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Networks of chemical reactions have been given much attention recently. However, dynamical aspects of
such networks remain to be elucidated. In this paper, we study a cascade chemical reaction, consisting of a
series of downstream-coupled Brusselators. Along the cascade of reaction, small fluctuations naturally existing
in the concentration of chemical species are amplified. Such amplification of small noise leads to the formation
of chemical oscillations in the downstream chemical species. The amplification rate of small noise in the
concentration along the cascade is studied and the method to calculate the amplification rate analytically is
developed. It is also shown that the nonlinear evolution of the chemical oscillation in the downstream reaction
strongly depends on the frequency of the initial inlet chemical concentration.
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I. INTRODUCTION

In flow systems withconvective instability, small distur-
bances are amplified as they are advected downstream. Ex-
amples of such flow systems have been found in fluid dy-
namics and nonlinear optics[1–3]. The nonlinear evolution
of small disturbances in these systems results in the forma-
tion of wave patterns and spatiotemporal chaotic motions. In
the system with convective instability, the amplification of
disturbances is observed only in a co-moving frame, while
the disturbances themselves are damped in time. Therefore,
such amplification and formation of patterns are said to be
noise sustained. The formation of patterns is typically sensi-
tive to the frequency of the upstream small amplitude modu-
lation.

The basic mechanism underlying such phenomena has
been explored theoretically for relatively simple dynamical
systems. Distributed dynamical systems with unidirectional
coupling are among them. They have been shown to exhibit
amplification of small disturbances along the unidirectional
coupling, similar to flow systems. For these systems, con-
cepts available in flow systems have been developed such as
the co-moving Lyapunov exponent[4,5,7] and a pattern for-
mation that is sensitive to the frequency of boundary modu-
lation [2,6].

Such a flow system could also be found in a cascade of
chemical reactions or reaction networks[11], where a flux of
reactions propagates along the series of successive chemical
reactions. Chemical plant could be an example of them. Bio-
logical systems could also provide a variety of examples of
such flow systems[12]. Cascades of chemical reactions in
cells are found in signal transduction and gene regulatory
networks. Frequency-sensitive cellular response has been ob-
served experimentally[13]. Amplification of stimuli infor-
mation is one of the important properties of cellular signal
transduction. Since chemical reaction is a stochastic process,
the concentrations of molecular species inevitably fluctuates

in time. Thus, if the reaction network is “convectively un-
stable” along the reaction cascades, a noise-sustained struc-
ture could arise, even without spatial coordinates. In particu-
lar, the noise-sustained formation of patterns in a small
reaction system such as cells could be interesting.

In the present paper, we first consider a model of a cas-
cade chemical reaction and demonstrate that the system
shows convective instability. Although the cascade chemical
reaction has no spatial coordinate, small disturbances in the
inlet chemical concentration are amplified along the cascade.
Then, the problem which we want to address in this publica-
tion is how to determine the rate of the amplification of small
disturbances along the cascade chemical reaction.

For the characterization of the convective unstable spatial
extended systems, the co-moving Lyapunov exponent, which
is the growth rate of small disturbances in a moving frame,
has been widely used[4]. If the maximum co-moving
Lyapunov exponent is positive while the Lyapunov exponent
is negative, small noise applied at the inlet is amplified and
the noise sustains formation of patterns. Such noise-
sustained amplification can be characterized by the spatial
Lyapunov exponent[8,9]. The spatial Lyapunov exponent is
the amplification rate of the noise strength along the spatial
coordinate. The spatial Lyapunov exponent can be calculated
according to the relation between the co-moving and its ve-
locity [8,9].

In this paper, the spatial Lyapunov exponent is calculated
explicitly by applying the Fourier analysis, and the results
are then compared with the previous method using the co-
moving Lyapunov exponent. Since the concept of the spatial
Lyapunov exponent is applicable to systems without spatial
coordinate, here we call it the “amplification exponent.” This
analysis also gives the frequency-dependent amplification
exponent. Then, we discuss the pattern selection by modulat-
ing the input chemical concentration.

This paper is organized as follows. The cascade chemical
reaction model is proposed in Sec. II, and the amplification
of small perturbations and the formation of chemical oscilla-
tion are described. In Sec. III, the convective instability is
characterized by the co-moving Lyapunov exponent. In Sec.*Electronic address: shibata@hiroshima-u.ac.jp
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IV, the amplification rate of small disturbances is calculated
analytically and then compared with the amplification rate
obtained numerically from the co-moving Lyapunov expo-
nent. In Sec. V, the effect of modulating the inlet chemical
concentration is studied. Discussion and conclusions are
given in Sec. VI.

II. CASCADE BRUSSELATOR

We start with the well understood nonlinear chemical re-
action, the Brusselator, which is given by

A → X

2X + Y → 3X

X + B → Y + D

X → ,

s1d

where,A , B, andD are the chemical species with constant
concentrations, whereas the concentration of chemical spe-
ciesX andY can change in time.

In order to construct a model cascade reaction, consider a
series of such Brusselators. The first chemical reaction for
chemical speciesX1 and Y1 is the Brusselator, given by
scheme 1. The next chemical reaction for the chemical spe-
cies X2 and Y2 is also a Brusselator, butX2 is synthesized
from X1, instead ofA. Thenth reaction forXn andYn is also
a Brusselator, andXn is synthesized fromXn−1 (see Fig. 1).
In this way, we consider the chemical reactions among

chemical specieshX1,X2,¯ ,XNj and hY1,Y2,¯ ,YNj,
which is given by

A → X1

52Xn + Yn → 3Xn

Xn + B → Yn + D

Xn → Xn+1

sn = 1,¯ ,Nd

XN+1→

s2d

.
Let xn andyn represent the concentrations of the chemical

speciesXn andYn, sn=1,2,¯ ,Nd anda andb be the con-
centrations of the input chemical speciesA and B, respec-
tively. Then, the macroscopic evolution equations for the
concentration ofXn andYn are given by

ẋn = xn−1 + x n
2 yn − bxn − xn

ẏn = − x n
2 yn + bxn

sn = 1,¯ ,Nd , s3d

with x0=a.
The fixed point of this system is given bysxn

* ,yn
*d

=sa,b/ad. This fixed pointsx* ,y*d is stable if the condition
b,a2+1 is satisfied and is unstable ifb.a2+1. This stabil-
ity condition is the same as that of the single Brusselator. If
b.a2+1 and hence the fixed point is unstable, the limit
cycle emerges in each component and the phase of the oscil-
lation propagates from the first reaction to downstream reac-
tions.

If no disturbances exist, except for the perturbations of
initial conditions, and the above stability condition is satis-
fied, the perturbations of initial conditions are damped out
and the concentrations approach to the fixed point. In this
case the Lyapunov exponent is negative. However, even
when the system satisfies the stability conditions and hence
the Lyapunov exponent is negative, if some disturbances ex-
ist at the top of the reaction step, such a disturbance can
grow in the downstream reactions. For instance, consider the
case where the concentration ofA fluctuates in time. Then
the evolution equation is given by Eq.(3) with

x0std = a + hstd, s4d

where hstd is the Gaussian white noise withkhstdl=0 and
khstdhst8dl=ddst− t8d.

In Fig. 2, the phase portrait of the concentrations ofXn
andYn is shown forn=1,15,30,when weak noise exists in
the concentration of the input chemical speciesA. Here, the
mean concentrations ofA andB area=1 andb=1, respec-
tively. Thus, since the stability condition is satisfied, if no
disturbances exist, the concentrations ofXn and Yn eventu-
ally approach the fixed point. However, the small amplitude
noise in the concentration ofA is being amplified in the
downstream reactions(Fig. 2, n=15) and chemical oscilla-
tions develop in the further downstream reactions(Fig. 2,
n=30). In this way, the system is convectively unstable, and
the chemical oscillation in the downstream reactions is noise
sustained.

FIG. 1. The cascade Brusselator. The first step chemical reaction
for chemical speciesX1 and Y1 is Brusselator. In thenth step,
chemical reactions amongXn andYn occur according to Brussela-
tor, exceptXn is synthesized fromXn−1 but not fromA.
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III. CO-MOVING LYAPUNOV EXPONENT
AND PHASE DIAGRAM

This convective instability can be characterized by the
co-moving Lyapunov exponentslsvd, which describes the
exponential growth rate of small amplitude disturbances in a
frame moving to the downstream reactions with velocityv
[4]. The co-moving Lyapunov exponent has been introduced
for the characterization of convective instability in spatially
extended systems[4]. Let (dx1s0d ,dy1s0d) be the infinitesi-
mal displacement at the first reaction step at the initial time 0
around the fixed point value, and(dxfvtgstd ,dyfvtgstd) repre-
sent the displacement at thefvtg-th reaction step at timet.
Here,fvtg gives the integer part ofvt. Then,lsvd is given by

lsvd = lim
t→`

1

t
log

u„dxfvtgstd,dyfvtgstd…u

u„dx1s0d,dy1s0d…u
. s5d

The co-moving Lyapunov exponent for the velocityv=0 is
the maximum Lyapunov exponent. Ifls0d is negative and
the lsvd is positive for somev, then the system is convec-
tively unstable. Iflsvd,0 for any v, then the system is
absolutely stable. Ifls0d.0, then the system is absolutely
unstable.

Figure 3 shows the co-moving Lyapunov exponent about
the fixed point calculated numerically and plotted as a func-
tion of v. ls0d is the Lyapunov exponent of the single Brus-
selator at the fixed point. As the velocityv increases,lsvd
becomes larger than zero and is a concave function ofv.

Therefore, this cascade chemical reaction system shows the
typical property of convectively unstable systems.

Figure 4 gives the phase diagram determined numerically.
The parameter points of convectively unstable and absolutely
stable phases are plotted according to the co-moving
Lyapunov exponent analysis. The convective instability is
observed in a wide parameter region between the absolutely
stable and absolutely unstable regions.

IV. AMPLIFICATION EXPONENT PER REACTION STEP

As shown in Fig. 2, weak noise added to the first reaction
is amplified in the downstream reactions. It is interesting to
study how the small amplitude noise in the input chemicalA
affects the behavior of the downstream chemical species. The
typical amplitude at thenth step reaction is given by
Osdxn,dynd,Îdegn, whereg is the amplification exponent
per reaction step, which characterizes the exponential growth
of the amplitude as the reaction stepn increases. Sincelsvd
is the growth rate for the velocityv, the growth rate per
reaction step is given bylsvd /v [8,9]. For largen, we have

g = max
v

lsvd/v. s6d

The growth rateg has been called the “spatial Lyapunov
exponent” in spatially extended systems[8,9]. The present

FIG. 2. The phase portrait of the concentration ofsX1,Y1d, sX15,Y15d, and sX30,Y30d. The values of the parameters are given bya
=1.0 andb=1.0.

FIG. 3. The co-moving Lyapunov exponent calculated numeri-
cally and plotted as a function of velocityv. The parameter values
are given bya=1.0 andb=1.0.

FIG. 4. The phase diagram. The parameter points where the
maximum co-moving Lyapunov exponent is negative are shown by
crosses, whereas the parameter points where the maximum co-
moving Lyapunov exponent is positive are displayed by circles. The
line b=a2+1 indicates the Hopf bifurcation line and the lineb
=a2+1−Î2a2+1 indicates the bifurcation of convective instability.
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system has, however, no spatial coordinate. Therefore, in this
paper we callg the amplification exponent. Notice that Eq.
(6) is correct only for the nonintermittent case[10]. In gen-
eral, the right-hand side of Eq.(6) gives a lower bound ofg.

The amplification exponentg can be calculated explicitly
by studying the linearized evolution equation. To do this, the
Fourier representation of the linearized evolution equation is
useful. The Fourier method has been applied for linearized
evolution equation of open flow systems[14–16]. Here, it is
shown that this analysis can be applied to obtain the ampli-
fication exponent or the spatial Lyapunov exponent for spa-
tial extended systems.

Let jn andcn be small deviations about the steady— state
concentrations ofxn and yn, respectively. Then, the linear
evolution equations forjnstd andcnstd around the fixed point
of sxn,ynd are given by

S j̇n

ċn

D = ASjn

cn
D + S1 0

0 0
DSjn−1

cn−1
D , s7d

whereA is a matrix given by

A = Sb − 1 a2

− b − a2D . s8d

The Fourier series expansions ofjnstd andcnstd in the inter-
val f0,Tg are given by

jnstd = o
k=−`

`

Jnskdeivkt, s9d

cnstd = o
k=−`

`

Cnskdeivkt, s10d

where the frequencyvk is

vk =
2pk

T
sk = 0, ± 1, ± 2,̄ d. s11d

The Fourier coefficientsJn andCn are

Jnskd =
1

T
E

0

T

jnstde−ivktdt s12d

and

Cnskd =
1

T
E

0

T

cnstde−ivktdt. s13d

Then, Eq.(7) leads to

sivnE − AdSJnskd
Cnskd

D = S1 0

0 0
DSJn−1skd

Cn−1skd
D , s14d

whereE is the identity matrix. Thus,Jnskd is obtained as

Jnskd = FsvkdJn−1skd s15d

with transfer functionFsvd,

Fsvd = s1,0dsivE − Ad−1S1

0
D s16d

=
iv + a2

− v2 + sa2 − b + 1div + a2 . s17d

In order to find the amplification exponent per reaction
step, suppose that the white Gaussian noise is added at the
top of the cascade, and study the response of the downstream
chemical species. For this, supposex0std=a+hstd in Eq. (3),
where hstd is the white Gaussian noise withkhstdl=0 and
khstdhst8dl=ddst− t8d. Then, the power spectrum density of
hstd is given by

P0svd = lim
T→`

T

2p
kuJ0sndu2l =

d

2p
. s18d

The power spectrum density ofjnstd for the nth chemical
species is given by

Pnsvd = lim
T→`

T

2p
kuJnskdu2l. s19d

Substituting Eqs.(15) and (18) into this, it follows that

Pnsvd = uFsvdu2n d

2p
. s20d

In the present case,uFsvdu is given by

uFsvdu2 =
a4 + v2

sa2 − v2d2 + v2sa2 − b + 1d2 . s21d

If uFsvdu is smaller than unity for anyv, the small distur-
bances damped out at the downstream reactions. On the
other hand, ifuFsvdu is larger than unity for somev, it is
expected that the small disturbance grows as the reaction
step increases. In Fig. 5,uFsvdu is plotted as a function ofv
(lines), showing thatuFsvdu becomes larger than unity for

FIG. 5. The transfer functionFsvd plotted asuFsvdu for a=1
and b=2.1, 1.0, 0.5 and 0.1. The amplification exponent per reac-
tion stepgnsvd obtained by solving Eq.(3) with Eq. (29) for b=1 is
also plotted as expf2.0gnsvdg ssd. Here, we choosen=10.
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some values ofv depending on the parameter value.
Now we calculate the amplification exponent per reaction

step. Letgn give the amplification exponent at thenth step
[17], which is defined as

gn =
1

2n
logsdn/dd, s22d

in which dn is the dispersion ofjnstd, which is obtained by

dn = kjnstdjnstdl =E
−`

`

Pnsvddv. s23d

Thus, the amplification rategn is calculated by substituting
Eqs.(20) and (23) into Eq. (22). Then we have

gn =
1

2n
logE

−`

`

uFsvdu2ndv −
1

2n
log 2p. s24d

In Fig. 6, the amplification exponentgn is plotted as a
function ofn. For the calculation ofgn, substituting Eq.(21)
into Eq. (24), we adopted a numerical integration method.
The amplification exponentgn approaches to a particular
value asn increases. For sufficiently largen, the maximum
value of uFsvdu dominates the amplification. Thus, the am-
plification exponent approaches

g = lim
n→`

gn = log suFsv*dud/2, s25d

where

uFsv*du = max
v

uFsvdu. s26d

In the present case,v* is calculated at

sv*d2 = − a4 + a2Î2a2b + 2b − b2. s27d

In this way, the amplification exponent is obtained by substi-
tuting Eq.(21) into Eq. (25) with this v* .

In Fig. 7, the amplification exponent per reaction stepg
given by Eq.(25) is plotted as a function ofa (solid line).
The amplification exponent is also obtained numerically by

applying Eq.(6) to the co-moving Lyapunov exponent. In
order to compare the amplification exponents obtained in
such ways, both of them are plotted in Fig. 7, showing good
agreement with each other. Thus, the present analysis yields
the amplification exponent per reaction step or the spatial
Lyapunov exponent for spatial extended systems.

According to this analysis, the system is convectively un-
stable ifuFsv*du is larger than unity. This condition gives the
bifurcation points of the convective instability. In the present
case,uFsv*du.1 if the inequality

b . a2 + 1 −Î2a2 + 1 s28d

is satisfied. The bifurcation line given by Eq.(28) is plotted
in the phase diagram in Fig. 4. The bifurcation line obtained
in this analysis is in good agreement with the bifurcation line
obtained numerically according to the co-moving Lyapunov
exponent analysis.

Before concluding this section, we should note the fol-
lowing two points. The amplification exponentgn can be
negative for some smalln, even when the system is convec-
tively unstable. Thus, the induction steps, where the ampli-
tude growth toOs1d, cannot be obtained in a straightforward
way. The second point is thatuFsvdu can give the frequency-
dependent amplification exponent. We shall study this fre-
quency dependence in the next section.

V. MODULATION OF THE INLET CHEMICAL
CONCENTRATION

The effect of the boundary modulation on flow systems
has been studied theoretically and experimentally[2,6]. The
studies have shown that attractors can be selected by control-
ling the frequency of boundary modulation. In the present
analysis, the transfer functionFsvd, shown in Fig. 5, implies
the amplification exponent that depends on the frequency of
modulation of the input chemical concentration. Thus, such a
frequency-dependent amplification exponent could provide
some information on the effects of the boundary modulation.

FIG. 6. The amplification exponentgn= log dn/d/2n plotted as
functions of reaction stepn.

FIG. 7. The amplification exponent per one step reaction plotted
as a function ofa. The growth rates per one step obtained from the
co-moving Lyapunov exponent are shown by circles. The growth
rate given byg=logsuFsv*dud /2 is displayed by a solid line. The
parameter value is given byb=1.0.
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A. Frequency dependent amplification exponent

Let us investigate the situation where the concentration of
chemical speciesA is oscillating in time with frequencyv.
Therefore, we consider the evolution equation Eq.(3) with

x0std = a + d sinsvtd, s29d

where d is the amplitude of modulation andv is its fre-
quency.

The behavior of the downstream reactions could depend
on the values ofd andv. Here, we only study the case where
d takes a small value, in order to pay attention to the fre-
quency dependence of pattern dynamics. Therefore, hereafter
we fix the value ofd to be 0.01.

First we study the amplification exponent of small ampli-
tude modulation numerically by solving the evolution equa-
tion Eq. (3) with Eq. (29) [18]. In order to measure the am-
plification exponent, the mean square deviationkdxn

2l=kxn
2l

−kxnl2 is calculated forXn. Here,k·l means temporal average
over a sufficiently long time interval. Then, the amplification
exponent is given by[17]

gnsvd =
1

n
logS kdxn

2l
kdx0

2l
D . s30d

In Fig. 5, for comparing the amplification exponent obtained
numerically with the transfer functionuFsvdu, expf2.0gnsvdg
is plotted as a function of the frequencyv for sufficiently
large n (here n=120). The frequency-dependent amplifica-
tion exponent obtained numerically is in good agreement
with the transfer function. Hence, the transfer functionFsvd
gives the frequency dependence of the amplification expo-
nent per reaction step or the spatial Lyapunov exponent for
spatially extended systems.

B. Selection of oscillation in the downstream reactions

As the reaction step increases, the amplitude of the chemi-
cal oscillation grows and reaches saturation due to the non-
linearity. For the frequency of the oscillation at the down-
stream reactions a particular value is selected. This nonlinear
evolution of chemical oscillation depends strongly on the
frequency of the oscillation in the inlet chemical concentra-
tion. In Fig. 8, the frequency selected at the downstream
reactions is plotted as a function of the modulation frequency
in the inlet chemical concentration. In Fig. 9, the amplitude
saturated at the downstream reactions is plotted as a function
of the frequency of the oscillation selected in the down-
stream reactions, indicating the almost one-to-one correspon-
dence between them.

The selected frequency shown in Fig. 8 is one of the
harmonic components of the modulation frequencyv of the
inlet chemical concentration. It may be interesting to ask
what determines the frequency of the oscillation selected at
the downstream reactions. Here, we only note that the
frequency-dependent amplification exponent does not deter-
mine the frequency selected in the downstream reactions. In
other words, even if uFs,vdu. uFsmvdu , s,Þm,, ,m
=1,2,3 ,̄ d, this does not necessarily mean that the fre-
quency,v will be selected.

VI. CONCLUSION

In this paper, we have studied a cascade chemical reac-
tion, which consists of a series of unidirectionally coupled
Brusselators. It has been shown that the small disturbances
are amplified along the cascade and the noise-sustained
chemical oscillation is developed in the downstream reac-
tions. This is the typical properties of open flow systems,
calledconvective instability. The co-moving Lyapunov expo-
nent and the amplification exponent per reaction step(spatial
Lyapunov exponent) are the characterizations of the convec-
tive instability. In the present paper, we have focused on the
amplification exponent per reaction step(the spatial
Lyapunov exponent). The exponent obtained analytically is
shown to be in good agreement with that obtained numeri-
cally from the co-moving Lyapunov exponent. Therefore, a

FIG. 8. The amplitude saturated in the downstream reactions
plotted as a function ofv, which is the modulation frequency of the
concentration of inlet chemical speciesA. As the amplitude, mean
square deviation ofxn at n=120 is adopted. The parameter values
area=1.0 andb=1.0.

FIG. 9. The saturated amplitude plotted as a function of the
selected frequency of the chemical oscillation. The parameter val-
ues area=1.0,b=1.0. The amplitude is measured atn=120.
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relationship between the analysis based on the co-moving
Lyapunov exponent and the present analysis based on the
Fourier method is clearly elucidated. We have finally studied
the amplification of the modulation in the inlet chemical con-
centration. The amplification rate is determined by the
frequency-dependent amplification exponent, which, how-
ever, does not determine the oscillation selected in the down-
stream reactions.

In the present study, we supposed that the system can be
described by amacroscopicequation. This means that the
stochastic fluctuation in the evolution of the concentrations is
neglected. Then, the noise added externally at the inlet

chemical concentration sustains the formation of oscillation
in the downstream reactions. However, intrinsic noise exist-
ing in chemical reactions could also lead to the formation of
patterns. In particular, the possibility of the noise-sustained
formation of patterns in small reaction systems such as cells
remains to be clarified.
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