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Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators
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We study the existence and stability of phase-locked patterns and amplitude death states in a closed chain of
delay coupled identical limit cycle oscillators that are near a supercritical Hopf bifurcation. The coupling is
limited to nearest neighbors and is linear. We analyze a model set of discrete dynamical equations using the
method of plane waves. The resultant dispersion relation, which is valid for any arbitrary number of oscillators,
displays important differences from similar relations obtained from continuum models. We discuss the general
characteristics of the equilibrium states including their dependencies on various system parameters. We next
carry out a detailed linear stability investigation of these states in order to delineate their actual existence
regions and to determine their parametric dependence on time delay. Time delay is found to expand the range
of possible phase-locked patterns and to contribute favorably toward their stability. The amplitude death state
is studied in the parameter space of time delay and coupling strength. It is shown that death island regions can
exist for any number of oscillatold in the presence of finite time delay. A particularly interesting result is that
the size of an island is independentNfwhenN is even but is a decreasing functiondfwhenN is odd.
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[. INTRODUCTION and other continuum systeni$2]. One of the most popular
] ) of the discrete models is the “phase only model” that arose
The emergence of self-organized patterns is a commoftom the pioneering contributions of Winfrgé] and Kura-
feature of nonequilibrium systems undergoing phase transinoto and co-workergl3,14. This model is valid as long as
tions. Examples of such patterns abound in nature ranginghe coupling between the oscillators is assumed to be weak
from intricate mosaic designs on a butterfly wing, vortexso that amplitude variations can be neglected. When the
swirls in a turbulent stream to synchronous flashing of fireaveak coupling approximation is relaxed and amplitude varia-
flies [1]. The study of pattern formation and self- tions are retained the system is found to admit new collective
synchronization using simple mathematical models consiststates such as the amplitude death sthfe-17, chaos, and
ing of coupled differential equations has therefore been amultirhythmicity [18—21. This strong coupling model has
active area of research spanning many scientific disciplinegeceived a great deal of attention in recent times
For example such models have been employed to examirld1,17,22—-23 The importance of time delay in coupled os-
the collective output of arrays of lasef,3], coupled mag- cillator systems gnd its effect on their coII_ectlve dynamics
netrons[4], Josephson junctiori§], coupled chemical reac- has been recognized for a Ior_lg time. In particular, there have
tors[6,7] and electronic circuitg8]. Rings of oscillators have P€en a large number of studies devoted to the study of time
also been useful for modeling biological oscillatiojgs1g ~ d€lay coupled phase-only modg25-34. More recently, the
and simulation of phase relations between various animajt’oNd coupling model has also been generalized to include
gaits[11]. These simple discrete moddlssually composed proplagatlon time delllay{s_BS—SEj.'l,IA _numbr(]ar of mterestm?
of coupled limit cycle oscillatopsare amenable to some €S ts regarding collective oscillations have emerged from

. i : . .~ this generalized time delayed model, some of which have
straightforward analysis and also direct numerical solut|on%een experimentally verifief89—41

phartlculatr)ly wpen t.ne nun;)ber of oscnlatlors IS s.malfl. When Our present work is devoted to further investigations and
the number of oscillators becomes very large it is often ConLlnderstanding of the generalized time delay coupled model.

venient to go over to the continuum limit of infinite oscilla- \1 o<t of the past investigations on this model have been re-
tors and model the system with a partial differential equationgiited to collective states emerging fragtobal coupling

Examples of the latter are reaction-diffusion-type mathematiy, 1y the oscillators, also known as the mean field approxi-
Ca_" equations, —such as the tlme-dependent 9°mpleﬁwation. We have chosen to study here the equilibrium and
Glnzburg-.Landau equatlc(rCC_-:-LE), which have be<_an vwdely stability of collective modes emerging from a time delay
used to simulate the dynamics of pattern formation in fIU|dsCoupleol system of identical oscillators in which the coupling

is local and restricted to nearest neighborEhe choice of
this model is motivated by several considerations. From a
*Present address: Center for Neural Science, New York Univerbasic studies point of view the model offers us an opportu-
sityy New York, NY 10003. Electronic address: hity to compare and contrast the properties of the collective
ramana.dodla@nyu.ed(lhe author's name appeared earlier as D. states of the local coupling geometry to that of the globally

V. Ramana Reddy. coupled states. The model further permits a parametric study
"Electronic address: abhijit@ipr.res.in of the influence of the number of oscillatdkson the stabil-
*Present address: EduTron Corp., 5 Cox Road, Winchester, MAty and existence properties of the equilibrium states. In the

01890. Electronic address: glj@rcn.com limit of large N the model also has close resemblance to the
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continuum CGLE and it is of interest to delineate the impor-dispersion relation in Sec. Ill and proceed to use it to delin-
tant differences in the collective properties of the two sys-eate the possible existence regions of the phase-locked pat-
tems. From a practical point of view our model has greaterns both in the presence and absence of time delay. Section
relevance for many physical systems including coupled magty is devoted to a linear stability analysis of these states in
netrons, study of collective phenomena in excitable mediagrder to identify their actual existence domain. In Sec. V we
coupled laser systems, and small-world networks. For eXpriefly look at the stability of the origin, which is the exis-
ample, an interesting study on the role of the geometry of thgance domain of the death state, as a function of the time
coupled magnetrons on their rate of phase locking was madgg|ay parameter and the coupling strength. Our results are

by Benfordet al. [4] who experimentally demonstrated pro- g, mmarized and their implications discussed in the conclud-
duction of higher microwave power at gigawatt Ievelsing Sec. VI.

through phase locking. Our analysis of nearest neighbor
coupled oscillator array could provide important clues on not
only the effect of circular geometry but also on the effects of
time delay in such a geometry. A ring of coupled oscillators Il. MODEL EQUATIONS

is also commonly encountered in a variety of biological \ye consider a one-dimensional closed chain of delay
clocks [9]. For simplicity of analysis most mathematical oy pled identical limit cycle oscillators that are close to a

studies of these rings have been confined to an examinatiQQ} hercritical Hopf bifurcation. Assuming the coupling to be
of their phase evolutions. Our model analysis can provide )near and of the nearest neighbor kind, we can write down

extended understanding of these biological clocks with the, o fo)10wing set of model equations to describe the time
inclusion of time delays and amplitude effects. Another iN-ovolution of the oscillator states:

teresting and more recent potential application of our work is

in the rapidly developing area of small-world networks d )

where the simplest studied configuration is often a ring of El = (1 +iwo = [1h]%) i + Klgaa(t = 7) = 95(0)]
oscillators with nearest neighbor connections dominating

[42]. A recent study has explored the role of time delays in a + K1t = 7) = (0], (1)

ring of connected oscillators with a special focus on small-
world networks[34]. We believe that our present study of the
ring configuration could help provide further insights in this
direction with the incorporation of amplitude effects.

The existence of equilibrium states of locally coupled os-

1,... N, wherey;(=X;+iY;) is the complex amplitude of
the jth oscillator,K>0 is the coupling strengthz=0 is a
fixed time delay, andvg is the natural frequency of the un-
coupled oscillators. The basic nonlinear oscillator we have

chosen here is simply the normal form of the supercritical

tcrllllatort_systetrr?sdha3's4be<—i-/|;|/ studied :n the past u?;]ngd groduplopf bifurcation equation truncated to the third order. It is
eoretic method#43,44. We use a plane wave method an also known as the Stuart-Landau oscillator and has been ex-

investigate both the existence and stability regions of the( : ; : ;
oo - nsively used in the past as a model equation for studyin
equilibrium states of the coupled system. We derive a generqf y P a ying

. , ; ) . Tionlinear phenomena in fluids, lasers, and Josephson junc-
q|sperf|?n re]!atlon thatbcan ]E)e us?ddto de_ltle;mlneTre eqﬁ'}“ﬁons. For example, in the absence of time dglay0), the
e ncos a0 Sel of equatonl) hve been Used (o tudy te
librium states. Using this technique we delineate the exispolJpIed wakes ansing from a flow behl_nd an array of equally
tence regions. of the various equilibrium phase-locked pat§paced parallel c_yl|nderp45].. Anothgr_mterestmg connec-
terns of the coupled system. In the limit of smidland in the tion to past work is 'ghe continuum limit for.:O,.where one
) : . .~ can introduce a lattice spaciray set ¢ =y(ja) in Eq. (1),
absence of time delay our results agree with past findings, 5 e .
but we also find new equilibrium states that have not beerﬁescaleK asK/a ,_and then lea—0 with ja—x. Th|s re-
noticed before. With time delay the existence regions chang uces Eq(1) fqr 7=0 to the well-known complex Ginzburg-
in a significant manner and in some of the regimes we ob- andau equation
serve multirhythmicity. Finally, we also examine the nature 3 (x,1)
of the death state in our system in the presence of time delay. It
Although time delay induced death state in locally coupled
identical oscillators has been numerically observed in one oThe CGLE has been extensively investigated in the past for
our past studie$35] there has been no systematic analyticits rich equilibrium states and for their applications to a va-
investigation of this phenomenon. We carry out such arriety of physical situation$46,47. In the presence of time
analysis here and delineate the existence of the death regiaelay it is not meaningful to take the continuum limit since
as a function of the time delay and coupling strength parama— 0 would also make the propagation time tend to zero.
eters. Our analysis yields an interesting result in that the siz®ne can instead take the so-called thermodynamic limit by
of the death islandis found to be independent df (the letting N—o< and the chain length — oo, while keepinga
number of oscillatorswhen N is even but is a decreasing =L/N fixed. In such a limit the time delay parameter remains
function of N whenN is odd. finite and meaningful. The thermodynamic limit also pre-
The paper is organized as follows. In the following sec-serves the discre{@n space character of the evolution equa-
tion we present the model equations and briefly discuss thetions and therefore the corresponding equilibrium states can
similarities and differences with the continuum model CGLdiffer in character from those obtained from a continuum
equation. Using the plane wave method we next derive thémit. We will discuss some of these differences in the fol-

2

= (1 +iwo = [P D7) A1) + K@'
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lowing section where we derive and analyze the dispersior o cos(wr)=1.0 on cos(wr)=0.5
relation for plane waves for our discrete set of equatidns 9
3n/2 -
I1l. DISPERSION RELATION FOR PLANE WAVES g 7
We seek plane wave solutions of E@d) of the form /2 ’ -
1
W; = ReUkaten (3) 0
! ’ K K 5
wherea is the distance between any two adjacent oscillators 2. cos(wt)=—0.5 on cos(wt)=—1.0
andk is the wave number such thatr<ka=< 7. The values h, b
of ka, which define the phase difference between adjoining 32 - 32 - 7
oscillators, are further constrained by the periodicity condi- _ o
tions inherent in a closed chain configuration. Sinkg = E L 1= T |
must be identical taj, g_nd z_,//?(must be: idgntipal taky, we L { w2l |
must satisfy the conditio@N8=1. This implies thatNka hy i
=2mm, m=0,1,... N-1, that is, 0 0
0 K 5 0 K 5
2
ka= " m=0,1,...N-1. (4) FIG. 1. Allowed (unshadeyl and forbidden (shadeg wave

modes in the presence of time delay for various values of«e9s
These discrete values k& are one of the defining properties
of the various phase-locked states of the coupled set of os$nodel has an upper cutoff &a=2.0. ForK>1/4, cutoff

cillators. Further characteristics of these states are describedgions also appear for the discrete model and are given by
by a dispersion relation which can be obtained by substitutthe expression

ing Eq. 3 in Eg. (1) to give iw=1+iwy—R?

+2K[cogka)e - 1]. This leads to f1=cos(1 - 1/X) <ka< f,= 27— cos’(1 - 1/X).
= wy— 2K sin(wr)cogka) (5) As can be seen from the above expressionKorl/4 the
' anti-phase-locked stat&a= ) is now no longer a permitted
R2=1- K + 2K codwr)cogka) 6) state. With the introduction of time delay, the existence re-

gion is not only a function oka (for a given value oK) but
Equationg’5) and(6) which constitute the dispersion relation also depends om which satisfies the transcendental equa-
for plane waves of our model equations can be compared ttion (5). This brings about a significant modification of the
the corresponding dispersion relation obtained from theexistence domains and raises the interesting possibility of
CGLE, where we can substitutes(x,t)=R-g_explikx  enabling many of the previously forbidden modes to exist.

—iwcgt) in EQ. (2) to get Since the dispersion relation now has a transcendental char-
acter it also introduces additional branches of collective os-
WcL = Wo; (7 cillations. To illustrate some of these modifications we con-
sider a few simple examples. LE=cogw7). By choosing a
Ris =1 -K(ka)?, (8)  value forC and in turn definings=sin(w7), we can immedi-

ately get an expression fas, and the resultant equation for
R? defines the stability regions.
Case (i).First let cosw7)=1. This givesw=w,, and the
Square of the amplitude ag=1-2K+2K cogka). This also
leads us tar=2nm/wg, N=0,1,2,... This case also includes
the special case af=0. SinceA; >0 for the existence of the
solutions, it is easily seen that the bounding regiotKinka)

where we have replacdd by its scaled value. Equatiolig)
and(8) can also be recovered from EqS) and(6) by set-
ting 7=0 and taking the long wavelength limit &a<1. As
we can see there are significant differences in the two di
persion relations. While Eqg5) and (6) are valid for any
arbitrary value oNN, Egs.(7) and(8) are strictly valid only in
the limit of N— . The spectrum oka values are therefore : X
continuous for the latter whereas in the former they assumBlane is defined by

discrete values that are determined by the magnitudd. of f,<ka<f,=2m—fy,
For =0, Eqgs.(5) and (7) become identical, but Ed6) re-
duces to where f;=cos(1-1/X) is the forbidden region. Sincg

. does not intersect with thi€ axis at any finiteK, the region
RE=1-2K+2K cogka) =1 - 4K sif(kal2). (9  gyists for allk>1/4. In particular, the in-phase state exists
Using R2>0 as the defining condition for the possibility of for all K>0, and the anti-phase-locked stela=m) no
having a phaselocked state, we see that this region is consitinger exists ifK >1/4. This forbidden region is illustrated
erably reduced in the case of the CGLE as compared to thi& Fig. 1(a).
discrete model equations for any given value of the coupling Case (ii). Let cofwr)=1/2. This gives the dispersion
parameterK. For example, aK=1/4, thediscrete model relation w=wy—3 cogka). The corresponding delays are
allows all modes from 0 ter to exist, whereas the continuum defined by 7=(2n+1/3)7/[wy—+3K cogka)],n=0,1,
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FIG. 2. (Color onling Dispersion relation between allowed wave numbers and the corresponding frequency shovgngaadually

increasedK=1 andwy=10. A range ofr values is forbidden.

2, Thesquare of the amplitude is given by,=1
—2K+K cogka). Let g;=cos*(2-1/K). The curveg, as-
sumes values foK between 1/3 and 1. IK>1, A,<0 for
any ka. So all the modes are forbidden K>1, and the
region betweeK=1/3 andK=1 as defined by

g1<ka<g,=27m-g;

=(2n7 - cos?! C)/[wy— 2KScogka)] if S<O.
The curve that defines the boundary of the forbidden region
is given byj;=cos%(1/S-1/2 KS) whenS+0. The case of
S=0 is the same as casgg studied above.

Apart from these special cases, the general existence re-
gions are complicated functions ké, K, and 7. They need

to be determined numerically by simultaneous solution of

is also forbidden. In particular the in-phase solutions do nogqs. (5) and (6). To demonstrate the constraint imposed by

exist if K>1 and the antiphase solutions do not exist if
K>1/3. This region is illustrated in Fig.(f).

Case (iii). Let cofw7)=-1/2. This gives the dispersion
relation w=wy+ V3 cogka). The corresponding delays are
defined by 7=(2nx1/3)7/[wy+\3K cogka)],n=0,1,
2,... . Thesquare of the amplitude is given =1-2K
-K cogka). Let h;=cos(1/K-2). If K>1, A;<0 for all
ka. SoK>1 is the forbidden region. Betwedf=1/3 and
K=1 the region defined by

h1>ka> h2=27T_h1

Eqg. (5) we have plotted its solutiofiw vs ka) for various
values ofr and for a fixed value ofvy andK in Fig. 2(a).
When 7=0, the allowed range ofr is given by
abgka) <cos(1-1/). So fork=1, the phase-locked pat-
terns that have wave numbers less thdB are allowed, and
all of them have an identical frequency. Ass increased the
frequency of oscillation decreases for smalland the dis-
persion relation acquires a nonlinear parabolic character. As
7 is further increased, depending on the actual valu& of
there are bands i values where no modes exist. The
shrinking and disappearance of the dispersion curvkaat
=0 beyondr=0.125 up tor=0.2 in Figs. 2a) and 2b) illus-

is forbidden. The inequality SignS are reversed in this Cas@ate this phenomenon_ One also notices from F(g) fhat

because the curvature bf is different from that ofg,; or f;.
In particular, the in-phase solutions are forbiddeK i 1/3
and the anti-phase solutions are forbiddeK it 1. This re-
gion is illustrated in Fig. (c).

Case (iv).Let coswr)=-1. This results in the dispersion
relation w=wq just as in cas€i). This case corresponds to
=(2n7m+1)7/ we,n=0,1,2,... . Thesquare of the ampli-
tude is given byA,=1-2K-2K cogka). SinceA,=1 atka
=, in contrast to the three previous cases, the anti- phas
locked solutions exist for all values ¢f. At ka=0, A,=1
—-4K. So the in-phase solutions are forbidden forkal: 1/4.
The forbidden regions wheld>1/4 are defined by

iy >ka>i,=2m—i,

wherei;=cos*(1/2K-1). This region is illustrated in Fig.
1(d). In fact, we can derive a general expression for the ex-
istence curves by choosing any arbitrary valueGoiThis in
turn defines the frequencies as= wy,—2KS cogka). After

some simple algebra, the corresponding delays are given as

=

7=(2nm+cos?! C)/[wy— 2KScogka)] if S=0,

at higher values ofr the dispersion curves become discon-
tinuous and have bands of forbiddka regions.

IV. STABILITY OF PHASE-LOCKED SOLUTIONS

We now find the stability of the equilibrium phase-locked
solutions discussed in the preceding section by carrying out a
linear perturbation analysis. Let

(1) = [Re ¥ + uy(1) ], (10)
wherek=0,1, ... N-1. Substitution of Eq(10) in Eq. (1)
yields in the lowest order the dispersion relation discussed in
the preceding section. In the next order, where we retain

terms that are linear in the perturbation amplitude, we ob-
serve that

+[2Ruy(t) + Ree? ¥t ()] ke + -
(11)

2= -

Using the above, we obtain the equation
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P8O~ (1 4~ 2R~ 2K (1) - AT

Jat
+ K[ujq(t - rekd+ Uj_q(t - 7)e k] (12
and, taking its complex conjugate,
au(t _ ,
—l:;t(—) = (1 —iwp— 2RE — 2K)u;(t) — Ree 2 Kty (t)
+K[Ua(t- De™ @+ - D). (13)

Multiply Egs. (12) and(13) term by term bye/(9% make use
of the identities

Ujap(t — 7)ekagliad) = . (1 - p)giEDadgtikeaia  (14)
and
Ujil(t _ 7_)eiikaei(jqa) :Ujﬂ(t _ 7_)ei(jil)qaeii(k+q)a’ (15)

and sum ovej=0,1,2,... N-1. Introducing adjoint ampli-
tudesw,(t) andwy(t) by the definitions

N-1
[Wq (1), T ()] = > [u;(t),uj (1) 119, (16)
j=0
we obtain the set of coupled equations
—q—dvtvjt(t) = (1 +iwp— 2RE — 2K)w(t) — RE™ iy 1)
+ 2K cod (k- qg)ajwy(t—7) (17)
and
—q—dv(vjt(t) = (1 ~iwp = 2RE — 2K) () — Ree 2wy (1)
+ 2K cod (k + g)aJwy(t - 7). (18)

PHYSICAL REVIEW E 69, 056217(2004)

A2+ (g + a)\ + (a3, - RY) =0, (24)

where a;=2R?-1+2K—-i(wy—w)-2K cog (k—q)aje M7,
a,=2R?— 1+ 2K +i(wy— ) - 2K cog (k+q)aje M),

It should be noted that the perturbation wave numloers
are once again a discrete set and from the periodicity require-
ment they obey the relation

2
ga=m—, m=0,1,...N-1.
N
Thus in our stability analysis any pattern corresponding to a
given value oka, we need to examine the eigenvalues of Eq.
(24) at each of the above permitted valuesqgaf We now

proceed to discuss the stability of the various phase-locked
patterns both in the absence and presence of time delay.

A. Stability of phase-locked patterns in the absence
of delay

In the absence of time delay, the eigenvalue equafdn
can be solved analytically to give

A=1-2R?2-2K
+ 2K cogka)cogqa) + V4K? sirf(ka)sir?(ga) + R*.
(25)

The real parts of the eigenvalues of E24) will be negative
if a,+a,>0 anda;a,—R*>0 simultaneously. The first of
these conditions can be simplified to give

a;+a,=2[1-2K{1 - cogka)[2 - cogga)]}] >0,

(26)
and the second condition can be simplified to give
a;a, - R*=[1 - cogqa) |4K[K{4 cog(ka) - 2 cogka) - [1

+cogqga)]} + cogka)] > 0. (27)

In order to perform the stability analysis, we assume soluin the following, we use these two conditions, or, in the

tions of the form

[wq(t),Wy(1)] = [ce . Te e, (19)
which yield the set of coupled equations
C,c+RX=0, (20
RiXc+CT=0. (22)
In these equations, the quantiti€s are given by
C.=A—[1#i(wp— wy) — 2RZ - 2K]
- 2K cod(k + q)aje” ke, (22)

simplest cases, the eigenvalue equation itself to determine
the stability.

1. In-phase patterns (k0 mode)

From the preceding section tlke=0 solution is given by
w=wy and R=1. Substituting these in Eq25) above and
settingk=0 we get

-2K[1-cogqa)]<0
-2-2K[1-cogga)] <O0.

Thus the plane wave solutidﬁj(t):e‘wot, which is nothing
but an in-phase locked solution of the coupled identical os-
cillators, is stable forr=0 for all values ofwy,.

The eigenvalue equation is obtained from the determinantal

condition for Eqs(20) and(21), namely,
C.C.-R!=0. (23

2. Antiphase patterns (ka7 mode)

The equilibrium pattern in this case consists of adjacent
oscillators remainingr out of phase at all times and oscil-

This can be expanded to be written in the form of the fol-lating with the same frequency, The amplitude of the

lowing characteristic equation:

oscillations is given by
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R2=1-4K. on e k=
As discussed in the preceding section, the condiidr-0 i + — + - +_
permits the existence of this mode in the regiorkef 1/4.
However as we will see below, using conditio(&6) and o | i
(27), these permitted antiphase states are linearly unstable for c * - +
any arbitrary number of oscillators. Insertikg=7 in Egs.
(26) and(27) the conditions simplify to i 1
l 0 1 1 1
K<mino—/——— 28 0 2
2[3 - codga)] (28) ka g
and FIG. 3. The contours o&;+a,=0 (thin liney and that ofa;a,

—-R*=0 (thick lines. The thin + and - signs indicate the sign of
a; +a, in the connected regions bounded by the thin curves, and the
K> maxs_—, (290  thick signs indicate the sign af;a,—R* in those bounded by the
cogqa) thick curves.
where thega values are to be determined as per the prescrip-
tion discussed in the preceding section. As simple examples, - cogka)
for N=2 the only permitted values afa are 0 andw and K<
. . 2[2 ka) — ka) -1
from Egs.(28) and(29) above, we arrive at the requirement (2 cos(ka) - coska) - 1]
thatK <1/8 andK>1/4, which is not possible. Hence the This stability region is plotted in Fig. 4. In the limit of

mode is unstable. Su_ch co.nc.imons. were previously ob;amed_}oo, a continuous range d&fa modes are accessible, and the
by Aronsonet al.[16] in their investigation of the collective

o . system truly possesses infinitely many stable phase-locked
states of two coupled limit cycle oscillators. In fact, the ar- Y y P y y b

i b tended t bit s states wherK <K”. The stability of these phase-locked so-
gument can be extended to any arbitrary elkeaince lutions is one important result of our paper. Note that all

5 - co€qa) < 2[3 - cogqa)] phase-locked patterns with wave numbers betwe&h and

3m/2 are unstable. We also note from Fig. 4 that for a given

for all values ofga and hence the condition®8) and(29)  value ofK it is possible to have more than one stable state
cannot be satisfied simultaneously for any valueKofThis  corresponding to different values & that lie in the two
implies that the antiphase states, characterizekasyr, are  stable regions. In the limit oN—o such a multistability

*

=K.

(30)

unstable for any arbitrary value of evéh phenomenon can occur over a continuous rangeasfalues
spanning the stable regions. A numerical example of the mul-
3. Other phase-locked pattern > 0) tistability of some of these modes is illustrated in Fig. 5 for

Another interesting phase-locked pattern is #vem/2 N:5(_)_oscillators at a fixed value &=0.4. By giving initial
mode. It can be shown by using the conditions discussegonditions close to the modeka=2/50, 4m/50, and
above that this pattern is also always unstable. However, §7/50, the corresponding phase-locked solutions are real-
large number of other modes whose wave numbers are clodged. ) ] ] o
to either O or 2r are likely to be stable. They coexist with the ~ Now we address the following question. What is the mini-
in-phase stable solutiortga=0). The relationg26) and(27) mum number of oscillators for which a second phase-locked
provide sufficient conditions to find the stability of any given

mode. The contours df; +a,=0 anda,;a,—R*=0 are given, 5
respectively, by

ga={cos’[2 - (2K - 1)/2KC],
27— cos 2 - (2K - 1)/2KC]},

1
1]
I
|
1
1
1
1
1
1
i
1
|
1
1
1
1

K
ga={cos{C(1/K-2+4C)-1],
27— cos{C(1/K - 2 + 4C) — 1]},
where C=cogka). These curves are plotted in Fig. 3 figr
=0.4. We see that there is a large rangekafvalues that 0

satisfies the condition®6) and(27). For a given numbeN 0 /2 - 31/2 on
of oscillators if theka values fall in this range then the cor- ka

responding phase-locked patterns are stable x3doés inter-

sections of the curve,a,~R*=0, which are closer to 0 and  FIG. 4. The stability region of the phase-locked stasfsaded
2m provide boundaries oK below which the modes are region which is belowk =K") plotted in(K,ka) space. The left half

stable. By settingja=0 in Eq.(27), we obtain the condition of the dashed curve i§, and the right half isf, as drawn in Fig.
on K for stability as a function oka: 1(a).
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Vra,
.
.....

A 0 T 2 0 T 2

o
(=]

FIG. 6. The in-phasé&a=0) locked frequencies and amplitudes
represented by Eql) at K=10 andwy=10. The dashed portions
represent the unstable branches for the casd=0? and the con-

08 tinuous lines represent the stable branches.

permitted values ofja and also confirm the existence of the
e modes by an actual integration of the original equations. We

PHASE-LOCKED PATTERNS AND AMPLITUDE DEATH.. PHYSICAL REVIEW E 69, 056217(2004
show the stablgcontinuoug and unstable(dashed lines
branches of these two solutions in Figs. 6 and 7. A stable

ka=0 X
4
0.5
3
5 0
2
-0.5
1
0
10 20 30 40 50
i
in-phase branch emerges fromr0 and its amplitude be-

FIG. 5. Multiple stable phase-locked patterns f+50 at w, comes 0 while its frequency is finite showing a supercritical
=10 andK=0.4 in the absence of time delay. The real parts of theHopf bifurcation. The first branch of the anti-phase-locked
complex vectorZj(t) are plotted in gray scale. state emerges from zero again in a supercritical Hopfr &s

increased multiple Hopf bifurcation points are seen. Such

pattern (the first one being in-phasean become stable? Stability of the in-phase and antiphase oscillations were ear-
Since the permissiblka values are related to the number of lier studied by us experimentally using coupled electronic

oscillatorsN in an inverse fashion due to the periodicity 0Scillators[40]. _ _

requirement[see Eq.(4)] we need to determine the maxi- AS @ second illustration, we consider the caséNsf10,
mum stableka in order to find the minimum criticaVl. Since ~ 7=7/ wo [i.e. cogwr)=-1.0, whose equilibrium existence
K=K* makes an intersection &b=1/2 andka=3=/2, the domain we have discussed earlier as aaggin Sec. lIl. In

second stable phase-locked pattern that could emerge at tHigrticular we have noted that the= state is a permitted
point will have equilibrium state. To examine its stability we observe that we

need to examine the eigenvalues fga=m(2#/N), m
ka= m2_77 _T =0,1,... N-1. In Fig. 8 we have plotted the real part of the
N 2 eigenvalues for all these perturbation wave numbers. We see
that they are all negative, which indicates stability of the
HenceN=4 for a second phase-locked pattern to ever bef:)attern. In fact, in this case, due to the symmetry of the
come stable. Thus fdi=2 or N=3 coupled identical oscil- .n5r4cteristic equation we can predict stability for ail higher
lators we will only have in-phase oscillations as stable oscily 5 es ofN as well with the eigenvalues of all additiorga
lations and there will not be any other stable phase-locked) es falling on the dotted line shown in the figure. The
states. The minimum number of oscillators necessary fofisience regions for this case were shown in Fig).1By
multistable behavior is four. Thud=4 is a critical number. considering this case for all the possible valuesgafbe-
tween O and z, we are essentially determining the stability
of this case in the infinite oscillator limit. We show our nu-
. merical results for this case in Fig. 9. It is obtained by track-
Now we study the synchronized patterns that could be(gwg the eigenvalue transitions fqa between 0 and 2. This

B. Phase-locked patterns for finite time delay

come stablh_zed by the presence of time del_ay. We note hase diagram is strictly true fdd—o. As can be seen,
before that, in the absence of time delay, the in-phase oscil-
lations are always stable, and the antiphase oscillations are

. .. . ka=r, K=10, @y=10
always unstable for any positive finike Time delay changes 20 [ ka=r, K=10, w,=10 r
the scenario and could make each of these branches stable :
certain ranges ofr. In addition, the number of multiple
branches of each of these two oscillations increases with 3
Equations(5) and(6) define the amplitudes and frequencies
of these synchronized states, and the characteristic equatic
(24) determines their linear stability. 0 ' % : > %% 'I p

We begin with a simple example of two coupled oscilla-

tors, N=2, which can have just two phase-locked states, FIG. 7. The antiphaséka=) locked frequencies and ampli-
namely, in-phase states wika=0 and antiphase states with tudes represented by E() at K=10 andwy=10. The dashed por-
ka=7. We evaluate the eigenvalues for these two cases fafons represent the unstable branches for the cad¢=¢f and the
different values ofr by numerically solving Eq(24) for the  continuous lines represent the stable branches.
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FIG. 8. Real part of the eigenvalues as a functiorqaffor N %8

=10 atwy=10,K=10, ka=, and7=0.2.

finite 7 increases the number of stable modes for any given FIG. 10. Anti-phase-locked state of identical oscillators ffor
value ofK. We finally show in Fig. 10 a numerical example =50 atk=10 and7=0.3.
of the anti-phase oscillations usim¢=50 oscillators.

V. AMPLITUDE DEATH FOR FINITE TIME DELAY tlng ¢(t)ocei“, the eigenvalue matrix in circulant form is
. . : ) obtained. The determinant of this matrix is written as
As is well known, a system of identical oscillators that are
globally coupled do not have an amplitude death sfa&
but the presence of time delay in the coupling can bring N
about such a collective state. This phenomenon was first
pointed out for two coupled oscillators [85] and also gen-
eralized toN globally coupled oscillator§36]. A similar
statement also holds for locally coupled oscillators as will be __j2m(i-DIN )
shown. The death state in the presence of time delay haghere U;=e=™ are theNth roots of unity. ButU;
earlier been numerically confirmed for a finite number of+UJN'1=UJ-+Uj ;1:2 co$(j—1)2w/N]. So the above equa-
locally coupled oscillatorg[35]. However, no systematic tion takes the form of
study of the dependence of the death island regions on the
magnitude of the time delay and the number of oscillators
has so far been carried out for systems of locally coupled ) ) ~
oscillators. In this section we address this issue and study the H (A +2K -1 -iwy— 2K cog(j - 1)2m/N]e™) = 0.
stability of the origin for our discrete model equatioh). =
Amplitude death state is characterizedRy0. To derive an (32)
appropriate set of eigenvalue equations for determining the
stability of this state, we carry out a linear perturbation

analysis about the origin. Substitutimg}jzoﬁbj) in Eq. (1) The complete set of eigenvalue equations includes the sec-

[T +2K-1-iwy-Ke™U; - Ke™UM™) =0,
j=1

. . . . ond set obtained by considering the conjugate equation of the
and discarding the nonlinearities we get above. Note that for=0 the above eigenvalue equati(32)
a?p - _ _ . always admits at least one unstable eigenvalue, namely
—o = @0 g+ Kyt =7 = 0]+ K a(t- 1)

=1+iwy. Hence identical oscillators that are locally coupled
cannot have an amplitude death state in the absence of
—T,b,-(t)], (31) time delay. We will now determine the amplitude death re-
gions for finite values of7. We define a factorR;
wherej=1, ... N with periodic boundary conditions. By let- =2 co$(j—1)27/N] that we will use in the critical curves

5 @ 5 (b) forooswn=—1

derived below. If the number of oscillators is a multiple of 4,
- there are some eigenvalue equations that emerge without a
o P— 8 dependence on-,_when R;=0. For e_:xample, consid_er the
L L 1 case ofN=4 andj=2,4.Then, the eigenvalue equation be-
K [{or=o K stable comesh=1-2K+iwg For this equation, the only criticality
is given byK=1/2. Thestable region lies on the side of the
i i | parameter space that obes>1/2. For other values oR,,
o5 w2 . e o5 S . N the death isl_and boundaries can be derivec_i by setting t'he real
part of the eigenvalue to zero, and appropriately choosing the
FIG. 9. (a) Critical boundaries below on which stable phase- Signs of the multiple curves that result. The analysis is simi-

locked patterns exist are shown for the case of@es=1 asN  lar to the one we presented in the treatment of globally
— o0, (b) Stability region of phase-locked patterns for eg=-1  coupled oscillator§35,36, and here we simply provide the
asN— oo,

final expressions for the critical curves (in,K) plane:
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f

7,(n,K) =9

Tb(m, K) =1

\

n andm are whole numbers. We now determine some usefu[
bounds orK for ordering and finding the degeneracies of the

critical curves. The argument of inverse cosine functions and
the square root term in the denominators of the above ex-

2nm - cos (2K - 1)/KR/]

, R >0,
wo+ VKZR — (2K - 1)?
(2n+ )7 - cos'[(2K - D/K|Ry[]

—_— ’ j < ’
wo+ VK2R = (2K - 1)?

(33

.
2mm + cos[(2K - 1)/KR/]

’ R>01

e —
wo = VK2R = (2K — 1)?
(2m+ 1) 7+ cos [ (2K - D/K|Ry|]

8 = I J <
wo = VKZR = (2K - 1)?

(34)

pressions impose the following bounds Kn

K>1/4 for R, (35)

1 1

<
2+R

for Rj>q. (36)

K<
2-R

The sign of the derivative with respect toof the real part

of the

pressed as

dRe(N)

eigenvalue is
—IM(VKR; sinlim(\) 7],

determined by the

dr

>0,
<0,
>0,

The first condition involvingy, in the above relation leads to

the following

K>

/ 2
2+RiV1+w

4-R?

Re(\)=0
onT,, foranywq

it wp> VKPRZ— (2K - 1)2

if  wy< V’m.

(37)

on 7,

on 7,

bounds orK:
K<(@1+w))l4, for Ry, (39
2 -RiV1+w}
or K<———, for Ri.;.
: 4-F
(39

The ranges oK imposed by the relation&5) and (39) are
mutually exclusive. Hence, on the curwgthe only bound-
ary across which an eigenvalue pair makes a transition to the2 occurs wherj=1, and the next maximum value iSRL,.
negative eigenvalue plane occurs wHgn,;, and across the Hence Eqs(33) and(34) can be simplified to

curves occurring wherR;-.,, the eigenvalue pair makes a

transition to

remains as the left hand side boundary of the death island. In
order to see the degeneracy among the curves, note that

the positive plane. Sg(0,K) at Ri-; always

term
and after some algebra it is ex-

PHYSICAL REVIEW E 69, 056217(2004)

R=R; if k=N+2-j.

Also the sign ofR; does not play a role in distinguishing the
critical curves. These two properties are responsible for a
reduction of the number of the actual distinct boundaries of
the death islands. These degeneracies can be framed into two
cases. First, wheiN is odd. The total number of distinct
values ofR; is (N+1)/2. Ry(=2) is the maximum of all th&,

and is nondegenerate; aft, wherei=2,... (N+1)/2 are

the other distinct values, whose values are identically equal
to R, where k=N+2-i. Among the latterR; values, the
maximum negative value occurs jat(N+1)/2. The curves
corresponding td};>0 andR; <0 form the boundaries for
two different death islands, as can be seen from the indices in
Eqgs.(33) and(34). A further ordering of the curves must be
done by a numerical plotting of the curves. The ordering
eveals that foN=<13, the first death island is bounded by
he curves

Y1 Tb(O,K) at Rj=1!

Yo: Tb(O,K) at Rj:(N+1)/2.

and

o1 1(0,K)  at Riznswy2s

8 (1K) at Ri.
The curvesy, and 8, form, respectively, the left and the right
boundaries of the death island region. ARdand &, form the
bottom two curves. The existence range al&hgf &;, across
which the eigenvalues make a transition to the left half plane,
increases with increasiny. In fact it intersects withy;. So
this provides the first boundary across which stability is lost.
This occurs foN=15, when the death island is bounded by
the two curves:

’)/1: Tb(o y K) at Rj=l

and

51: Ta(O,K) at Rj:(N+1)/2'

Second, wherN is even, many more curves become de-
generate. The number of distinct value Bf is N/2+1.
Among these distinct values, the magnitudes of pairs of them
can become identical. N is divisible by 4, such pairs are
N/4+1 in number, andN+2)/4 otherwise. Every positive
R; has its negative counterpart. The maximum valueRpf

nm—cos (2K - 1)/KR;]
7(n,K) = ,
wot+ \/m

Rj:l,...J7 (40)
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25 1=0.1, an=10, K=10

time

FIG. 11. Death islands aiy=10. All even number of oscillators
have a single death island region that is independent of the number i
of oscillators. The odd number of oscillators are bounded by four . . . .
curves wherN<13, and two curves otherwise. These two cﬁrves _FIG. 12._Amplltude death of identical oscillators fbr=50 at
merge in the infinite limit with the curves that represent the evenK_10 ands=0.1.
number of oscillators.
specified range of parameters. We also illustrate in Fig. 12 an
example of the amplitude death state for a chairNef50

=1 _ X
_ mm+cos'{(2K - D/KR] @ oscillators.
j=1,... 0

Td(le) - |
wo = VKZR? = (2K — 1)?

whereJ=N/4+1 if N is divisible by 4, andN+2)/4 other- VI. DISCUSSION AND CONCLUSIONS

wise. The actual ordering, however, reveals that the death We have studied the existence and stability of phase-
island boundaries are given by(0,K) atRj-; and 74(1,K)  locked patterns and amplitude death states in a closed chain
atRj-1, which are identical, respectively, @ andy;. These of delay coupled identical limit cycle oscillators that are near
curves are plotted in Fig. 11. As is seen fbeven there is a a supercritical Hopf bifurcation. The coupling is limited to
single death region. In the caseMfodd the boundary of the nearest neighbors and is linear. The coupled oscillators are
death region depends on the valueNbfAs N increases, the modeled by a set of discrete dynamical equations. Using the
area of the death region decreasesNAs « the area of the method of plane waves we have analyzed these equations
death island folN odd decreases and approaches, as a limitand obtained a general dispersion relation to delineate the
the boundary folN even. For allN, the intersections of;;  existence regions of equilibrium phase-locked patterns. We
and 8, or those ofy, and d, occur forK>1/2. So the delay- have also studied the stability of these states by carrying out
independent eigenvalue equations that are mentioned earliar linear perturbation analysis around their equilibria. Our
do not contribute to the death island boundaries. The differprincipal results are in the form of analytic expressions that
ences in the death island boundaries for even and odd nunare valid for an arbitrary number of oscillatdrs(including
bered oscillators can be traced primarily to the behavior othe N— o thermodynamic limit and that can be used in a
the eigenvalues of the lowest permitted perturbation waveonvenient fashion to identify and or obtain stable equilib-
numbers. For an even numbhrof oscillators the smallest rium states for a given set of parametric values of time delay,
perturbation mode isla= 7. The values of the real parts of coupling constant, wave number, and wave frequency. We
the eigenvalues corresponding to this mode are close in thelrave carried out such an exercise for a number of illustrative
magnitude to those corresponding to te=0 perturbation cases both with and without the presence of time delay. In
mode. Across the right hand side boundary of the death isthe absence of time delay, our analysis reveals a number of
land region, thega=m mode grows positive and the system new phase-locked states close to the in-phase stable state
emerges out of the death region with an antiphase statevhich can exist simultaneously with the in-phase state. The
WhenN is odd, however, the smallest perturbation mode isminimum number of oscillators for which this multirhythmic
ga=m—m/N which is more heavily damped than tqe=0  phenomena can occur =4. Time delay introduces inter-
mode. So the death region continues to exist for larger esting features in the equilibrium and stability scenario. In
values. Ultimately, the second eigenvalue branch ofghe general, we have found that time delay expands the range of
=0 mode(which exists due to the transcendental nature ofossible phase-locked patterns and also extends the stability
the eigenvalue equatipngrows and the system emerges region relative to the case of no time delay. The dispersion
across the boundary with an in-phase state of a differenturves for varying values of time delay also display some
frequency. AsN becomes large, the smallest perturbationnovel features such as forbidden regions and jumps in the
mode for theN odd case gets closer toand the death island range of allowed wave numbers as well as forbidden bands
boundaries of the two cases, as seen in Fig. 11, become im the space of time delay.

distinguishable. We have independently verified the death re- We have also carried out a detailed analytic and numerical
gions depicted in Fig. 11, including their interesting depen-investigation of the existence of stable amplitude death states
dence orl\, by a direct numerical solution of E¢l) over the in the closed chain of delay coupled identical limit cycle
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oscillators. The results not only confirm our earlier numericalthe collective relaxation toward the death state from arbitrary
demonstration of the existence of such death states but daitial conditions. In fact, we see some evidence of this dif-
beyond to provide a comprehensive picture of the existencgering dynamics in our numerical investigations of the time

regions in the parameter space of time delay and couplingyg|ytion of the system toward the death state. For an even
strength. The analytic results also establish that death islangl, per of oscillators we observe a rapid clustering of the

regions exist for any number of oscillatdisfor appropriate iy 401 into two distinct groups that areout of phase.
vales of K, w, and 7. In this sense our work provides a

generalization of the earlier amplitude death related results-l,_hef‘Se two 9""?“ clusters then Sl.O\.NIy pull each other off their
that were obtained for globally coupled oscillators to the cas@PitS and spiral toward the origin. For an odd number of
of locally coupled oscillators. An interesting result, arising °Scillators the lack of symmetry appears to prevent this
from the local coupling configuration, is that the size of agrouping, the phase distribution of the oscillators has a
death islandis independent o when N is even but is a greater spread in its distribution, and the relaxation dynamics
decreasing function dfl whenN is odd. In other words the is distinctly different. As the number of oscillators increases
death island results for th=2 island hold good for any and the asymmetry gets reduced the difference in the dy-
arbitrary even number of locally coupled oscillators and con-hamical behavior becomes less distinct. In the limithof
stitute the minimum size of the death island in tkeer  — o, the difference vanishes and the size and shape of the
parameter space. This can have interesting practical implicadddN island asymptotes to tié-even island. A fundamental
tions. For example, in coupled magnetron or laser applicaunderstanding of this dynamical behavior and its relation to
tions if one is seeking to minimize the parametric regionthe symmetry dependence emerging from the stability analy-
where death may occuiand thereby greatly diminish the sis could be an interesting area of future exploration. Our
total power output of the systenit is best to select a con- results could also be useful in applications where locally
figuration with an even number of devices. At a more funda-coupled configurations are employed such as in coupled
mental level this “invariance” property which is strongly de- magnetron devices, coupled laser systems, and neural net-
pendent on the symmetry of the system may also havevorks as a roadmap for accessing their various collective
interesting dynamical consequences, e.g., in the manner states.
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