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Random Boolean network model exhibiting deterministic chaos
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This paper considers a simple Boolean network Wthodes, each node’s state at titnieeing determined
by a certain number of parent nodes, which may vary from one node to another. This is an extension of a model
studied by Andrecut and Aliint. J. Mod. Phys. B15, 17 (2003)], who consider the same number of parents
for all nodes. We make use of the same Boolean rule as Andrecut and Ali, provide a generalization of the
formula for the probability of finding a node in state 1 at a tim@nd use simulation methods to generate
consecutive states of the network for both the real system and the model. The results match well. We study the
dynamics of the model through sensitivity of the orbits to initial values, bifurcation diagrams, and fixed point
analysis. We show that the route to chaos is due to a cascade of period-doubling bifurcations which turn into
reversedperiod-halving bifurcations for certain combinations of parameter values.
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I. INTRODUCTION ANE EE0 EOR B0 O=s OEC OOR OO0
In recent years, various studigs-8| have shown thata | | 1 1 ! l 1 1
large class of biological networks and cellular automata cal
be modeled as Boolean networks. These models, besides t O n ] (] [} a n O

ing easy to understand, are relatively easy to handle. The . o :
interest for Boolean networks and their applications in biol-Where black ison and white isoFF, has an important ml?
ogy and automata networks has actually started much earli@mong the 256=2elementary cellular automata, those with
[9-15, with publications such as Kauffman[d3], whose WO Stateson andorF, and neighborhood of size 3. Rule 126
work on the self-organization and adaptation in complex sysiS Poth “legal,” reflection symmetric witf0,0,0 —0, and
tems has inspired many other research endeavors. At théPtalistic,” where the rule depends only on the relative num-
same time it has been observgkb,17 that large complex ber of ON and OFF states and_ npt their ord¢t9]. _There are
networks (biological, social, world wide web exhibit a 32 Ieg_al rulgs and 16 totallstp rules. Only eight of the_se
scale-free feature, that is their connectivity distributions havéules, including Rule 126, are in both classes. These eight
a power-law form. It is important to understand and study th¢n€reby distinguished rules are nos. 0, 22, 104, 126, 128,
dynamics of Boolean networks in order to use them forl90, 232, and 254. They separate into Wolfram’s four classes
simulation and prediction of the real networks they model. @S: Class I: 0, 128, 254; Class |I: 104, 232; Class III: 22, 126,

There is a close connection between Boolean networkd®0; @nd Class IV: none. Besides the automata in Classes |
and cellular automata. Each consists of a set of nodes opedd Il. which have relatively simple behavigig], this
ated on by other nodes. For cellular automata there are dfa@ves only three: Nos. 22, 126, and 150. But no. 150 is
infinite number of nodes and they have a spatial structure2dditive(linear in algebraic formwhich simplifies its analy-
Boolean networks have only a finite number of nodes bufiS by transferrln_g_l_musual _gffects from the structure of the
they are not arranged in any spatial structure. Also cellulaputomata to the initial conditions only.
automata have the same up-date rule at each node while for L&t us look at the structure of Rule 22
Boolean networks the up-date rule can vary from one node tHEE BED BOR ECO OER ORO OOR OO0
another.

The present work is a significant generalization of previ- | 1 1 1 l I 1 1
ous work by Andrecut and Ali1] which in turn generalizes
Rule 126 for elementary cellular automats8]. Rule 126 is a O il | (] | | O
one of several which exhibit randomly distributed triangular

shapes of arbitrarily large size. This makes Rule 126 a Clasgg \ye|| as Rules 22 and 126 both being in Wolfram’s Class
lll of complexity generating rul¢18]. The purpose of Ref. '} ey are also both in the same=2 in a new classifica-

[1] is to show that this Class Il behavior has a simple imer'tion, regarding separating planes for the basic eight-point
pretation as a density function for a random Boolean ”et""orlﬁypercube(along with no. 10%$[20].

exhibiting deterministic chaos. But we pause briefly to dis-
cuss Rule 126 itself.
Rule 126, most simply described as

It is interesting that both Rules 126 and 22 have a natural
and simple interpretation in terms of the growth of cell colo-
nies. For Rule 126, complete crowding of liveN, cells
causes deatlgrr, in the next generation. Complete isolation
of a potential cell prevents birth in the next generation. A
*Electronic mail: dmatache@mail.unomaha.edu similar interpretation holds for Rule 22, it just is not quite as

1539-3755/2004/68)/05621410)/$22.50 69 056214-1 ©2004 The American Physical Society



M. T. MATACHE AND J. HEIDEL PHYSICAL REVIEW E 69, 056214(2004)

complete. It would be natural to try to extend what follows to The evolution of the nodes from timeto timet+1 is given

a generalized Boolean network based on Rule 22. We havey a Boolean rule which is considered the same for all nodes.

not yet figured out how to do this. See also Réefl]. Each nodec, is assigned a random “neighborhood” of par-
The purpose of this discussion of Rule 126 is to provideents, whose values at tiniénfluence the value of, at time

the flavor for the general type of behavior which is analyzedt+1 through the following Boolean rule. I, and all its

in what follows. Although we will be discussing random parents have the same value at tiln@hat is they are all

Boolean networks, it is worthwhile to look briefly at the either 0 or 3, thenc,(t+1)=0, otherwisec,(t+1)=1. The

simplest nontrivial analog in terms of a deterministic cellularparents of a node are chosen randomly from the remaining

automata. N-1 nodes and do not change thereafter. More precisely, if a
In Ref. [1], the authors consider a simple Boolean net-node hak parents, then a set &fnodes is chosen from the

work with N nodes, each node being influenced by exaktly remainingN-1 nodes with probability ]{i‘;l)_

other nodes at each step of the Boolean system. In other This model is a description of a random Boolean cellular

words each node has exackyparents, so that the Boolean automaton. The system is described by the number of parents

rule for each node is determined only by the state ofkhe of each node. Observe that the quantity

parents. The numbéeris fixed. This feature makes the model

restrictive. It is known that in real networks the number of \

parents of a given node varies from one node to another. In

this paper we extend that model by allowing a different num- N (t): = 2 cq(t)

ber of parents per node. We make use of the same Boolean =t

rule as the authors of Refl], namely, if a node of the

network and all its parents have the same vdlu®r 1) at  gives the number of cells that are in state 1 at tim&he

timet, then the value of the node at the next time stefhis  concentration of nodes in state 1 is given b){/l\lE,ﬁ‘zl cy(t).

0; otherwise it is 1. We provide a generalization of the for-\we are interested in finding the probabilip(t+1) that a

mula for the probability of finding a node in state 1 at a timengde is in state 1 at time+1. In Ref.[1] the authors show

tin Sec. Il. The formula for the probabilitp(t+1) that a  thatp(t+1) is given by

node is in state 1 at timer1 givenp(t) is

J M. ki Ki — 1 _(tkl 1 — k+1
pt+1=> MNl 1-N0 - Nl—(t)p(t)k;} , pt+1=1-pO™ ~[1-pOF, 29
j=1 M; M;

ki the distinct Wherek=1 is the number of parents of each nddensid-
e ered fixed in that paper(Note: We take the liberty to pro-
vide the formula withk+1 rather thark as it is misprinted in

whereN is the size of the network, ks, ..
values for the number of parents of the nodésthe number
of nodes withk; parents,N§ the number of nodes with;

parents that are in state 0, aN§ the number of nodes with Ref. [1])

k, parents that are in state 1. We use simulation methods to Ol;)rl goal if) to p])crovide a s_li_milﬁ_r formula for thi Casek_of
generate consecutive states of the network for both the re%?”a € number of parents. To this aim we start by making
e following notations. Leky,k,, ... ,k; be the distinct val-

system and the model. The results match very well. In sed

Ill, we study the dynamics of the model through the analysi¢’€S for the number of parents the nodgscy, ... .Cy can
of the sensitivity of the orbits to the initial values, bifurcation Nave- Also letC; be the collection of all nodes havirk
diagrams, and fixed points. We show that the route to chaoBarents, andv; be the number of nodes in each cl&gs j

is due to a cascade of period-doubling bifurcations which-1:2:--- - To simplify the notation we will assume that
turn into reversed bifurcations for certain combinations ofC1=1c1:C2: "'ijMl}'C2:{CM1+1’CM1+2’ -+ Cuysm,b and so
parameter values. The reversed bifurcations are explained RN Also, letNg (t) be the number of nodes of claSgin state
more detail in Sec. IV. As is shown here, a single large valud at timet, andN¥i(t) the number of nodes of clag in state
for one of thek;, can have a dramatic effect in simplifying 1 at timet, j=1,2,...J. It follows that = [N§ () + N§i(t)]
the behavior of the rest of the network. Sec. V is dedicated te=N, and N('§J'+N‘§:Mj, j=1,2,... ). The probability that a
conclusions and possibilities for future work. node is in state 1 at timet is given by p(t)
=1/ NE]-J:l N&i(t). We want to compute the conditional prob-
ability that a node is in state 1 at1, given the known
probability p(t). Observe that this is basically determined by

In this section we describe the Boolean model. Significanthe number of nodes that change from state O at tirte
results from Ref[1] are recalled to make the paper self- State 1 at time+1 and the number of nodes that remain in
contained. state 1 from time to t+1.

Consider a network withN nodes. Each node,, n We will start with the derivation ONEJ'_,l(t) which will
=1,2,... N can take on only two values 1 or 0. Often this is denote the number of nodes of claSsthat are 0 at time
interpreted as a system in which each node can be aither and become 1 at timie+ 1. We will use the notatiof? for the
or OFF. At each time point the system can be in one of the probability of an event, but we will keep the notatipft) for
2N possible states. We assume that all the nodes update théfire probability of a node being in state 1 at titBroughout
value at the same time, that is the network is synchronoughe paper. Ifc,(t)=0 then

II. BOOLEAN NETWORK MODEL
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Plea(t+1) = cy(t) = 0]
=P(at least one of the parents of nagjgs 1 at timet)
=1 —"P(all parents of node, are 0 at time)
=1-[1-p®]*

Here k denotes the number of parents of the nagjeand
could be any of the numbelkg ks, ... k;. We assume inde-

pendence of the parents, in other words, the parents them-
selves can be in state 0 or 1 independently of each other. At

time t+1 we could haved,1,2,..., orN'(‘,i(t) nodes going
from state 0 at timé to state 1 at+1. We define the discrete
random variable&X given by the probability distribution func-
tion

P(X=1) =P(I nodes of clas€; go from state 0

Ng(t)

| %ku—mmy

at timet to state 1 at + 1):(

X{[1-p®TINO 1=0,1,2, ... NS(1).

One can check by a straightforward computation that

k.
SNI® p(x=1)=1. ThenN§_,(t) will be the expected value
of X, that is

Ng(®
Ng,(t) = lE I POX=1) = N§(O{L - [1 - p(t)]5}.
=0

(2.2

Although this number might not be an integer, we will not

PHYSICAL REVIEW E 69, 056214(2004)

and NS (t) = NS(tp(Hh.

Again, by setting all numberk; equal tok and performing
the computations we get the formulas obtained in REf.
namely,

Np 1) =Ny (O[1 =p(1) ], Ng_o(t) = No(H[1 = p(t)]¥,

and Nj_o(t) = Ny (H)p(t)¥,

whereNg(t) =57, N§(t),Ny(t)==7_; Nii(v).

It is important to check that the sum of all these quantities
is equal toN, even in the case of nonconstant number of
parents.

Remark The following holds

NO—»l(t) + Nl—»l(t) + N0—>0(t) + N1—>0(t) =N.

Proof Observe that N§ ,(t)+N§ (0=NS(t), j
=1,2,...). Similarly, observe that N ,(t)+N& ()
=Nki(1), j=1,2,... J. These results are to be expected and
they immediately imply thatNg_;(t)+N;_,(t)+Ng_o(t)
+Nl~>0(t):N'

We can now construct the quantitieg;(t+1)
=1/N[N§ _,()+N& ()] where j=1,2,...,), representing
the probabilities of finding a node of clagy in state 1 at
time t+1. Observe that

pt+ 1) ="~ — [1=pM] N P
My NGO e NI
=N M, [1-p®)] M, P |-

make any adjustments given that our final goal is to compute e o
a probability, which is anyway a number between 0 and 1. [fThe quantitiedNy(t)/M; andNy (t)/ M; represent the propor-
is important to note that if the number of parents is the sam&on of nodes of clas€; that are 0, respectively, 1 at tinte

for all nodes, sak, thenk;=k, for all j=1,2,...,]J and the
total number of nodes going from state O at titrte state 1
at timet+1 is given by

J
No_1(t) = No(H{1 —[1 - p(®) ],  No(t) = X N§(1).
=1

This represents exactly the formula obtained in R&f.for
No_1(t).

By a similar argument, one can write the following for-

mulas forN%_,(t), the number of nodes of clagy that re-
main 1 from timet to t+1, N§ _(t) the number of nodes of
classC; that remain 0, and\

Thus we can write the final formula for the probability that a
node is in state 1 at timer1

J
p(t+1)=> pi(t+1)
j=1

J ki ki
M [ NS Nt
=2 |1- —ﬁﬂ(, 1 - p(t)]s - —,a(, ) Pk |

] ]
(2.3

Note that if all the nodes are 0 at tinte then Nﬁi(t)
=M;,Nfi()=0, for all j=1,2, .. J, so thatp(t+1)=0, which
is to be expected since by the Boolean rule all the nodes stay

_o(t), the number of nodes of ( ¢ timet+1. Similarly, if all the nodes are 1 at time

classC; that _chang_e fron_1 1to 0. In each case an appropriat%(Hl):O by the formula, as well as by the Boolean rule.
random variable is defined as above, and the number of =i an all of the above, we propose the following simula-

nodes going from one state at timéo the next state at time yjon aigorithm for the Boolean network under consideration.
t+1 is defined as the expected value of that random variablepy, algorithm provides the computation pft) for all t

Thus we obtain the following:

NS () = NSI(O[L - p()N], NE_o(D) = N§®[L - p®)]%,

=0,1,2,....
For t=0 choose arbitrary numbegs(0) e[O,MJ—/N], j
=1,2,...J, and let
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FIG. 1. (Color onling Simulation of the Boolean system andthe  F|G. 2. (Color onling Bifurcation diagrams for the two-
model. The four graphs are the first four iterations, representingjimensional map of the modé2.3). The two values for the number
p(t+1),p(t+2),p(t+3),andp(t+4), respectively, versug,(t) and  of parents are determined as functions of a parantegeaphed on
p2(t). In all the figures, the number of nodesNs:160, the propor-  the horizontal axis. In the first grapky=k,k,=1k, while in the
tion of nodes wittk; =4 parents isM; /N =3, and the proportion of  second graphk;=k,k,=Ink. In both graphs the proportion of
nodes withk,= 16 parents isvl,/ N =3. The iterations of the system nodes having, parents isM,/N=2, and the proportion of nodes
are graphed with points, whereas the iterations of the model argavingk, parents ist/N:‘—l‘.
surfaces graphed as a mesh.

surfaces that are graphed as a mesh, while for the simulated

’ Boolean system we obtain only isolated points, generalizing
p(0) =2 p;(0). Fig. 1 in Ref.[1].
=1 As one can see, although there is no perfect match, the
For eacht=0,1,2,...compute model is a very good approximation for the Boolean system.

We note that the graphs are few of many simulations run by

. ' - the authors for various parameter combinations. The results
-(t+l):Ml 1- 1_219 (1- (t))kj_EJQ (t)ki p
P N p p

M. M- of the simulations were always similar to the ones in the
—l — graphs of Fig. 1. The running time for the program is rather
N N long due to complex computations. Therefore we kept the
M. (t number of nodes at a reasonable magnitg#ié0 in the
:_Nl 1‘[1‘p(t)]kj+EJ,\%([1‘P(t)]kj‘p(t)kj) graphs mentioned aboyeBut the larger the number of
—1 nodes, the better the match between the model and the Bool-
N ean system.
(2.9 In the next section we are interested in studying the dy-

namics of a system governed by the rules in the m¢a@).
wherej=1,2,...J, and let

J IIl. MODEL DYNAMICS

p(t+1)= 21 pit+1). To begin with we point out that the dynamics of higher-
dimensional analogs of Refl] may be quite compatible

The formula forp;(t) in Eq. (2.4) is similar to the sum-  with the one-dimensional behavift] (p. 21), as illustrated
mands forp;(t) in Eq. (2.3). in Fig. 2.

It is useful to provide some simulations to see how well We now turn to a more extensive analysis of the map
does the model match the real system. Of course, we will belynamics which will vividly illustrate the reverse bifurca-
able to provide visual output only for the case when2, tions which we discuss in the next section. To this aim we
that is we only have two possible number of parents for eacfirst study the sensitivity of the orbits to the initial values. We
node. The simulations that follow in this paper have beerconsider the case of only two distinct values for the number
obtained by running/ATLAB andMAPLE programs. The next of parents for simplicity. We fix the parameters
graphs(Fig. 1) represent simulations of the model and theM,/N,M,/N ,k;, andk,, and choose two initial pairs
actual Boolean system whdq=4,k,=16,M;/N=M,/N [p1(0),p,(0)] and[q;(0),0,(0)] as starting points for the or-
:%. Figure 1 represents the first four iterations of the modebits. We iterate many times the equations of the model and
and the system, that ip(t+1), respectively,p(t+2),p(t  compute p(t)=p,(t)+p,(t) and g(t)=q,(t)+g,(t) for each
+3),p(t+4) versusp,(t) and p,(t). For the model we obtain time pointt. Then we plot the erroE(t)=|p(t)-q(t)| versus
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FIG. 4. (Color onling Bifurcation diagrams for k;
=1,2,3,4,and 5graphed as functions df,. The proportions of
nodes withk; andk, parents are equal, that M;/N=M,/N=3.

The equations of the model are iterated 100 times to eliminate any
transient behavior. A¥; increases from 1 to 5 period-doubling
%ifurcations occur and the map exhibits chaos. lger4 and 5 the
bifurcations are reversed, and the point of reversed bifurcations
occurs for largek, ask; increases.

FIG. 3. (Color online Sensitivity of the orbits to the initial
values. The following parameters are fixed in each grayh/N
=2,M,/N=3,k =5k;=3,4,95, and.00, respectively. Two initial
pairs[p1(0),po(0)] and[qg,(0),q,(0)] are chosen as starting points
for the orbits. The equations of the model are iterated and the valu
p(t)=p1(t) +po(t) andq(t) =g, (t) +ao(t) are computed for each time
point t. Then the erroE(t)=|p(t)—q(t)| is plotted versug. In all
these graphg(0)=0.5 andq(0)=0.5002, so the starting values are
very close. In each graph the scale is chosen for clarity purposes. . o
For values ofk, smaller than 3 or larger than 100 the graphs arefOr cases with more than two distinct values for the number
similar to the one fok,=3. of parents.

In order to further clarify the situation suggested by the
t. In Fig. 3 we show the case CW'l/N=Mz/N=%,k1=5, sensitivity of the orbits to the initial values, we construct
andk,=3,4,95, andl00, respectively, for illustration of the bifurcation diagrams with integer values for the parameters
error behavior a%, increases. In all these grapp)=0.5 k. We consider the two-dimensional case and fix the param-
and q(0)=0.5002, so the starting values are very close. FoetersM;/N and M,/N. It is important to observe that the
values ofk, smaller than 3 or larger than 100 the graphs arenodel depends oM, M,, andN only through the propor-
similar to the one fok,=3. tions M, /N and M,/ N, representing the fraction of nodes

The range oft is not necessarily the same for all the havingk; or k, parents. In Fig. 4 we graph bifurcation maps
graphs, but it is chosen so that one can see easily the behd@r M;/N=M,/N=5k=1,2,3,4,and 5 and lek, in-
ior. crease freely. Thus the diagrams repregenersus(k;,ks)

The results are similar for any choice of the fixed param-for only a few values ok;, which allows one to understand
eters and initial values. The authors have checked the behakow the diagrams change from one valuekofto another.
ior in tens of cases. In general, we observe that for smalWe note here that the initial valuép,,p,) are the same for
values ofk, the error converges to zero. For larger values ofall the “slices” shown in the graph. In these diagrakass
k, the error does not settle suggesting that the initial perturthe parameter that increases freely, and given the fact that
bations propagate across the entire system which exhibits @nly the proportionsM, /N, and M,/N matter, not the ac-
chaotic behavior. In most cases, for a very lakgethe error  tual number of nodes, one can allow a wide range of values
converges to 0 again. The rate of convergence to zero mdpr the free parameter. One can observe thakt,ascreases
differ from one case to another. This suggests that the chadsom 1 to 5, period-doubling bifurcations occur and the map
is transient and the larger theg the more likely it is that the exhibits chaos. However, when looking at, for example,
system will become insensitive to initial perturbations andslices k;=4 andk;=5 one can see that the bifurcation is
will exhibit an ordered behavior. The rangelgfcorrespond- reversed a&, becomes larger, and the point where the bifur-
ing to chaos changes from case to case, and depends on ttetion is reversed is shifted to the right on theaxis.
parameter values. In general, the range becomes lardgr as For more clarity we attach the two-dimensional slice for
increases. In the case illustrated here this rangé.fos the  k;=5 in the first graph of Fig. 5. The graph is over a signifi-
interval [4,95] (we only show the cases d&f,=4 andk, cantly wider range ok, values than the three-dimensional
=95 in Fig. 3. For all the other values in this interval the graph. The bifurcation is reversed aroukg=10 whenk;
graphs are simila. =4, aroundk,=25 whenk;=5, and aroundk,=1100 when

These sensitivity graphs showing little sensitivity for ky=10 (not shown. Other than that, the graphs are similar.
smallk, or largek,, are consistent with the bifurcation dia- So it is observed that ds increases the point of reversed
grams to follow. Similar graphs and behavior are noticed alsdifurcation moves towarde when graphing the bifurcation
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FIG. 6. (Color onling Fixed points of the mapg.4) obtained
. 8 . numerically by solving the syste3.1). The first two graphs illus-
deta!l. The proportlonslof nodgs with aqd k? parents are equal,. trate the casél,/N= MZ/N:%,kl:l, and 4 respectively, letting
that |s_Ml_/N:M2/N:§. The first graph indicates that the chaotic k, free. The third graph illustrates the casé,/N=0.3.M,/N
b_ehawor is reversed through a cascade of penod-halvmg_ b'furcaio.G,M3/N:0.1,k1=1,k2:1, andks moving freely. The conver-
tions, while the second graph shows that the map exhibits chaog

FIG. 5. (Color onling Bifurcation diagrams fok,=5 in more

ence of the's to the values obtained by the E§.2) are apparent
through a cascade of period-doubling bifurcations. The secon P y H&-2 PP

. . . om the graphs.
graph is a zoom-in on the first graph over a small rangeof

values. Similar graphs are obtained for other valuek,; of . . )
various parameters. In what follows we provide for illustra-

diagrams fomp vs k,. In the second graph of Fig. 5 we pro- tion the caseM;/N=M,/N :é,kl:1,4, letting k, free (so
vide a zoom in on a small range kf values fork;=5, to see  J=2). The first two graphs in Fig. 6 provide the fixed points
that the route to chaos is due to a cascade of period-doubling, , p,) versusk,. We observe thap, — ‘—11, andp,— % The
bifurcations. This process is reversed for lakgevalues. We  rate of convergence is slower for larger Due to the com-
note here that this situation is similar Rstakes values be- plexity of the computations for large poweksve could only
yond the ones shown in the figures. graph 30values ofk, in the casek;=4, but it is apparent
On the other hand, if one looks at a fixkdand changes from the graph that fok,— o the fixed points converge to
the proportionM, /N (that is the proportion of nodes having the specified values.
ki parents the same thing happens; the reversed bifurcation e rewrite Eqs(3.1) as follows:
occurs for larger values df, as the proportion gets larger.
However, the graphs are similar in shape with any of the M; J ki
other ones presented here. Similar situations are obtained for ﬁ[l B (1 _21:1 pj) ]
more than two distinct values &t pi = J k J P
Thus the bifurcation diagrams emphasize the situation ob- 1- (1 _EJ’:]_ pi) + (2,-:1 pj)
served in the error plot. The system exhibits chaotic behavior . )
due to period-doubling bifurcations as one parameter is fixe@bserve that ifk=1 the equation can be solved am
and the other one increasesstoHowever, for larger values =3M;/N. This means that for the illustrated case of
of the free parameter the chaos is reversed through a cascabity/N =%, we getp1=;11, which is clearly shown in Fig. 6.
of period-halving bifurcations. Reverse bifurcations are dis-Also, if in the right term of Eq(3.2) we letk; — %, assuming
cussed in Sec. IV. all the other quantities fixed, we get— M;/N. This coin-
To complete the study of the dynamics of the model, wecides with our simulation result in Fig. 6 pfz—>%. To illus-
consider also the fixed points of the ma2s4), by solving  trate this even better we generate the simulation of fixed

(3.2

the system points for the case of three distinct numbers of parents and
3 K J K fix M;/N=0.3,M,/N=0.6,M3/N=0.1k;=1, andk,=1
I0i=% 1-{1-> P, + P 1-> b and let k; move freely, we obtain thafp;=0.15p,
N j=1 M; j=1 =0.3, andp;— 0.1, shown in the last graph of Fig. 6.

N Figure 6 corresponds to Fig.(®ottom) in Ref. [1].
; y We make the remark that in the previous simulations we
i . . . . .
- studied mainly cases with only two distinct values for the
—t P, ’ number of parents. However, the conclusions hold for other
! cases with more than two values for the number of parents,
and have been checked by the authors through numerous
wherei=1,2,... ). Of course, we do this numerically for simulations.

(3.1
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two distinct k values,k; and k,, and take the limit ak,
ol — oo in the expressions fgp; and p,
: M pa(t)
Pa(t+ 1) =~ 1=[1=py(t) = p(O] 4+ “E={[1 = py(t)
07h 9 . N &
06 »"/ 5 R\.& N
ol = o014 = [py(t) + P01} |,
0.4
0.3
02f M P2(t)
Pa(t+ 1) =~ 1=[1 = py(t) = po(0)] 2+ 2 ={[1 = py(t)
o1 - N %
of ‘ ‘ ‘ ' ; N
1 2 5 6 7
_ Ko _ k
FIG. 7. (Color onling Bifurcation diagram for the one- P22 = [pa(t) + po()]2} (4.7)
dimensional mapx,,;=(4-|a-4|)x,(1-x,). A cascade of period
doubling bifurcations is followed by a cascade of period halving
bifurcations. to obtain (with all the other variables and parameters held
fixed)
IV. REVERSE BIFURCATIONS
-2
It was shown in the last section that by holdikgfixed Po(t+1)= N

and lettingk, increase in the two-dimensional model, a se-
quence of reversed bifurcations occurs. Before examining thé is assumed here that,(t)+p,(t) is bounded away from
phenomenon more closely, it is useful to examine reverseero, justified becaus@®,0) is an unstable equilibrium point
bifurcations in a more general way. for Eq. (4.1).
The familiar one-dimensional quadratic map Assuming again for simplicity thaM,/N= Mz/N:%,
we can takepz(t):% and Eq.(4.1) becomes
Xn+1 = axn(l - Xn)

1 ki1 kq
has only period doubling bifurcations or<a< 4. However, py(t+1)= 5~ (5 - pl(t)) - pl(t)(i + pl(t)>
replacing the linear parametaiby the tent shaped parameter
4-|a—-4|, 0<as=S8, gives the map 1
po(t+1)== (4.2
Xne1 = (4 = |a=4)x(1 =%, 2

which leads to a bifurcation diagram on<a<8 extended ~2Ske— . OF, with p=p,+py,

by mirror symmetry as in Fig. 7. _ _ _ p(t+1) = py(t+ 1) + po(t + 1)
However, it is possible to have a period halving bifurca-
tion sequence in a one-dimensional unimodahe-hump
map even with the parameter appearing as linear multiplier
[22—-24. Alternately, relaxing the unimodality can also intro- _
duce reverse bifurcation sequeries]. These papers suggest This map represents the behavior for laigeof the three-
and even provide a rough outline for a general theory o\dimgnsional bifurcation diagram in Fig. 4 of the previous
when reverse bifurcations will appear in one-dimensionafection.
maps. But the limiting behavior can also be described by the
Not surprisingly the situation is much more complicatedbifurcation diagram of the mag#.3) itself as in Fig. 8. Thus,
for multidimensional maps. It has been observed that théor 0<k;<2 there is a single stable fixed point and for
two-dimensional Henon map does have both orbit creatiofft>2 a single stable period two orbit. This is, of course,
and orbit annihilation parameter valug®6]. In fact these €xactly what shows up in the two-dimensional bifurcation
authors give a very general result for dissipative maps of théliagram for(k,, p) for different values ok, (Fig. 5).
plane into itself. However most specific examples discussed It is also of interest to look at the reduced meh2)
in the literature are neither conservative nor dissipativedirectly, but now simplified by removing,(t+1)=3 andk,
[27-3Q. —oo by viewing it entirely as a map fop; with a single
The easiest way to understand the appearance of reverparametek; as in the first equation of E@4.2). This map is
bifurcations in our generalization of the Andrecut and Ali viewed first as a surfacp(t+1) versus(p,(t),k;) as in the
map[1] is to consider the two-dimensional case, that is withfirst graph of Fig. 9.

=1-[1-p]at- (p(t) - %) p(Hke. (4.3
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FIG. 8. (Color online Bifurcation diagram for the map(t FIG. 10. (Color onling The first six iterates of the magd.2),

=1 [1-p(§]&* - [p() 2 Jp(b). pit+D)=3-[3-pr ) ] -py O[5 +pu(0)]. Herek;=5
. . _ . . _ M2 k.

Now, the graph of map4.2) itself (with k;=5) and its first pat+1)=—"[1-(1-py—pr—P3)]
six iterates show that the higher iterates introduce essentially N
no new complexity and therefore only the simplest periodic, +p[(L-py—po—Pa)e— (py+ Py + pa)<el,
and no chaotic, behavior is observgdg. 10). Of course, the
bifurcation diagram fofp4(t),k; ] is that of[ p(t) ,k; ] reduced Ms
by 3. ps(t+1)=W[1—(1—p1—pz—p3)"3]

We now show that a similar phenomenon occurs in higher
dimensions than two. Start with the following three- +pa[(1=py— po—pa)e— (py+ po+ pa)el.
dimensional system: Taking M;/N=M,/N=3 and M /N—— for simplicity

and lettingk;— 0, we obtainps(t)=3. Then the first two

equations can be simplified to obtaln

1 1\/1 ky 1 ky
pl(t+1):Z+ pl_Z E_pl_pZ - PL §+p1+p2 ,
(4.4

M
pyt+1)= Wl[l —(1-py - p2- pa)¥]

+pa[(1 =Py = p2— )t = (py + P2+ pa)€],

1 1\/1 ko 1 ko
pz(t"'l)::l"' pz‘:1 E‘Pl‘pz ~ P2l 5 +p1+P2 .

Then

p,(+1)

\\\“ \‘
\\\\\\\\\\\\\\ T

X S
MR
\\
\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ T ( ) _ ( ) ( )
\\\\‘\\\\\‘\\\\\\\‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ p t + 1 pl t + 1 + p2 t N 1

produces a monotone grapk,=5,k,=10 for definiteness
as in the second part of Fig. 9 similar to the one-
dimensional caséfirst graph in Fig. 9.

By analogy with the two-dimensional case, this shows
that a very high connectivity valuk for even one of the
classes of nodes swamps out any possible chaos in the net-
02 work and results in only the simplest steady state or period
two behavior for the entire system.

0.4

p(t+1)

0.2

8 0.05 : e o
01 0.15
0.15 0.1
p.() 02 9257 0 0.05 p,(t)
il

FIG. 9. (Color onling The first graph represents the surface map
for pqi(t+1) versus [kq,pi(t)] from (4.2, py(t+ 1)———[1
—p® ] =py [ 3 +p,(t)]*. The second graph represers(t The original motivation for the probability density Eq.
+1) versus [py(t),p,(1)] from (4.4, py(t+1)=3+(p,-3)3-p,  (2.1) is that it generalizes the elementary cellular automata
—p)-py (R +p+p),  pat+1)=2+(p,—2)(-py-p) —p2( Rule 126. Rule 126 says that a node is turned off if and only
+pgt pz)kz. if its precursors are either all on or all off. If a more general

V. CONCLUSIONS
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one-dimensional periodic cellular automata is set up in thevalues have a heavy influence on the behavior of the system
same manner, each node being turned off if and only if eacksee[16,17,3] for example. Analyzing the attractors and
of its k (constank nearest neighbors are all on or all off, then the basins of attraction would be of great interest, as well as
it is easy to show that its density function either approacheshe transient time to reach an attractor. Also, introducing
a limiting value or a period two orbit. This is exactly the “npjse” in the system would allow one to study the stability
behaVior eXthIted in F|g 8 fOI‘ random Boolean netWOI’kS.Of the System to perturbations_ In scale-free networks per-
We have just shown that if a network is operating under gyrbing a very highly connected node is expected to have a
generalized Rule 126 and one segment of nodes has a vefyuch bigger impact than perturbing a node with low connec-
large set of precursors, then the rest of the network, at Ieagg,ity_
in total, has a greatly simplified behaviat most two dif- Another topic for further investigations is to consider an
ferent modep asynchronous update of the Boolean rule, since this is of
This paper generalizes a cellular automaton model projmportance in modeling systems composed of multiple inter-
posed in Ref[1] for a Boolean network with a unique Bool- acting components. For example, in certain biological sys-
ean rule for all nodes. The number of parents of a node igems, an ordered asynchronous state update has a role in
considered fixed in the earlier paper, while in this paper Wesmergent modularity, which in turn may contribute to the
allow for a variable number of parents for each node. Thgormation of dynamical hierarchies in these biological sys-
model proposed is a natural extension of the one in R&f. tems[33,34. It will be interesting to look at four different
and it is shown that in the particular case when all node$ype3 of updating schemes, namely, the clock scheme
have the same number of parents, the model coincides Wit!‘g5,3q, the cyclic schemg37], the random independent
theirs. An algorithm for the simulation of the model is intro- schemd38], and the random order scherf88]. It has been
duced and simulation results show that the model fits the fe@ihown[34] that properties of the models are changed by the
Boolean system well. The dynamics of the model show thaparticular update scheme chosen.
the route to chaos is due to a cascade of period-doubling |t would also be of interest to go one step further in this
bifurcations, followed by a cascade of period-halving bifur-paper's generalization and allow for multiple Boolean rules
cations. to be used in the iterations of the system, thus surpassing the
It would be of interest to continue the study of this modelcase of cellular automata. This would require a change in the
under the assumption of a power-law distribution of theapproach, given that the Boolean rule was heavily used in
number of parents of the nodes, in light of the recent studiegeneraﬂng the model. On the other hand, only changing the
on scale-free networkd6,17,31,32 Under such an assump- ynjique Boolean rule to be used based on other cellular au-
tion, the number of parents is chosen randomly from a distomata ruleg18] could lead to interesting new models and
tribution with a probablllty distribution function of the type dynamic behaviors. The area of exp|oration is wide open.

1
k=1,2,... N,

P()=——!.
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