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We study the existence and stability of phase-locked patterns and amplitude death states in a closed chain of
delay coupled identical limit cycle oscillators that are near a supercritical Hopf bifurcation. The coupling is
limited to nearest neighbors and is linear. We analyze a model set of discrete dynamical equations using the
method of plane waves. The resultant dispersion relation, which is valid for any arbitrary number of oscillators,
displays important differences from similar relations obtained from continuum models. We discuss the general
characteristics of the equilibrium states including their dependencies on various system parameters. We next
carry out a detailed linear stability investigation of these states in order to delineate their actual existence
regions and to determine their parametric dependence on time delay. Time delay is found to expand the range
of possible phase-locked patterns and to contribute favorably toward their stability. The amplitude death state
is studied in the parameter space of time delay and coupling strength. It is shown that death island regions can
exist for any number of oscillatorsN in the presence of finite time delay. A particularly interesting result is that
the size of an island is independent ofN whenN is even but is a decreasing function ofN whenN is odd.
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I. INTRODUCTION

The emergence of self-organized patterns is a common
feature of nonequilibrium systems undergoing phase transi-
tions. Examples of such patterns abound in nature ranging
from intricate mosaic designs on a butterfly wing, vortex
swirls in a turbulent stream to synchronous flashing of fire-
flies [1]. The study of pattern formation and self-
synchronization using simple mathematical models consist-
ing of coupled differential equations has therefore been an
active area of research spanning many scientific disciplines.
For example such models have been employed to examine
the collective output of arrays of lasers[2,3], coupled mag-
netrons[4], Josephson junctions[5], coupled chemical reac-
tors[6,7] and electronic circuits[8]. Rings of oscillators have
also been useful for modeling biological oscillations[9,10]
and simulation of phase relations between various animal
gaits [11]. These simple discrete models(usually composed
of coupled limit cycle oscillators) are amenable to some
straightforward analysis and also direct numerical solutions
particularly when the number of oscillators is small. When
the number of oscillators becomes very large it is often con-
venient to go over to the continuum limit of infinite oscilla-
tors and model the system with a partial differential equation.
Examples of the latter are reaction-diffusion-type mathemati-
cal equations, such as the time-dependent complex
Ginzburg-Landau equation(CGLE), which have been widely
used to simulate the dynamics of pattern formation in fluids

and other continuum systems[12]. One of the most popular
of the discrete models is the “phase only model” that arose
from the pioneering contributions of Winfree[9] and Kura-
moto and co-workers[13,14]. This model is valid as long as
the coupling between the oscillators is assumed to be weak
so that amplitude variations can be neglected. When the
weak coupling approximation is relaxed and amplitude varia-
tions are retained the system is found to admit new collective
states such as the amplitude death state[15–17], chaos, and
multirhythmicity [18–21]. This strong coupling model has
received a great deal of attention in recent times
[11,17,22–24]. The importance of time delay in coupled os-
cillator systems and its effect on their collective dynamics
has been recognized for a long time. In particular, there have
been a large number of studies devoted to the study of time
delay coupled phase-only models[25–34]. More recently, the
strong coupling model has also been generalized to include
propagation time delays[35–38]. A number of interesting
results regarding collective oscillations have emerged from
this generalized time delayed model, some of which have
been experimentally verified[39–41].

Our present work is devoted to further investigations and
understanding of the generalized time delay coupled model.
Most of the past investigations on this model have been re-
stricted to collective states emerging fromglobal coupling
among the oscillators, also known as the mean field approxi-
mation. We have chosen to study here the equilibrium and
stability of collective modes emerging from a time delay
coupled system of identical oscillators in which the coupling
is local and restricted to nearest neighbors. The choice of
this model is motivated by several considerations. From a
basic studies point of view the model offers us an opportu-
nity to compare and contrast the properties of the collective
states of the local coupling geometry to that of the globally
coupled states. The model further permits a parametric study
of the influence of the number of oscillatorsN on the stabil-
ity and existence properties of the equilibrium states. In the
limit of large N the model also has close resemblance to the
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continuum CGLE and it is of interest to delineate the impor-
tant differences in the collective properties of the two sys-
tems. From a practical point of view our model has great
relevance for many physical systems including coupled mag-
netrons, study of collective phenomena in excitable media,
coupled laser systems, and small-world networks. For ex-
ample, an interesting study on the role of the geometry of the
coupled magnetrons on their rate of phase locking was made
by Benfordet al. [4] who experimentally demonstrated pro-
duction of higher microwave power at gigawatt levels
through phase locking. Our analysis of nearest neighbor
coupled oscillator array could provide important clues on not
only the effect of circular geometry but also on the effects of
time delay in such a geometry. A ring of coupled oscillators
is also commonly encountered in a variety of biological
clocks [9]. For simplicity of analysis most mathematical
studies of these rings have been confined to an examination
of their phase evolutions. Our model analysis can provide an
extended understanding of these biological clocks with the
inclusion of time delays and amplitude effects. Another in-
teresting and more recent potential application of our work is
in the rapidly developing area of small-world networks
where the simplest studied configuration is often a ring of
oscillators with nearest neighbor connections dominating
[42]. A recent study has explored the role of time delays in a
ring of connected oscillators with a special focus on small-
world networks[34]. We believe that our present study of the
ring configuration could help provide further insights in this
direction with the incorporation of amplitude effects.

The existence of equilibrium states of locally coupled os-
cillator systems has been studied in the past using group
theoretic methods[43,44]. We use a plane wave method and
investigate both the existence and stability regions of the
equilibrium states of the coupled system. We derive a general
dispersion relation that can be used to determine the equilib-
rium states of any number of coupled oscillators. The method
is further extended to a linear stability analysis of these equi-
librium states. Using this technique we delineate the exis-
tence regions of the various equilibrium phase-locked pat-
terns of the coupled system. In the limit of smallN and in the
absence of time delay our results agree with past findings,
but we also find new equilibrium states that have not been
noticed before. With time delay the existence regions change
in a significant manner and in some of the regimes we ob-
serve multirhythmicity. Finally, we also examine the nature
of the death state in our system in the presence of time delay.
Although time delay induced death state in locally coupled
identical oscillators has been numerically observed in one of
our past studies[35] there has been no systematic analytic
investigation of this phenomenon. We carry out such an
analysis here and delineate the existence of the death region
as a function of the time delay and coupling strength param-
eters. Our analysis yields an interesting result in that the size
of the death islandis found to be independent ofN (the
number of oscillators) when N is even but is a decreasing
function of N whenN is odd.

The paper is organized as follows. In the following sec-
tion we present the model equations and briefly discuss their
similarities and differences with the continuum model CGL
equation. Using the plane wave method we next derive the

dispersion relation in Sec. III and proceed to use it to delin-
eate the possible existence regions of the phase-locked pat-
terns both in the presence and absence of time delay. Section
IV is devoted to a linear stability analysis of these states in
order to identify their actual existence domain. In Sec. V we
briefly look at the stability of the origin, which is the exis-
tence domain of the death state, as a function of the time
delay parameter and the coupling strength. Our results are
summarized and their implications discussed in the conclud-
ing Sec. VI.

II. MODEL EQUATIONS

We consider a one-dimensional closed chain of delay
coupled identical limit cycle oscillators that are close to a
supercritical Hopf bifurcation. Assuming the coupling to be
linear and of the nearest neighbor kind, we can write down
the following set of model equations to describe the time
evolution of the oscillator states:

] c j

] t
= s1 + iv0 − uc ju2dc j + Kfc j+1st − td − c jstdg

+ Kfc j−1st − td − c jstdg, s1d

j =1, . . . ,N, wherec js=Xj + iYjd is the complex amplitude of
the j th oscillator,K.0 is the coupling strength,tù0 is a
fixed time delay, andv0 is the natural frequency of the un-
coupled oscillators. The basic nonlinear oscillator we have
chosen here is simply the normal form of the supercritical
Hopf bifurcation equation truncated to the third order. It is
also known as the Stuart-Landau oscillator and has been ex-
tensively used in the past as a model equation for studying
nonlinear phenomena in fluids, lasers, and Josephson junc-
tions. For example, in the absence of time delayst=0d, the
above set of equations(1) have been used to study the
coupled wakes arising from a flow behind an array of equally
spaced parallel cylinders[45]. Another interesting connec-
tion to past work is the continuum limit fort=0, where one
can introduce a lattice spacinga, set c j =cs jad in Eq. (1),
rescaleK as K /a2, and then leta→0 with ja→x. This re-
duces Eq.(1) for t=0 to the well-known complex Ginzburg-
Landau equation

] csx,td
] t

= s1 + iv0 − ucsx,tdu2dcsx,td + K
] c2sx,td

] x2 . s2d

The CGLE has been extensively investigated in the past for
its rich equilibrium states and for their applications to a va-
riety of physical situations[46,47]. In the presence of time
delay it is not meaningful to take the continuum limit since
a→0 would also make the propagation time tend to zero.
One can instead take the so-called thermodynamic limit by
letting N→` and the chain lengthL→`, while keepinga
=L /N fixed. In such a limit the time delay parameter remains
finite and meaningful. The thermodynamic limit also pre-
serves the discrete(in space) character of the evolution equa-
tions and therefore the corresponding equilibrium states can
differ in character from those obtained from a continuum
limit. We will discuss some of these differences in the fol-
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lowing section where we derive and analyze the dispersion
relation for plane waves for our discrete set of equations(1).

III. DISPERSION RELATION FOR PLANE WAVES

We seek plane wave solutions of Eq.(1) of the form

C j = Reis jka+vtd, s3d

wherea is the distance between any two adjacent oscillators
andk is the wave number such that −pøkaøp. The values
of ka, which define the phase difference between adjoining
oscillators, are further constrained by the periodicity condi-
tions inherent in a closed chain configuration. SincecN+1
must be identical toc1 and c0 must be identical tocN, we
must satisfy the conditioneiNka=1. This implies thatNka
=2mp, m=0,1, . . . ,N−1, that is,

ka= m
2p

N
, m= 0,1, . . . ,N − 1. s4d

These discrete values ofka are one of the defining properties
of the various phase-locked states of the coupled set of os-
cillators. Further characteristics of these states are described
by a dispersion relation which can be obtained by substitut-
ing Eq. (3) in Eq. (1) to give iv=1+iv0−R2

+2Kfcosskade−ivt−1g. This leads to

v = v0 − 2K sinsvtdcosskad, s5d

R2 = 1 − 2K + 2K cossvtdcosskad. s6d

Equations(5) and(6) which constitute the dispersion relation
for plane waves of our model equations can be compared to
the corresponding dispersion relation obtained from the
CGLE, where we can substitutecsx,td=RCGL expsikx
− ivCGLtd in Eq. (2) to get

vCGL = v0, s7d

RCGL
2 = 1 −Kskad2, s8d

where we have replacedK by its scaled value. Equations(7)
and (8) can also be recovered from Eqs.(5) and (6) by set-
ting t=0 and taking the long wavelength limit ofka!1. As
we can see there are significant differences in the two dis-
persion relations. While Eqs.(5) and (6) are valid for any
arbitrary value ofN, Eqs.(7) and(8) are strictly valid only in
the limit of N→`. The spectrum ofka values are therefore
continuous for the latter whereas in the former they assume
discrete values that are determined by the magnitude ofN.
For t=0, Eqs.(5) and (7) become identical, but Eq.(6) re-
duces to

R2 = 1 − 2K + 2K cosskad = 1 − 4K sin2ska/2d. s9d

Using R2.0 as the defining condition for the possibility of
having a phaselocked state, we see that this region is consid-
erably reduced in the case of the CGLE as compared to the
discrete model equations for any given value of the coupling
parameterK. For example, atK=1/4, the discrete model
allows all modes from 0 top to exist, whereas the continuum

model has an upper cutoff atka=2.0. For K.1/4, cutoff
regions also appear for the discrete model and are given by
the expression

f1 = cos−1s1 − 1/2Kd , ka, f2 = 2p − cos−1s1 − 1/2Kd.

As can be seen from the above expression, forK.1/4 the
anti-phase-locked stateska=pd is now no longer a permitted
state. With the introduction of time delay, the existence re-
gion is not only a function ofka (for a given value ofK) but
also depends onv which satisfies the transcendental equa-
tion (5). This brings about a significant modification of the
existence domains and raises the interesting possibility of
enabling many of the previously forbidden modes to exist.
Since the dispersion relation now has a transcendental char-
acter it also introduces additional branches of collective os-
cillations. To illustrate some of these modifications we con-
sider a few simple examples. LetC=cossvtd. By choosing a
value forC and in turn definingS=sinsvtd, we can immedi-
ately get an expression forv, and the resultant equation for
R2 defines the stability regions.

Case (i).First let cossvtd=1. This givesv=v0, and the
square of the amplitude asA1=1−2K+2K cosskad. This also
leads us tot=2np /v0, n=0,1,2, . . . .This case also includes
the special case oft=0. SinceA1.0 for the existence of the
solutions, it is easily seen that the bounding region insK ,kad
plane is defined by

f1 , ka, f2 = 2p − f1,

where f1=cos−1s1−1/2Kd is the forbidden region. Sincef1

does not intersect with theK axis at any finiteK, the region
exists for allK.1/4. In particular, the in-phase state exists
for all K.0, and the anti-phase-locked stateska=pd no
longer exists ifK.1/4. This forbidden region is illustrated
in Fig. 1(a).

Case (ii). Let cossvtd=1/2. This gives the dispersion
relation v=v0−Î3 cosskad. The corresponding delays are
defined by t=s2n±1/3dp / fv0−Î3K cosskadg ,n=0,1,

FIG. 1. Allowed (unshaded) and forbidden (shaded) wave
modes in the presence of time delay for various values of cossvtd.
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2, . ......... Thesquare of the amplitude is given byA2=1
−2K+K cosskad. Let g1=cos−1s2−1/Kd. The curveg1 as-
sumes values forK between 1/3 and 1. IfK.1, A2,0 for
any ka. So all the modes are forbidden ifK.1, and the
region betweenK=1/3 andK=1 as defined by

g1 , ka, g2 = 2p − g1

is also forbidden. In particular the in-phase solutions do not
exist if K.1 and the antiphase solutions do not exist if
K.1/3. This region is illustrated in Fig. 1(b).

Case (iii). Let cossvtd=−1/2. This gives the dispersion
relation v=v0+Î3 cosskad. The corresponding delays are
defined by t=s2n±1/3dp / fv0+Î3K cosskadg ,n=0,1,
2, . . . . Thesquare of the amplitude is given byA3=1−2K
−K cosskad. Let h1=cos−1s1/K−2d. If K.1, A3,0 for all
ka. So K.1 is the forbidden region. BetweenK=1/3 and
K=1 the region defined by

h1 . ka. h2 = 2p − h1

is forbidden. The inequality signs are reversed in this case
because the curvature ofh1 is different from that ofg1 or f1.
In particular, the in-phase solutions are forbidden ifK.1/3
and the anti-phase solutions are forbidden ifK.1. This re-
gion is illustrated in Fig. 1(c).

Case (iv).Let cossvtd=−1. This results in the dispersion
relation v=v0 just as in case(i). This case corresponds to
t=s2np+1dp /v0,n=0,1,2, . . . . Thesquare of the ampli-
tude is given byA4=1−2K−2K cosskad. SinceA4=1 at ka
=p, in contrast to the three previous cases, the anti-phase-
locked solutions exist for all values ofK. At ka=0, A4=1
−4K. So the in-phase solutions are forbidden for allK.1/4.
The forbidden regions whenK.1/4 are defined by

i1 . ka. i2 = 2p − i1,

where i1=cos−1s1/2K−1d. This region is illustrated in Fig.
1(d). In fact, we can derive a general expression for the ex-
istence curves by choosing any arbitrary value forC. This in
turn defines the frequencies asv=v0−2KS cosskad. After
some simple algebra, the corresponding delays are given as

t = s2np + cos−1 Cd/fv0 − 2KS cosskadg if Sù 0,

t = s2np − cos−1 Cd/fv0 − 2KS cosskadg if S, 0.

The curve that defines the boundary of the forbidden region
is given by j1=cos−1s1/S−1/2 KSd whenSÞ0. The case of
S=0 is the same as case(i) studied above.

Apart from these special cases, the general existence re-
gions are complicated functions ofka, K, andt. They need
to be determined numerically by simultaneous solution of
Eqs. (5) and (6). To demonstrate the constraint imposed by
Eq. (5) we have plotted its solutionsv vs kad for various
values oft and for a fixed value ofv0 and K in Fig. 2(a).
When t=0, the allowed range oft is given by
absskad,cos−1s1−1/2Kd. So forK=1, the phase-locked pat-
terns that have wave numbers less thanp /3 are allowed, and
all of them have an identical frequency. Ast is increased the
frequency of oscillation decreases for smallt, and the dis-
persion relation acquires a nonlinear parabolic character. As
t is further increased, depending on the actual value ofK,
there are bands int values where no modes exist. The
shrinking and disappearance of the dispersion curve atka
=0 beyondt=0.125 up tot=0.2 in Figs. 2(a) and 2(b) illus-
trate this phenomenon. One also notices from Fig. 2(b) that
at higher values oft the dispersion curves become discon-
tinuous and have bands of forbiddenka regions.

IV. STABILITY OF PHASE-LOCKED SOLUTIONS

We now find the stability of the equilibrium phase-locked
solutions discussed in the preceding section by carrying out a
linear perturbation analysis. Let

c jstd = fRke
ivkt + ujstdgeis jkad, s10d

wherek=0,1, . . . ,N−1. Substitution of Eq.(10) in Eq. (1)
yields in the lowest order the dispersion relation discussed in
the preceding section. In the next order, where we retain
terms that are linear in the perturbation amplitude, we ob-
serve that

ucku2ck = ¯ + f2Rk
2ujstd + Rk

2e2ivktūjstdgeis jkad + ¯ .

s11d

Using the above, we obtain the equation

FIG. 2. (Color online) Dispersion relation between allowed wave numbers and the corresponding frequency shown ast is gradually
increased.K=1 andv0=10. A range oft values is forbidden.
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] ujstd
] t

= s1 + iv0 − 2Rk
2 − 2Kdujstd − Rk

2e2ivktūjstd

+ Kfuj+1st − tdeika + uj−1st − tde−ikag s12d

and, taking its complex conjugate,

] ūjstd
] t

= s1 − iv0 − 2Rk
2 − 2Kdūjstd − Rk

2e−2ivktujstd

+ Kfūj+1st − tde−ika + ūj−1st − tdeikag. s13d

Multiply Eqs. (12) and(13) term by term byeis jqad, make use
of the identities

uj±1st − tde±ikaeis jqad = uj±1st − tdeis j±1dqae±isk−qda s14d

and

ūj±1st − tde7ikaeis jqad = ūj±1st − tdeis j±1dqae7isk+qda, s15d

and sum overj =0,1,2, . . . ,N−1. Introducing adjoint ampli-
tudeswqstd and w̃qstd by the definitions

fwqstd,w̃qstdg = o
j=0

N−1

fujstd,ūjstdgeis jqad, s16d

we obtain the set of coupled equations

dwqstd
dt

= s1 + iv0 − 2Rk
2 − 2Kdwqstd − Rk

2e2ivktw̃qstd

+ 2K cosfsk − qdagwqst − td s17d

and

dw̃qstd
dt

= s1 − iv0 − 2Rk
2 − 2Kdw̃qstd − Rk

2e−2ivktwqstd

+ 2K cosfsk + qdagw̃qst − td. s18d

In order to perform the stability analysis, we assume solu-
tions of the form

fwqstd,w̃qstdg = fceivkt,c̃e−ivktgelt, s19d

which yield the set of coupled equations

C+c + Rk
2c̃ = 0, s20d

Rk
2c + C−c̃ = 0. s21d

In these equations, the quantitiesC± are given by

C± = l − f1 ± isv0 − vkd − 2Rk
2 − 2Kg

− 2K cosfsk 7 qdage7ivkte−lt. s22d

The eigenvalue equation is obtained from the determinantal
condition for Eqs.(20) and (21), namely,

C+C− − Rk
4 = 0. s23d

This can be expanded to be written in the form of the fol-
lowing characteristic equation:

l2 + sa1 + a2dl + sa1a2 − R4d = 0, s24d

where a1=2R2−1+2K− isv0−vd−2K cosfsk−qdage−sl+ivdt,
a2=2R2−1+2K+ isv0−vd−2K cosfsk+qdage−sl−ivdt.

It should be noted that the perturbation wave numbersq
are once again a discrete set and from the periodicity require-
ment they obey the relation

qa= m
2p

N
, m= 0,1, . . . ,N − 1.

Thus in our stability analysis any pattern corresponding to a
given value ofka, we need to examine the eigenvalues of Eq.
(24) at each of the above permitted values ofqa. We now
proceed to discuss the stability of the various phase-locked
patterns both in the absence and presence of time delay.

A. Stability of phase-locked patterns in the absence
of delay

In the absence of time delay, the eigenvalue equation(24)
can be solved analytically to give

l = 1 − 2R2 − 2K

+ 2K cosskadcossqad ± Î4K2 sin2skadsin2sqad + R4.

s25d

The real parts of the eigenvalues of Eq.(24) will be negative
if a1+a2.0 and a1a2−R4.0 simultaneously. The first of
these conditions can be simplified to give

a1 + a2 = 2f1 − 2Kh1 − cosskadf2 − cossqadgjg . 0,

s26d

and the second condition can be simplified to give

a1a2 − R4 = f1 − cossqadg4KfKh4 cos2skad − 2 cosskad − f1

+ cossqadgj + cosskadg . 0. s27d

In the following, we use these two conditions, or, in the
simplest cases, the eigenvalue equation itself to determine
the stability.

1. In-phase patterns (k=0 mode)

From the preceding section thek=0 solution is given by
v=v0 and R=1. Substituting these in Eq.(25) above and
settingk=0 we get

l = H− 2Kf1 − cossqadg ø 0

− 2 − 2Kf1 − cossqadg , 0.

Thus the plane wave solutionC jstd=eiv0t, which is nothing
but an in-phase locked solution of the coupled identical os-
cillators, is stable fort=0 for all values ofv0.

2. Antiphase patterns (ka=p mode)

The equilibrium pattern in this case consists of adjacent
oscillators remainingp out of phase at all times and oscil-
lating with the same frequencyv0. The amplitude of the
oscillations is given by
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R2 = 1 − 4K.

As discussed in the preceding section, the conditionR2.0
permits the existence of this mode in the region ofK,1/4.
However as we will see below, using conditions(26) and
(27), these permitted antiphase states are linearly unstable for
any arbitrary number of oscillators. Insertingka=p in Eqs.
(26) and (27) the conditions simplify to

K , min
1

2f3 − cossqadg
s28d

and

K . max
1

5 − cossqad
, s29d

where theqa values are to be determined as per the prescrip-
tion discussed in the preceding section. As simple examples,
for N=2 the only permitted values ofqa are 0 andp and
from Eqs.(28) and(29) above, we arrive at the requirement
that K,1/8 andK.1/4, which is not possible. Hence the
mode is unstable. Such conditions were previously obtained
by Aronsonet al. [16] in their investigation of the collective
states of two coupled limit cycle oscillators. In fact, the ar-
gument can be extended to any arbitrary evenN since

5 − cossqad ø 2f3 − cossqadg

for all values ofqa and hence the conditions(28) and (29)
cannot be satisfied simultaneously for any value ofK. This
implies that the antiphase states, characterized byka=p, are
unstable for any arbitrary value of evenN.

3. Other phase-locked patterns„k.0…

Another interesting phase-locked pattern is thek=p /2
mode. It can be shown by using the conditions discussed
above that this pattern is also always unstable. However, a
large number of other modes whose wave numbers are close
to either 0 or 2p are likely to be stable. They coexist with the
in-phase stable solutionsska=0d. The relations(26) and(27)
provide sufficient conditions to find the stability of any given
mode. The contours ofa1+a2=0 anda1a2−R4=0 are given,
respectively, by

qa= hcos−1f2 − s2K − 1d/2KCg,

2p − cos−1f2 − s2K − 1d/2KCgj,

qa= hcos−1fCs1/K − 2 + 4Cd − 1g,

2p − cos−1fCs1/K − 2 + 4Cd − 1gj,

whereC=cosskad. These curves are plotted in Fig. 3 forK
=0.4. We see that there is a large range ofka values that
satisfies the conditions(26) and(27). For a given numberN
of oscillators if theka values fall in this range then the cor-
responding phase-locked patterns are stable. Thex-axis inter-
sections of the curvea1a2−R4=0, which are closer to 0 and
2p provide boundaries ofK below which the modes are
stable. By settingqa=0 in Eq.(27), we obtain the condition
on K for stability as a function ofka:

K ,
− cosskad

2f2 cos2skad − cosskad − 1g
; K* . s30d

This stability region is plotted in Fig. 4. In the limit ofN
→`, a continuous range ofka modes are accessible, and the
system truly possesses infinitely many stable phase-locked
states whenK,K* . The stability of these phase-locked so-
lutions is one important result of our paper. Note that all
phase-locked patterns with wave numbers betweenp /2 and
3p /2 are unstable. We also note from Fig. 4 that for a given
value ofK it is possible to have more than one stable state
corresponding to different values ofka that lie in the two
stable regions. In the limit ofN→` such a multistability
phenomenon can occur over a continuous range ofka values
spanning the stable regions. A numerical example of the mul-
tistability of some of these modes is illustrated in Fig. 5 for
N=50 oscillators at a fixed value ofK=0.4. By giving initial
conditions close to the modeska=2p /50, 4p /50, and
6p /50, the corresponding phase-locked solutions are real-
ized.

Now we address the following question. What is the mini-
mum number of oscillators for which a second phase-locked

FIG. 3. The contours ofa1+a2=0 (thin lines) and that ofa1a2

−R4=0 (thick lines). The thin + and − signs indicate the sign of
a1+a2 in the connected regions bounded by the thin curves, and the
thick signs indicate the sign ofa1a2−R4 in those bounded by the
thick curves.

FIG. 4. The stability region of the phase-locked states(shaded
region which is belowK=K*) plotted insK ,kad space. The left half
of the dashed curve isf1 and the right half isf2 as drawn in Fig.
1(a).
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pattern (the first one being in-phase) can become stable?
Since the permissibleka values are related to the number of
oscillators N in an inverse fashion due to the periodicity
requirement[see Eq.(4)] we need to determine the maxi-
mum stableka in order to find the minimum criticalN. Since
K=K* makes an intersection atka=p /2 andka=3p /2, the
second stable phase-locked pattern that could emerge at this
point will have

ka= m
2p

N
=

p

2
.

HenceNù4 for a second phase-locked pattern to ever be-
come stable. Thus forN=2 or N=3 coupled identical oscil-
lators we will only have in-phase oscillations as stable oscil-
lations and there will not be any other stable phase-locked
states. The minimum number of oscillators necessary for
multistable behavior is four. ThusN=4 is a critical number.

B. Phase-locked patterns for finite time delay

Now we study the synchronized patterns that could be-
come stabilized by the presence of time delay. We noted
before that, in the absence of time delay, the in-phase oscil-
lations are always stable, and the antiphase oscillations are
always unstable for any positive finiteK. Time delay changes
the scenario and could make each of these branches stable in
certain ranges oft. In addition, the number of multiple
branches of each of these two oscillations increases witht.
Equations(5) and (6) define the amplitudes and frequencies
of these synchronized states, and the characteristic equation
(24) determines their linear stability.

We begin with a simple example of two coupled oscilla-
tors, N=2, which can have just two phase-locked states,
namely, in-phase states withka=0 and antiphase states with
ka=p. We evaluate the eigenvalues for these two cases for
different values oft by numerically solving Eq.(24) for the

permitted values ofqa and also confirm the existence of the
modes by an actual integration of the original equations. We
show the stable(continuous) and unstable(dashed lines)
branches of these two solutions in Figs. 6 and 7. A stable
in-phase branch emerges fromt=0 and its amplitude be-
comes 0 while its frequency is finite showing a supercritical
Hopf bifurcation. The first branch of the anti-phase-locked
state emerges from zero again in a supercritical Hopf. Ast is
increased multiple Hopf bifurcation points are seen. Such
stability of the in-phase and antiphase oscillations were ear-
lier studied by us experimentally using coupled electronic
oscillators[40].

As a second illustration, we consider the case ofN=10,
t=p /v0 [i.e. cossvtd=−1.0], whose equilibrium existence
domain we have discussed earlier as case(iv) in Sec. III. In
particular we have noted that theka=p state is a permitted
equilibrium state. To examine its stability we observe that we
need to examine the eigenvalues forqa=ms2p /Nd, m
=0,1, . . . ,N−1. In Fig. 8 we have plotted the real part of the
eigenvalues for all these perturbation wave numbers. We see
that they are all negative, which indicates stability of the
pattern. In fact, in this case, due to the symmetry of the
characteristic equation we can predict stability for all higher
values ofN as well with the eigenvalues of all additionalqa
values falling on the dotted line shown in the figure. The
existence regions for this case were shown in Fig. 1(d). By
considering this case for all the possible values ofqa be-
tween 0 and 2p, we are essentially determining the stability
of this case in the infinite oscillator limit. We show our nu-
merical results for this case in Fig. 9. It is obtained by track-
ing the eigenvalue transitions forqa between 0 and 2p. This
phase diagram is strictly true forN→`. As can be seen,

FIG. 5. Multiple stable phase-locked patterns forN=50 at v0

=10 andK=0.4 in the absence of time delay. The real parts of the
complex vectorZjstd are plotted in gray scale.

FIG. 6. The in-phaseska=0d locked frequencies and amplitudes
represented by Eq.(1) at K=10 andv0=10. The dashed portions
represent the unstable branches for the case ofN=2 and the con-
tinuous lines represent the stable branches.

FIG. 7. The antiphaseska=pd locked frequencies and ampli-
tudes represented by Eq.(1) at K=10 andv0=10. The dashed por-
tions represent the unstable branches for the case ofN=2 and the
continuous lines represent the stable branches.

PHASE-LOCKED PATTERNS AND AMPLITUDE DEATH… PHYSICAL REVIEW E 69, 056217(2004)

056217-7



finite t increases the number of stable modes for any given
value ofK. We finally show in Fig. 10 a numerical example
of the anti-phase oscillations usingN=50 oscillators.

V. AMPLITUDE DEATH FOR FINITE TIME DELAY

As is well known, a system of identical oscillators that are
globally coupled do not have an amplitude death state[16]
but the presence of time delay in the coupling can bring
about such a collective state. This phenomenon was first
pointed out for two coupled oscillators in[35] and also gen-
eralized toN globally coupled oscillators[36]. A similar
statement also holds for locally coupled oscillators as will be
shown. The death state in the presence of time delay had
earlier been numerically confirmed for a finite number of
locally coupled oscillators[35]. However, no systematic
study of the dependence of the death island regions on the
magnitude of the time delay and the number of oscillators
has so far been carried out for systems of locally coupled
oscillators. In this section we address this issue and study the
stability of the origin for our discrete model equation(1).
Amplitude death state is characterized byR=0. To derive an
appropriate set of eigenvalue equations for determining the
stability of this state, we carry out a linear perturbation

analysis about the origin. Substitutingsc j =0+c̃ jd in Eq. (1)
and discarding the nonlinearities we get

] c̃ j

] t
= s1 + iv0dc̃ j + Kfc̃ j+1st − td − c̃ jstdg + Kfc̃ j−1st − td

− c̃ jstdg, s31d

wherej =1, . . . ,N with periodic boundary conditions. By let-

ting c̃std~eilt, the eigenvalue matrix in circulant form is
obtained. The determinant of this matrix is written as

p
j=1

N

sl + 2K − 1 − iv0 − Ke−ltUj − Ke−ltUj
N−1d = 0,

where Uj =ei2ps j−1d/N are the Nth roots of unity. But Uj

+Uj
N−1=Uj +Uj j

−1=2 cosfs j −1d2p /Ng. So the above equa-
tion takes the form of

p
j=1

N

sl + 2K − 1 − iv0 − 2K cosfs j − 1d2p/Nge−ltd = 0.

s32d

The complete set of eigenvalue equations includes the sec-
ond set obtained by considering the conjugate equation of the
above. Note that fort=0 the above eigenvalue equation(32)
always admits at least one unstable eigenvalue, namelyl
=1+iv0. Hence identical oscillators that are locally coupled
cannot have an amplitude death state in the absence of
time delay. We will now determine the amplitude death re-
gions for finite values of t. We define a factorRj
=2 cosfs j −1d2p /Ng that we will use in the critical curves
derived below. If the number of oscillators is a multiple of 4,
there are some eigenvalue equations that emerge without a
dependence ont, when Rj =0. For example, consider the
case ofN=4 and j =2,4. Then, the eigenvalue equation be-
comesl=1−2K± iv0. For this equation, the only criticality
is given byK=1/2. Thestable region lies on the side of the
parameter space that obeysK.1/2. For other values ofRj,
the death island boundaries can be derived by setting the real
part of the eigenvalue to zero, and appropriately choosing the
signs of the multiple curves that result. The analysis is simi-
lar to the one we presented in the treatment of globally
coupled oscillators[35,36], and here we simply provide the
final expressions for the critical curves inst ,Kd plane:

FIG. 8. Real part of the eigenvalues as a function ofqa for N
=10 atv0=10, K=10, ka=p, andt=0.2.

FIG. 9. (a) Critical boundaries below on which stable phase-
locked patterns exist are shown for the case of cossvtd=1 asN
→`. (b) Stability region of phase-locked patterns for cossvtd=−1
asN→`.

FIG. 10. Anti-phase-locked state of identical oscillators forN
=50 atK=10 andt=0.3.
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tasn,Kd =5
2np − cos−1fs2K − 1d/KRjg

v0 + ÎK2Rj
2 − s2K − 1d2

, Rj . 0,

s2n + 1dp − cos−1fs2K − 1d/KuRjug

v0 + ÎK2Rj
2 − s2K − 1d2

, Rj , 0,

s33d

tbsm,Kd =5
2mp + cos−1fs2K − 1d/KRjg

v0 − ÎK2Rj
2 − s2K − 1d2

, Rj . 0,

s2m+ 1dp + cos−1fs2K − 1d/KuRjug

v0 − ÎK2Rj
2 − s2K − 1d2

, Rj , 0.

s34d

n andm are whole numbers. We now determine some useful
bounds onK for ordering and finding the degeneracies of the
critical curves. The argument of inverse cosine functions and
the square root term in the denominators of the above ex-
pressions impose the following bounds onK:

K . 1/4 for Rj=1, s35d

1

2 + Rj
, K ,

1

2 − Rj
for Rj.1. s36d

The sign of the derivative with respect tot of the real part
of the eigenvalue is determined by the term
−ImsldKRj sinfImsldtg, and after some algebra it is ex-
pressed as

UdResld
dt

U
Resld=0

5.0, onta, for anyv0

,0, ontb, if v0 . ÎK2Rj
2 − s2K − 1d2

.0, ontb, if v0 , ÎK2Rj
2 − s2K − 1d2.

s37d

The first condition involvingv0 in the above relation leads to
the following bounds onK:

K , s1 + v0
2d/4, for Rj=1, s38d

K .
2 + Rj

Î1 + v0
2

4 − Rj
2

or K ,
2 − Rj

Î1 + v0
2

4 − Rj
2

, for Rj.1.

s39d

The ranges ofK imposed by the relations(35) and (39) are
mutually exclusive. Hence, on the curvetb the only bound-
ary across which an eigenvalue pair makes a transition to the
negative eigenvalue plane occurs whenRj=1, and across the
curves occurring whenRj.1, the eigenvalue pair makes a
transition to the positive plane. Sotbs0,Kd at Rj=1 always
remains as the left hand side boundary of the death island. In
order to see the degeneracy among the curves, note that

Rk = Rj if k = N + 2 − j .

Also the sign ofRj does not play a role in distinguishing the
critical curves. These two properties are responsible for a
reduction of the number of the actual distinct boundaries of
the death islands. These degeneracies can be framed into two
cases. First, whenN is odd. The total number of distinct
values ofRj is sN+1d /2. R1s=2d is the maximum of all theRj

and is nondegenerate; andRi, where i =2, . . . ,sN+1d /2 are
the other distinct values, whose values are identically equal
to Rk, where k=N+2−i. Among the latterRj values, the
maximum negative value occurs atj =sN+1d /2. The curves
corresponding toRj .0 andRj ,0 form the boundaries for
two different death islands, as can be seen from the indices in
Eqs.(33) and(34). A further ordering of the curves must be
done by a numerical plotting of the curves. The ordering
reveals that forNø13, the first death island is bounded by
the curves

g1: tbs0,Kd at Rj=1,

g2: tbs0,Kd at Rj=sN+1d/2,

and

d1: tas0,Kd at Rj=sN+1d/2,

d2: tas1,Kd at Rj=1.

The curvesg1 andd2 form, respectively, the left and the right
boundaries of the death island region. Andd1 andd2 form the
bottom two curves. The existence range alongK of d1, across
which the eigenvalues make a transition to the left half plane,
increases with increasingN. In fact it intersects withg1. So
this provides the first boundary across which stability is lost.
This occurs forNù15, when the death island is bounded by
the two curves:

g1: tbs0,Kd at Rj=1

and

d1: tas0,Kd at Rj=sN+1d/2.

Second, whenN is even, many more curves become de-
generate. The number of distinct value ofRj is N/2+1.
Among these distinct values, the magnitudes of pairs of them
can become identical. IfN is divisible by 4, such pairs are
N/4+1 in number, andsN+2d /4 otherwise. Every positive
Rj has its negative counterpart. The maximum value ofRj
=2 occurs whenj =1, and the next maximum value is atRj=2.
Hence Eqs.(33) and (34) can be simplified to

tcsn,Kd =
np − cos−1fs2K − 1d/KRjg

v0 + ÎK2Rj
2 − s2K − 1d2

, Rj=1,. . .,J, s40d
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tdsm,Kd =
mp + cos−1fs2K − 1d/KRjg

v0 − ÎK2Rj
2 − s2K − 1d2

, Rj=1,. . .,J, s41d

whereJ=N/4+1 if N is divisible by 4, andsN+2d /4 other-
wise. The actual ordering, however, reveals that the death
island boundaries are given bytcs0,Kd at Rj=1 and tds1,Kd
at Rj=1, which are identical, respectively, tod1 andg1. These
curves are plotted in Fig. 11. As is seen forN even there is a
single death region. In the case ofN odd the boundary of the
death region depends on the value ofN. As N increases, the
area of the death region decreases. AsN→` the area of the
death island forN odd decreases and approaches, as a limit,
the boundary forN even. For allN, the intersections ofg1
andd1 or those ofg2 andd2 occur forK.1/2. So the delay-
independent eigenvalue equations that are mentioned earlier
do not contribute to the death island boundaries. The differ-
ences in the death island boundaries for even and odd num-
bered oscillators can be traced primarily to the behavior of
the eigenvalues of the lowest permitted perturbation wave
numbers. For an even numberN of oscillators the smallest
perturbation mode isqa=p. The values of the real parts of
the eigenvalues corresponding to this mode are close in their
magnitude to those corresponding to theqa=0 perturbation
mode. Across the right hand side boundary of the death is-
land region, theqa=p mode grows positive and the system
emerges out of the death region with an antiphase state.
WhenN is odd, however, the smallest perturbation mode is
qa=p−p /N which is more heavily damped than theqa=0
mode. So the death region continues to exist for largert
values. Ultimately, the second eigenvalue branch of theqa
=0 mode(which exists due to the transcendental nature of
the eigenvalue equation) grows and the system emerges
across the boundary with an in-phase state of a different
frequency. AsN becomes large, the smallest perturbation
mode for theN odd case gets closer top and the death island
boundaries of the two cases, as seen in Fig. 11, become in-
distinguishable. We have independently verified the death re-
gions depicted in Fig. 11, including their interesting depen-
dence onN, by a direct numerical solution of Eq.(1) over the

specified range of parameters. We also illustrate in Fig. 12 an
example of the amplitude death state for a chain ofN=50
oscillators.

VI. DISCUSSION AND CONCLUSIONS

We have studied the existence and stability of phase-
locked patterns and amplitude death states in a closed chain
of delay coupled identical limit cycle oscillators that are near
a supercritical Hopf bifurcation. The coupling is limited to
nearest neighbors and is linear. The coupled oscillators are
modeled by a set of discrete dynamical equations. Using the
method of plane waves we have analyzed these equations
and obtained a general dispersion relation to delineate the
existence regions of equilibrium phase-locked patterns. We
have also studied the stability of these states by carrying out
a linear perturbation analysis around their equilibria. Our
principal results are in the form of analytic expressions that
are valid for an arbitrary number of oscillatorsN (including
the N→` thermodynamic limit) and that can be used in a
convenient fashion to identify and or obtain stable equilib-
rium states for a given set of parametric values of time delay,
coupling constant, wave number, and wave frequency. We
have carried out such an exercise for a number of illustrative
cases both with and without the presence of time delay. In
the absence of time delay, our analysis reveals a number of
new phase-locked states close to the in-phase stable state
which can exist simultaneously with the in-phase state. The
minimum number of oscillators for which this multirhythmic
phenomena can occur isN=4. Time delay introduces inter-
esting features in the equilibrium and stability scenario. In
general, we have found that time delay expands the range of
possible phase-locked patterns and also extends the stability
region relative to the case of no time delay. The dispersion
curves for varying values of time delay also display some
novel features such as forbidden regions and jumps in the
range of allowed wave numbers as well as forbidden bands
in the space of time delay.

We have also carried out a detailed analytic and numerical
investigation of the existence of stable amplitude death states
in the closed chain of delay coupled identical limit cycle

FIG. 11. Death islands atv0=10. All even number of oscillators
have a single death island region that is independent of the number
of oscillators. The odd number of oscillators are bounded by four
curves whenNø13, and two curves otherwise. These two curves
merge in the infinite limit with the curves that represent the even
number of oscillators.

FIG. 12. Amplitude death of identical oscillators forN=50 at
K=10 andt=0.1.
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oscillators. The results not only confirm our earlier numerical
demonstration of the existence of such death states but go
beyond to provide a comprehensive picture of the existence
regions in the parameter space of time delay and coupling
strength. The analytic results also establish that death island
regions exist for any number of oscillatorsN for appropriate
vales of K, v, and t. In this sense our work provides a
generalization of the earlier amplitude death related results,
that were obtained for globally coupled oscillators to the case
of locally coupled oscillators. An interesting result, arising
from the local coupling configuration, is that the size of a
death islandis independent ofN when N is even but is a
decreasing function ofN whenN is odd. In other words the
death island results for theN=2 island hold good for any
arbitrary even number of locally coupled oscillators and con-
stitute the minimum size of the death island in theK−t
parameter space. This can have interesting practical implica-
tions. For example, in coupled magnetron or laser applica-
tions if one is seeking to minimize the parametric region
where death may occur(and thereby greatly diminish the
total power output of the system) it is best to select a con-
figuration with an even number of devices. At a more funda-
mental level this “invariance” property which is strongly de-
pendent on the symmetry of the system may also have
interesting dynamical consequences, e.g., in the manner of

the collective relaxation toward the death state from arbitrary
initial conditions. In fact, we see some evidence of this dif-
fering dynamics in our numerical investigations of the time
evolution of the system toward the death state. For an even
number of oscillators we observe a rapid clustering of the
oscillators into two distinct groups that arep out of phase.
These two giant clusters then slowly pull each other off their
orbits and spiral toward the origin. For an odd number of
oscillators the lack of symmetry appears to prevent this
grouping, the phase distribution of the oscillators has a
greater spread in its distribution, and the relaxation dynamics
is distinctly different. As the number of oscillators increases
and the asymmetry gets reduced the difference in the dy-
namical behavior becomes less distinct. In the limit ofN
→`, the difference vanishes and the size and shape of the
oddN island asymptotes to theN-even island. A fundamental
understanding of this dynamical behavior and its relation to
the symmetry dependence emerging from the stability analy-
sis could be an interesting area of future exploration. Our
results could also be useful in applications where locally
coupled configurations are employed such as in coupled
magnetron devices, coupled laser systems, and neural net-
works as a roadmap for accessing their various collective
states.
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