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We calculate analytically the geometric phases that the eigenvectors of a parametric dissipative two-state
system described by a complex symmetric Hamiltonian pick up when an exceptiona(B®jins encircled.
An EP is a parameter setting where the two eigenvalues and the corresponding eigenvectors of the Hamiltonian
coalesce. We show that it can be encircled on a path along which the eigenvectors remain approximately real
and discuss a microwave cavity experiment, where such an encircling of an EP was realized. Since the wave
functions remain approximately real, they could be reconstructed from the nodal lines of the recorded spatial
intensity distributions of the electric fields inside the resonator. We measured the geometric phases that occur
when an EP is encircled four times and thus confirmed that for our system an EP is a branch point of fourth
order.
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I. INTRODUCTION setup[12] is by recording the change of the pattern of nodal

Since Berry’s pioneering workl] geometric phases, i.e., lines when encircling an EP in parameter space. In our mi-
contributions to a quantum system's phase which depenffOWave cavity experiments we can only measure the inten-
only on the geometry of the path traversed by the system igity distribution of the electric field, that is, the absolute
its parameter space, have been the focus of intense theore‘(ri:illue of the complex eigenfunctions. However, a premise for
cal and experimental research. The majority of the theoretit1® Mere existence of a pattern of nodal lines is that the
cal works discuss various generalizations of Berry’s originafigenfunctions remain real throughout the cyclic process.
paper, see, e.g., Refe—5] and for a very early work Ref. Accordingly, the question arises, whether Berry’s reconstruc-

[6], and investigate the appearance of geometric phases [P technique can be applied to the complex eigenfunctions
systems with complex eigenfunctions, such as, e.g., open Of the dissipative microwave resonator discussed in Refs.

ySIems . 2,17
d|SS|pat|ye systemg/,8]. M.OSt experimental works opserve In the present work we first focus on a parametric two-
geometric phases by tracing the pattern of nodal lines of 3y

. . : : ) ate model adequate for the simulation of our experiment
wave function during adiabatic and cyclic procesggS|, a ity the dissipative microwave cavity. In doing so, we re-

technique suggested originally by Berry and Wilking@0].  gyrict ourselves to the analysis of those properties of the ei-
The dissipative nature of a system is commonly supgenyalues and eigenvectors, which are observable using our
pressed or neglected in experimeisee, e.g., Ref[11]).  experimental setup. For more detailed information one might
This was not the case in the recently reported observation @fonsult Ref.[3]. Accordingly, we calculate the geometric
a so-called exceptional poifEP) in a microwave cavity phase that occurs when an EP is encircled. Moreover, we
experiment[12]. Such an EP, i.e., the coalescence of twoshow that for this model a path around the EP exists along
levels of a quantum system, occurs only in dissipative syswhich the eigenvectors are approximately real, that is, have
tems, where it is associated with crossings and avoidedn imaginary part negligible compared to its real part. In-
crossings of the eigenvalugs3—15. One of the key features deed, as is explained in more detail below, from the mere
of an EP is the appearance of a geometric pha2¢l4-16  fact that we observe nodal lines rather than nodal points in
when it is encircled in parameter space. If the EP is isolatedpur experiment we may already conclude that along the path
in its vicinity the dynamics is predominantly determined by chosen in our experiment the eigenfunctions have exactly
the two states corresponding to the resonances, which cothis property. This then allows us to employ Berry’s recon-
lesce at the EP. There, our system may be modeled by struction technique in a microwave cavity experiment, where
two-dimensional non-Hermitian, symmetric matrix. Suchthe development of the nodal line patterns with the param-
systems have been analyzed in R¢&15, where one can eters is studied.
find a complete and very detailed treatise on the essential The paper is organized as follows. Using a two-state
features of the eigenvalues and eigenvectors of parametemodel adequate for the simulation of our experiment we ana-
dependent two-dimensional matrices associated with the sirtytically calculate in Sec. Il the geometric phases that occur
gularities. when an EP is encircled. By this calculation a path around
For two-state systems described by a complex symmetrithe EP is defined, along which the eigenvectors of the system
Hamiltonian, the geometric phase associated with an ERemain approximately real. In Sec. IV the actual microwave
[12,14 differs from that associated with a diabolic point cavity experiment is discussed. Using the same experimental
(DP) [10], a simple degeneracy between two levels. The onlytechniques and a setup similar to the one discussed in Ref.
way to determine a geometric phase with our experimental12], we here present data from the encircling of a different
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EP. From the transformation properties of the eigenfunctions Hy,= +i(e-iy) (5)
and from the existence of a nodal line pattern for every set- o
ting of the cavity’s parameters we conclude that the eigenbet""een the parameters of the Hamiltonian. Furthermore, the

functions remain approximately real in the experiment whileParametety, is nonzero at an EP. Else, lif;, vanishes, the
the EP is encircled. A conclusion is given in Sec. V. space of eigenvectors is two dimensiofsde Eq(1)], and a
degeneracy rather than an EP occurs.
Since we are interested in the behavior of the eigenvectors
IIl. ANALYTIC TREATMENT OF ENCIRCLING AN EP of H in the vicinity of an EP, we furthermore define the

In this section, we analyze the behavior of the eigenvecCOMPIex parameter

tors of a two-state quantum system when encircling an EP. e-iy
As outlined in Ref[12], the two-state Hamiltonian appropri- B= o
ate for the simulation of our system in the vicinity of an 12
isolated EP is written in terms of a two-dimensional complexwhich becomes
symmetric matrix. Accordingly, in the sequel we restrict our- p )
selves to such two-state systems. In particular, we show that B™ = #£i ()
a closed path exists along which the eigenvectors are apy an EP, i.e., when E@p) is fulfilled. The eigenvector§,)
proximately real and that in accordance with Rg&14 one  ang|r,) of H can then be written as functions Bf Normal-

needs four turns around the EP in order to restore the originq&ing the left-hand eigenvectotk] and the right-hand eigen-

S“P’aﬁon- we use Fhe same notation as in R[é[_@’,la and vectors|ry) in the biorthogonal sense, they can be defined as
write the Hamiltonian of the two-state system in the form

(6)

i (1 = (cos 6,sin 6) |>(C°SH)
_ =(cos@,sin@), |ry=|{ | ,
H= (El 11 H12 ) (1) 1 ! sin @
Hi Ex-iy
Here, the parametei, , and y, , are real andH;, may be i _ (" sin 9)
complex. Expression{l) is a complex symmetric Hamil- (Ig|=(=sin 6,cos6), |rz) cosf /)’ ®
tonian. By defining where 6 is defined by
g=BErEinty) () tang=-B+\B?+1=-B+\(B+i)N(B-i). (9

2

This choice of normalization of course defines the left and

and right eigenvectors only up to an additional phase, which can-
cels out when evaluating the absolute value of the eigenvec-

e=(E-B)/2, tors. Hence, this additional phase may not be observed with
our experimental setusee Sec. I\
v=(y1— M2, 3 When varying B continuously along a closed curve
) ) around one of the EPs, i.e., arouBB°=+i or BEP=—i, the
the eigenvalueg, , of H can be written as phase oB-BEP will change by 2r. Accordingly,oneof the
B Y T square-root functions in the second line of E®), namely,
Eip=Ex\(e-iy)"+Hi, @ that corresponding ta/B—BEP, changes its sign, whereas

Two-state systems described by such a Hamiltonian havéiB+BEP Wi" retu_rn to its original va_lue_ as long as exqctly
been studied both analytically and numerically in Raf]. one EP is encircled. Hence, encircling an EP implies a
Moreover, subtracting from the diagonal elements df change from tard to tan 6;, where

given in Ref.[3] and performing a transformation of the type —_Rp-JR2+1=—

defined in Eq.(3.6) of Ref. [3], the Hamiltonian(1) can be tan 6y =-B-\B"+1 coté, (10
brought to the form given in Eq6.2) of Ref. [3] with G that is,

=0, whose eigenvalues and eigenvectors provide the refrac-

tive indices and the associated polarization vectors of di- 0,= 0+ E. (11)
chroic, nonchiral crystals. Referenf® provides a very de- 2

tailed description of such crystals at and around three typ
of singularities(called singular axesC points of circular
polarization, which in the absence of chirality coincide with
the singular axes, arldlines of linear polarizationthat may 11,2 =|r; g, (12
occur dependent on the choice of the three parameteys oo

andH,,. In the following we will rederive those properties of whereB, denotes some value & Starting from this initial
the eigenvalues and eigenvectors of the Hamiltonii,  value By we track the development of the eigenvectordof

o compare the eigenvectorsldfbefore and after encircling
an EP in theB plane, we use the abbreviation

which are observable using our experimental setup. when an EP is encircled. Comparing the eigenvectors before
The complex eigenvalues coincide if the square root vanand after encircling an EP, i.e., insertiigand 6, =6+ m/2
ishes. Hence, at the two EPsldf one has the relation into Eq. (8), then yields the transformation scheme
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1) 12) -11) -12) 1) Im{B}
{I2>}O{—1>}O{—I2>}Q{|1>}©{|2>}’ (13

while insertingé and ;= 60— /2 leads to

1) -2 - 1) 12) |1) L‘ ‘-'1_. +1 N Re{B}
{I2>}O{|1>}O{—|2>}O{—|1>}O{|z>}' (4 x *

Both schemes have been observed experimerith#yl7 in :
a particularly shaped microwave billiafgee Sec. 1Y by 1
changing the orientation of the closed loop around the EP, as
indicated by the symbols and?. Changing the orientation

of the loop is equivalent to following a given scheme back- FIG. 1. A path in the compleB plane[cf. Eq. (6) in the main
wards. In both case$our turns around the EP are needed intext] surrounding an EP situated BEP=—i. Along this path the
order to restore the original situatiofsee also Refs. eigenfunctions oH remain approximately real.

[3,12,14). At this point we note that iB changes continu-

ously along a closed curve, which encirclesth EPs, then  4j0ng this path in an experiment, they can be used to recon-

the sign ofboth square-root functions in the second line of gyct the eigenstates according to Berry and Wilkingid).
Eg. (9) will change, that is, each of the eigenvectfisand

|2) transforms into itself. If, however, both EPs are encircled
with opposite orientation by tracing out an “8,” then both

Ill. PHASE OF THE EIGENVECTORS

eigenvectors will acquire an extra phasethat is, a phase | the following section we will discuss whynly the
which coincides with Berry's phase for the encircling of a yansformation scheme#3) and(14) are observed in experi-
diabolical point(see Sec. I\ ments(see Refs[12] and Sec. IY. One can redefine the

The resulti_ng tran_sformation_ scheniésys.(13) and(14)] eigenvectors such that
are not surprising since the eigenvect@$ have a branch
point of a fpurth root at t_he EP. This can be’easnEyPseen by Id = A=, Iro — Fo=€?ryp. (18)
noting that(i) the tangent in Eq9) depends on'B£B=" and . ) o
(ii) an additional square root is needed for the Computaﬂoﬂ'hls conserves the biorthogonal normalization. If the phase

of the sine and cosine functions in @), from the tangent, ¢ iS, €.g., constructef25] so that after two loops around an
viz., EP it equalsm then one obtain&,)— [f\) after two loops.

This seems to disagree with the scherfie® and(14) claim-
ing that[f,) — —[F,) after two loops. In the present section we

cos = Ji+tarf 6’ show that the experimental resyit3) for the phase change
of the eigenvector&3) remains unchanged under the replace-
1 ment(18). In the first section the essence of the argument is
Sin = ——= (15) presented in a rather general and abstract way. In the second

V1+cof 6 section the loops around an EP are described in a more
physical way. In the third section, we consider eigenstates
with an additional phase, as defined in E&8), and show

that the results of the second section remain unchanged. In
IB|>1, (16) the last section we show that the present arguments yield the

) ) i well-known geometrical phase occurring when a DP is en-
the eigenvectors are approximately real. Keeping only termgj cjed.

up to the first order irB™* we obtain

If Bis real, the components ¢f) and|2) are real. Hence, if
B is sufficiently far from the EPs, i.e.,

) ( ) A. Smoothest interpolation between the experimental pictures
g 2B/’ In the experiment described in Sec. IV and in Refs.
[12,17 the development of the eigenvectd® is tracked.
(2B)* Their coefficients are analytical functions Bf everywhere
Irp) =~ ( 1 ) (17) except at the EPs. Analytical functions are arbitrarily often

differentiable. In this sense they are the smoothest possible
Therefore the eigenfunctions are approximately real alondunctions.
the path sketched in Fig. 1, which either follows the real axis Except for a parameter-independent phase, the ve@prs
of the complexB plane or fulfills Eq.(16). We note here that are the only analytical representation of the eigenvectors,
along the lower part of the path sketched in Fig. 1, i.e., fabecause a system of biorthogonal eigenvectors is well de-
away fromBEP=—i, the components of the eigenvectors de-fined up to an arbitrary phasg=¢(B) as introduced in Eq.
pend only linearly orB™X. We therefore expect that the ex- (18) with a complexB. The phase is real in all the domain
perimentally measured eigenvectors vary only slightly alongvhere one is allowed to choose the p&hExcept for the
this part of the path. If the nodal line patterns are trackedconstant there is no analytical function which is real on some
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phase factor depending dhyields nonanalytical eigenvec-
tors.

Instead of claiming that the experiment follows E§),  The solution is
one can therefore state that K§) is the smoothest interpo- .
lation between the experimental pictures of the eigenfunc- . 1S N > 2
tions. In this sense it is the simplest mathematical interpre- ¢= Odt (nlVarnR=i CdR<I“|VRr”>' (24)
tation of the sequence of wave functions presented in Fig. 3.

According to the argument of Ockham's raZ@8] one can- g |ast integral is a path integral Rspace. The parameters
not hope for anything else. _ o move along the patlC between time zero and tinte This

In the following section, a physical process is discusseqaans that the time has only served to parametrize the path.
that allows us to explicitly follow a given eigenvector on a g |agt integral is independent of time and should therefore
path encircling an EP. It yields in Sec. Il C the result an-pe \4jig not only for an adiabatic process but also in the
nounced above. present experimental context, where a continuous variation

of the parameters is considered. Let

area in the complex plane. Hence, multiplying E). with a ¢> '<I
=i( 1,

J 2 >
Ern> :|<|nWan>R . (23

B. Parameter-dependent state

The physical process is the one introduced by Berry in R= (REB) (25)
Ref. [1]—modified to the treatment of complex symmetric ImB
(instead of HermitianH and to loops around an Hihstead
of a DP.

Let H=H(R) depend on a s&R of parameters. The eigen-
vectors(l(R)|, [ri(R)), and eigenvalueE(R) depend orR.

In a first step, we considd®=R(t) as a function of time. b=i dB<I
The state|y(t)) of the system is the solution of the time- A
dependent Schrédinger equation

be the real and imaginary parts Bf and let(l,|,|r,) be de-
fined as in Eq(8). Then EQq.(24) is a path integral in the
complex plane oB, viz.,

d

—r, /. 26

4B n> (26)

The integrand is analytic everywhere except at the EPs. The

-~ _. 0 function(l,|(d/dB)r,,) is multivalued—it is defined on a Rie-
HRO)[¥(t) =1 at|¢(t)>- (19) mannian surface rather than the complex plane. But on that
_ i . . surface, it is analytic everywhere. Especially it is continuous
At t=0 the system shall be in the eigenstaig, i.e., on every pattC that avoids the EPs. Along such a path one
- has
|4(0)) = [ro(R(0))). (20)
: . . . - d 1// d d
Expanding|#(1)) into the instantaneous eigenstaiggR(t))) In d_Br” =5 d_BI” rn)+\1, d_Br"
at timet and assuming that the parameRét) is changed so
slowly that the adiabatic approximation is applicalp®], - }ﬂa r)=0 27)
we obtain 2dB"™ "
(" T L - The first line of this equation holds becaudg is just the
|it)) = exp(— 'Jo dt'Eq(R( )))exm PRO]Ir(RO)). transpose ofr,,). The result is due to the biorthogonal nor-
malization.
(21) Hence, the choicéB) for the eigenfunctions leads to

Hence, the adiabatic approximation implies that at each in-
stantt the state|y(t)) is proportional to the instantaneous

eigenstatérn(ﬁ(t))), if it is proportional to|rn(§(0))> at time  if the pathC does not cross an EP. In other words, our choice

$(C)=0 (28

t=0. The dynamical phase of the normalization implies that the total phase acquired by
. a state|(t)) when encircling an EP in parameter space is
- if dt’ En(li(t’)) obtained from the change of the eigenstates, that is, from the
0 transformation schemg43) and(14). As will be shown in

. o . N the following section, this result is independent of the phase
is well known. Of special interest is the additional pha@se convention chosen for the eigenstates.

which is due to the motion in parameter space. With the

nsatz(21), Schrodinger equati ields th uation
ansatz21), Schrodinger eq o(L9) yield € equatio C. Redefining the phase of the eigenstates

Pr = i%|rn> (22) Let us use in Sec. Il B the eigenstafeg, (| of Eq.(18)
instead ofir,),(l,|. The phasep=¢(R) shall be a function of
for the phasep. Using biorthogonality this gives the parameters. Then, in analogy to E2{l) we may write
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t - - -
() = eXD(- ifo dt’ En(R(t’)))eXdiB(R(t))]Wn(R(t)»

= exp(— i fo dt’ En<ﬁ<t'>))exr{iﬂ<r3<t)> +ig(R®)]

X|ro(R®)), (29)

where in the second line we used the definitionfqf [see

Eg. (18)]. Hence, the total change of the phaseft)) is
given ag 8(C)+ ¢(C)] plus the change df,,). But, proceed-

ing as in Sec. Il A one shows thpB(C)+ ¢(C)]=0, as long

as the path does not cross an EP. As a result, our choice of
the normalization of the eigenstates has the specific property
that all phase changes acquired by a sféte) when encir-
cling an EP are solely obtained from the transformation
schemeg13) and(14) independent of the phase conventions
chosen for the eigenstates—in agreement with the argument
given in Sec. lll A. For comparison we briefly discuss—in 100 mm
the following section—the well-known phase that occurs
when a diabolic point is encircled.

FIG. 2. A photograph of the opened microwave billiard em-
ployed for the observation of EPs. A circular copper cavity is di-
vided into two semicircular parts. The two parts are variably
D. Encircling a diabolic point coupled by a slit of widtrs. One of the semicircular cavities can be

A diabolic point is a degeneracy of the eigenvalues suctperturbed by adjusting the positiaf of a Teflon stub inside the
that there are two linearly independent eigenvectors. It igesonator.
most easily obtained as a degeneracy in a system described

by a real, symmetri¢d. Let us set in Eq(1) Hp=w+ie. (35
v1=0, =0, (30) By virtue of Eq.(32), the parameter
e
and B= : (36)
Hi,= w=real. (31 wTle

] ) ) B ) then moves on a path that has the shape of a figure-eight and
Then the diabolic point occurs whes 0 andH;,=0. Encir-  gncircles the EPs atand - in opposite directions. We have

cling corresponds to moving the vector convinced ourselves that such a closed path changes the
( e ) phase of the eigenvectors biy—in agreement with Berry’s
phase.
Hiz The parametrization in terms d& is similar to the one
around the origin, e.g., with discussed in Ref.15]. However, the authors of Rdf15] did

not exactly specify the path chosen for encircling a DP. Note
e=pcosé Hp=psing 0=é<27. (32  thataclosed path which encircles both EPs in the same sense

does not change the phase of the eigenvectors.
This yields the eigenvectors

cogé/2
o= (smﬂ((;z))) 33 IV, EXPERIMENT
The geometric phases which occur when an EP is en-
and circled have been observed for the first time in the micro-
wave cavity experiment described in R§f2]. Flat micro-
sin(&/2) wave resonators as the one used in RE2] are commonly
o) = (_ cog&/2) ) (34) known as microwave billiards and form one cornerstone for

the experimental investigation of quantum chaotic phenom-
One sees that encircling a DP changes the sign of thena(for an overview see, e.g., Ref0,21)). They compose
eigenvectors—this is Berry's phagg]. an analog computer that solves the Schrodinger equation for
Strictly speaking, the pat{82) cannot be represented as a quantum billiards. The circular resonator employed in the
closed curve in the complex plane Bf According to Eq.  experimen{12] was manufactured of copper and divided by
(32), B is real for all ¢ excepté=0,7, where it goes to a conducting wall into two approximate half-circles. Figure 2
infinity. In order to circumvent this difficulty one can add a shows a photograph of the cavity without its lid. An opening
small imaginary part t¢,, and replace Eq31) by of lengths in the wall couples the two semicircular parts of
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the cavity. A second adjustable parameter, calfeis given (a)

by the position of a semicircular Teflon stub in one part of

the cavity. @ @){ @ @ .
In the vicinity of an EP[12], we model the microwave ~_ . \ / ~ &

billiard through a two-state system as describedHbgf Eq. stop -« °

(1). The connection between the parameterdHo&nd the RY v A .

observables of the microwave cavity experiment can be il- ‘D . EP

lustrated directly for the uncoupled case which impl&s ' = T‘ N “~ §

=0 mm, that isH;,=0, in Eq.(1). The resonance frequency stant g

f, of a mode in one semicircular cavity correspond&tan |1> @ @ @ @

Eq. (1) while the total width of itI';, corresponds tg,. The

resonance frequency and total width of a mode in the adja- 10mm  15mm  20mm 25mm 30 mm

cent semicircular cavity gives thdf, and y,. The situation J

is slightly more involved fors>0 mm, i.e.,H;,# 0. How- (b)

ever, the diagonal elements Hf are the same as in the un- ‘ §| IR)

coupled case. Moreover, the coupling mechanism via the slit @ @ @ L4 AP

implies that the off-diagonal elements ldfcoincide, that is, ~_ N / / g

H is complex symmetric. The resonance frequencies and the < 8

widths measured in the experiment correspond to the real stop !

and the imaginary part of the eigenvaluestbf m ) EP 4 -
The nodal line patterns of the electric-field distributions L . »- =

could be mapped by using a perturbation body method sart — 1 A ~ E

[12,22,23. Applying Berry’'s procedurgl] to these patterns |2> @ @ @ @ @5‘ N

we were able to reconstruct the eigenfunctions of the cavity.

Extending Ref[12] we show here a pair of modes, which for 10mm 15mm 20mm 25mm 30 mm

small couplings are localized in the adjacent semicircular 4

halves of the cavitysee Fig. 3. Figure 3 exhibits two re-

constructed _elgenfunctlons of the rgsona_tor Tor various paButions of two modes of the resonator shown in Fig. 2 while an EP
rametgr settlr_19$s,5). The_ wo shadmgs _|n Fig. 3 can be. is encircled. The initial states, i.e., the “start” configurations, are
e.lssopla'?ed with the two d'ﬁ‘?f?”t orientations of the ?Iecmclabeled ag1) and|2) in agreement with the definitio(87). Their
field inside the microwave billiar21]. The wave functions  fie|q distributions can be reconstructed from the recorded nodal line
of these modes can be mapped out separately even at a figstterns for all settingss, 9).

quency crossing if the resonator is excited via different an-

tennas[17]. Following the theoretical analysis, cf. Ed.2),
we chose the wave functions fex10 mm and5=42 mm as
basis states, i.e.,

FIG. 3. Development of the reconstructed electrical field distri-

nodal lines while a superposition of the basis states with real
expansion coefficients simply shifts the nodal lines. The rea-
son for this is that the absolute value of the wave function of

11,2) = |r1 D(s10 mms=42 mm- (37) the complex superposition is zero only where the coefficients
. ' o o of both |1) and|2) vanish.
The basis states are labeled|Bsin Fig. 3@ and|2) in Fig. By varying (s,d) in small steps, one EP has been en-

3(b), respectively. They are chosen far away from the EPgircled in the(s, §) plane. Both eigenfunctions were tracked
beforehand identified by studying the behavior of the eigencontinuously during the sequence of 11 steps that form the
values[12], so that Eq(16) is fulfilled. This implies that the  ¢losed loop around the EP. The reconstructed wave functions
basis states are approximately rgetl Eq.(17)]. At all other  clearly show that the basis state) transforms to|2) [see
parameter settings, the eigensta$ and |ry) are linear  Fig. 3a)], and that|2) transforms to H), which implies a
combinations off1) and|2), cf. Ref.[17]. Let @, B be the  geometric phase of. The data presented in Fig. 3 therefore

expansion coefficients df,) so that confirm in Berry's sens¢l,11] the appearance of a geomet-
Ir) = all) + BJ2). (39) _ric pha_lse Which is picked up lgneeigenvector when an EP
is encircled:
The eigenstates are orthonormal in the biorthogonal sense, 1 5
which requires {| ) 12) (41)
2) -0 )
Ir2) = B|1) - o]2). (39 o _ ,
A recently suggested additional geometric phigds, which
and also leads to mathematical inconsisten¢28j, does not ap-
(12 + :82 =1. (40) peal‘.

The transformation scheme for four consecutive turns
The eigenfunctions remain approximately real & steps around a single EP has been measured by repeatedly tracking
displayed in Fig. 3, since a superposition |[&f,|2) with  the nodal line patterns along the path shown in Fig. 3. The
complex expansion coefficients would have removed theesulting geometric phases for the basis stHfeand|2) can

056216-6



ENCIRCLING AN EXCEPTIONAL POINT PHYSICAL REVIEW E69, 056216(2004)

1) |2) -|1) -|2) 1) fourth-order branch point. The appearing geometric phases

are a consequence of the normalization of the eigenfunctions
@ @ @2 @ @ (8). The eigenfunctions are approximately real on a path en-
O O O O circling the EP, a property which is essential for their experi-
@ @ @ @ mental reconstruction according to Befidj from distribu-
N tions of nodal lines mapped in microwave cavity
2) -l —[2) 1) 2) experiments.

We verified these results by performing an experiment
FIG. 4. Development of the basis statés and|2) during four ~ With @ normal conducting microwave billiard consisting of
consecutive turns around an EP. For each loop, symbolized,by two variably coupled semicircular resonators. The two
the development from the initial to the final states has been trackethodes we report on here are for small couplings localized in
according to Fig. 3. Four turns are needed in order to restore ththe adjacent semicircular halves of the resonator. This al-
original situation. lowed us to completely map their nodal line patterns when
the EP is encircled. The reconstructed wave functions con-
be derived from the reconstructed wave functions shown ifirm the transformation schemes derived analytically. The ex-
Fig. 4. Our experimental results are in accordance with th@erimental results presented here show that the geometric
analytical result, Eq(13); see Fig. 4. The transformation Phases occurring when an EP is encircled agree with those
scheme(13) implies that the eigenfunctions of the resonatorobserved in earlier experimer|ts2] and with analytical and
have a branch point of fourth root at the EP. numerical calculation$3,14,13. There is no experimental
evidence for any additional geometric phase facfaes.
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