56)
in (out),1 On=0
(B')" whereg=2 in systems with Kramers’ degeneragyseg=1).
¢in (out),1
Pintouy = . (48 B. The trace formula
¢i(r})(out),M Let us now write the density of states as a sum of its mean
dwey @nd an oscillating paréd(k)
B
B (out A(K) = dhyey + 0(K). (57)
The boundary condition at the center can then be written inFor both contributions one can give an exact semiclassical
the form expression. The mean density of states is given by Weyl's
law
¢out: SCE(k) d’in- (49)
The diagonaMB X MB matrix ME L
. Owey = ———— (58)
Lo (K) = 81 8, € (50) Y gm

describes the propagation along the bonds. Hanel in the —and the oscillating part obeys the trace formfi@]
rest of this sectiona=1,2,... M indicates the component .
of the wave function ang=1,2,... B is the bond index. _,.4d 1 n
The central scattering matrixSc is a fixed unitaryMB ad(k) = Imdkgl g ntr Se(K)". (59
X MB matrix that defines the boundary conditions at the cen-
ter. For definiteness, we will assume that different compoqn the sequel we will consider star graphs where all bond
nents of the wave function do not mix at the center, thus  |engths are equal;=L. In that case the bond scattering ma-
@ @ trix is a periodic function ok
SC,a],a'j’ = 50’61’8(3,]]" = 601&’%“ ,eIWC,jj', (51)
_ T\ _ L2kl
where theBx B matrix S describes scattering of the Salk) _SB(k+ L) =€ S, (60)
component at the center.
The boundary conditions at the peripheral vertices may bevhere
described by one fixe X M vertex scattering matrices for
each peripheral vertex—these can be combined to a single EB:SB(k:o) = SpSc (61)

unitary MB X MB peripheral scattering matri€p such that
is thereduced bond scattering matriXhus, the spectrum is

bin = SpL(K) out- (52)  also periodic and the trace formula simplifies to
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MBL 2L <« . ~ > I
d(k) = - +g—TrReE g2kt 51 (62 d(K):1+ﬁReE g2mrgVMBg (65)
n=1 n=1

We have introduced the shorthand
The periodicity of the spectrum will not be relevant here as _
we are interested in features on the scale of a mean level S, =tr Sg, (66)
spacing.
For equal bond lengths the trace formula can be derived i
a few lines: Lete™i (j=1,... MB) be the eigenvalues of

the unitary reduced bond scattering matﬁg( The quantiza-

for the nth trace of the reduced bond scattering matrix.
The first-order form factor is obtained by a Fourier trans-
form and a subsequent time average. It obeys the trace for-

mula
tion condition(55) is equivalent tok=(¢;/2L) mod 7/L (j
=1,... MB) and the density of states is g o gn
Ki(n)=—=2, 8\ |- == |Kqn, 67
(=g (lrl MB) in (67)
d(k) = E > 8\ k- —L +n— ) where the bar denotes a time average over a small time in-
9j=1n=— 2L L terval A7=(gAn/MB)<1 and
_ 2
- = E e|2nkL2 g ind; (63) K, .= =(s.). 68
g,n_n__m 1n g<sn> ( )

The brackets(-) denote an average over an ensemble of

The mean density of stat@ly.,,=MBL/gm is just then=0  graphs. This can be written more compactly as
term in the sum oven while the rest gives the trace formula

. . . . An 1
for the oscillating parfthe second line follows from the first gn 2
by Poisson’s summation formula =;__, 8(x—n) Ki| 7= V115 MB Kin Kinsko (69)
_E ei27Tr'IX]
n=- :

The trace formulg59) can be interpreted as a sum over where the continuous time average has been replaced by an
periodic orbits p on the graph. A periodic orbitp  average over the discrete time=gn/MB.
=[(j1,@1),(j2, @), ... ,(jn,ay)] of length n is defined by a The second-order form factor for a graph also obeys a
sequence oh per|phera| vertices; Ui, ) visited one af- trace formula which, after a spectral average over the central

ter the other together with the speC|f|cat|on of the wave comWave number, is given by

ponentq; between two verticegcyclic permutations define n
the same orbjt A periodic orbit isprimitive if it is not the K2<r— ) =Kz, (70
repetition of a shorter periodic orbit. In terms of primitive MB
periodic orbitsp and its repetitions the trace formula reads \here
o0 — 2
2L . Kon= —<|Sn| ). (77)
== 3 X (A, (64) gMB
97p.po.pr=1 If no spectral average is performed additional terms appear.

These are irrelevant for the graphs in the Wigner-Dyson
where n,, is the length of the primitive periodic orbity,  classegthey do not survive the subsequent ensemble aver-
=1, a (JI+1) acfa', is the amplitude of the primitive orb|t age. Here, we will not consider the second-order form factor

Paj97Ci, Uy i i-
and W,=2n Lk+2| b, (w a|) W j|+1)) its phase(action. fpr graphs in the novel symmetry classes where the addi
Payyp0 tional terms are relevant near the central enefgy0.
Note, that we Seﬁn}fﬁl 1 and Qn +1= A1 ThoughK; , andK,, do not involve a time average we
The similarity of the sum over periodic orbit§4) to the il refer to them agdiscrete timg form factors.
semiclassical Gutzwiller trace formula is evident. However,

while semiclassics, in general, is an approximation the semi-
classical trace formula for quantum graphs is exact.

The trace formula will be our main tool in the analysis of  We will now construct ensembles of star graphs for each
universal spectral statistics. It will lead us to a simple expressymmetry class. The star graphs will be constructed in such a
sion for the form factors that can easily be averaged numeriway that spectral fluctuations of the corresponding ergodic
cally. In the second paper of this series the trace formula williniversality classes can be expected. Though we are not able
be in the center of an analytic approach to universality. to prove an equivalent conjecture we will give strong evi-

Since universality exists on the scale of the mean levetience.

C. Star graphs for all symmetry classes

spacing we will writek=xAk where Ak=g#/MBL is the The constructions of star graphs for each symmetry class
mean level spacing. In terms of the rescaled wave numbeare based on a proper choice of the central and peripheral
the trace formula is scattering matrices: and Sp. Both have to obey the right
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symmetry conditiongsee Sec. )l The Bohigas-Giannoni- 1 e

Schmit conjecture lets us expect that the graphs obey univer- SorTii = TEe' (72)

sal spectral statistics of Gaussian random-matrix theory if the '

corresponding classical dynamics is chaotic. or its complex conjugate for each component. An incoming

Before addressing the question what this means on @ave on a given bond is scattered with equal probability to
quantum graph let us mention a well-known counter ex-any bond which excludes localization effects. Indeed, the
ample: theNeumanrstar graphs in symmetry clagé which  matrix 7per . =|Sperl*=1/B has one eigenvalue 1 while all
do notbelong to the corresponding ergodic universality classotherB-1 eigenvalues vanish. The dynamics at the center of
defined by the Gaussian orthogonal ensen(®I®E). These the graph is thus maximally chaotic.
have a one-component wave functiévi =1) on the bonds, The bond scattering matrixSg(k) =ScL(K)SpL(K) for
Dirichlet boundary conditions at the peripheral vertices sucteach ensemble of graphs is constructed by demanding that
thatSp=-1, and Neumann boundary conditions at the centerthe matricesSc, Sp, and £(k) do all have the canonical
thus Sc4=(2/B)- 8. Such graphs have been investigatedforms of the desired symmetry class given in Sec. II. Note,
first in Ref.[10] and in more detail in Ref31]—in contrast ~ that for star graphs we are interested in kigpectrum, so in
to our approach the bond lengths were chosen different foi"® canonical forms for scattering matrices the endigyas
each bond (and incommensurate However, Neumann to be replaced byk. The ensemble of graphs is built by

boundary conditions at the center favor backscattering anH1tr0duCIng some random phases into the peripheral scatter-

lead to nonuniversalocalization effects[31]. Ing matrix.

Our approach is different in as much as eave to We will also present numerical _results for _the ten en-
. . embles of graphs. These are obtained by taking at random
allow for more general scattering matrices at the center an

. . . ond scattering matrices from each ensemble, explicitly cal-
in as much as we will always consider an ensemble o ) ~ . , X
; culating the traces,=tr S} and averaging the discrete time

— — 2
fects can be traced back to a gap condition on the matrifo™™ factorsky ,=(2/g)(s,) or Kon=(1/gMB)(|s,*) over at

T;=|Scij|>=|Sg;i|> This bistochastic matrix describes the Ieastdlg 000 rgg“@“ﬂ”? The graphs in Figi' 2-5 are ob-
corresponding  “classical” dynamics on the graph is  tained by an additional time average over a short time inter-

equivalent to a Frobenius-Perron operator on phase }spacé’al which are compared to the random matrix results. The
inserts in the graphs show the discrete time form factors

In contrast to classical Hamiltonian systems this is not a : ”» .
deterministic dynamics but a Markov process for a discrete’ ithout the additional ime average.
Yy p

probability distribution on the bonds. We cannot use
Lyapunov exponents to identify chaotic systems—instead
one has to use the decay of the probability distribution to Let us start with the simplest case: an ensemble of star
equilibrium which is related to the spectrum of the matrix graphs in clasAl where a one-component wave function
7;;. This has an equivalent in classical Hamiltonian systemssuffices to incorporate the time-reversal symmetry. This de-
in strongly chaotic(ergodig systems the Frobenius-Perron mands that the unitary matricék, Sp, and £ are all sym-
operator has a finite gap in the spectrum between thenetric. Now,Sp and £(k)=€¥"1 are diagonal foM=1, and
(unique eigenvalue one and all other eigenvalues inside thehoosing
unit circle which describe the decay of the probability distri-
bution. Al: SC = SDFT! (73)

In Neumann star graphs the spectral gap of the mafyix
is small and vanishes in the limB—« faster than 1B  we meet all requirements. At the peripheral vertices we are
which leads to nonergodic spectral statistics. It has been coriree to choose one random phaggfor each peripheral ver-
jectured[32] that graphs obey universal spectral statistics iftex j independently such that
the spectral gap in the limB — < vanishes slower than B/

1. Star graphs in the Wigner-Dyson classes

This can be used as a definition of chaos on a quantum Al: - Spyg= ek, (74)
graph—we will slightly generalize it later as some of our . ) o
graphs do not strictly obey this condition. where O< B <2 is uniformly distributed.

In general one needs a multicomponent wave function to  For classA we have to break time-reversal symmetry.
introduce the different symmetries. The number of compo-This may be done by choosing a nonsymmetric central scat-
nentsM has been chosen minimal under the additional astering matrix for a one-component wave function on the
sumptions that the components do not mix at the Cemrag_raph. As we like to keep the simplicity of_the discrete Fou-
vertex and that time reversal is only broken at the peripherali€" transform matrix we choose another simple construction
vertices. with a two-component wave function, a centr8’ 2B scat-

Though we explicitly choose the central and peripheralff€ing matrix
scattering matrices guided by simplicity and minimality,
most of the results are much more general. A _ (SDFT 0 ) 75)

The central scattering can be chosen in a very simple way -cc 0 Sper/’
by using the symmetri@ X B discrete Fourier transform
matrix [32] and
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(a)

7| eclass A (GUE)

K»(7)

class ATl (GSE)

T
1

15
p

FIG. 2. Second-order form factd€,(7) for star graphs in the
Wigner-Dyson ensembles averaged over 10 000 realizations of wit
B=100 bonds[additional time average over an interval of length
8(g/MB)] (8. Symmetry classA (GUE), (b) symmetry class
Al (GOBE), (c) symmetry clas®ll (GSE). Dashed lines: prediction
by Gaussian random-matrix theory. Full lines: numerically calcu-
lated form factor for graphs. Inserts: discrete time form faétgy,
as function ofr=n(g/MB) for the classA and Al graphs. For the
classAll graphsK,, vanishes for oddv—the insert shows, /2
for evenn.

1
A Sp= —~( (76)
V2

for the peripheral scattering matrix. The diagonal matrices

Dj are

Dl,kl — 5k|ei(ﬁk+7k)
Dz,kl - 5k|iei(ﬁk+5k)
D3y = &g A
Dy = €,

(77)

where the independent random phagks v, and & are

uniformly distributed. The scattering at the peripheral verti-
ces mixes the two components of the wave function
maximally—for this reason we may expect that the corre-
sponding “classical” dynamics is chaotic.
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—0.84

(b)

K(r) T2 [

—0.4—

—06-

—0.8

class CI

FIG. 3. First-order form factor for Andreev star graphs in the
symmetry classe€ (a) and Cl (b) averaged over 10 000 realiza-
tions withB=100 bondgadditional time average over an interval of
length 8(g/MB)]. Dashed lines: prediction by Gaussian random-
matrix theory. Full lines: numerically calculated form factor for
graphs. Inserts: discrete time form factgy ,/2 as function ofr
=n(g/MB) for evenn (K; ,—this vanishes by construction for odd

n).

For classAll a four-component wave function is needed
to incorporate time-reversal invariance wilff=-1 into our
scheme for star graphs. Indeed, the number of components
Pust be even as discussed above in Sec. Il C 1. In addition,
we assumed that components do only mix at the peripheral
vertices. Then, a X4 scattering matrix at the peripheral
vertices is the minimal matrix dimension that allows for

(8)

1.2
1 vy "WJ\VW’\]\V’\ class D
Ki(r) o084 /V Ww
0.6
T y
T T
05 1 15
T
(b)
2] class DITI

Ki(r) o

10

—2-

—0
-5
-10

—4-

15

FIG. 4. The first-order form factor for Andreev star graphs in the

classed (a) andDlIll (by—see Fig. 3 for details.
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versal spectral statistics for the time-averaged form factor—
this is due to the fact the reduced Markov process for the
probabilities to find the particle on a bomelgardlessof its
component is still chaotithas a maximal ggpWe will take

this as our generalized definition of chaos on a star graph, if
additionally the components of the wave function mix at the
peripheral vertices.

Ergodic spectral statistics may be expected for all three
star graph ensembles in the Wigner-Dyson classes. This is
strongly supported by a numerical calculation of the second-
order form factor(see Fig. 2. The numerically obtained
time-averaged form factoas well as the discrete time form
factors without the additional time averggere in almost
perfect agreement with the random-matrix predictions. Re-
placing theB X B matrix Spet in the central scattering matrix
by some fixed symmetric unitary matrix taken at random
from Dyson’s circular orthogonal ensemhkl€OE) one ex-
pects similar good agreement—this has been tested numeri-
cally.

2. Chiral and Andreev star graphs

Let us start with the Andreev star graphs for the classes
and CI where the wave function can be chosen in the sim-
plest case to have two components. The first will be called
“electron” and the second “hole.” The transfer mattk)
and the central scattering matrix defined by

FIG. 5. The first-order form factor for chiral star graphs in the
symmetry classedlll (a), BDI (b), and Cll (c)—see Fig. 3 for
detalils.

c | _(Soer O ) 61
component mixing as can be seen from the canonical form cj T\ 0 She
(16) of a All scattering matrix. The diagonal matrix(k) is a
diagonal unitary matrix of the canonical form. All further obey the symmetry conditiof27).
requirements are met by choosing The peripheral scattering matrix may be chosen such that
Sper O 0 0 completeAndreev scatteringelectron-hole conversigiiakes

s place
0 0 0
DFT ’ (78)

0 0 Sprr O C_S_l(O D) -
0 0 0 Sper c|m P 2\-p" o) &2

for the central 8 X 4B scattering matrix, and

Al Sc=

where the diagonal matri® is
0 D, 0 D

1|Ps 0 -D, 0O C: D=8y b 83
Al Sp=—| ° 2 . (79 K= 83
\2 0 _D4 0 D3
D, 0 D, 0 for classC, and
for the peripheral scattering matrix. The diagonal matrices Cl: Dy=38qiow (84)
D; are given by
Dy g = e Pt n for classCl. The random phaseg, are uniformly distributed
D o PR and o= =1 with equal probability.
Al 2K = “kI= (80) For the Andreev classeB and DIl and as well for the
D3,k|:5k,e'(5k‘7k) three chiral classedlll, BDI, and Cll a four-component
Dy = 546 PH wave function is needed. We will call the firgiast) two
’ ' components electro¢hole).
where the independent random phaggs v, and & are The symmetry requiremen{&8), (29), and(20)—«22) are

uniformly distributed. Though the corresponding classicalmet by the transfer matrix(k) and the central scattering
dynamics for this ensemble has no gap we may expect unmatrix defined by
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\

D Sper O 0 0 D1 = oo
DIl | 0 Soer 0 0 Doy = Sy
Alll ¢: Sec= « . (85 = i Bk
“lo o s oo [ ® cli; KT e (92)
BDI S
0 0 0o S 4k =~ S0
cl o Ds g = — Pk
J 5kl Kkl
In all five remaining classes we choose the peripheral scat- Dgy =~ Se P,

tering matrix such that complete Andreev scattering takes
place. ForD andDlll the simplest choice obeying the sym-
metry requirements are

We have checked numerically that the first-order form
factor for the constructed Andreev and chiral star graphs
obeys the corresponding prediction by Gaussian random-

0 0 D, D, matrix theory(see Figs. 3-b The time-averaged form fac-
. tors are in quite well agreement with the random-matrix pre-
D [ _11 0 0 -D, Dy 86 dictions. We have checked that this numerical result does not
DIt P2 D, D, 0 0| (86) depend on the simple choice of the central scattering matrix.

As in the Wigner-Dyson case replacing tiBex< B matrix
Spet in the central scattering matrices by a fixed symmetric
scattering matrix drawn from Dyson’s COE generically gives
a similar well agreement. Note, that it has been sh83j

_Dz Dl O O

where the diagonal matrice3; are

Dy =8, e that a fixed matrix in the circular ensembles generically sat-
D: b W i (87 isfies the gap condition for the spectrum of the corresponding
Doy =64 €7, bistochastiq classical matrix.

The discrete time form factors in the inserts have not been
time averaged and the graphs show large systematic devia-
D s abc tions from the random-matrix prediction. Apart from small
DIIl- 1k =0 (89) fluctuations they seem to follow two different lines—one
Doy =64 ioy, containing all values for discrete times that are twice an odd
integern=2(2s—-1)—the other containing the values for dis-
for classDIIl. The random phasegy and y are uniformly  crete times1=4s which are twice an even numbgor oddn

for classD, and

distributed andr,=+1 with equal probability. the form factor vanishes trivially These lines can be ex-
The simplest choice for peripheral scattering matrices irplained partially by the analytic periodic orbit approach pre-
the chiral classes is sented in the second paper of this settbe explicit discus-
sion is in the Appendiq11]). The fact that the ensemble
Alll 0 0 D D average is not sufficient to find the random-matrix form fac-
11 0 0 D3 -D tors is related to our generalization of chaoticity. It is not
BDI (: Sp=—F¢ _— . (89 difficult to construct ensembles that are strictly chaotic in the
cli V2| Py D5 00 sense that the fulMB X MB matrix T;;=|Sg;;|* has a gap in
D¢ -Ds O 0 its spectrum. Indeed one may expect such a gap as soon as

one replaces the complete Andreev reflection at the periph-
The diagonal matrice®; have to be chosen according to the eral vertices by a partial Andreev reflection. This has been
requirements of each symmetry class. For cli$isthey are  tested numerically with the expected result that no time av-
erage is needed to get quite well agreement with random-

Dy = daox matrix theory.
Dy = S
Al Dyyq = Se Pk (90 ACKNOWLEDGMENTS
" D= S We are indebted to Felix von Oppen and Martin Zirnbauer
Dsy = 5q€ M for many helpful suggestions, comments, and discussions.

We are thankful for the support of the Sonderfor-
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Do = Sa€ ',

where 7, 0 =1 with equal probability and the phasgg
and v, are uniformly distributed. Th8DI star graphs can be
obtained from theAlll case by the additional restrictions APPENDIX: THE PROPERTIES OF TIME-REVERSAL
AND SPECTRAL MIRROR SYMMETRIES
BDIl: 7= oy and Y=~ Bk- (91)

In this appendix we show some properties of time-
Finally, for classCll the peripheral scattering matrix is de- reversal and spectral mirror symmetries used in the classifi-
fined by cation of the ten symmetry classes.
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In Sec. Il A we stated that the time-reversal symmetryspectral symmetry operatd?’ =e”(“2P such thatP’?=1
operator obeys7?=+1 and in Sec. || B we proposed? and P’ still anticommutes with the Hamiltonian. If the sys-
=+] for an antiunitary spectral mirror symmetry. Fir§€  tem is time-reversal invariarf®?= +1 follows from [P2,7]
(7?) is a unitary symmetry operator that commutes with the- g which we show below. One h4®?, 7]=0=(d*-e9)T
Hamiltonian. Since we assumed that the Hilbert space i§ ga—,4q

completely reduced with respect to unitary symmetdés For ti i iant svst ith tral mi
=&, Multiplying this with C* (which is antiunitary as ortime-reversal invariant systems with a spectral mirror

well) from left and from right leads t@=gec 1=l symmetry we proposed that one may always redefine the
=eieC1 Thuseé®=e® or d%=+1 (the same argument ap- _three operator€§, P, and7 such that thgy c?ammute. I_nqleed,
plies to time-reversal symmetries if C and7 do not commute one hd§7)?=e”“1. Redefining

In systems with broken time-reversal invariance and &—C'=€"“C one gets(C'7)*=C7C7e =1 (note thatC?
unitary spectral mirror symmetry we proposed that one mayC’?). The last equation is equivalent t67C’'=C'T where
always choosé@?=1 while P2=+1 in time-reversal invariant o=72C'?=+1. If =1 the two operators commute—if
systems. Lef® be some unitary spectral mirror symmetry in =-1 we redefineC’+—C"=iC" which commutes withZ. In
a system with broken time-reversal invariance. In a com-conclusion we may assume titaand7 commute. Choosing
pletely reduced Hilbert space with respect to unitary com-P=CT all three symmetry operators can be chosen such that
muting symmetriesP?=€“l. We may now define a new they commute.
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