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Amplification of noise in a cascade chemical reaction
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Networks of chemical reactions have been given much attention recently. However, dynamical aspects of
such networks remain to be elucidated. In this paper, we study a cascade chemical reaction, consisting of a
series of downstream-coupled Brusselators. Along the cascade of reaction, small fluctuations naturally existing
in the concentration of chemical species are amplified. Such amplification of small noise leads to the formation
of chemical oscillations in the downstream chemical species. The amplification rate of small noise in the
concentration along the cascade is studied and the method to calculate the amplification rate analytically is
developed. It is also shown that the nonlinear evolution of the chemical oscillation in the downstream reaction
strongly depends on the frequency of the initial inlet chemical concentration.
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I. INTRODUCTION in time. Thus, if the reaction network is “convectively un-
stable” along the reaction cascades, a noise-sustained struc-

b arl}r:);‘lsov;/ rzy;:r?n;i?i é/(vjltzr;;otr;]\;ecg\r/g g‘ds\:ggt'g%/%ngsvl:]g;rs;:; Etu_re could arise, even without spatial coordinates. In particu-
P y - 58, the noise-sustained formation of patterns in a small

amples of such flow systems have been found in fluid dyy oo system such as cells could be interesting.
namics and nonlinear optigd—3]. The nonlinear evolution In the present paper, we first consider a model of a cas-

of small disturbances in these systems results in the formac-ade chemical reaction and demonstrate that the system
tion of wave patterns and spatiotemporal chaotic motions. Ity < e onvective instability. Although the cascade chemical
the system with convective instability, the amplification of reaction has no spatial coordinate, small disturbances in the

disturbances is observed only in a co-moving frame, WhIIE%nlet chemical concentration are amplified along the cascade.
the disturbances themselves are damped in time. Thereforzln,hen' the problem which we want to address in this publica-

such amplification and formation of patterns are said 10 b ¢ how to determine the rate of the amplification of small
noise sustainedrhe formation of patterns is typically sensi- disturbances along the cascade chemical reaction

tive to the frequency of the upstream small amplitude modu- For the characterization of the convective unstable spatial

lattion. extended systems, the co-moving Lyapunov exponent, which

The basic mechanism underlying such phenomena hag .o o owth rate of small disturbances in a moving frame,
been explored theoretically for relatively simple dynamlcalijas been widely used4]. If the maximum co-moving

systems. Distributed dynamical systems with unidirection_a yapunov exponent is positive while the Lyapunov exponent
coupling are among them. They have been shown to exhibig e qative, small noise applied at the inlet is amplified and
amplification of small disturbances along the unidirectionaline noise sustains formation of patterns. Such noise-
coupling, similar to flow systems. For these systems, cOnsystained amplification can be characterized by the spatial
cepts available in flow systems have been developed such @gapunov exponent8,9]. The spatial Lyapunov exponent is
the co-moving Lyapunov exponep#,5,7 and a pattern for-  the amplification rate of the noise strength along the spatial
mation that is sensitive to the frequency of boundary moducoordinate. The spatial Lyapunov exponent can be calculated

lation [2,6]. . according to the relation between the co-moving and its ve-
Such a flow system could also be found in a cascade Qqbcity [8,9].
chemical reactions or reaction netwofk4], where a flux of In this paper, the spatial Lyapunov exponent is calculated

reactions propagates along the series of successive chemit@Jp”Cmy by applying the Fourier analysis, and the results
reaCtionS. Chemical p|ant COU|d be an example Of them BiOare then Compared Wlth the previous method using the Cco-
logical systems could also provide a variety of examples 0fnoving Lyapunov exponent. Since the concept of the spatial
such flow system$12]. Cascades of chemical reactions in | yapunov exponent is applicable to systems without spatial
cells are found in signal transduction and gene regulatoryoordinate, here we call it the “amplification exponent.” This
networks. Frequency-sensitive cellular response has been OQnaIysis also gives the frequency-dependent amplification
served experimentally13]. Amplification of stimuli infor-  exponent. Then, we discuss the pattern selection by modulat-
mation is one of the important properties of cellular signaling the input chemical concentration.
transduction. Since chemical reaction is a stochastic process, This paper is organized as follows. The cascade chemical
the concentrations of molecular species inevitably fluctuategeaction model is proposed in Sec. I, and the amplification
of small perturbations and the formation of chemical oscilla-
tion are described. In Sec. lll, the convective instability is
*Electronic address: shibata@hiroshima-u.ac.jp characterized by the co-moving Lyapunov exponent. In Sec.
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A chemical species{X;,X5,---, X5} and {Y1,Y,, -+, Y}
which is given by
B

pin AL 2X,+ Y, — 3X,
/<B X,+B—Y,+D (n=1,---,N) 2)

Y2 ¥./( X2 Xn— Xns1

AAAAAAAAAAAAAAAAAAAAA i Xne1—
/<Bl Let x, andy,, represent the concentrations of the chemical

Yn\/ N speciesX,, andY,, (n=1,2,---,N) anda andb be the con-

--------------------- centrations of the input chemical speciésand B, respec-
tively. Then, the macroscopic evolution equations for the
concentration o, andY, are given by

FIG. 1. The cascade Brusselator. The first step chemical reaction
for chemical speciex; and Y, is Brusselator. In thenth step, - 2
chemical reactions amonyg,, andY,, occur according to Brussela- Yn=~X0Ynt+bX,
tor, exceptX,, is synthesized fronx,_, but not fromA.

Xn:Xn_1+Xﬁyn_bXn_Xn (n:l-" N) (3)

with xg=a.
The fixed point of this system is given bgx,y,)

o . . =(a,b/a). This fixed point(x",y") is stable if the condition
IV, the amplification rate of small disturbances is calculated, - 524 1 is satisfied and is unstablelt> a2+ 1. This stabil-
analytically and then compared with the amplification ratejty condition is the same as that of the single Brusselator. If
obtained numerically from the co-moving Lyapunov expo-p>a2+1 and hence the fixed point is unstable, the limit
nent. In Sec. V, the effect of mOdUIating the inlet Chemicalcyc|e emerges in each Component and the phase of the oscil-
concentration is studied. Discussion and conclusions argition propagates from the first reaction to downstream reac-
given in Sec. VI. tions.

If no disturbances exist, except for the perturbations of
initial conditions, and the above stability condition is satis-
fied, the perturbations of initial conditions are damped out
and the concentrations approach to the fixed point. In this
case the Lyapunov exponent is negative. However, even

We start with the well understood nonlinear chemical re-when the system satisfies the stability conditions and hence
action, the Brusselator, which is given by the Lyapunov exponent is negative, if some disturbances ex-

ist at the top of the reaction step, such a disturbance can
grow in the downstream reactions. For instance, consider the
case where the concentration Affluctuates in time. Then

Il. CASCADE BRUSSELATOR

A—X the evolution equation is given by E@®) with
2X+Y — 3X
1 t)=a+ n(t), 4
X+B s Y+D (1) Xo(t) 7(t) (4)
X =, where 7(t) is the Gaussian white noise wity(t))=0 and

(n(t)n(t"))=ds(t-t").
In Fig. 2, the phase portrait of the concentrationsXqf
andY, is shown forn=1,15,30,when weak noise exists in
where,A, B, andD are the chemical species with constantthe concentration of the input chemical spedledHere, the
concentrations, whereas the concentration of chemical spgnean concentrations @ andB area=1 andb=1, respec-
ciesX andY can change in time. tively. Thus, since the stability condition is satisfied, if no
In order to construct a model cascade reaction, consider @isturbances exist, the concentrationsXxgfandY,, eventu-
series of such Brusselators. The first chemical reaction foally approach the fixed point. However, the small amplitude
chemical speciex; and Y, is the Brusselator, given by noise in the concentration oA is being amplified in the
scheme 1. The next chemical reaction for the chemical spedownstream reactiong=ig. 2, n=15) and chemical oscilla-
cies X, andY, is also a Brusselator, b, is synthesized tions develop in the further downstream reactigrgy. 2,
from X, instead ofA. Thenth reaction forX, andY, is also  n=30). In this way, the system is convectively unstable, and

a Brusselator, anX,, is synthesized fronX,_; (see Fig. 1L the chemical oscillation in the downstream reactions is noise
In this way, we consider the chemical reactions amongustained.
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FIG. 2. The phase portrait of the concentration(¥f,Y), (X15,Y15), and (Xsq,Y3g). The values of the parameters are givenaby
=1.0 andb=1.0.

Ill. CO-MOVING LYAPUNOV EXPONENT Therefore, this cascade chemical reaction system shows the
AND PHASE DIAGRAM typical property of convectively unstable systems.
. . - . Figure 4 gives the phase diagram determined numerically.
This convective instability can be characterized by therne parameter points of convectively unstable and absolutely
co-moving Lyapunov exponents(v), which describes the giaple phases are plotted according to the co-moving
exponential growth rate of small amplitude disturbances in dyapunov exponent analysis. The convective instability is

frame moving to the downstream reactions with velogity gpserved in a wide parameter region between the absolutely
[4]. The co-moving Lyapunov exponent has been introducedtaple and absolutely unstable regions.

for the characterization of convective instability in spatially

extended systemigl]. Let (6x,(0),y,(0)) be the infinitesi-  \\; AMPLIFICATION EXPONENT PER REACTION STEP
mal displacement at the first reaction step at the initial time 0 o . _ _
around the fixed point value, ar@Xqq(t), dypq(t) repre- As shown in Fig. 2, weak noise added to the first reaction

sent the displacement at tfiet]-th reaction step at time IS amplified in the downstream reactions. It is interesting to

Here,[ut] gives the integer part aft. Then,\(v) is given by study how the small amplitude noise in the in.put chemkal
affects the behavior of the downstream chemical species. The

1 (%01 (1), By ()] typical amplitgde at thenth step reaqtipn _is given by
A(v) = lim = log 2 PR (5)  O(8%,dy,) ~de™, wherey is the amplification exponent
toe |(6%,(0), y1(0))| per reaction step, which characterizes the exponential growth
of the amplitude as the reaction stefncreases. Sinck(v)
The co-moving Lyapunov exponent for the velocity O is  is the growth rate for the velocity, the growth rate per
the maximum Lyapunov exponent. i(0) is negative and reaction step is given by(v)/v [8,9]. For largen, we have
the A(v) is positive for some, then the system is convec-
tively unstable. IfA(v) <0 for any v, then the system is
absolutely stable. IA(0)>0, then the system is absolutely
unstable. The growth ratey has been called the “spatial Lyapunov
Figure 3 shows the co-moving Lyapunov exponent abougXponent” in spatially extended systerf&9]. The present
the fixed point calculated numerically and plotted as a func-

v=maxA(v)/v. (6)

tion of v. N(0) is the Lyapunov exponent of the single Brus- 5 " '
. . Lo convectively unstable ~ ©
selator at the fixed point. As the_ veIocﬂylncreases)_\(v) absolutely stable
becomes larger than zero and is a concave function. of 4t
04 1 i
03 3 [ Absolutely unstable
02 | <
0.1t %[
—_ 0 T
Z 01 1 € £ %
02 © Absolutely
03 ¢ : stable ¢
0 | I g e X b ST S S 4@
-0.4 05 1 15 2
0.5 a
-0.6 : : : : :
0 0.5 1 1.5 2 2.5 3 FIG. 4. The phase diagram. The parameter points where the
velocity v maximum co-moving Lyapunov exponent is negative are shown by

crosses, whereas the parameter points where the maximum co-
FIG. 3. The co-moving Lyapunov exponent calculated numeri-moving Lyapunov exponent is positive are displayed by circles. The
cally and plotted as a function of velocity The parameter values line b=a+1 indicates the Hopf bifurcation line and the life
are given bya=1.0 andb=1.0. =a’+1-y2a%+1 indicates the bifurcation of convective instability.
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system has, however, no spatial coordinate. Therefore, in thi:
paper we cally the amplification exponent. Notice that Eq.
(6) is correct only for the nonintermittent cagE0]. In gen-
eral, the right-hand side of E¢) gives a lower bound of.

The amplification exponeng can be calculated explicitly
by studying the linearized evolution equation. To do this, the <
Fourier representation of the linearized evolution equation is§:
useful. The Fourier method has been applied for linearizec—
evolution equation of open flow systerfisi—14. Here, it is
shown that this analysis can be applied to obtain the ampli-
fication exponent or the spatial Lyapunov exponent for spa-
tial extended systems.

Let &, and ¢, be small deviations about the steady— state
concentrations ok, andy,, respectively. Then, the linear
evolution equations foé,(t) and ,(t) around the fixed point
of (x,,Y,) are given by

&\ _ (&), (L0 fn-l)
<¢n>_A(¢n>+(o o)(wn_l ’ i
whereA is a matrix given by
b-1 a?
A= b - a2 . (8)

The Fourier series expansions &ft) and ,(t) in the inter-
val [0,T] are given by

©
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FIG. 5. The transfer functiotF(w) plotted as|F(w)| for a=1

andb=2.1, 1.0, 0.5 and 0.1. The amplification exponent per reac-
tion stepy,(w) obtained by solving Eq:3) with Eq. (29) for b=1 is
also plotted as eX@.0y,(w)] (O). Here, we choosa=10.

Flow)=(1,0(iwE - A)‘l(;) (16)

_ iw+a? 17
- w?+(@2-b+ liw+a?

In order to find the amplification exponent per reaction

step, suppose that the white Gaussian noise is added at the

— = i wyt
&= kzz_w En(k)e, ©) top of the cascade, and study the response of the downstream
chemical species. For this, suppog&)=a+ 7(t) in Eq. (3),
" where 7(t) is the white Gaussian noise wity(t))=0 and
It = s W (K, (10) (n(t).n(t ))zdé(t—t ). Then, the power spectrum density of
k=—o0 7(t) is given by
where the frequency, is T d
e Po() = lim ——(|Zo(n)?) =~ (18)
2k Tow 27T 2T
a=—— (k=0,21,22;-). (1) The power spectrum density (t) for the nth chemical
species is given by
The Fourier coefficient&,, and ¥, are
T
1T . Po(w) = lim ——(| =) (19
:n(k):? f (e dt (12 T em
0 Substituting Eqs(15) and(18) into this, it follows that
and d
ot Pa(w) = | Flw) . (20
Wh(k) == f gn(t)e dt. (13
TJo In the present cas¢F(w)| is given by
Then, Eq.(7) leads to at+ w?
(21)

o (EW)_(1 0 En-1<k)>
(ionE A)<~1fn(k))"<o O)(‘I’n_l(k) 14

whereE is the identity matrix. ThuszZ (k) is obtained as
En(k) = Ao En-a(k) (15

with transfer functionF(w),

2 _
| Fw)] (a2- w)?+ w2(@2—-b+ 1)
If |F(w)| is smaller than unity for any, the small distur-
bances damped out at the downstream reactions. On the
other hand, if|F(w)| is larger than unity for some, it is
expected that the small disturbance grows as the reaction
step increases. In Fig. 6F(w)| is plotted as a function ob
(lines), showing that|.F(w)| becomes larger than unity for
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n FIG. 7. The amplification exponent per one step reaction plotted
as a function of.. The growth rates per one step obtained from the
co-moving Lyapunov exponent are shown by circles. The growth
rate given byy=log(|F(w")|)/2 is displayed by a solid line. The
parameter value is given dy=1.0.

FIG. 6. The amplification exponent,=logd,/d/2n plotted as
functions of reaction step.

some values of» depending on the parameter value.

Now we ca_llculate the a_mplification exponent per reactior1app|ying Eq.(6) to the co-moving Lyapunov exponent. In
step. Lety, give the amplification exponent at theh step  ,4er 1o compare the amplification exponents obtained in

[17], which is defined as such ways, both of them are plotted in Fig. 7, showing good
1 agreement with each other. Thus, the present analysis yields
o= — log(d,/d), (22)  the amplification exponent per reaction step or the spatial
2n Lyapunov exponent for spatial extended systems.
in which d,, is the dispersion of,(t), which is obtained by According to this analysis, the system is convectively un-

stable if| F(w")

is larger than unity. This condition gives the

_ (7 bifurcation points of the convective instability. In the present
dn = (6n(1)6n(1) = f_w Pr(w)dw. (23 case|F(w")|>1 if the inequality
Thus, the amplification rate, is calculated by substituting b>a’+1-vy2a%+1 (28)

Eqgs.(20) and(23) into Eq.(22). Then we have is satisfied. The bifurcation line given by E@8) is plotted

1 o 1 in the phase diagram in Fig. 4. The bifurcation line obtained
"= o0 |09f F()[*"do - on log 27. (24)  in this analysis is in good agreement with the bifurcation line
‘°° obtained numerically according to the co-moving Lyapunov
In Fig. 6, the amplification exponeng, is plotted as a €Xxponent analysis.
function ofn. For the calculation of,, substituting Eq(21) Before concluding this section, we should note the fol-
into Eq. (24), we adopted a numerical integration method.lowing two points. The amplification exponent, can be
The amplification exponent;, approaches to a particular Negative for some smafl, even when the system is convec-
value asn increases. For sufficiently large the maximum  tively unstable. Thus, the induction steps, where the ampli-
value of | F(w)| dominates the amplification. Thus, the am- tude growth toO(1), cannot be obtained in a straightforward
plification exponent approaches way. The second point is th&F(w)| can give the frequency-
dependent amplification exponent. We shall study this fre-
)2, (25 quency dependence in the next section.

y=lim y,=log (| F(")
n—oo

where
V. MODULATION OF THE INLET CHEMICAL

|F(w")| = maxF(w)|. (26) CONCENTRATION

In the present casey’ is calculated at The effect of the boundary modulation on flow systems
has been studied theoretically and experiment@|g]. The
(0)2=-at+a? J2a%b + 2b— b2. (27) studies have shown that attractors can be selected by control-
ling the frequency of boundary modulation. In the present
In this way, the amplification exponent is obtained by substi-analysis, the transfer functiof(w), shown in Fig. 5, implies
tuting Eq.(21) into Eq.(25) with this »". the amplification exponent that depends on the frequency of
In Fig. 7, the amplification exponent per reaction step modulation of the input chemical concentration. Thus, such a
given by Eq.(25) is plotted as a function o (solid line).  frequency-dependent amplification exponent could provide
The amplification exponent is also obtained numerically bysome information on the effects of the boundary modulation.
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w40 30

A. Frequency dependent amplification exponent

Let us investigate the situation where the concentration of 1.2
chemical specieé\ is oscillating in time with frequency.
Therefore, we consider the evolution equation 8).with

Xo(t) =a+ §sin(wt), (29)

where ¢ is the amplitude of modulation and is its fre-
quency.

The behavior of the downstream reactions could depen
on the values o6 andw. Here, we only study the case where
6 takes a small value, in order to pay attention to the fre-
quency dependence of pattern dynamics. Therefore, hereafte
we fix the value ofs§ to be 0.01.

First we study the amplification exponent of small ampli-
tude modulation numerically by solving the evolution equa- inlet frequency o
thn Eq.(3) with Eq. (29) [18]. In order to measurg t_hezam- FIG. 8. The amplitude saturated in the downstream reactions
plification exponent, the mean square deviat{@r;)=(x) . o )

P plotted as a function ob, which is the modulation frequency of the
—(Xn)" is calculated foiX,. Here,(-) means temporal average concentration of inlet chemical speci@s As the amplitude, mean
over a sufficiently long time interval. Then, the amplification square deviation ok, at n=120 is adopted. The parameter values
exponent is given byl7] area=1.0 andb=1.0.

(%)
Vn(w)=ﬁ|09 53 (30) VI. CONCLUSION

—
T

elected frequency
=)
o0

[
7

g
o

selected frequency —6—

0.2 04 0.6 0.8 1 1.2 1.4

In Flg 5, for Comparing the amp|ificati0n exponent obtained In this paper, we have studied a cascade chemical reac-
numerically with the transfer functiof(w)|, exd2.0y,(w)]  tion, which consists of a series of unidirectionally coupled
is plotted as a function of the frequenay for sufficiently  Brusselators. It has been shown that the small disturbances
large n (heren=120). The frequency-dependent amplifica- are amplified along the cascade and the noise-sustained
tion exponent obtained numerically is in good agreementhemical oscillation is developed in the downstream reac-
with the transfer function. Hence, the transfer functiBfw) tions. This is the typical properties of open flow systems,
gives the frequency dependence of the amplification expocalledconvective instabilityThe co-moving Lyapunov expo-
nent per reaction step or the spatial Lyapunov exponent fofient and the amplification exponent per reaction ¢sgptial

spatially extended systems. Lyapunov exponentare the characterizations of the convec-
tive instability. In the present paper, we have focused on the
B. Selection of oscillation in the downstream reactions amplification exponent per reaction ste@the spatial

. . . Lyapunov exponeft The exponent obtained analytically is
As the reaction step increases, the amplitude of the chem shown to be in good agreement with that obtained numeri-

qal o§C|IIat|0n grows and reaches saturation due to the no sally from the co-moving Lyapunov exponent. Therefore, a
linearity. For the frequency of the oscillation at the down-

stream reactions a particular value is selected. This nonlinear

evolution of chemical oscillation depends strongly on the Ll
frequency of the oscillation in the inlet chemical concentra- o
tion. In Fig. 8, the frequency selected at the downstream 1r OQ)Q)
reactions is plotted as a function of the modulation frequency’g 09 | 0 Oy,
in the inlet chemical concentration. In Fig. 9, the amplitude .5 ) %%
saturated at the downstream reactions is plotted as a functio & g | Qg
of the frequency of the oscillation selected in the down- E o] %ng
stream reactions, indicating the almost one-to-one correspon:@ 0.7 Q?cb
dence between them. g %
The selected frequency shown in Fig. 8 is one of thef 0.6 D
harmonic components of the modulation frequeacyf the « Oooo
inlet chemical concentration. It may be interesting to ask 05 r O
what determines the frequency of the oscillation selected a 04 ) . ) L, ©
the downstream reactions. Here, we only note that the " 04 0.6 0.8 1 12
fre_quency-dependent ampllflqatlon exponent does not deter Selected frequency
mine the frequency selected in the downstream reactions. In
other words, even if [F(€w)|>[F(mw)|, (¢#m,€,m FIG. 9. The saturated amplitude plotted as a function of the
=1,2,3;-), this does not necessarily mean that the fre-selected frequency of the chemical oscillation. The parameter val-
quencyfw will be selected. ues area=1.0,0=1.0. The amplitude is measuredrat 120.
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relationship between the analysis based on the co-movinghemical concentration sustains the formation of oscillation
Lyapunov exponent and the present analysis based on tlie the downstream reactions. However, intrinsic noise exist-
Fourier method is clearly elucidated. We have finally studiedng in chemical reactions could also lead to the formation of
the amplification of the modulation in the inlet chemical con-patterns. In particular, the possibility of the noise-sustained
centration. The amplification rate is determined by theformation of patterns in small reaction systems such as cells
frequency-dependent amplification exponent, which, howremains to be clarified.
ever, does not determine the oscillation selected in the down-
stream reactions. The author is grateful to K. Fujimoto and S. Ishihara for
In the present study, we supposed that the system can imulating discussions and to A. S. Mikhailov for critical
described by anacroscopicequation. This means that the reading of this manuscript. The author gratefully acknowl-
stochastic fluctuation in the evolution of the concentrations idges the support from the Alexander von Humboldt Foun-
neglected. Then, the noise added externally at the inledation(Germany.
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