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This paper considers a simple Boolean network withN nodes, each node’s state at timet being determined
by a certain number of parent nodes, which may vary from one node to another. This is an extension of a model
studied by Andrecut and Ali[Int. J. Mod. Phys. B15, 17 (2001)], who consider the same number of parents
for all nodes. We make use of the same Boolean rule as Andrecut and Ali, provide a generalization of the
formula for the probability of finding a node in state 1 at a timet, and use simulation methods to generate
consecutive states of the network for both the real system and the model. The results match well. We study the
dynamics of the model through sensitivity of the orbits to initial values, bifurcation diagrams, and fixed point
analysis. We show that the route to chaos is due to a cascade of period-doubling bifurcations which turn into
reversed(period-halving) bifurcations for certain combinations of parameter values.
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I. INTRODUCTION

In recent years, various studies[1–8] have shown that a
large class of biological networks and cellular automata can
be modeled as Boolean networks. These models, besides be-
ing easy to understand, are relatively easy to handle. The
interest for Boolean networks and their applications in biol-
ogy and automata networks has actually started much earlier
[9–15], with publications such as Kauffman’s[13], whose
work on the self-organization and adaptation in complex sys-
tems has inspired many other research endeavors. At the
same time it has been observed[16,17] that large complex
networks (biological, social, world wide web) exhibit a
scale-free feature, that is their connectivity distributions have
a power-law form. It is important to understand and study the
dynamics of Boolean networks in order to use them for
simulation and prediction of the real networks they model.

There is a close connection between Boolean networks
and cellular automata. Each consists of a set of nodes oper-
ated on by other nodes. For cellular automata there are an
infinite number of nodes and they have a spatial structure.
Boolean networks have only a finite number of nodes but
they are not arranged in any spatial structure. Also cellular
automata have the same up-date rule at each node while for
Boolean networks the up-date rule can vary from one node to
another.

The present work is a significant generalization of previ-
ous work by Andrecut and Ali[1] which in turn generalizes
Rule 126 for elementary cellular automata[18]. Rule 126 is
one of several which exhibit randomly distributed triangular
shapes of arbitrarily large size. This makes Rule 126 a Class
III of complexity generating rule[18]. The purpose of Ref.
[1] is to show that this Class III behavior has a simple inter-
pretation as a density function for a random Boolean network
exhibiting deterministic chaos. But we pause briefly to dis-
cuss Rule 126 itself.

Rule 126, most simply described as

where black isON and white isOFF, has an important role
among the 256=28 elementary cellular automata, those with
two states,ON andOFF, and neighborhood of size 3. Rule 126
is both “legal,” reflection symmetric withs0,0,0d→0, and
“totalistic,” where the rule depends only on the relative num-
ber of ON andOFF states and not their order[19]. There are
32 legal rules and 16 totalistic rules. Only eight of these
rules, including Rule 126, are in both classes. These eight
thereby distinguished rules are nos. 0, 22, 104, 126, 128,
150, 232, and 254. They separate into Wolfram’s four classes
as: Class I: 0, 128, 254; Class II: 104, 232; Class III: 22, 126,
150; and Class IV: none. Besides the automata in Classes I
and II, which have relatively simple behavior[18], this
leaves only three: Nos. 22, 126, and 150. But no. 150 is
additive(linear in algebraic form) which simplifies its analy-
sis by transferring unusual effects from the structure of the
automata to the initial conditions only.

Let us look at the structure of Rule 22

As well as Rules 22 and 126 both being in Wolfram’s Class
III, they are also both in the samek=2 in a new classifica-
tion, regarding separating planes for the basic eight-point
hypercubesalong with no. 104d f20g.

It is interesting that both Rules 126 and 22 have a natural
and simple interpretation in terms of the growth of cell colo-
nies. For Rule 126, complete crowding of live,ON, cells
causes death,OFF, in the next generation. Complete isolation
of a potential cell prevents birth in the next generation. A
similar interpretation holds for Rule 22, it just is not quite as*Electronic mail: dmatache@mail.unomaha.edu
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complete. It would be natural to try to extend what follows to
a generalized Boolean network based on Rule 22. We have
not yet figured out how to do this. See also Ref.[21].

The purpose of this discussion of Rule 126 is to provide
the flavor for the general type of behavior which is analyzed
in what follows. Although we will be discussing random
Boolean networks, it is worthwhile to look briefly at the
simplest nontrivial analog in terms of a deterministic cellular
automata.

In Ref. [1], the authors consider a simple Boolean net-
work with N nodes, each node being influenced by exactlyk
other nodes at each step of the Boolean system. In other
words each node has exactlyk parents, so that the Boolean
rule for each node is determined only by the state of thek
parents. The numberk is fixed. This feature makes the model
restrictive. It is known that in real networks the number of
parents of a given node varies from one node to another. In
this paper we extend that model by allowing a different num-
ber of parents per node. We make use of the same Boolean
rule as the authors of Ref.[1], namely, if a node of the
network and all its parents have the same value(0 or 1) at
time t, then the value of the node at the next time stept+1 is
0; otherwise it is 1. We provide a generalization of the for-
mula for the probability of finding a node in state 1 at a time
t in Sec. II. The formula for the probabilitypst+1d that a
node is in state 1 at timet+1 givenpstd is

pst + 1d = o
j=1

J
Mj

N
F1 −

N0
kjstd
Mj

s1 − pstddkj −
N1

kjstd
Mj

pstdkjG ,

whereN is the size of the network,k1,k2, . . . ,kJ the distinct
values for the number of parents of the nodes,Mj the number
of nodes withkj parents,N0

kj the number of nodes withkj
parents that are in state 0, andN1

kj the number of nodes with
kj parents that are in state 1. We use simulation methods to
generate consecutive states of the network for both the real
system and the model. The results match very well. In Sec.
III, we study the dynamics of the model through the analysis
of the sensitivity of the orbits to the initial values, bifurcation
diagrams, and fixed points. We show that the route to chaos
is due to a cascade of period-doubling bifurcations which
turn into reversed bifurcations for certain combinations of
parameter values. The reversed bifurcations are explained in
more detail in Sec. IV. As is shown here, a single large value
for one of thekj, can have a dramatic effect in simplifying
the behavior of the rest of the network. Sec. V is dedicated to
conclusions and possibilities for future work.

II. BOOLEAN NETWORK MODEL

In this section we describe the Boolean model. Significant
results from Ref.[1] are recalled to make the paper self-
contained.

Consider a network withN nodes. Each nodecn, n
=1,2, . . . ,N can take on only two values 1 or 0. Often this is
interpreted as a system in which each node can be eitherON

or OFF. At each time pointt the system can be in one of the
2N possible states. We assume that all the nodes update their
value at the same time, that is the network is synchronous.

The evolution of the nodes from timet to time t+1 is given
by a Boolean rule which is considered the same for all nodes.
Each nodecn is assigned a random “neighborhood” of par-
ents, whose values at timet influence the value ofcn at time
t+1 through the following Boolean rule. Ifcn and all its
parents have the same value at timet (that is they are all
either 0 or 1), then cnst+1d=0, otherwisecnst+1d=1. The
parents of a node are chosen randomly from the remaining
N−1 nodes and do not change thereafter. More precisely, if a
node hask parents, then a set ofk nodes is chosen from the
remainingN−1 nodes with probability 1/s N−1

k
d.

This model is a description of a random Boolean cellular
automaton. The system is described by the number of parents
of each node. Observe that the quantity

N1std: = o
n=1

N

cnstd

gives the number of cells that are in state 1 at timet. The
concentration of nodes in state 1 is given by 1/Non=1

N cnstd.
We are interested in finding the probabilitypst+1d that a
node is in state 1 at timet+1. In Ref. f1g the authors show
that pst+1d is given by

pst + 1d = 1 − pstdk+1 − f1 − pstdgk+1, s2.1d

wherekù1 is the number of parents of each nodesconsid-
ered fixed in that paperd. sNote: We take the liberty to pro-
vide the formula withk+1 rather thank as it is misprinted in
Ref. f1g.d

Our goal is to provide a similar formula for the case of
variable number of parents. To this aim we start by making
the following notations. Letk1,k2, . . . ,kJ be the distinct val-
ues for the number of parents the nodesc1,c2, . . . ,cN can
have. Also letCj be the collection of all nodes havingkj
parents, andMj be the number of nodes in each classCj, j
=1,2, . . . ,J. To simplify the notation we will assume that
C1=hc1,c2, . . . ,cM1

j ,C2=hcM1+1,cM1+2, . . . ,cM1+M2
j and so

on. Also, letN0
kjstd be the number of nodes of classCj in state

0 at timet, andN1
kjstd the number of nodes of classCj in state

1 at timet, j =1,2, . . . ,J. It follows that o j=1
J fN0

kjstd+N1
kjstdg

=N, and N0
kj +N1

kj =Mj, j =1,2, . . . ,J. The probability that a
node is in state 1 at timet is given by pstd
= 1/No j=1

J N1
kjstd. We want to compute the conditional prob-

ability that a node is in state 1 att+1, given the known
probability pstd. Observe that this is basically determined by
the number of nodes that change from state 0 at timet to
state 1 at timet+1 and the number of nodes that remain in
state 1 from timet to t+1.

We will start with the derivation ofN0→1
kj std which will

denote the number of nodes of classCj that are 0 at timet
and become 1 at timet+1. We will use the notationP for the
probability of an event, but we will keep the notationpstd for
the probability of a node being in state 1 at timet throughout
the paper. Ifcnstd=0 then
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Pfcnst + 1d = 1ucnstd = 0g

= Psat least one of the parents of nodecn is 1 at timetd

=1 −Psall parents of nodecn are 0 at timetd

= 1 − f1 − pstdgk.

Here k denotes the number of parents of the nodecn and
could be any of the numbersk1,k2, . . . ,kJ. We assume inde-
pendence of the parents, in other words, the parents them-
selves can be in state 0 or 1 independently of each other. At
time t+1 we could have0,1,2, . . ., orN0

kjstd nodes going
from state 0 at timet to state 1 att+1. We define the discrete
random variableX given by the probability distribution func-
tion

PsX = ld = Psl nodes of classCj go from state 0

at timet to state 1 att + 1d=SN0
kjstd
l

Dh1 − f1 − pstdgkjjl

3hf1 − pstdgkjjN0
kjstd−l, l = 0,1,2, . . . ,N0

kjstd.

One can check by a straightforward computation that

ol=0
N0

kjstd PsX= ld=1. ThenN0→1
kj std will be the expected value

of X, that is

N0→1
kj std = o

l=0

N0
kjstd

l PsX = ld = N0
kjstdh1 − f1 − pstdgkjj.

s2.2d

Although this number might not be an integer, we will not
make any adjustments given that our final goal is to compute
a probability, which is anyway a number between 0 and 1. It
is important to note that if the number of parents is the same
for all nodes, sayk, thenkj =k, for all j =1,2, . . . ,J and the
total number of nodes going from state 0 at timet to state 1
at time t+1 is given by

N0→1std = N0stdh1 − f1 − pstdgkj, N0std = o
j=1

J

N0
kjstd.

This represents exactly the formula obtained in Ref.f1g for
N0→1std.

By a similar argument, one can write the following for-
mulas forN1→1

kj std, the number of nodes of classCj that re-
main 1 from timet to t+1, N0→0

kj std the number of nodes of
classCj that remain 0, andN1→0

kj std, the number of nodes of
classCj that change from 1 to 0. In each case an appropriate
random variable is defined as above, and the number of
nodes going from one state at timet to the next state at time
t+1 is defined as the expected value of that random variable.
Thus we obtain the following:

N1→1
kj std = N1

kjstdf1 − pstdkjg, N0→0
kj std = N0

kjstdf1 − pstdgkj ,

and N1→0
kj std = N1

kjstdpstdkj .

Again, by setting all numberskj equal tok and performing
the computations we get the formulas obtained in Ref.[1],
namely,

N1→1std = N1stdf1 − pstdkg, N0→0std = N0stdf1 − pstdgk,

and N1→0std = N1stdpstdk,

whereN0std=o j=1
J N0

kjstd ,N1std=o j=1
J N1

kjstd.
It is important to check that the sum of all these quantities

is equal toN, even in the case of nonconstant number of
parents.

Remark: The following holds

N0→1std + N1→1std + N0→0std + N1→0std = N.

Proof: Observe that N0→1
kj std+N0→0

kj std=N0
kjstd, j

=1,2, . . . ,J. Similarly, observe that N1→1
kj std+N1→0

kj std
=N1

kjstd, j =1,2, . . . ,J. These results are to be expected and
they immediately imply thatN0→1std+N1→1std+N0→0std
+N1→0std=N.

We can now construct the quantitiespjst+1d
=1/NfN0→1

kj std+N1→1
kj stdg where j =1,2, . . . ,J, representing

the probabilities of finding a node of classCj in state 1 at
time t+1. Observe that

pjst + 1d =
Mj

N
−

N0
kjstd
N

f1 − pstdgkj −
N1

kjstd
N

pstdkj

=
Mj

N
F1 −

N0
kjstd
Mj

f1 − pstdgkj −
N1

kjstd
Mj

pstdkjG .

The quantitiesN0
kjstd /Mj andN1

kjstd /Mj represent the propor-
tion of nodes of classCj that are 0, respectively, 1 at timet.
Thus we can write the final formula for the probability that a
node is in state 1 at timet+1

pst + 1d = o
j=1

J

pjst + 1d

= o
j=1

J
Mj

N
F1 −

N0
kjstd
Mj

f1 − pstdgkj −
N1

kjstd
Mj

pstdkjG .

s2.3d

Note that if all the nodes are 0 at timet, then N0
kjstd

=Mj ,N1
kjstd=0, for all j =1,2, . . .J, so thatpst+1d=0, which

is to be expected since by the Boolean rule all the nodes stay
0 at time t+1. Similarly, if all the nodes are 1 at timet,
pst+1d=0 by the formula, as well as by the Boolean rule.

Given all of the above, we propose the following simula-
tion algorithm for the Boolean network under consideration.
The algorithm provides the computation ofpstd for all t
=0,1,2, . . . .

For t=0 choose arbitrary numberspjs0dPf0,Mj /Ng, j
=1,2, . . . ,J, and let
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ps0d = o
j=1

J

pjs0d.

For eacht=0,1,2, . . .compute

pjst + 1d =
Mj

N 31 −11 −
pjstd
Mj

N
2s1 − pstddkj −

pjstd
Mj

N

pstdkj4
=

Mj

N 31 − f1 − pstdgkj +
pjstd
Mj

N

sf1 − pstdgkj − pstdkjd4
s2.4d

where j =1,2, . . . ,J, and let

pst + 1d = o
j=1

J

pjst + 1d.

The formula forpjstd in Eq. (2.4) is similar to the sum-
mands forpjstd in Eq. (2.3).

It is useful to provide some simulations to see how well
does the model match the real system. Of course, we will be
able to provide visual output only for the case whenJ=2,
that is we only have two possible number of parents for each
node. The simulations that follow in this paper have been
obtained by runningMATLAB andMAPLE programs. The next
graphs(Fig. 1) represent simulations of the model and the
actual Boolean system whenk1=4,k2=16,M1/N = M2/N
= 1

2. Figure 1 represents the first four iterations of the model
and the system, that ispst+1d, respectively,pst+2d ,pst
+3d ,pst+4d versusp1std andp2std. For the model we obtain

surfaces that are graphed as a mesh, while for the simulated
Boolean system we obtain only isolated points, generalizing
Fig. 1 in Ref.[1].

As one can see, although there is no perfect match, the
model is a very good approximation for the Boolean system.
We note that the graphs are few of many simulations run by
the authors for various parameter combinations. The results
of the simulations were always similar to the ones in the
graphs of Fig. 1. The running time for the program is rather
long due to complex computations. Therefore we kept the
number of nodes at a reasonable magnitude(160 in the
graphs mentioned above). But the larger the number of
nodes, the better the match between the model and the Bool-
ean system.

In the next section we are interested in studying the dy-
namics of a system governed by the rules in the model(2.3).

III. MODEL DYNAMICS

To begin with we point out that the dynamics of higher-
dimensional analogs of Ref.[1] may be quite compatible
with the one-dimensional behavior[1] (p. 21), as illustrated
in Fig. 2.

We now turn to a more extensive analysis of the map
dynamics which will vividly illustrate the reverse bifurca-
tions which we discuss in the next section. To this aim we
first study the sensitivity of the orbits to the initial values. We
consider the case of only two distinct values for the number
of parents for simplicity. We fix the parameters
M1/N , M2/N ,k1, andk2, and choose two initial pairs
fp1s0d ,p2s0dg andfq1s0d ,q2s0dg as starting points for the or-
bits. We iterate many times the equations of the model and
compute pstd=p1std+p2std and qstd=q1std+q2std for each
time point t. Then we plot the errorEstd= upstd−qstdu versus

FIG. 1. (Color online) Simulation of the Boolean system and the
model. The four graphs are the first four iterations, representing
pst+1d ,pst+2d ,pst+3d ,andpst+4d, respectively, versusp1std and
p2std. In all the figures, the number of nodes isN=160, the propor-
tion of nodes withk1=4 parents isM1/N = 1

2, and the proportion of
nodes withk2=16 parents isM2/N = 1

2. The iterations of the system
are graphed with points, whereas the iterations of the model are
surfaces graphed as a mesh.

FIG. 2. (Color online) Bifurcation diagrams for the two-
dimensional map of the model(2.3). The two values for the number
of parents are determined as functions of a parameterk graphed on
the horizontal axis. In the first graphk1=k,k2=Îk, while in the
second graph,k1=k,k2= ln k. In both graphs the proportion of
nodes havingk1 parents isM1/N = 3

4, and the proportion of nodes
havingk2 parents isM2/N = 1

4.

M. T. MATACHE AND J. HEIDEL PHYSICAL REVIEW E69, 056214(2004)

056214-4



t. In Fig. 3 we show the case ofM1/N = M2/N = 1
2 ,k1=5,

andk2=3,4,95, and100, respectively, for illustration of the
error behavior ask2 increases. In all these graphsps0d=0.5
and qs0d=0.5002, so the starting values are very close. For
values ofk2 smaller than 3 or larger than 100 the graphs are
similar to the one fork2=3.

The range oft is not necessarily the same for all the
graphs, but it is chosen so that one can see easily the behav-
ior.

The results are similar for any choice of the fixed param-
eters and initial values. The authors have checked the behav-
ior in tens of cases. In general, we observe that for small
values ofk2 the error converges to zero. For larger values of
k2 the error does not settle suggesting that the initial pertur-
bations propagate across the entire system which exhibits a
chaotic behavior. In most cases, for a very largek2, the error
converges to 0 again. The rate of convergence to zero may
differ from one case to another. This suggests that the chaos
is transient and the larger thek2 the more likely it is that the
system will become insensitive to initial perturbations and
will exhibit an ordered behavior. The range ofk2 correspond-
ing to chaos changes from case to case, and depends on the
parameter values. In general, the range becomes larger ask1
increases. In the case illustrated here this range fork2 is the
interval f4,95g (we only show the cases ofk2=4 and k2

=95 in Fig. 3. For all the other values in this interval the
graphs are similar.).

These sensitivity graphs showing little sensitivity for
small k2 or largek2, are consistent with the bifurcation dia-
grams to follow. Similar graphs and behavior are noticed also

for cases with more than two distinct values for the number
of parents.

In order to further clarify the situation suggested by the
sensitivity of the orbits to the initial values, we construct
bifurcation diagrams with integer values for the parameters
k. We consider the two-dimensional case and fix the param-
etersM1/N and M2/N. It is important to observe that the
model depends onM1, M2, andN only through the propor-
tions M1/N and M2/N, representing the fraction of nodes
havingk1 or k2 parents. In Fig. 4 we graph bifurcation maps
for M1/N = M2/N = 1

2 ,k1=1,2,3,4,and 5 and letk2 in-
crease freely. Thus the diagrams representp versussk1,k2d
for only a few values ofk1, which allows one to understand
how the diagrams change from one value ofk1 to another.
We note here that the initial valuessp1,p2d are the same for
all the “slices” shown in the graph. In these diagramsk2 is
the parameter that increases freely, and given the fact that
only the proportionsM1/N , and M2/N matter, not the ac-
tual number of nodes, one can allow a wide range of values
for the free parameter. One can observe that ask1 increases
from 1 to 5, period-doubling bifurcations occur and the map
exhibits chaos. However, when looking at, for example,
slices k1=4 and k1=5 one can see that the bifurcation is
reversed ask2 becomes larger, and the point where the bifur-
cation is reversed is shifted to the right on thek2 axis.

For more clarity we attach the two-dimensional slice for
k1=5 in the first graph of Fig. 5. The graph is over a signifi-
cantly wider range ofk2 values than the three-dimensional
graph. The bifurcation is reversed aroundk2=10 whenk1
=4, aroundk2=25 whenk1=5, and aroundk2=1100 when
k1=10 (not shown). Other than that, the graphs are similar.
So it is observed that ask1 increases the point of reversed
bifurcation moves toward̀ when graphing the bifurcation

FIG. 3. (Color online) Sensitivity of the orbits to the initial
values. The following parameters are fixed in each graph:M1/N
= 1

2 , M2/N = 1
2 ,k1=5,k2=3,4,95, and100, respectively. Two initial

pairs fp1s0d ,p2s0dg and fq1s0d ,q2s0dg are chosen as starting points
for the orbits. The equations of the model are iterated and the values
pstd=p1std+p2std andqstd=q1std+q2std are computed for each time
point t. Then the errorEstd= upstd−qstdu is plotted versust. In all
these graphsps0d=0.5 andqs0d=0.5002, so the starting values are
very close. In each graph the scale is chosen for clarity purposes.
For values ofk2 smaller than 3 or larger than 100 the graphs are
similar to the one fork2=3.

FIG. 4. (Color online) Bifurcation diagrams for k1

=1,2,3,4,and 5graphed as functions ofk2. The proportions of
nodes withk1 andk2 parents are equal, that isM1/N = M2/N = 1

2.
The equations of the model are iterated 100 times to eliminate any
transient behavior. Ask1 increases from 1 to 5 period-doubling
bifurcations occur and the map exhibits chaos. Fork1=4 and 5 the
bifurcations are reversed, and the point of reversed bifurcations
occurs for largerk2 ask1 increases.
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diagrams forp vs k2. In the second graph of Fig. 5 we pro-
vide a zoom in on a small range ofk2 values fork1=5, to see
that the route to chaos is due to a cascade of period-doubling
bifurcations. This process is reversed for largek2 values. We
note here that this situation is similar ask1 takes values be-
yond the ones shown in the figures.

On the other hand, if one looks at a fixedk1 and changes
the proportionM1/N (that is the proportion of nodes having
k1 parents) the same thing happens; the reversed bifurcation
occurs for larger values ofk2 as the proportion gets larger.
However, the graphs are similar in shape with any of the
other ones presented here. Similar situations are obtained for
more than two distinct values ofk.

Thus the bifurcation diagrams emphasize the situation ob-
served in the error plot. The system exhibits chaotic behavior
due to period-doubling bifurcations as one parameter is fixed
and the other one increases to`. However, for larger values
of the free parameter the chaos is reversed through a cascade
of period-halving bifurcations. Reverse bifurcations are dis-
cussed in Sec. IV.

To complete the study of the dynamics of the model, we
consider also the fixed points of the maps(2.4), by solving
the system

pi =
Mi

N 51 −S1 − o
j=1

J

pjDki

+
pi

Mi

N

FS1 − o
j=1

J

pjDki

− So
j=1

J

pjDkiG6 , s3.1d

where i =1,2, . . . ,J. Of course, we do this numerically for

various parameters. In what follows we provide for illustra-
tion the caseM1/N = M2/N = 1

2 ,k1=1,4, letting k2 free sso
J=2d. The first two graphs in Fig. 6 provide the fixed points
sp1,p2d versusk2. We observe thatp1→ 1

4, andp2→ 1
2. The

rate of convergence is slower for largerk1. Due to the com-
plexity of the computations for large powersk we could only
graph 30values ofk2 in the casek1=4, but it is apparent
from the graph that fork2→` the fixed points converge to
the specified values.

We rewrite Eqs.(3.1) as follows:

pi =

Mi

N f1 − s1 − o j=1

J
pjdkig

1 − s1 − o j=1

J
pjdki + so j=1

J
pjdki

. s3.2d

Observe that ifki =1 the equation can be solved andpi

= 1
2 Mi /N. This means that for the illustrated case of

M1/N = 1
2, we getp1= 1

4, which is clearly shown in Fig. 6.
Also, if in the right term of Eq.s3.2d we letki →`, assuming
all the other quantities fixed, we getpi → Mi /N. This coin-
cides with our simulation result in Fig. 6 ofp2→ 1

2. To illus-
trate this even better we generate the simulation of fixed
points for the case of three distinct numbers of parents and
fix M1/N =0.3,M2/N =0.6,M3/N =0.1,k1=1, and k2=1
and let k3 move freely, we obtain thatp1=0.15,p2
=0.3, andp3→0.1, shown in the last graph of Fig. 6.

Figure 6 corresponds to Fig. 2(bottom) in Ref. [1].
We make the remark that in the previous simulations we

studied mainly cases with only two distinct values for the
number of parents. However, the conclusions hold for other
cases with more than two values for the number of parents,
and have been checked by the authors through numerous
simulations.

FIG. 5. (Color online) Bifurcation diagrams fork1=5 in more
detail. The proportions of nodes withk1 and k2 parents are equal,
that is M1/N = M2/N = 1

2. The first graph indicates that the chaotic
behavior is reversed through a cascade of period-halving bifurca-
tions, while the second graph shows that the map exhibits chaos
through a cascade of period-doubling bifurcations. The second
graph is a zoom-in on the first graph over a small range ofk2

values. Similar graphs are obtained for other values ofk1.

FIG. 6. (Color online) Fixed points of the maps(2.4) obtained
numerically by solving the system(3.1). The first two graphs illus-
trate the caseM1/N = M2/N = 1

2 ,k1=1, and 4 respectively, letting
k2 free. The third graph illustrates the caseM1/N =0.3,M2/N
=0.6,M3/N =0.1,k1=1,k2=1, andk3 moving freely. The conver-
gence of thep’s to the values obtained by the Eq.(3.2) are apparent
from the graphs.
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IV. REVERSE BIFURCATIONS

It was shown in the last section that by holdingk1 fixed
and lettingk2 increase in the two-dimensional model, a se-
quence of reversed bifurcations occurs. Before examining the
phenomenon more closely, it is useful to examine reverse
bifurcations in a more general way.

The familiar one-dimensional quadratic map

xn+1 = axns1 − xnd

has only period doubling bifurcations on 0øaø4. However,
replacing the linear parametera by the tent shaped parameter
4−ua−4u, 0øaø8, gives the map

xn+1 = s4 − ua − 4udxns1 − xnd,

which leads to a bifurcation diagram on 0øaø8 extended
by mirror symmetry as in Fig. 7.

However, it is possible to have a period halving bifurca-
tion sequence in a one-dimensional unimodal(one-hump)
map even with the parameter appearing as linear multiplier
[22–24]. Alternately, relaxing the unimodality can also intro-
duce reverse bifurcation sequence[25]. These papers suggest
and even provide a rough outline for a general theory of
when reverse bifurcations will appear in one-dimensional
maps.

Not surprisingly the situation is much more complicated
for multidimensional maps. It has been observed that the
two-dimensional Henon map does have both orbit creation
and orbit annihilation parameter values[26]. In fact these
authors give a very general result for dissipative maps of the
plane into itself. However most specific examples discussed
in the literature are neither conservative nor dissipative
[27–30].

The easiest way to understand the appearance of reverse
bifurcations in our generalization of the Andrecut and Ali
map[1] is to consider the two-dimensional case, that is with

two distinct k values,k1 and k2, and take the limit ask2
→` in the expressions forp1 andp2

p1st + 1d =
M1

N 31 − f1 − p1std − p2stdgk1 +
p1std
M1

N

hf1 − p1std

− p2stdgk1 − fp1std + p2stdgk1j4 ,

p2st + 1d =
M2

N 31 − f1 − p1std − p2stdgk2 +
p2std
M2

N

hf1 − p1std

− p2stdgk2 − fp1std + p2stdgk2j4 s4.1d

to obtain (with all the other variables and parameters held
fixed)

p2st + 1d =
M2

N
.

It is assumed here thatp1std+p2std is bounded away from
zero, justified becauses0,0d is an unstable equilibrium point
for Eq. s4.1d.

Assuming again for simplicity thatM1/N = M2/N = 1
2,

we can takep2std= 1
2 and Eq.(4.1) becomes

p1st + 1d =
1

2
− S1

2
− p1stdDk1+1

− p1stdS1

2
+ p1stdDk1

p2st + 1d =
1

2
s4.2d

ask2→`. Or, with p=p1+p2,

pst + 1d = p1st + 1d + p2st + 1d

= 1 − f1 − pstdgk1+1 − Spstd −
1

2
Dpstdk1. s4.3d

This map represents the behavior for largek2 of the three-
dimensional bifurcation diagram in Fig. 4 of the previous
section.

But the limiting behavior can also be described by the
bifurcation diagram of the map(4.3) itself as in Fig. 8. Thus,
for 0øk1ø2 there is a single stable fixed point and for
k1.2 a single stable period two orbit. This is, of course,
exactly what shows up in the two-dimensional bifurcation
diagram forsk2,pd for different values ofk1 (Fig. 5).

It is also of interest to look at the reduced map(4.2)
directly, but now simplified by removingp2st+1d= 1

2 andk2

→` by viewing it entirely as a map forp1 with a single
parameterk1 as in the first equation of Eq.(4.2). This map is
viewed first as a surfacep1st+1d versussp1std ,k1d as in the
first graph of Fig. 9.

FIG. 7. (Color online) Bifurcation diagram for the one-
dimensional mapxn+1=s4−ua−4u dxns1−xnd. A cascade of period
doubling bifurcations is followed by a cascade of period halving
bifurcations.

RANDOM BOOLEAN NETWORK MODEL EXHIBITING… PHYSICAL REVIEW E 69, 056214(2004)

056214-7



Now, the graph of map(4.2) itself (with k1=5) and its first
six iterates show that the higher iterates introduce essentially
no new complexity and therefore only the simplest periodic,
and no chaotic, behavior is observed(Fig. 10). Of course, the
bifurcation diagram forfp1std ,k1g is that offpstd ,k1g reduced
by 1

2.
We now show that a similar phenomenon occurs in higher

dimensions than two. Start with the following three-
dimensional system:

p1st + 1d =
M1

N
f1 − s1 − p1 − p2 − p3dk1g

+ p1fs1 − p1 − p2 − p3dk1 − sp1 + p2 + p3dk1g,

p2st + 1d =
M2

N
f1 − s1 − p1 − p2 − p3dk2g

+ p2fs1 − p1 − p2 − p3dk2 − sp1 + p2 + p3dk2g,

p3st + 1d =
M3

N
f1 − s1 − p1 − p2 − p3dk3g

+ p3fs1 − p1 − p2 − p3dk3 − sp1 + p2 + p3dk3g.

Taking M1/N = M2/N = 1
4 and M3/N = 1

2 for simplicity
and lettingk3→`, we obtainp3std; 1

2. Then the first two
equations can be simplified to obtain

p1st + 1d =
1

4
+ Sp1 −

1

4
DS1

2
− p1 − p2Dk1

− p1S1

2
+ p1 + p2Dk1

,

s4.4d

p2st + 1d =
1

4
+ Sp2 −

1

4
DS1

2
− p1 − p2Dk2

− p2S1

2
+ p1 + p2Dk2

.

Then

pst + 1d = p1st + 1d + p2st + 1d

produces a monotone graphsk1=5,k2=10 for definitenessd
as in the second part of Fig. 9 similar to the one-
dimensional casesfirst graph in Fig. 9d.

By analogy with the two-dimensional case, this shows
that a very high connectivity valuek for even one of the
classes of nodes swamps out any possible chaos in the net-
work and results in only the simplest steady state or period
two behavior for the entire system.

V. CONCLUSIONS

The original motivation for the probability density Eq.
(2.1) is that it generalizes the elementary cellular automata
Rule 126. Rule 126 says that a node is turned off if and only
if its precursors are either all on or all off. If a more general

FIG. 8. (Color online) Bifurcation diagram for the mappst
+1d=1−f1−pstdgk1+1−fpstd− 1

2
gpstdk1.

FIG. 9. (Color online) The first graph represents the surface map
for p1st+1d versus fk1,p1stdg from (4.2), p1st+1d= 1

2 −f 1
2

−p1stdgk1+1−p1stdf 1
2 +p1stdgk1. The second graph representsp1st

+1d versus fp1std ,p2stdg from (4.4), p1st+1d= 1
4 + sp1− 1

4
ds 1

2 −p1

−p2dk1−p1s 1
2 +p1+p2dk1, p2st+1d= 1

4 + sp2− 1
4

ds 1
2 −p1−p2dk2−p2s 1

2
+p1+p2dk2.

FIG. 10. (Color online) The first six iterates of the map(4.2),
p1st+1d= 1

2 −f 1
2 −p1stdgk1+1−p1stdf 1

2 +p1stdgk1. Herek1=5.
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one-dimensional periodic cellular automata is set up in the
same manner, each node being turned off if and only if each
of its k (constant) nearest neighbors are all on or all off, then
it is easy to show that its density function either approaches
a limiting value or a period two orbit. This is exactly the
behavior exhibited in Fig. 8 for random Boolean networks.
We have just shown that if a network is operating under a
generalized Rule 126 and one segment of nodes has a very
large set of precursors, then the rest of the network, at least
in total, has a greatly simplified behavior(at most two dif-
ferent modes).

This paper generalizes a cellular automaton model pro-
posed in Ref.[1] for a Boolean network with a unique Bool-
ean rule for all nodes. The number of parents of a node is
considered fixed in the earlier paper, while in this paper we
allow for a variable number of parents for each node. The
model proposed is a natural extension of the one in Ref.[1]
and it is shown that in the particular case when all nodes
have the same number of parents, the model coincides with
theirs. An algorithm for the simulation of the model is intro-
duced and simulation results show that the model fits the real
Boolean system well. The dynamics of the model show that
the route to chaos is due to a cascade of period-doubling
bifurcations, followed by a cascade of period-halving bifur-
cations.

It would be of interest to continue the study of this model
under the assumption of a power-law distribution of the
number of parents of the nodes, in light of the recent studies
on scale-free networks[16,17,31,32]. Under such an assump-
tion, the number of parents is chosen randomly from a dis-
tribution with a probability distribution function of the type

Pgskd =
1

zsg,Ndkg , k = 1,2, . . . ,N,

whereN is the network size,zsg ,Nd=ok=1
N 1/kg is the incom-

plete Riemann Zeta function, andg is a parameter whose

values have a heavy influence on the behavior of the system
ssee f16,17,31g for exampled. Analyzing the attractors and
the basins of attraction would be of great interest, as well as
the transient time to reach an attractor. Also, introducing
“noise” in the system would allow one to study the stability
of the system to perturbations. In scale-free networks per-
turbing a very highly connected node is expected to have a
much bigger impact than perturbing a node with low connec-
tivity.

Another topic for further investigations is to consider an
asynchronous update of the Boolean rule, since this is of
importance in modeling systems composed of multiple inter-
acting components. For example, in certain biological sys-
tems, an ordered asynchronous state update has a role in
emergent modularity, which in turn may contribute to the
formation of dynamical hierarchies in these biological sys-
tems [33,34]. It will be interesting to look at four different
types of updating schemes, namely, the clock scheme
[35,36], the cyclic scheme[37], the random independent
scheme[38], and the random order scheme[38]. It has been
shown[34] that properties of the models are changed by the
particular update scheme chosen.

It would also be of interest to go one step further in this
paper’s generalization and allow for multiple Boolean rules
to be used in the iterations of the system, thus surpassing the
case of cellular automata. This would require a change in the
approach, given that the Boolean rule was heavily used in
generating the model. On the other hand, only changing the
unique Boolean rule to be used based on other cellular au-
tomata rules[18] could lead to interesting new models and
dynamic behaviors. The area of exploration is wide open.
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