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I. INTRODUCTION

Based on earlier ideas of Wigner[1] Dyson introduced a
threefold classification of quantum systems according to
their behavior under time reversal, and spin and rotational
invariance[2]. This symmetry classification turned out to be
very useful, for instance in semiclassical, disordered, and
random-matrix approaches to complex quantum systems.
The success of random-matrix theory is based on universal
features in spectra of complex quantum systems. While not
capable of predicting single eigenvalues random-matrix
theory has become one of the key ingredients in predicting
physical features that depend on nontrivial spectral statistics
[3,4]. In each symmetry class various universality classes
have been identified—each described by some ensemble of
random matrices. Most prominent are the Gaussian unitary
GUE, Gaussian orthogonal(GOE), and Gaussian symplectic
(GSE) ensembles. They define theergodic universality
classesand they have been applied successfully to a wide
range of quantum systems(see the recent review[5] for an
overview and further references).

Recently the threefold classification has been extended to
a tenfold classification. The common feature of the seven
novel symmetry classes is a spectral mirror symmetry[6–8]:
the spectrum is symmetric with respect to one pointE0—if
E0+E is in the spectrum so isE0−E. They are partly realized
in quantum chromodynamics for a Dirac particle in a random
gauge field, and for quasiparticles in disordered supercon-
ductors or normalconducting–superconducting hybrid sys-
tems. The invention of the novel classes has become neces-
sary due to the impact such a symmetry has on spectral
correlations. These new universal features appear near the
symmetry pointE0 and they can be described by defining
random-matrix ensembles which incorporate the correspond-
ing spectral mirror symmetry.

It has been conjectured by Bohigas, Giannoni, and Schmit
that the spectra of classically chaotic systems display the

spectral fluctuations described by the three Gaussian Wigner-
Dyson ensembles of random-matrix theory[9]. Though the
fidelity to the universal predictions of random-matrix theory
have an overwhelming support by both experimental and nu-
merical data the physical basis of universality is not com-
pletely understood.

Quantum graphs have been introduced by Kottos and
Smilansky [10] as simple quantum models with an exact
semiclassical trace formula for the density of states which is
expressed as a sum over periodic orbits on the graph. They
have since become an important tool in the semiclassical
approach to universality. In this series of papers we will con-
struct star graphs for all ten symmetry classes and investigate
their spectral statistics both numerically and analytically.
While the following paper[11] is devoted to a semiclassical
periodic-orbit approach this paper focusses on the construc-
tion of appropriate star graphs and some numerical results.

We start with giving a short introduction to the ten sym-
metry classes in Sec. II with all details needed for the sub-
sequent construction of star graphs. In the following Sec. III
on spectral statistics we introduce the spectral form factors,
review the results of Gaussian random-matrix theory for the
ten symmetry classes and generalize the Bohigas-Giannoni-
Schmit conjecture. After a general introduction to quantum
graphs in Sec. IV we construct one ensemble of star graphs
for each of the ten symmetry classes[12,13]. Numerical re-
sults then show the fidelity of these ensembles to the predic-
tions of the Gaussian random-matrix ensembles.

II. THE TEN SYMMETRY CLASSES OF QUANTUM
SYSTEMS

In quantum mechanics most symmetries are described by
some unitary operatorsU that commute with the Hamilton
operatorH=UHU†. Thus the operatorsU (or its Hermitian
generators) describe constants of motion and they lead to a
block diagonal form of the Hamilton matrix in an eigenbasis
of U. If enough constants of motionUi are available such that
the corresponding Hermitian generators form a complete set
of commutingobservables the Hamilton operator is eventu-
ally diagonalized in the common eigenbasis of the symmetry
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operators(or their generators). However, for any Hermitian
Hamilton operatorH there is always a complete set of com-
muting Hermitian operatorsPi which also commute with the
Hamilton operator(e.g., projectors on eigenstates). In some
sense the notion of symmetry in this wide sense is obsolete
for a single quantum system. However, in most cases such a
set of commuting operators explicitly depends on the Hamil-
tonian(practically, one has to diagonalize the Hamiltonian to
obtain them). Also, they will usually not have any corre-
sponding classical observable and will only apply to a single
system. Any discussion of the impact of symmetries on spec-
tral properties implies that the symmetry operators do not
depend on the Hamiltonian. We will use the term symmetry
only in this restricted sense. If a Hermitian operator corre-
sponds to a classical observable and commutes with the
Hamiltonian this is sufficient for a symmetry.

If a system has a unitary symmetry the Hamilton operator
can be brought to a block diagonal form. Each block can be
regarded as a new Hamilton operator on a reduced Hilbert
space. Let us assume that the Hilbert space is completely
reduced such that there are no more unitary symmetries.
What types of symmetry may such a reduced quantum sys-
tem still have? What are the possible structures of the Hamil-
ton operator(or the Hamilton matrix) and what are the con-
sequences on its spectrum and its eigenvectors? Such
questions were for the first time addressed and partially an-
swered by Wigner and Dyson[1,2]. Dyson proposed a sym-
metry classification based on the behavior of quantum sys-
tems under time-reversal and spin and rotational invariance.
This leads to three symmetry classes(the threefold way): (i)
systems that are not time-reversal invariant,(ii ) time-reversal
invariant particles with either integer spin or additional rota-
tional invariance, and(iii ) time-reversal invariant particles
with half integer spin and broken rotational invariance.

Time-reversal symmetry has immediate consequences on
the form of the Hamilton operator: spin-less particles can be
described by real symmetric Hamilton matrices in a time-
reversal invariant basis, while systems without time-reversal
invariance do not have any canonical basis and the Hamilton
matrix remains complex. The influence of the symmetry
class on spectral properties such as level repulsion has been
investigated extensively within the field of random-matrix
theory [3–5]. We will give more details on random matrix-
theory in Sec. III.

Recently the Wigner-Dyson symmetry classification has
been extended to a tenfold way by including all different
types of symmetries that lead to a symmetric spectrum[6–8].
In the presence of such a spectral mirror symmetry every
eigenvalueE0+E has a partner eigenvalue atE0−E (we will
setE0=0 in the sequel without loss of generality). Below we
will describe the various ways a mirror symmetry may arise
and be combined with time-reversal invariance. This leads to
the seven novel symmetry classes. As shown by Zirnbauer
[8] there is a one-to-one correspondence between Cartan’s
tenfold classification of Riemannian symmetric spaces and
the ten symmetry classes of quantum systems. We will use
the convention to adopt the names given by Cartan to the
different classes of symmetric spaces for the according sym-
metry classes.

The novel symmetry classes are partly realized in quan-
tum chromodynamics for Dirac fermions in a random poten-

tial (the chiral classes) [6] and partly for quasiparticles in
mesoscopic superconductors or superconducting–normal-
conducting(SN) hybrid systems(the Andreev classes). It is
possible to construct much more general systems in the ap-
propriate symmetry classes, e.g., two coupled spins or a gen-
eralized version of the Pauli equation(which includes the
Bogoliubov-de-Gennes equation as a special case) and quan-
tum graphs. Quantum maps which incorporate the corre-
sponding symmetries have been discussed recently[14]. Due
to their simplicity graphs will be the focus of this work. The
following discussion of symmetry classes is summarized in
Table I.

A. Time-reversal invariance

Quantum systems obey generalized time-reversal symme-
try if there is an antiunitary operatorT—the generalized
time-reversal operator—that commutes with the Hamilton
operator

fH,Tg = 0. s1d

Such an operator obeys

T 2 = ± 1. s2d

This is shown in the Appendix. Antiunitarity implies(i) an-
tilinearity Tsaujl+bunld=a* uTjl+b* uTnl and (ii ) kTj uTnl
=kj unl* .

For time-reversal invariant systemsT changes the direc-
tion of time when applied to the Schrödinger equation.
Equivalently, whenT is applied to the retarded Green’s op-
erator

G+sEd =
1

E + ie − H , s3d

one gets

TABLE I. The ten symmetry classes of quantum systems. If a
symmetry class obeys time-reversal symmetry or a spectral mirror
symmetry the entry ±1 in the corresponding column indicates if the
symmetry operator squares to ±1. The entry 0 indicates that the
corresponding symmetry is broken. The last column gives the cor-
responding Riemannian symmetric space(of compact type).

Symmetry class T P C Symmetric space

A 0 0 0 UsNd
AI +1 0 0 UsNd /OsNd
AII −1 0 0 Us2Nd /SpsNd
AIII 0 +1 0 Usp+qd /Uspd3Usqd
BDI +1 +1 +1 SOsp+qd /SOspd3SOsqd
CII −1 +1 −1 Spsp+qd /Spspd3Spsqd
C 0 0 −1 SpsNd
CI +1 −1 −1 SpsNd /UsNd
BDsDd 0 0 +1 SOsNd
DIII −1 −1 +1 SOs2Nd /UsNd
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TG+sEdT −1 =
1

E − ie − H = G+sEd† ; G−sEd, s4d

which is just the advanced Green’s operator.
Time-reversal symmetry also effects other dynamic

operators—such as the unitary time evolution operator

Ustd = eiHt/". s5d

Scattering problems can often be described by some unitary
operatorSsEd that connects incoming and outgoing states of
energyE. Time-reversal invariance leads to

TUstdT −1 = Us− td = Ustd†,

TSsEdT −1 = SsEd†. s6d

These equations also define time-reversal symmetry for
quantum maps. The transformation of the time development
operator follows immediately from the condition(1) on the
Hamiltonian. In scattering problemsSsEd can be related to a
unitary combination of Green’s functions — for definiteness
considerSsEd=G+sEdG−sEd−1=1−2eiG+sEd and Eq.(6) fol-
lows from the transformation(4) of G+sEd.

We have used the termgeneralizedtime-reversal operator
becauseT need not be the well-known conventional time-
reversal operator. For a particle inR3 the antiunitary conven-
tional time-reversal operator obeys

TconvpWT conv
−1 = − pW . ,

TconvxWT conv
−1 = xW

TconvsWT conv
−1 = − sW, s7d

wheresW is the particle spin. This conventional time-reversal
operator obeysT conv

2 =1 if the spin quantum number is inte-
ger s=0,1,2, . . ., andT conv

2 =−1 if the spin is half integers
= 1

2 , 3
2 , . . .. Thus the most relevant and simplest realizations

are for spin-lesssT conv
2 =1d and spin-12sT̂ 2

conv=−1d particles.
When a given quantum system is studied one should be

aware that a generalized time-reversal operator may still ex-
ist which commutes with the Hamiltonian while the conven-
tional time-reversal operator may not commute withH.

The consideration of time-reversal symmetries leads to
three symmetry classes: either a system is not time-reversal
invariant or it is time-reversal invariant—in the latter case
the time-reversal operator either obeysT 2=1 or T 2=−1.
These classes have been calledWigner-Dyson classesand
their impact on the form of Hamilton matrices and universal
spectral features will be discussed further in Secs. II C 1 and
III. Additional spectral mirror symmetries lead to the novel
symmetry classes to be discussed below.

Kramers’ degeneracy occurs in time-reversal invariant
quantum systems withT 2=−1. If uxl is an eigenvector with
eigenvalueE, then due to time-reversal invarianceuTxl
;Tuxl is an eigenvector with the same eigenvalueE. It is
straightforward to show thatuTxl is orthogonal touxl using

the properties of the time-reversal symmetry operator. This
degeneracy is well known for spin-1

2 particles with conven-
tional time-reversal symmetry.

B. Spectral mirror symmetries

The spectrum of a system is symmetric if for every eigen-
value E.0 there is another eigenvalue −E,0. In general,
there may be some vanishing eigenvaluesE=0. If a symme-
try operator leads to a symmetric spectrum we will call this a
spectral mirror symmetry. In this section we discuss the dif-
ferent types spectral mirror symmetries which finally leads to
classification of seven novel symmetry classes.

According to a theorem by Wigner any symmetry opera-
tion on Hilbert space is either represented by a unitary op-
eratorP or an antiunitary operatorC. Now take any eigen-
stateunl such thatHunl=Eunl—it is obvious thatP or C lead
to a symmetric spectrum if eitherHPunl=−EPunl or
HCunl=−ECunl. This condition on any eigenstate leads even-
tually to the condition that the Hamilton operator anticom-
mutes with either a unitary or an antiunitary symmetry op-
erator

fP,Hg+ = 0 or fC,Hg+ = 0. s8d

Note, that this is a condition on the Hamiltonian—it will
have effect on both the spectrum and the eigenfunctions.

Spectral mirror symmetries may coexist with time-
reversal invariance. IfP is a unitary spectral mirror symme-
try in a time-reversal invariant system there also exists an
antiunitary spectral symmetry operatorC;PT that anticom-
mutes with the Hamiltonian. Similarly, a system with both
types of spectral mirror symmetries is also time-reversal in-
variant with respect toT;PC. One may assume that these
operators commute. This is shown in the Appendix where we
also show that generally

P2 = ± 1 and C2 = ± 1 s9d

while in systems with broken time-reversal invariance one
may always chooseP such thatP2=1.

Spectral mirror symmetries relate Green’s operators at en-
ergy E and −E

PG+sEdP−1 = − G−s− Ed,

CG+sEdC−1 = − G+s− Ed. s10d

For scattering problems this leads to

PSsEdP−1 = Ss− Ed†,

CSsEdC−1 = Ss− Ed, s11d

and for the time development operator to

PUstdP−1 = Us− td = Ustd†, s12d

CUstdC−1 = Ustd.

The seven novel symmetry classes are obtained by all
possible combinations of a spectral mirror symmetry with
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time-reversal symmetry(with the additional requirement that
fP ,T g=0 or fC ,T g=0 if both symmetries are supposed to
hold). First, there are three novel symmetry classes that are
not time-reversal invariant: either there is a unitary operator
with P2=1 or an antiunitary withC2= ±1. In the time-
reversal invariant systems one always has both unitary and
antiunitary spectral mirror symmetry operators: if there is a
unitary operatorP that anticommutes with the Hamilton op-
erator we may define the antiunitary operatorC=PT which
also anticommutes with the Hamiltonian. Similarly, if one
finds both a unitary and an antiunitary spectral mirror sym-
metry and they commute with each other their product de-
fines a time-reversal symmetry operator that commutes with
the Hamiltonian. It follows that the system is also time-
reversal invariant. For the classification of time-reversal in-
variant symmetry classes with a spectral mirror symmetry it
suffices to considerT and C. As T 2= ±1 and C2= ±1 this
leads to four symmetry classes that combine time-reversal
symmetry with spectral mirror symmetry: ifT 2=1 either
C2=1 sP2=1d or C2=−1 sP2=−1d, if T 2=−1 either C2=
−1 sP2=1d or C2=1 sP2=−1d.

For historical reasons these seven classes have been split
into two groups, the first group is given by the threechiral
classes—the ones that have a unitary mirror symmetry with
P2=1. Their importance has first been observed in investiga-
tions of Dirac fermions in quantum chromodynamics where
the spectral symmetry is related to chirality. For this reason
we will call P a chiral symmetry operatorthough in general
P need not be related to chirality. The four remaining classes
have mainly been discussed in connection to mesoscopic dis-
ordered superconductors or superconducting–normal con-
ducting hybrid systems where the antiunitary mirror symme-
try is connected to electron-hole conjugation. For this reason
we call C a charge conjugation symmetry operator, though
again, in generalC need not be related to charge conjugation
at all. Since Andreev reflection is a main ingredient in the
dynamics of superconducting–normal conducting hybrid sys-
tems we will call these classesAndreev classes. The detailed
discussion of these symmetry classes and their impact on
universal spectral features will be discussed in Sec. II C 2,
II C 3, and III.

C. Explicit form of scattering matrices for each symmetry
class

Time-reversal and spectral mirror symmetries restrict the
form of Hamilton and unitary scattering matrices due to the
relations(1), (6), (8), and (11). By choosing an appropriate
Hilbert space basis for each symmetry class the symmetry
operators are represented by a simple matrix(combined with
the complex conjugation operator for antiunitary operators).
These determine the explicit form of scattering matrices for
each symmetry class.

Note, that the following derivation of the scattering ma-
trices depends on the choice of the basis. There are many
choices for the Hilbert space basis in which the symmetry
operators have a simple form. As a consequence many of the
following identities are only valid in that special basis. Es-
pecially the “complex conjugation operator”K is defined

with respect to a given basis. However, one may show that
the bases chosen here can always be constructed from the
general properties of the time-reversal and spectral mirror
symmetries. Our choice of basis is biased by their later ap-
plication to star graphs in Sec. IV.

In addition, some symmetry classes have a further divi-
sion into subclasses. Though we will mention all subclasses
we will only give the scattering matrix in one of the sub-
classes. In the following it will always be assumed that the
scattering matrices are unitary which is an additional restric-
tion to the forms of these matrices for each symmetry class
given below.

1. The Wigner-Dyson classes

Quantum systems without spectral mirror symmetries be-
long to one of the three Wigner-Dyson classesA, AI, or AII.

Class A contains quantum systems that are not time-
reversal invariant. There is no preferred basis in Hilbert
space and the scattering matrixSsEd may be any unitaryN
3N matrix.

A time-reversal invariant system belongs either to classAI
if T 2=1 or to classAII if T 2=−1.

In classAI there are time-reversal invariant bases such
that Tuil= uil for any basis state. In any such basis the time-
reversal symmetry operator is represented by the complex
conjugation operator

AI: T ; K, s13d

where the complex conjugation operator acts on a general
state by complex conjugation of the coefficientsT oi=1

N aiuil
;Koi=1

N aiuil=oi=1
N ai

* uil.
The condition(6) implies that a scattering matrix is rep-

resented by a unitary symmetricN3N matrix

AI: SsEd = SsEdT. s14d

For classAII there is no time-reversal invariant basis. In-
stead, there are always bases in which the time-reversal sym-
metry operator is be represented by

AII: T ; KS0 − 1

1 0
D , s15d

where1 is theN3N identity matrix. Hilbert space has even
dimension due to Kramers’ degeneracy. In such a basis the
scattering matrix has the form

AII: SsEd = SX1sEd X2sEd

X3sEd X1sEdTD , s16d

with complex N3N matrices xi that satisfy X2sEd
=−X2sEdT andX3sEd=−X3sEdT.

2. The chiral classes

A system with a spectral mirror symmetry connected to a
unitary chiral symmetry operatorP (with P2=1) falls into
one of the three chiral symmetry classesAIII, BDI, or CII.

SinceP2=1 its eigenvalues are either +1 or −1. In gen-
eral, there will bep positive andq negative eigenvalues. The
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topological quantum numbern= up−qu=0,1,2, . . . distin-
guishes between different subclasses in each of the chiral
classes(n is always even for classCII ). The integern has
impact on both the form of Hamilton(or scattering) matrices
and on the spectral statistics. BecauseP relates states with
positive energy to states with negative energy there aren
vanishing energy eigenvalues due to the chiral symmetry.

We will focus on the subclasses withn=0 and setp=q
;N in classesAIII and BDI, p=q=2N in classCII. Hilbert
space has even dimension in all three classes. There are
many bases that can be used as reference basis, for example
the one, whereP is diagonal. Here, biased by our following
construction of star graphs we choose

AIII, BDI,CII: P = S0 1

1 0
D , s17d

which can be obtained from the diagonal representation by a
simple rotation.

The chiral classAIII contains systems without additional
time-reversal invariance. The other two chiral symmetry
classes are time-reversal invariant withT 2=1 for classBDI
and T 2=−1 for class CII. In class BDI one may always
choose a time-reversal symmetry operator of the form

BDI: T ; K, s18d

which commutes with the chiral symmetry operatorP (17).
In classCII one may choose

CII: T = K1
0 − 1 0 0

1 0 0 0

0 0 0 − 1

0 0 1 0
2 , s19d

which also commutesP.
Due to the condition(11) a scattering matrixSsEd in class

AIII has the form

AIII: SsEd = SX1sEd X2sEd

X3sEd X1s− Ed†D , s20d

where (besides unitarity) the N3N matricesxi are further
restricted byX2sEd=X2s−Ed† andX3sEd=X3s−Ed†.

In classBDI, due to time-reversal invariance(6), SsEd is
symmetric, thus

BDI: SsEd = S X1sEd X2sEd

X2sEdT X1s− Ed* D , s21d

whereX1sEd=X1sEdT andX2sEd=X2s−Ed†.
Finally, in classCII, SsEd is a 4N34N matrix of the form

CII: SsEd

=1
X1sEd X2sEd X3sEd X4sEd

X5sEd X1sEdT X4s− Ed† X6sEd

X6sEdT − X4sEdT X1s− Ed† X5s− Ed†

− X4s− Ed* X3sEdT X2s− Ed† X1s− Ed*
2 ,

s22d

with additional constraints X2sEd=−X2sEdT, X3sEd
=X3s−Ed†, X5sEd=−X5sEdT, andX6sEd=X6s−Ed†.

3. The Andreev classes

A quantum system with a spectral mirror symmetry that
does not belong to any of the chiral symmetry classes be-
longs to one of the four Andreev classesC, CI, BD, or DIII.
The spectral mirror symmetry for these classes is related to
an antiunitary charge conjugation operatorC with C2=−1 for
C andCI while C2=1 for BD andDIII. The classesC andBD
are not time-reversal invariant whileCI and DIII are time-
reversal invariant withT 2=1 in CI and T 2=−1 in DIII.

The classesC andCI do not split into subclasses. In ap-
propriate 2N-dimensional bases the charge conjugation op-
erator can be represented as

C,CI: C = KS0 − 1

1 0
D . s23d

In contrast the classesBD andDIII fall into two subclasses
each. The symmetry classBD allows for either an even- or
odd-dimensional Hilbert space. Due to spectral mirror sym-
metry there is always an eigenvalue on the symmetry point
E=0 in an odd-dimensional Hilbert space. The subclass with
odd- (even-) dimensional Hilbert space may be calledBD
odd(even). In the following we will restrict ourselves to the
even-dimensional case and will follow the convention to call
it symmetry classD. Similarly DIII falls into the two sub-
classesDIII odd andDIII even. The dimension of the corre-
sponding Hilbert spaces is twice an odd or twice an even
number. Spectral mirror symmetry combined with Kramers’
degeneracy implies two eigenvaluesE=0 on the spectral
symmetry point in classDIII odd. In the sequel we will re-
strict to DIII even which is physically more relevant.

An appropriate choice of basis in the Hilbert space takes
the charge conjugation operator of the symmetry classesD
andDIII (we will not mention the “even” further) to the form

D,DIII: C = KS0 1

1 0
D , s24d

where 1 is the N3N identity matrix for classD and the
2N32N identity for classDIII.

The time-reversal symmetry operators in the classesCI
andDIII have the representations

CI: T = K, s25d

and
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DIII: T = K1
0 − 1 0 0

1 0 0 0

0 0 0 − 1

0 0 1 0
2 , s26d

in an appropriate basis—here1 is theN3N identity matrix.
These representations commute with the corresponding rep-
resentations of the charge conjugation operators.

The conditions(6) and (11) lead to scattering matrices
SsEd of the form

C,CI: SsEd = S X1sEd X2sEd

− X2s− Ed* X1s− Ed* D , s27d

in classesC andCI. There are no further restrictions on the
complexN3N matricesXi for classC (apart from unitarity).
Time-reversal invariance in classCI requires SsEd to be
symmetric, thusX1sEd=X1sEdT andX2sEd=−X2s−Ed†.

In the symmetry classD the scattering matrix has the
form

D: SsEd = S X1sEd X2sEd

X2s− Ed* X1s− Ed* D , s28d

without further restrictions on theN3N matricesXi.
For classDIII SsEd is a complex 4N34N matrix of the

form

DIII:

SsEd =1
X1sEd X2sEd X3sEd X4sEd

X5sEd X1sEdT X6sEd X3s− Ed†

X3s− Ed* X4s− Ed* X1s− Ed* X2s− Ed*

X6s− Ed* X3s− EdT X5s− Ed* X1s− Ed†
2 , s29d

with X2sEd=−X2sEdT, X4sEd=−X4s−Ed†, X5sEd=−X5sEdT,
andX7sEd=−X7s−Ed†.

III. UNIVERSAL SPECTRAL STATISTICS

In the previous chapter we have summarized the symme-
try classification of quantum systems. It is completely gen-
eral. We have not yet related it to universal spectral proper-
ties. This will be done in this section. In each symmetry class
there are several universal regimes with respect to their spec-
tral statistics. A universality class is a subset of a symmetry
class which share the same spectral statistics(or at least
some universal spectral correlation functions). The spectral
statistics of a given universality class can be described(and
defined) by some ensemble of random matrices(usually
there will be a lot of different ensembles that share the same
universal spectral statistics). In this paper we will focus on
the ergodic universality classes that can be described by
Gaussian ensembles of Hermitian matrices in each of the ten
symmetry classes. Note, that three chiral symmetry classes
and the symmetry classesBD and DIII fall into various
subclasses—as the universal spectral statistics is different in
each of these subclasses they define different ergodic univer-

sality classes in the same symmetry class[34]. As in the
preceding section we will only discuss one subclass in each
of these cases. In the symmetry classesA, AI, AII, C, andCI
there isone unique ergodic universality class. In the chiral
classesAIII, BDI, and CII we restrict to up−qu=0 (see Sec.
II C 2). Finally, the classesBD andDIII have two subclasses
(see Sec. II C 3) and we will restrict ourselves to the sub-
classesD (BD even) andDIII even.

Let us mention that apart from the ergodic universality
classes there are a lot of other physically relevant universal-
ity classes within each symmetry class. In random-matrix
theory these correspond to ensembles which are not equiva-
lent to the Gaussian ensembles. For instance ensembles of
banded or sparse Hermitian matrices can describe quantum
systems in a localized regime[15].

In Andreev systems more specialized random-matrix en-
sembles can describe the so-called hard gap in the quasipar-
ticle excitation spectrum that appears when a small part of
the boundary of a normal conducting chaotic billiard is
coupled to a superconductor[16]. If no magnetic field is
applied the resulting combined electron-hole dynamics near
the Fermi level is no longer chaotic and the system does not
belong to an ergodic universality class.

A. The fluctuating part of the density of states

To reveal universality in the statistics of quantum spectra
the system dependent mean density of states has to be sepa-
rated. This is done by writing the density of states as a sum

dsEd = o
i

dsE − Eid = dWeylsEd + ddsEd. s30d

In presence of Kramers’ degeneracy(symmetry classesAII,
CII, and DIII ) we define the density of states such that every
doubly degenerate energy is counted only once in the sum
dsEd=oidsE−Eid. Let us also introduce a degeneracy factor
g, where g=2 for systems with Kramers’ degeneracy and
elseg=1.

In Eq. (30) the first partdWeylsEd is the average density of
states which may be obtained by counting all statesEi in an
interval E−EI /2,Ei ,E+EI /2. Then the numberNI of
states in that interval divided byEI is the average density of
states

dWeylsEd =
NI

EI
. s31d

For this to be well defined it is necessary to chooseEI self-
consistently in range such that(i) NI @1 which is equivalent
to taking the energy interval much larger than the mean spac-
ing EI @DE=1/dWeyl, and (ii ) EI is small compared to the
scale on which the resultingdWeyl changes.

In systems that allow for a classical limit one may con-
sider the semiclassical regime. The scaleEI is then chosen
classically small(EI →0 as"→0) but large compared to the
mean level spacing. Thus the average density of states is well
defined in the semiclassical regime. It is given by Weyl’s law
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dWeylsEd =E dfpdfq

s2gp"d f d fE − Hclasssp,qdg s32d

whereHclasssp ,qd is the classical Hamilton function andf the
number of freedoms. This equation shows that the average
density of states defined by Weyl’s law is system dependent
and universal features can only arise due to the fluctuating
part ddsEd. Note, that Weyl’s law gives the mean density of
states on scales much larger than the mean level spacing. In
the presence of mirror symmetries the fluctuating partddsEd
may contribute touniversalfeatures in the density of states
on the scale of the mean level spacing.

For classically chaotic(hyperbolic) systems the fluctuat-
ing part of the density of states is given by Gutzwiller’s trace
formula [17] as a sum over periodic orbits of the classical
system

ddsEd = o
p.o.a

ta

g"p
Aacos

Wa

"
. s33d

Here,ta is the primitive period of the orbit(the time needed
for a single traversal), Aa=se−imasp/2d /Îudet Ma

red−1ud is the
stability amplitude of the periodic orbit(Ma

red is the reduced
monodromy matrixand ma the Maslov index) and Wa

=rapdq is the (reduced) action. Note, that hyperbolic chaos
is a strong condition on a classical system —all periodic
orbits are hyperbolically unstable and isolated in the energy
shell.

The energy scale for universal features is given by the
mean level spacingDE=1/dWeyl. Introducing rescaled ener-
giesE=eDE one obtains a density of states

dsed = 1 +ddsed s34d

for the unfoldedspectrum.

B. Gaussian ensembles of random-matrix theory

Each ergodic universality class can be associated to a
Gaussian ensemble of random matrices. Within one class the
Gaussian ensembles differ only by the dimension of their
matrices. The universal features of spectral statistics are ex-
tracted in the limit of large matrices.

In each Gaussian ensemble the probability for a Hamil-
tonian matrixH (with symmetries according to one of the
ten symmetry classes) has the form

PsHddmsHd =
1

N
e−A trH2

dmsHd, s35d

where N is a normalization constant,A is an overall scale
that fixes the mean level spacing, and the measuredmsHd is
given by pd ReHi jdIm Hi j where the product runs over all
independent elements ofH.

In general, one may denote the Gaussian ensemble
(GE) for the symmetry classX by X-GE. We will use this
notion for the Andreev classes. Note, that for some symmetry
classes one should distinguish various ergodic universality
classes. As we have restricted our investigations to just one
relevant subclass we will use the name of the whole symme-
try class for the Gaussian ensembles.

C. Spectral form factors

Let us now define the statistical functions that are in the
center of our investigation.

For a physical system the following averages are either
performed over some system parameters or over different
parts of the spectrum. We will always use unfolded spectra
with unit mean level spacing. Spectral averaging is only pos-
sible if the universal results are invariant under shifts of the
energyE→E+E8.

There is an important difference between the Wigner-
Dyson classes where the universality was conjectured for a
single spectrum of one system and the remaining seven sym-
metry classes where some universal features near energyE
=0 can only be obtained by averaging over different spectra.
In the classical limit of most systems one naturally obtains
many spectra for the same physical system by formally
changing". In that case one may average over different
spectra for thesame physical systemeven for the seven novel
symmetry classes.

We will be interested in the two simplest correlation func-
tions and their Fourier transforms. We will call the latter
form factors. The first correlation function is simply the av-
eraged fluctuating part of the density of stateskddsedl. If the
spectral statistics is invariant under shifts this expectation
value must vanish(if not it would be a constant over scales
much larger than the mean level spacing—in contradiction to
its definition). The spectral statistics near a spectral mirror
symmetry is not invariant under energy shifts. Nontrivial
contributions to the mean fluctuating part of the density of
states may then arise. These have to appear on the scale of
mean level spacing(else it would be inconsistent with the
separation of the density of states indWeyl+dd).

The Fourier transform of the averaged fluctuating part of
the density of states is thefirst-order form factor

K1std = 2E
−`

`

de e−i2petkddsedl. s36d

Inverting the Fourier transform one may represent the devia-
tions from Weyl’s law in the expectation value for the den-
sity of states as

kddsedl =E
0

`

dt coss2petdK1std. s37d

Note, that fort.0 the first-order form factor is the expec-
tation value of the trace of the time evolution operator
K1std=ktr eisHt tH/"dl where tH=2p" /DE is the Heisenberg
time.

The second-order correlation function is defined by

Cse,e0d = kddse0 + e/2dddse0 − e/2dl. s38d

If the spectral statistics is invariant under energy shifts it
only depends on the energy differencee—averaging over
different parts of the spectrum for a given system is an av-
erage overe0. Its Fourier transform with respect toe is the
second-order form factor

UNIVERSAL SPECTRAL STATISTICS IN WIGNER-… PHYSICAL REVIEW E 69, 056219(2004)

056219-7



K2std =E
−`

`

de e−i2petCse,e0d, s39d

where we have suppressed the possible dependency one0.
For physical spectra a time average over a small time

interval Dt!1 has to be added to the definition of the form
factors.

D. Spectral statistics for the Gaussian random-matrix
ensembles

We will now summarize the relevant results from random-
matrix theory(for more details see Refs.[3–8]).

1. The Wigner-Dyson ensembles

The ergodic universality classes for quantum systems in
the Wigner-Dyson classes are described by the well-known
Gaussian ensembles of random-matrix theory GUE(A-GE),
GOE (AI-GE), and GSE(AII-GE). The universal spectral
statistics is invariant under shifts of the energye→e+e0.
Thus the expectation value of the fluctuating part of the den-
sity of states vanishes and so does its Fourier transform

K1stdW.D. = 0. s40d

The two-point correlation functions are given by

CGUEsed = dsed −
sin2pe

p2e2 ,

CGOEsed = CGUEsed +
spueucospe − sin pueudf2Sispueud − pg

2p2e2 ,

CGSEsed = CGUEs2ed +
2pueucos 2pe − sin 2pueu

4p2e2 Sis2pueud,

s41d

where Sisxd=e0
xdj j−1sinj is the sine integral. The corre-

sponding second-order form factors are given by

K2
GUEstd=Hutu for utu , 1

1 for utu ù 1,

K2
GOEstd = 5utuf2 − lns2utu + 1dg for utu , 1

2 − utuln
2utu + 1

2utu − 1
for utu ù 1,

K2
GSEstd = 5 utu

4
s2 − lnitu − 1ud for utu , 2

1 for utu ù 2.

s42d

2. The novel ensembles

The Gaussian random-matrix ensembles in the chiral
symmetry classes are known as chGUE(AIII-GE), chGOE
(BDI-GE), and chGSE(CII-GE). The Andreev ensembles
C-GE, CI-GE, D-GE, andDIII-GE do not have any estab-

lished name. The spectral statistics of these ensembles is not
invariant under energy shifts and, as a consequence, devia-
tions from Weyl’s law need not vanish neare=0. At energies
much larger than the mean level spacingue0u@1 Wigner-
Dyson statistics is recovered. Thus, for the two-point corre-
lation function we have

CchGUEse,e0d,CC-GEse,e0d,CD-GEse,e0d →
e0@1

CGUEsed,

CchGOEse,e0d,CCI-GEse,e0d →
e0@1

CGOEsed,

CchGSEse,e0d,CCI-GEse,e0d →
e0@1

CGOEsed. s43d

The universal features near the symmetry pointe=0 are most
prominent in the density of states. Though there are universal
deviations from Wigner-Dyson statistics in all correlation
functions we will focus on the density of states. The univer-
sal deviations from Weyl’s law for the chiral ensembles are
given by [4,7,8,18–22]

kddchGUEsedl =
p2ueu

2
fJ0

2sped + J1
2spedg − 1,

kddchGOEsedl = kddchGUEsedl +
p

2
J0spedS1 −E

0

pueu
dj J0sjdD ,

kddchGSEsedl = kddchGUEs2edl −
p

2
J0s2pedE

0

2pueu
dj J0sjd,

kddC-GEsedl =
sin 2pe

2pe
,

kddCI-GEsedl = kddchGUEsedl −
p

2
J0spedJ1spueud,

kddD-GEsedl = − kddC-GEsedl, s44d

kddDIII-GEsedl = kddCI-GEs2edl +
p

2
J1s2pueud.

The corresponding first-order form factors can be calcu-
lated explicitly in terms of the complete elliptic integrals of
first, second, and third kindKsxd=e0

p/2s1/Î1−x sin2fddf,
Esxd=e0

p/2Î1−x sin2f, and Psy,xd=e0
p/2f1/s1

−y sin2fdÎ1−x sin2fgdf (we use the convention that
Psy,xd is real fory.1 [23]). They are given by

K1
chGUEstd =

utu + 1

putu
ES 4utu

s1 + utud2D
−

1 + t2

putus1 + utud
KS 4utu

s1 + utud2D , s45d
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K1
chGOEstd = K1

chGUEstd +
1

Î1 − 4t2
us1 − 2utud

−
2utu

psutu + 1ds2utu + 1d
PS 4utu

2utu + 1
,

4utu
s1 + utud2D ,

K1
chGSEstd =

1

2
K1

chGUES t

2
D −

1

2Î1 − t2
us1 − utud

−
utu

psutu + 2dsutu + 1d
PS 2utu

utu + 1
,

8utu
s2 + utud2D ,

K1
C-GEstd = − us1 − utud,

K1
CI-GEstd =

utu + 1

putu
ES 4utu

sutu + 1d2D +
utu − 1

putu
KS 4utu

sutu + 1d2D − 1,

K1
D-GEstd = us1 − utud,

K1
DIII-GEstd =

1

2
K1S t

2
DCI-GE

+ 1 −usutu − 1d
utu

Ît2 − 1
.

E. The generalization of the Bohigas-Giannoni-Schmit
conjecture

It has been conjectured by Bohigas, Giannoni, and Schmit
that quantum systems(in the semiclassical regime) with a
chaotic classical limit have universal spectral fluctuations
that coincide with the predictions of one of the Wigner-
Dyson Gaussian ensembles of random-matrix theory GUE,
GOE, or GSE. More precisely in an average over different
parts of the unfolded spectrum then-point correlation func-
tions for nù2 of a singlespectrum are conjectured to coin-
cide with the corresponding correlation functions of the
Wigner-Dyson ensemble. The mean density of states of a
given quantum system is nonuniversal and cannot be de-
scribed by random-matrix theory. Semiclassically it is given
by Weyl’s law.

A lot of evidence has since been gathered both numerical
and analytical that this conjecture is true in generic chaotic
systems[5] (though a few exceptions are known[24,25]).
Many approaches have been used to understand and proof
the fidelity to random-matrix theory in complex quantum
systems [26–29]. Recently there has been considerable
progress in the semiclassical approach using periodic orbit
theory [30].

Bohigaset al. stated their conjecture before the impact of
spectral mirror symmetries on spectral statistics has been rec-
ognized. A proper generalization of their statement has to
take into account that a spectral average will wipe out all
effects of a spectral mirror symmetry. Thus the original con-
jecture is expected to hold for the novel symmetry classes as
well: after averaging over different parts of a single spectrum
they will show the universal spectral fluctuations of GUE,
GOE, or GSE.

The additional universal features in physical systems near
the spectral symmetry point can only be observed when an

average over various spectra is performed. This corresponds
to an average over some system parameter. We conjecture
that for classically chaotic systems with a spectral symmetry
all correlation functions of the fluctuating part of the un-
folded density of statesddsed as given by Eq.(34) averaged
over onesystem parameter coincide with those of the corre-
sponding Gaussian random-matrix ensemble in the novel
symmetry classes. This includes universal deviations from
Weyl’s law in the density of states itself. Note that though
there are seven symmetry classes there are infinitely many
ergodic universal classes due to the different subclasses.
Though some average is certainly necessary we may still
conjecture the fidelity to ergodic random-matrix theories of a
single physical system by formally averaging over spectra
for different values of an effective Planck’s constant(this
does not work for scaling systems where changing" just
rescales the spectrum and the unfolded spectrum remains un-
changed). In superconducting–normal conducting hybrid
structures this corresponds to an average over Fermi energy
m.

IV. QUANTUM STAR GRAPHS FOR THE TEN
SYMMETRY CLASSES

Quantum graphs have been introduced by Kottos and
Smilansky [10] as simple quantum systems with an exact
semiclassical trace formula for the density of states. They
consist ofV vertices and connected byB bonds. Each bondbi
connects two vertices and has a lengthLi. A particle propa-
gates freely on the bonds and is scattered at the vertices by
prescribed boundary conditions which leads to quantization.
In their first approach Kottos and Smilansky considered ver-
tex boundary conditions that implied current conservation
and continuity of the wave function. The continuity condi-
tion is not always essential and has often been relaxed. In
that case the boundary conditions at a vertex are specified by
any unitary scattering matrix that transforms incoming waves
to outgoing waves—unitarity of the vertex scattering matrix
is equivalent to current conservation.

We will not discuss general graphs but limit ourselves to a
very simple class of graphs—star graphs.

A. Quantization of star graphs

A star graph consists ofB bonds bj of length Lj s j
=1, . . . ,Bd emanating from one central vertexv0. The bond
bj connects the central vertex with theperipheralverticesv j
(j =0, . . . ,B, see Fig. 1).

FIG. 1. Sketch of a star graph with five bonds of equal
length.
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We will allow for a multicomponent wave function on the
graph. The number of componentsM is assumed to be equal
on all bonds. It may represent different spin components or
electron and hole components of a quasiparticle. The
M-component wave function on the bondbj is

Cs jdsxs jdd = fout
s jd eikxs jd

+ fin
s jd eiksLj−xs jdd, s46d

where 0øxs jdøLj is the distance from the central vertex and

fin soutd
s jd =1

fin soutd,1
s jd

fin soutd,2
s jd

. . .

fin soutd,M
s jd

2 s47d

areM-component vectors of constant coefficients for the in-
coming (outgoing) waves on bondbj (“incoming” and “out-
going” will always be used with respect to the central ver-
tex).

It is convenient to combine all the coefficients of incom-
ing (outgoing) waves into two vectors of dimensionMB

finsoutd =1
fin soutd,1

s1d

. . .

fin soutd,1
sBd

. . .

fin soutd,M
s1d

. . .

fin soutd,M
sBd

2 . s48d

The boundary condition at the center can then be written in
the form

fout = SCLskdfin. s49d

The diagonalMB3MB matrix

La j ,a8 j8skd = d j j 8da,a8e
ikLj s50d

describes the propagation along the bonds. Here(and in the
rest of this section) a=1,2, . . . ,M indicates the component
of the wave function andj =1,2, . . . ,B is the bond index.
The central scattering matrixSC is a fixed unitaryMB
3MB matrix that defines the boundary conditions at the cen-
ter. For definiteness, we will assume that different compo-
nents of the wave function do not mix at the center, thus

SC,a j ,a8 j8 = daa8SC,j j 8
sad = daa8aC,j j 8

sad eiw
C,j j 8
sad

, s51d

where theB3B matrix SC
sad describes scattering of thea

component at the center.
The boundary conditions at the peripheral vertices may be

described by one fixedM 3M vertex scattering matrices for
each peripheral vertex—these can be combined to a single
unitary MB3MB peripheral scattering matrixSP such that

fin = SPLskdfout. s52d

Since different bonds are not coupled at the peripheral
vertices

SP,a j ,a8 j8 = d j j 8saa8
s jd = d j j 8aP,aa8

s jd eiw
P,aa8
s jd

, s53d

wheress jd is theM 3M scattering matrix at the vertexv j.
We will not allow any dependence of the scattering ma-

tricesSC andSP on the wave numberk. Uniqueness of the
wave function and the boundary conditions(49) and (52)
lead to the quantization condition

fin = SPLskdSCLskdfin ; SBskdfin, s54d

where we introduced thebond scattering matrixSBskd. Non-
trivial solutions of these equations exist only when the wave
number belongs to the discrete spectrumk=kn given by the
zeros of thespectral determinant

detfSBsknd − 1g = 0. s55d

The density of states for the graph is defined as

dskd =
1

g
o
n=0

`

dsk − knd, s56d

whereg=2 in systems with Kramers’ degeneracy(elseg=1).

B. The trace formula

Let us now write the density of states as a sum of its mean
dWeyl and an oscillating partddskd

dskd = dWeyl + ddskd. s57d

For both contributions one can give an exact semiclassical
expression. The mean density of states is given by Weyl’s
law

dWeyl =

Mo
j

Lj

gp
, s58d

and the oscillating part obeys the trace formula[10]

ddskd = Im
d

dk
o
n=1

`
1

gp n
tr SBskdn. s59d

In the sequel we will consider star graphs where all bond
lengths are equalLj =L. In that case the bond scattering ma-
trix is a periodic function ofk

SBskd = SBSk +
p

L
D = ei2kLS̃B, s60d

where

S̃B = SBsk = 0d = SPSC s61d

is thereduced bond scattering matrix. Thus, the spectrum is
also periodic and the trace formula simplifies to
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dskd =
MBL

gp
+

2L

gp
Reo

n=1

`

ei2nkL tr S̃ B
n . s62d

The periodicity of the spectrum will not be relevant here as
we are interested in features on the scale of a mean level
spacing.

For equal bond lengths the trace formula can be derived in
a few lines: Lete−if j s j =1, . . . ,MBd be the eigenvalues of

the unitary reduced bond scattering matrixS̃B. The quantiza-
tion condition (55) is equivalent tok=sf j /2Ld mod p /L s j
=1, . . . ,MBd and the density of states is

dskd =
1

g
o
j=1

MB

o
n=−`

`

dSk −
f j

2L
+ n

p

L
D

=
L

gp
o

n=−`

`

ei2nkLo
j=1

MB

e−inf j . s63d

The mean density of statesdWeyl=MBL/gp is just then=0
term in the sum overn while the rest gives the trace formula
for the oscillating part[the second line follows from the first
by Poisson’s summation formula on=−`

` dsx−nd
=on=−`

` ei2pnx].
The trace formula(59) can be interpreted as a sum over

periodic orbits p on the graph. A periodic orbitp
=fs j1,a1d ,s j2,a2d , . . . ,s jn,andg of length n is defined by a
sequence ofn peripheral verticesv j1

v j2
¯v jn

visited one af-
ter the other together with the specification of the wave com-
ponenta j between two vertices(cyclic permutations define
the same orbit). A periodic orbit isprimitive if it is not the
repetition of a shorter periodic orbit. In terms of primitive
periodic orbitsp and its repetitions the trace formula reads

ddskd =
2L

gp
o

p.p.o.:p
o
r=1

`

npsApe
iWpdr , s64d

where np is the length of the primitive periodic orbitAp

=pl=1
np aPal+1al

s j l+1d aCjl+1j l

sald is the amplitude of the primitive orbit

and Wp=2npLk+ol=1
np swCjl+1j l

sald +wPal+1al

s j l+1d d its phase(action).
Note, that we setjnp+1= j1 andanp+1=a1.

The similarity of the sum over periodic orbits(64) to the
semiclassical Gutzwiller trace formula is evident. However,
while semiclassics, in general, is an approximation the semi-
classical trace formula for quantum graphs is exact.

The trace formula will be our main tool in the analysis of
universal spectral statistics. It will lead us to a simple expres-
sion for the form factors that can easily be averaged numeri-
cally. In the second paper of this series the trace formula will
be in the center of an analytic approach to universality.

Since universality exists on the scale of the mean level
spacing we will writek=kDk where Dk=gp /MBL is the
mean level spacing. In terms of the rescaled wave number
the trace formula is

dskd = 1 +
2

MB
Reo

n=1

`

ei2pkgn/MBSn. s65d

We have introduced the shorthand

sn = tr S̃ B
n , s66d

for the nth trace of the reduced bond scattering matrix.
The first-order form factor is obtained by a Fourier trans-

form and a subsequent time average. It obeys the trace for-
mula

K1std =
g

MB
o
n=1

`

dSutu −
gn

MB
DK1,n, s67d

where the bar denotes a time average over a small time in-
terval Dt=sgDn/MBd!1 and

K1,n =
2

g
ksnl. s68d

The bracketsk·l denote an average over an ensemble of
graphs. This can be written more compactly as

K1St ;
gn

MB
D = K1,n ;

1

Dn
o
k=0

Dn−1

K1,n+k, s69d

where the continuous time average has been replaced by an
average over the discrete timet;gn/MB.

The second-order form factor for a graph also obeys a
trace formula which, after a spectral average over the central
wave number, is given by

K2St ;
gn

MB
D = K2,n, s70d

where

K2,n =
1

gMB
kusnu2l. s71d

If no spectral average is performed additional terms appear.
These are irrelevant for the graphs in the Wigner-Dyson
classes(they do not survive the subsequent ensemble aver-
age). Here, we will not consider the second-order form factor
for graphs in the novel symmetry classes where the addi-
tional terms are relevant near the central energye0=0.

ThoughK1,n and K2,n do not involve a time average we
will refer to them as(discrete time) form factors.

C. Star graphs for all symmetry classes

We will now construct ensembles of star graphs for each
symmetry class. The star graphs will be constructed in such a
way that spectral fluctuations of the corresponding ergodic
universality classes can be expected. Though we are not able
to prove an equivalent conjecture we will give strong evi-
dence.

The constructions of star graphs for each symmetry class
are based on a proper choice of the central and peripheral
scattering matricesSC and SP. Both have to obey the right
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symmetry conditions(see Sec. II). The Bohigas-Giannoni-
Schmit conjecture lets us expect that the graphs obey univer-
sal spectral statistics of Gaussian random-matrix theory if the
corresponding classical dynamics is chaotic.

Before addressing the question what this means on a
quantum graph let us mention a well-known counter ex-
ample: theNeumannstar graphs in symmetry classAI which
do notbelong to the corresponding ergodic universality class
defined by the Gaussian orthogonal ensemble(GOE). These
have a one-component wave functionsM =1d on the bonds,
Dirichlet boundary conditions at the peripheral vertices such
thatSP=−1, and Neumann boundary conditions at the center,
thus SC,kl=s2/Bd−dkl. Such graphs have been investigated
first in Ref. [10] and in more detail in Ref.[31]—in contrast
to our approach the bond lengths were chosen different for
each bond (and incommensurate). However, Neumann
boundary conditions at the center favor backscattering and
lead to nonuniversal(localization) effects[31].

Our approach is different in as much as we(have to)
allow for more general scattering matrices at the center and
in as much as we will always consider an ensemble of
graphs. The occurrence or nonoccurrence of localization ef-
fects can be traced back to a gap condition on the matrix
Ti j ;uSC;i j u2= uSB,i j u2. This bistochastic matrix describes the
corresponding “classical” dynamics on the graph(it is
equivalent to a Frobenius-Perron operator on phase space).
In contrast to classical Hamiltonian systems this is not a
deterministic dynamics but a Markov process for a discrete
probability distribution on the bonds. We cannot use
Lyapunov exponents to identify chaotic systems—instead
one has to use the decay of the probability distribution to
equilibrium which is related to the spectrum of the matrix
Ti j . This has an equivalent in classical Hamiltonian systems:
in strongly chaotic(ergodic) systems the Frobenius-Perron
operator has a finite gap in the spectrum between the
(unique) eigenvalue one and all other eigenvalues inside the
unit circle which describe the decay of the probability distri-
bution.

In Neumann star graphs the spectral gap of the matrixTi j
is small and vanishes in the limitB→` faster than 1/B
which leads to nonergodic spectral statistics. It has been con-
jectured[32] that graphs obey universal spectral statistics if
the spectral gap in the limitB→` vanishes slower than 1/B.
This can be used as a definition of chaos on a quantum
graph—we will slightly generalize it later as some of our
graphs do not strictly obey this condition.

In general one needs a multicomponent wave function to
introduce the different symmetries. The number of compo-
nentsM has been chosen minimal under the additional as-
sumptions that the components do not mix at the central
vertex and that time reversal is only broken at the peripheral
vertices.

Though we explicitly choose the central and peripheral
scattering matrices guided by simplicity and minimality,
most of the results are much more general.

The central scattering can be chosen in a very simple way
by using the symmetricB3B discrete Fourier transform
matrix [32]

SDFT,kl =
1

ÎB
ei2pskl/Bd s72d

or its complex conjugate for each component. An incoming
wave on a given bond is scattered with equal probability to
any bond which excludes localization effects. Indeed, the
matrix TDFT,kl= uSDFT,klu2=1/B has one eigenvalue 1 while all
otherB−1 eigenvalues vanish. The dynamics at the center of
the graph is thus maximally chaotic.

The bond scattering matrixSBskd=SCLskdSPLskd for
each ensemble of graphs is constructed by demanding that
the matricesSC, SP, and Lskd do all have the canonical
forms of the desired symmetry class given in Sec. II. Note,
that for star graphs we are interested in thek spectrum, so in
the canonical forms for scattering matrices the energyE has
to be replaced byk. The ensemble of graphs is built by
introducing some random phases into the peripheral scatter-
ing matrix.

We will also present numerical results for the ten en-
sembles of graphs. These are obtained by taking at random
bond scattering matrices from each ensemble, explicitly cal-

culating the tracessn=tr S̃B
n and averaging the discrete time

form factorsK1,n=s2/gdksnl or K2,n=s1/gMBdkusnu2l over at
least 10 000 realizations. The graphs in Figs. 2–5 are ob-
tained by an additional time average over a short time inter-
val which are compared to the random matrix results. The
inserts in the graphs show the discrete time form factors
without the additional time average.

1. Star graphs in the Wigner-Dyson classes

Let us start with the simplest case: an ensemble of star
graphs in classAI where a one-component wave function
suffices to incorporate the time-reversal symmetry. This de-
mands that the unitary matricesSC, SP, andL are all sym-
metric. Now,SP andLskd=eikL1 are diagonal forM =1, and
choosing

AI: SC = SDFT, s73d

we meet all requirements. At the peripheral vertices we are
free to choose one random phasebk for each peripheral ver-
tex j independently such that

AI: SP,kl = dkle
ibk, s74d

where 0øbk,2p is uniformly distributed.
For classA we have to break time-reversal symmetry.

This may be done by choosing a nonsymmetric central scat-
tering matrix for a one-component wave function on the
graph. As we like to keep the simplicity of the discrete Fou-
rier transform matrix we choose another simple construction
with a two-component wave function, a central 2B32B scat-
tering matrix

A: SC = SSDFT 0

0 SDFT
D , s75d

and
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A: SP =
1
Î2
SD1 D2

D3 D4
D s76d

for the peripheral scattering matrix. The diagonal matrices
D j are

A:

D1,kl = dkle
isbk+gkd

D2,kl = dklie
isbk+dkd

D3,kl = dklie
isbk−dkd

D4,kl = dkle
isbk−gkd,

s77d

where the independent random phasesbk, gk, and dk are
uniformly distributed. The scattering at the peripheral verti-
ces mixes the two components of the wave function
maximally—for this reason we may expect that the corre-
sponding “classical” dynamics is chaotic.

For classAII a four-component wave function is needed
to incorporate time-reversal invariance withT 2=−1 into our
scheme for star graphs. Indeed, the number of components
must be even as discussed above in Sec. II C 1. In addition,
we assumed that components do only mix at the peripheral
vertices. Then, a 434 scattering matrix at the peripheral
vertices is the minimal matrix dimension that allows for

FIG. 2. Second-order form factorK2std for star graphs in the
Wigner-Dyson ensembles averaged over 10 000 realizations of with
B=100 bonds[additional time average over an interval of length
8sg/MBd] (a). Symmetry classA sGUEd, (b) symmetry class
AI sGOEd, (c) symmetry classAII sGSEd. Dashed lines: prediction
by Gaussian random-matrix theory. Full lines: numerically calcu-
lated form factor for graphs. Inserts: discrete time form factorK2,n

as function oft=nsg/MBd for the classA and AI graphs. For the
classAII graphsK2,n vanishes for oddn—the insert showsK2,n/2
for evenn.

FIG. 3. First-order form factor for Andreev star graphs in the
symmetry classesC (a) and CI (b) averaged over 10 000 realiza-
tions withB=100 bonds[additional time average over an interval of
length 8sg/MBd]. Dashed lines: prediction by Gaussian random-
matrix theory. Full lines: numerically calculated form factor for
graphs. Inserts: discrete time form factorK1,n/2 as function oft
=nsg/MBd for evenn (K1,n—this vanishes by construction for odd
n).

FIG. 4. The first-order form factor for Andreev star graphs in the
classesD (a) andDIII (b)—see Fig. 3 for details.
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component mixing as can be seen from the canonical form
(16) of a AII scattering matrix. The diagonal matrixLskd is a
diagonal unitary matrix of the canonical form. All further
requirements are met by choosing

AII: SC =1
SDFT 0 0 0

0 SDFT 0 0

0 0 SDFT 0

0 0 0 SDFT

2 , s78d

for the central 4B34B scattering matrix, and

AII: SP =
1
Î21

0 D1 0 D2

D3 0 − D2 0

0 − D4 0 D3

D4 0 D1 0
2 , s79d

for the peripheral scattering matrix. The diagonal matrices
D j are given by

AII: 5
D1,kl = dkle

isbk+gkd

D2,kl = dkle
isbk+dkd

D3,kl = dkle
isbk−gkd

D4,kl = dkle
isbk−dkd,

s80d

where the independent random phasesbk, gk, and dk are
uniformly distributed. Though the corresponding classical
dynamics for this ensemble has no gap we may expect uni-

versal spectral statistics for the time-averaged form factor—
this is due to the fact the reduced Markov process for the
probabilities to find the particle on a bondregardlessof its
component is still chaotic(has a maximal gap). We will take
this as our generalized definition of chaos on a star graph, if
additionally the components of the wave function mix at the
peripheral vertices.

Ergodic spectral statistics may be expected for all three
star graph ensembles in the Wigner-Dyson classes. This is
strongly supported by a numerical calculation of the second-
order form factor(see Fig. 2). The numerically obtained
time-averaged form factors(as well as the discrete time form
factors without the additional time average) are in almost
perfect agreement with the random-matrix predictions. Re-
placing theB3B matrixSDFT in the central scattering matrix
by some fixed symmetric unitary matrix taken at random
from Dyson’s circular orthogonal ensemble(COE) one ex-
pects similar good agreement—this has been tested numeri-
cally.

2. Chiral and Andreev star graphs

Let us start with the Andreev star graphs for the classesC
and CI where the wave function can be chosen in the sim-
plest case to have two components. The first will be called
“electron” and the second “hole.” The transfer matrixLskd
and the central scattering matrix defined by

H C

CI
J: SC = SSDFT 0

0 SDFT
* D s81d

obey the symmetry condition(27).
The peripheral scattering matrix may be chosen such that

completeAndreev scattering(electron-hole conversion) takes
place

H C

CI
J: SP =

1
Î2
S 0 D

− D* 0
D , s82d

where the diagonal matrixD is

C: Dkl = dkl eibk s83d

for classC, and

CI: Dkl = dkl isk s84d

for classCI. The random phasesbk are uniformly distributed
andsk= ±1 with equal probability.

For the Andreev classesD and DIII and as well for the
three chiral classesAIII, BDI, and CII a four-component
wave function is needed. We will call the first(last) two
components electron(hole).

The symmetry requirements(28), (29), and(20)–(22) are
met by the transfer matrixLskd and the central scattering
matrix defined by

FIG. 5. The first-order form factor for chiral star graphs in the
symmetry classesAIII (a), BDI (b), and CII (c)—see Fig. 3 for
details.
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5
D

DIII

AIII

BDI

CII
6: SC =1

SDFT 0 0 0

0 SDFT 0 0

0 0 SDFT
* 0

0 0 0 SDFT
*
2 . s85d

In all five remaining classes we choose the peripheral scat-
tering matrix such that complete Andreev scattering takes
place. ForD andDIII the simplest choice obeying the sym-
metry requirements are

H D

DIII
J: SP =

1
Î21

0 0 D1 D2

0 0 − D2
* D1

*

D1
* D2

* 0 0

− D2 D1 0 0
2 , s86d

where the diagonal matricesD j are

D:
D1,kl =dkl eibk

D2,kl =dkl eigk,
s87d

for classD, and

DIII:
D1,kl =dkl eibk

D2,kl =dkl isk,
s88d

for classDIII. The random phasesbk and gk are uniformly
distributed andsk= ±1 with equal probability.

The simplest choice for peripheral scattering matrices in
the chiral classes is

5AIII

BDI

CII
6: SP =

1
Î21

0 0 D1 D2

0 0 D3 − D1

D4 D5 0 0

D6 − D4 0 0
2 . s89d

The diagonal matricesD j have to be chosen according to the
requirements of each symmetry class. For classAIII they are

AIII:

D1,kl = dklsk

D2,kl = dkle
ibk

D3,kl = dkle
−ibk

D4,kl = dkltk

D5,kl = dkle
igk

D6,kl = dkle
−igk,

s90d

wheretk,sk= ±1 with equal probability and the phasesbk
andgk are uniformly distributed. TheBDI star graphs can be
obtained from theAIII case by the additional restrictions

BDI: tk = sk and gk = − bk. s91d

Finally, for classCII the peripheral scattering matrix is de-
fined by

CII:

D1,kl = dklsk

D2,kl = dkle
ibk

D3,kl = dkle
−ibk

D4,kl = − dklsk

D5,kl = − dkle
ibk

D6,kl = − dkle
−ibk.

s92d

We have checked numerically that the first-order form
factor for the constructed Andreev and chiral star graphs
obeys the corresponding prediction by Gaussian random-
matrix theory(see Figs. 3–5). The time-averaged form fac-
tors are in quite well agreement with the random-matrix pre-
dictions. We have checked that this numerical result does not
depend on the simple choice of the central scattering matrix.
As in the Wigner-Dyson case replacing theB3B matrix
SDFT in the central scattering matrices by a fixed symmetric
scattering matrix drawn from Dyson’s COE generically gives
a similar well agreement. Note, that it has been shown[33]
that a fixed matrix in the circular ensembles generically sat-
isfies the gap condition for the spectrum of the corresponding
bistochastic(classical) matrix.

The discrete time form factors in the inserts have not been
time averaged and the graphs show large systematic devia-
tions from the random-matrix prediction. Apart from small
fluctuations they seem to follow two different lines—one
containing all values for discrete times that are twice an odd
integern=2s2s−1d—the other containing the values for dis-
crete timesn=4s which are twice an even number(for oddn
the form factor vanishes trivially). These lines can be ex-
plained partially by the analytic periodic orbit approach pre-
sented in the second paper of this series(the explicit discus-
sion is in the Appendix[11]). The fact that the ensemble
average is not sufficient to find the random-matrix form fac-
tors is related to our generalization of chaoticity. It is not
difficult to construct ensembles that are strictly chaotic in the
sense that the fullMB3MB matrix Tij = uSB,i j u2 has a gap in
its spectrum. Indeed one may expect such a gap as soon as
one replaces the complete Andreev reflection at the periph-
eral vertices by a partial Andreev reflection. This has been
tested numerically with the expected result that no time av-
erage is needed to get quite well agreement with random-
matrix theory.
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APPENDIX: THE PROPERTIES OF TIME-REVERSAL
AND SPECTRAL MIRROR SYMMETRIES

In this appendix we show some properties of time-
reversal and spectral mirror symmetries used in the classifi-
cation of the ten symmetry classes.
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In Sec. II A we stated that the time-reversal symmetry
operator obeysT 2= ±1 and in Sec. II B we proposedC2

= ±1 for an antiunitary spectral mirror symmetry. First,C2

sT 2d is a unitary symmetry operator that commutes with the
Hamiltonian. Since we assumed that the Hilbert space is
completely reduced with respect to unitary symmetriesC2

=eia1. Multiplying this with C−1 (which is antiunitary as
well) from left and from right leads toC=eiaC−1=C−1eia

=e−iaC−1. Thuseia=e−ia or eia= ±1 (the same argument ap-
plies to time-reversal symmetries).

In systems with broken time-reversal invariance and a
unitary spectral mirror symmetry we proposed that one may
always chooseP2=1 while P2= ±1 in time-reversal invariant
systems. LetP be some unitary spectral mirror symmetry in
a system with broken time-reversal invariance. In a com-
pletely reduced Hilbert space with respect to unitary com-
muting symmetriesP2=eia1. We may now define a new

spectral symmetry operatorP8=e−isa/2dP such thatP82=1
andP8 still anticommutes with the Hamiltonian. If the sys-
tem is time-reversal invariantP2= ±1 follows from fP2,Tg
=0 which we show below. One hasfP2,Tg=0=seia−e−iadT
or eia= ±1.

For time-reversal invariant systems with a spectral mirror
symmetry we proposed that one may always redefine the
three operatorsC, P, andT such that they commute. Indeed,
if C andT do not commute one hassCTd2=e2ia1. Redefining
C°C8=e−iaC one getssC8Td2=CTCTe−2ia=1 (note thatC2

=C82). The last equation is equivalent tosTC8=C8T where
s=T 2C82= ±1. If s=1 the two operators commute—ifs
=−1 we redefineC8°C9= iC8 which commutes withT. In
conclusion we may assume thatC andT commute. Choosing
P;CT all three symmetry operators can be chosen such that
they commute.
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