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Spectral properties and classical decays in quantum open systems
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We study the relationship between the spectral properties of diffusive open quantum maps and the classical
spectrum of Ruelle-Pollicott resonances. The leading resonances determine the asymptotic time regime for
several quantities of interest — the linear entropy, the Loschmidt echo, and the correlations of the initial state.
A numerical method that allows an efficient calculation of the leading spectrum is developed using a truncated
basis adapted to the dynamics.
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[. INTRODUCTION the, properly taken, limit of infinite size and no coarse grain-
. ) ing, the isolated eigenvalues turn out to be the RP resonances
The study of the emergence of classical features in sy§17,1g. As shown in Ref.[8], the linear entropy and the
tems ruled by quantum mechanics is as old as quantum meoschmidt echo, for asymptotic times much longer than the
chanics itself. When the quantum system is isolated and thehrenfest time, also show characteristic decay rates gov-
evolution unitary, these features appear in the WKB semierned by the classical RP resonanf@ls Experimental evi-
classical limit, which is of paramount importance in estab-dence of this dependence on RP resonances was observed for
lishing the quantum-classical correspondence in integrabléhe first time in Ref[10]. Our approach is similar in spirit to
systems. In its more modern form, the Einstein, Brillouin,the calculations performed on the sphere for the dissipative
Keller (EBK) quantization rulg1], it shows the direct con- kicked top by Haake and co-workefd1-13, Fishman
nection between tori in phase space and quantized eigenfunt4,19 and, for the baker's map, by Hasegawa and Saphir
tions in Hilbert space. In chaotic systems, the relationship i§16]. We model the unitary dynamics by means of a quantum
more subtle and is embodied in the celebrated GutzwillefMap and implement a diffusive superoperator represented by
trace formula[2], relating sets of unstable periodic orbits to & Kraus sum. Two recent works by Blarek al. [17] and
the density of states. The limits of applicability of these Nonnenmache18] provide a rigorous theoretical underpin-
semiclassical methods and the insight they provide on th8N9 to our calculations for quantum and classical maps on
quantum dynamics of isolated chaotic systems have inspirel€ torus-

most of the recent researches in the area of quantum chaos, | € Plan of the paper is as follows. Section Il provides a
gzort account of the quantization procedure for maps acting

In open quantum systems, on the contrary, the emergenc a classical surface with periodic boundary conditions in

) . 0 . 0
of _cIaSS|caI f_eatures has been studied mainly in the time V%oth coordinates and momenta, i.e., a torus. In Sec. Il we
lution of a different set of observables, most notably the ratgn, ;e ment the open system dynamics with the definition of a
of linear entropy growftor purity decay[3], the Loschmidt it sjon superoperator represented as a Kraus sum. The gen-
echo or fidelity[4-6], and the decay of correlationl§]. ~ era| spectral properties of both the unitary and the noisy
These studies have demonstrated that in certain well-defingshts, ‘as well as those of the combined action, are studied.
regimes for chaotic systems the classical Lyapunov exponeection IV deals with the relationship between the classical
governs these rates and that the evolution of localized quarnd the quantum resonances and, utilizing recently proved
tum densities in phase space becomes classical. theoremg17,18, how they coincide in specific ranges bf

In this paper we consider this question from the point ofand of the noise strength. As a consequence we show that the
view of the spectral properties of the classical and quantunasymptotic time behavior of several quantities is classical
propagators. Classical densities evolve according to thand depends on the Ruelle-Pollicott resonances closer to the
Liouville equation whose solution can be written in terms ofunit circle. A numerical method that allows the calculation of
a propagator called Perron-Froben{f§) operator{41]. Itis  the leading spectrum of resonances is developed. Section V
unitary on 1.2, However, for chaotic systems, correlation illustrates this correspondence taking the perturbed Arnold
functions exhibit oscillations and exponential decay. The deeat map as an example. We relegate to the appendix some
cay rates are given by the poles of the resolvent of the PRotation concerning the spectral decomposition of superop-
operator, the so-called Ruelle-PollicgRP) resonance$9]. erators and the details of the numerical method.
By limiting the resolution of the functional space, one can
effectively truncate the PF to a nonunitary operator of finite Il. UNITARY DYNAMICS ON THE TORUS T
size (say NXN) with a spectrum lying entirely inside the  We picture the classical phase space as a square of unit
unit circle, except for the simply degenerate eigenvalue 1. Iyrea with sides identified. The classical transformations will

YIn our case the Ehrenfest tinmg is related to the time it takes for
*Electronic address: garciama@tandar.cnea.gov.ar an initially localized package to reach the borders of phase space
"Electronic address: saraceno@tandar.cnea.gov.ar due to exponential instabilitgit is sometimes called “log time”
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map this square onto itself, thus providing a simple model of /p(19 = )N /Pai (27/N)gp

S ' ) VPUY = U\VPe (5)
Hamiltonian area preserving dynamics. The fact that the

phase space has finite area brings some well-known speciefn be defined and they generate finite cyclic shifts in the
features to the quantization that we briefly review. Referrespective basg21]. TheNX N grid of coordinate and mo-

enceg[19,2Q provide a more extensive account. mentum states constitutes the quantum phase space for the
torus. Equatior{5) allows a definition of a translation opera-
A. The Hilbert space tor T(q,p: Hn— Hn, With q,p being integers, analog to Eq.

As the phase space has finite area, which we normalize th). The action ofT on position and momentum eigenstates is

unity, the Hilbert spacét is finite and its dimensioll sets -~ 2 a
the value of Planck’s constant fo=(27N)™. The position Tiqupyl®) = €X e Plat s g+ ay), (6)
and momentum bases are then sets of discrete states
l9),|p),q,p=0, ... N-1, which are related by the discrete o
Fourier transform(DFT) of dimensionN: T(q1:P1>|p> = exp{— iWq<p + %)} lp+ py). (7)
1 ! ~
(p|g) = =& 7Npg, (1)  These equations confirm thal, ,, are indeed phase space

WN translations. They satisfy the Weyl group composition rule

A vector |¢(t)) in Hy characterizes pure states of the sys- - N N
tem and can be represented by the amplitdég),{p| ¢) in Tiaypp Tianpy = Tiarrappipy
the coordinate or momentum basis, respectively. 5 . _ .
In the description of open systems it is imperative to rep-The N t.ranslatl.onsT(q,p),p,q—O, .- N-1 satisfy the or-
resent states by a density operaioiThey form a subset of thogonality relation
self-adjoint, positive semidefinite matrices with unit trace in A2 B
def Tr(T(q,p)T(q’,p’)) =Ngpqrp' 9)

Hye=Hy@™Hy, the space of complek X N matrices, usu- thus constituting an orthogonal basis for the Liouville space
ally called in this context Liouville space. While Hilbert Heo
N .

space is the natural arena for unitary dynamics, this much . A ) )
larger Liouville space sets the stage for the more genera| Th€ €xpansion of any operatérin this basis constitutes

description of open quantum dynamics. It acquires the strudhe chord[19] or characteristic function representation. This
ture of a Hilbert space with the usual introduction of therepresentation assigns to eveky Hye2 the c-number func-

matrix scalar product tion a(q, p) =N"1Tr(AT,,) and therefore every operator has
the expansion

gl (mN)(p1dz—a1P2) (8)

(A,B)=Tr(A'B), 2 A .

A A= E a(qvp)T(q,p)- (10)
where A,B € Hy2. Linear transformations in this space are &P
termed superoperators; they map operators into operators and For representation purposes we also use a basis of “phase
are represented by N matrices. In Appendix A we re- point ” operators that constitute the Weyl, or cenf&g],
view the various notations and properties related to thigepresentation. In this basis the density operator is the dis-
space. crete Wigner function of the quantum state. The peculiar

features of the discrete Wigner function for Hilbert spaces of

B. Translations on the torus finite dimension have been described recently in R&].

The usual translation operator in the infinite pldtreis C. Unitary dynamics: Quantum maps

A classical map is a dynamical system that usually, but

T = g (i) aP-pQ ) _ -l SyStEl ;
Tap=€ ©) not exclusively, arises from the discretization of a continuous
time system(by means of a Poincaré section, for example
— ()P (ipQg(i/2A)ap Although it is always possible, by integration of the equa-
tions of motion, to derive the map from a Hamiltonian, this
zoq(/pe(i/zﬁ)qp, (4) connection is rather involved and in many instances it is

more useful to model specific features of Hamiltonian dy-

~ o i . namics by directly specifying the map equations without go-
whereU andV generate shifts in the position and momentuming through the integration step. The same is true in quantum

eigenbases, respectively. On the torus theAmAain difference Rechanics: instead of modeling the Hamiltonian operator
that the infinitesimal translation operatof3,Q with the and integrating it to obtain the unitary propagator, it is sim-

usual commutation rules cannot be defined because positigiler to model directly the unitary map. Classically an area
and momentum eigenstates are discrete. HowefiRite  preserving map is characterized by a finite canonical trans-
translation operatordl andV that have the property formation and the corresponding quantum map is the unitary
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propagator that represents this canonical transformation.  dp i~ 1 U S
There are no exact and systematic procedures to realize this =~ g[H,p] + %E LipL; - ELj Lip - Epl—j L;
correspondence. On the two-dimensional pl&ieelatively !

standard procedurgsee Ref[22]) give an approximation of (14

the propagator in the semiclassical limit as determines the evolution of open quantum systems through a

HamiltonianH that governs the unitary noiseless evolution

| 1/2 p[ i }
U 1 =\ ex - l 1 11 . o . . .
(@r.02) (ﬁ a0y o7q2> ﬁs(q2 A (D and the Lindblad.; operators that model the interaction with
the environment. The particular structure of the equation en-

to q,, and where, for simplicity, we do not consider the ex- sures that the evolution preserves the total probability, the
ister21’ce of multip'Ie branches aind Maslov indices. Only forPOSItVe semidefiniteness, and hermiticity of the density ma-
linear symplectic maps oR? this unitary propagatdr is ex- trix. The infinitesimal propagator is a linear operator in Liou-

act, and ther§is minus the quadratic generating function of \r/rlwlile siﬁace which can be integrated to yield a finite linear
the linear transformation. On the other hand, sevadahoc ppIng

progedures for Fhe quantization .of specific maps have been p=S(po). (15)
devised: some integrablgranslations[21] and sheapsand . ) . )

and the standard md@7]. Also all maps of a “kicked” na- equation, also has a particular form that guarantees the pres-
ture, realized as compositions of noncommuting nonlineagrvation of the general properties of the density operator.
shears, can be quantized, as well as periodic time dependeh€ general form, called the Kraus represental, is
Hamiltonians[28]. Once the quantum propagator has been O A A T A

constructed, the advantages of using quantum maps to model S(p) = > M.pM,, = [2 M, ® Mu] (). (16)
specific features of quantum dynamics become apparent. The K K’

propagatorU is a unitary NN matrix, propagation of a The only further restriction on th#, operators arises from

pure state is achieved simply by matrix multiplication, andthe preservation of the trace that requires
finally the classical limit is obtained by letting — c°.

whereSis the action along the unique classical path frggm

In Liouville space the evolution of the density operagor > I\A/ILI\A/I,L =1, (17)
by the mapU is given by "
a_ ey In what follows we will select them from a certain complete
p'=UpU". (12 family with a specific norm. In that case the representation

As a linear map acting ofty2 Eq. (12) can be written as takes a more general form

p'=00'(p)=U®). (13) S = % c,M.AM, (18)

In what follows the notatiord ® U' is meant to be equiva- \yhere now the positivity requirements arg=0 and
lent to theAd(U) notation customary in group theory. The

def > c MM, =1. (19)
linear operato’ =U® UT is a unitaryN?x N? matrix. P .
Within this general framework, just as in the case of quan-
tum maps, we have the choice of modeling the noise through
the Lindblad operators or directly in terms of the integrated

Realistic quantum processes always involve a certain déDrm via the Kraus operators. In what follows we choose the
gree of interaction between system and environment. In thitter and thus we model the evolution by specifying a quan-
case the evolution of the system is not unitary and requires #m map to represent the unitary evolution followed by a
description in Liouville space. This loss of unitarity leads toN0isy step, modeled by its Kraus superoperator form. An
decoherence and to the emergence of classical featur€yolution of the density matrix specified in this way is
[29,30 in the evolution. When the environment is taken into known in the literaturg36-39 as aquantum operationit
account the evolution of the system is governed yaster ~ includes the special case of unitary evolution when the sum
equation which takes the form of a hierarchy of integro_ is limited to Only one term. In that case, and Only then, the
differential equations. A drastic simplification follows from dynamics is reversible. A general superoperator has no in-
the assumption that the environment reacts to the systeNfIS€.
sufficiently fast in such a manner that the system loses all
prior memory of its state, i.e., the evolution is Markovfan. A. Quantum coarse grained dynamics
The resulting Lindblad equatiof33,34

IIl. NOISY DYNAMICS

We are interested in modeling the effect of a small amount

of noise on the evolution of an otherwise unitary quantum

2For a detailed description of quantum noise and quantum Markovnap [8,13,18,40. We assume that the one step propagator
processes see Re{81,32. results from thecompositionof two superoperators. The first
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is the unitary propagato and the second is a quantum &(u,v) ¢(q.p)
diffusion superoperatdd,, defined by
DE: E Ce(qv p):l\-(q,p) ® :I\-g‘q,p)a (20)
a.p

which introduces decoherence. The linear form of the full
propagator is

L.=D.oU (21 -
FIG. 1. The left panet(u,v) shows the eigenvalues &, for
and its action on a density matrixis €=0.15 andN=100. The DFT of this function generates the coeffi-
R A cientsc.(q,p) (right pane) of the Kraus representation Bf, of Eq.
L(p) =2 ca,p) TqpnUpUTTl, .- (220 (20
ap
As the Kraus operators in this case are unitary the conditioficients c.(q,p). The eigenfunctions are the translation op-
(19) becomes simply erators themselves. Hence, using the bra-ket notation
described in Appendix A, the spectral decompositioDpfs
2 cdgp)=1. (23 -
ap De = E |T(y,v))ce(lu“l V)(T(,u,v)| ' (29)
v

Subject to this conditior(q, p) can be an arbitrary positive
function ofq andp. Its significance in terms of coarse grain- in analogy with Eq.(A10).

ing is clear: as long as.(q, p) is peaked aroun(D,0) and of Physically, the action oD, is quite simple in the chord
width ¢, the action that follows the unitary step consists inrepresentatiori10): if p is expanded as

displacing the state incoherently over a phase space region of

order e. To avoid a net drift in any particular direction, f)zzpﬂ,fr(#,w (30)
c/g,p) must be an even function of the argumegtandp. v
From this imposition and the fact that then
~p o n . - R
Tap =Tea-n (24) D(p) = 2 Celit )0, T (31)
mv

it follows from the properties of the matrix scalar prod(@k
thatD, is Hermitian(see Appendix A for details on the sca- Thus the coefficients in the chord representation are sup-
lar produc}. _ pressed selectively according ¢g( ., v).

The spectral properties of the separate superopertors |t js evident from Eqs(20) and (29) that the diffusion
andD, are simple to obtain. If the Floquet spectrum of thesyperoperator thus defined can be specified indistinctly either
quantum map Is by c.(q,p) or by c(u,v). For an efficient numerical imple-

" T mentation of its action we have found convenient to specify
Ul =50, 29 ihe latter as
then the spectrum dfl is unitary and given by -
Clp,v)=¢€

U(| () = €58 (] (26) o o o . _
. N This is a smooth Gaussian-like periodic function of the inte-
To obtain the spectrum @, we use the composition rul®)  ger variablesx and ». For large values oN it is very close

1/2(eNIm)A(sinf{ /N ]+sirf[ mvIN]) _ (32)

to show that to the Gaussian,
= a2 2 - = — o PhAN2
T(q,p)T(lL,V)TIq,p) = GX%IW(Vq - ,LLp):|T(lu”V) (27) C(M, V) =e (o) . (33)
. This means that the action ©f, will leave essentially unal-
We then derive tered the coefficients,, , in a region of size~1/(eN) (Fig.

1, left) around the origin while strongly suppressing those

outside. The backward DFT of(u,v) does not have a
simple analytic expression but from general properties of the
p{iz—w(vq—,up)]i’ DFT it will also be a Gaussian-like function with the
N pv) complementary width-e/ 27 (Fig. 1, righ.
_ R The action ofD, progressively washes out the quantum
=Cu, V)T () (28) interference. This fact is clearly seen if the density matrix is
] . represented by the Wigner function. On the torus the Wigner
Therefore, theN? eigenvalues oD, are given by the two-  fynction exhibits two different types of interference. The
dimensional discrete Fourier transfoiey(u, v) of the coef-  stretching and folding produce quantum interference be-

- — - - ~t
De(T) = 2 AP Tigp T Tlap
q,p

=2, c/qg,p)ex
q.p
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eigenvalue. The left and right eigenvalue problems are then
posed as follows for each pair of complex conjugate eigen-
values\,\":

LR=\R, LR=\R, (36)

LI =xL, LI =L, (37)

whereI:i,?zi conform a biorthogonal set
FIG. 2. Display of the action dD.. Panel(a) shows the Wigner

function after the stefy has been applied to a position stéfg Tr(L{R) = Tr(LiR) = Tr(LiTRJT) =34 (38)

=|go){dol|). Panel(b) shows the state after the full propagatoy iz ation(TiL.) = Ty

=D.°U has acted. The map is the perturbed cat map of(&4), and we assume the normalization(li;) =Tr(R Ri)fl' Jn

k=0.02,N=60, e=0.25. particular, corresponding to\,=1, we chooselLy=R,
=I/N and therefore all the remaining eigenoperators are

tween different parts of the extended state. Additionally, theraceless.

periodicity of the torus introduces interference between the (5) The spectral decomposition f, then becomes

state and its images. In Fig. 2 we show the difference be-

tween the unitary and the noisy evolution of a coordinate LE:E [RONi(Li.- (39

state by a nonlinear map. The two types of interference are !

clearly seen. The long wavelength fringes on the convex side The exact numerical calculation of the spectrum is ham-

are produced by nonlinearities. The short wavelength fringepered by the need to diagonalize very large non-Hermitian

correspond to the images. The effect of the noise can be se@fatrices of dimensioiN?x N? for values ofN large enough

in Fig. 2(b): the classical part of the stat@ white) has been to extract semiclassical features from the spectrum. In Sec.

broadened and the long wavelength interference has beew B we develop a method, specially adapted to chaotic sys-

significantly erased. This process continues at each step @ms, that takes account of the dynamics of the map to ex-

the propagation and the quantum state becomes more améct the part of the leading spectrum relevant to asymptotic
more mixed and more and more classical. time behavior.

B. Spectrum of the quantum coarse gained propagator IV. QUANTUM-CLASSICAL CORRESPONDENCE

In this section we study the general features of the spec- . L A .
trum of the combined action of the unitary map and the Chaptlc evolution in phalls'e. space |.mpl|es e>.<ponent|al
coarse graining operator, given by E82). For finite values s_tretchlng and squeezing of initially Iocahzgd de_n5|_t|_es. Ona
of e andN, L, is a convex sum of unitary matrices and is time scale of the order of the Ehrenfest time significant

therefore a completely positiveontracting superoperator. gquantum corrections to _the classigal evolution inevitably ap-
Its spectrum has the following properties: pear. However, essentially classical features emerge from

(1) It is unital, i.e., it has a trivial nondegenerate unit guantum chaotic dynamics when decoherence is introduced,
. | . d he uniform dendite]/N even in the limit of no decoherence. In this section we relate
eigenvalue corresponding to the uniform dengity=1/N. the spectra of the propagators of densittesth classical and

2) The remaining spectrum is entirely contained inside ; : ; ; :
the( Jnit circle and sg mrr)netric with res e>c/;t to the real axisqua_ntun) with the underlying, mainly asymptotic, behavior
y P of time dependent quantities.

The pair of complex conjugate eigenvalues corresponds 10 consjder the classical analog for the propagation of den-

Hermitian j@M@te eigenoperators. sities in phase space. If(x) is a classical map, and

T _ .
(3) As (LeoL)=D. the eigenvalues ob. are also the  —(q 1) a point in phase space, then the evolution of a prob-
singular values oL .. Therefore the spectrum is contained ability density is governed by

exactly in the annulus,
e (N < |\ | < g VAN sirf{miND) (34 p'(y)= J 3y = f(x)p(x)dx = [Lp](y), (40)
In the limit of largeN we can thus write wherey=(q’,p’) and £ is the PF operatdi1]. It is unitary
Ne\?2 on the space of square integrable functidsand infinite
- <_) <In\|<=-+ (35  dimensional. However, one is mostly interested in the decay
properties of observables much smoother thanWhen the
The singular values accumulate near the origin, thus forcindunctional space on whichl operates is restricted by
most of the eigenvalues &f, to be near zero. On the other smoothness, the spectrum of PF changes drastically, moving
hand the allowed eigenvalue region extends exponentialljo the inside of the unit circle. This smoothing can be at-
close to the unit circle in the limig— 0. tained by convolution with a self-adjoint compan 1.2)
(4) The superoperator is not normal, and therefore hasoarse graining operatd, [18,42, where ¢ is the coarse
distinct left and right eigenoperators corresponding to eaclgraining parameter. The coarse grained PF takes the form
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L.=D.oL, (42 1
. . . Po=P~ > (42)
[notice the analogy with Eq21)]. D, damps high frequency N
modes inl.? and thus effectively truncate’ to a nonunitary h it is cl that TH)=0. Thus in all tati
operator. There is substantial difference, however, betweel) < ¢ It IS clear tha Tpo)=0. Thus in all computations

the spectrum of the PF for a regular map and for a chaoti%?Ste?d of evdoIV|tngt; anh|n|t|atlrs1tatenwe q ef\i/r?l\(ljeir?nE;g;al
map. As the coarse graining tends to zero, parts of the acelesspseudostatesuch as e one detine ’

spectrum of£, for a regular map can be arbitrarily close to orthogonal top... Thus, we study how theistancebetween

the unit circle. On the contrary, for a chaotic map there is aFhe initial state and the equilibrium state evolves. For ex-

o . . le, for the linear entropy, after the initial Lyapunov be-
finite gap for any value ofe>0. The isolated eigenvalues amp : .
which remain inside the unit circle as— 0 are the Ruelle- havior, which ends at about the Ehrenfest titne~In N),

Pollicot resonances. Rug#3] and more recently Blankt ~ nStéad of saturation to the equilibrium state we expect
al. [17] made formal descriptions of the spectrum of PF forl© 9€t an unbound growth which represents how this dis-
Anosov maps on the torus using tailor-made Banach spacégnce decreases exponentially, and the exponent is propor-
adapted to the dynamics. Moreover Blagkal. use this to tional to |).‘1|' L .
analyze resonances of noisy propagators and prove that theseASSUMINng for S|r71pI|C|ty that all the eigenvalues are non-
resonances arstable i.e., independent of in the limit of ~ degenerate, and th&, i=0, ... N°~1, are the right eigen-
small coarse graining. Blum and Agaj#4] proposed a nu- functions(see Appendix A the expansion of, in terms of
merical method to approximate the classical spectrum using, is
similar concepts. .

A formal and very thorough recent work by Nonnenma- Po= >R, (43
cher [18] explores the characteristics of propagators, both i#0
classical and quantum, with noise for maps on the torus, both Sa ~ ) )
regular and chaotic. In that work it is proved that, in the limit Where ri=Tr(Lipo) and L is the left eigenfunction. The
N— oo, the spectrum of the coarse grained quantum propagdSeudostate, evolvedn times is given by
tor L, for fixed ¢, tends to that of the coarse grained BF . - g
(Theorem 1[18]). These two theorems, taken together, pro- Pn=Lepo= 2 riNR. (44)
vide a solid framework for the numerical calculation of 170
quantum resonances of torus maps and of their classic#ll the eigenvalues are ordered decreasingly, according to
manifestations. 1>\ =|Ng|= "+ =N\y\2-1, thenpy is @ sum of exponentially

decaying modes. Suppose thet is real® then it is clear
A. Asymptotic behavior from Eq. (44) that

The time evolution of the von Neumann entropy was used R e
by Zurek and PaZ3] to characterize quantum chaotic sys- Pn— T1MRy (45)
tems. They conjectured that the rate of increase of the vo

8sn . Hence the asymptotic decay to the uniform densit
Neumann entropy of the decoherifchaotig system is in- o ymp y y

is ruled byA,. As a consequence any quantity which depends

depe_ndent of the strength of the coupling to the envwonmgnéxmiciW on p, shows an exponential decay. This is the case
and is ruled by the Lyapunov exponents. Thus classmallt)for the autocorrelation function

emerges naturally and correspondence even for chaotic sys-
tems is recovered when decoherence is considered. This as- C(n) = Tr(ﬁgﬁn)- (46)
sertion was extensively tested numericall$,40,46,47

mainly for the linear entropyclosely related to the puriy From Eq.(45) we get, for largen,

which is a lower bound of the von Neumann entropy. Other

quantities, such as the Loschmidt edfi which also dis- C(m) = [raAg+ -, (47
plays a noise independent Lyapunov decay, have also b?/\?here we used the fact that (R{R;)=1. If \; is complex
come of interest recently, especially in the context of quan—h
tum information processing and computing. Besides thé en
linear entropy, in this section we study the asymptotic behav-

ior of the autocorrelation function and the Loschmidt echo.

For purely chaotic systems, after the initial spread gov-andC(n) oscillates around (oscillation also appears if, for
erned by the Lyapunov exporjent, a statevolvedn times example,|\,|=|\,|). Similarly, we can see that the linear
approaches asymptoticalfy,.=1/N and all time dependent entropy
guantities saturate to a constant value. The rate at which R
these quantities saturate is given by the largest eigenvalue, in S =-In[Tr(py)] (48)
modulus, smaller than 1. Since according to F{&B]. the grows linearly with 2. Once again, using E¢45), the linear
spectrum ofL . approaches that of, the universality of entropy for largen is
these decays can also be used to characterize quantum chaos.

To display the decay towards, we subtract it from the
initial state. Thus given an arbitrary stgiewe define 3In all the numerical simulations made, this was indeed the case.

p~ )\rirlél + )\an;ély
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N2 P TrHRIR)T = = 20 InfIna T+ const. In any complete_ basis, a superoperator such@a_cting
S [Ira [ Tr(RiRy)] (] on Hy2 has associated aN?x N? dimensional matrix. For

(49 small N this represents no setback. However, in order to

Recently the Loschmidt echo has been extensively studie@Stablish a relationship between quantum and classical we
[5] especially in the context of fidelity decay in quantum need to consider the semiclassical lifNit-< and the diago-

algorithms[6]. The definition of the echo is nalization becomes unmanaggable. To overcome this prob-
_ _ lem, we use an approach which takes advantage of the dy-
M(t) = |((0)| e/ (H+2)tg (MY )y, (500  namics of the map to compute an approximation of the most

relevant part of the spectrum by reducisgnsiblythe size of
the eigenvalue equation.

Following Refs.[17,43,44 we construct two sets,5
e Hy2 Which are explicitly adapted to the dynamics of the
map” Let po be an arbitrary initial density iftty2, which for

which is the return probability of a state evolved forward a
time t with a HamiltonianH and backward with a slightly
perturbed HamiltoniarH+%. It can also be viewed as the
overlap between two states evolved forward with slightly

different Hamiltonians. TheM is just a measure of how fast ; . .
gonvenience we choose it to be a pure statejected onto

the two states “separate.” Most works focus on short time Xome space Then, by repeated application bf we gener-
where several “universal” regimes have been identified. In P » by Tep PP 9

particular noise independent Lyapunov decay is observed foz?*te
chaotic systems. F={on Y . Y4 56)

In terms of the density operator and discrete time systems, {Poipre By (
the Loschmidt echo after steps is

. o i B={00:p3s -+ P+ (57)
Mn = Trlpppnl = TL(U" ) (po) U (po)], (51)
) ) ) . where

where the prime represents a slight difference in the map. If
the propagation occurs in a noisy environment, characterized pu=Ldpn-1) =L%py), (598
by D, it is natural to define the echo as

Mi(e) = (L) (Bo)L (po0).] (52) pr=LUBh-0) =L (o). (59)
where Eq.(51) is recovered by making=0. Notice thatLZ is the back-step propagator. Therefore, if the

Following the same arguments used for the autocorreladynamics is chaotigy, andp; are increasingly smooth along
tion function and for the linear entropy it can be shown thatthe unstable and stablkglassical directions, respectively.
asymptotically Thus they reflect the expected behavior of the left and right
eigenfunctions ot (see Fig. 3.

IN[Mq] ~ nlIn(Aq]) +In(x4)]- (53) Using the bra-ket notation described in Appendix A, we
Notice that Schwartz inequality implies that now construct the matrix
Trpipn] < VTR ATH (5] (54) [Ledij= (oIl dp)) = (L Lp)) = (pilpjs),  (60)
Taking the natural logarithm of the expression above we gefyhere A :(in(;,o)| =(pol |_iE_ Then we build the matrix of
In[M,] < %{In(Tr[(f)r’,)Z]) + (T ()2} overlaps between elements Bfand 5,
L O = (pilp}). (61)
OInMp]<-3(§+S). (55

Notice that the structure of the matrices is very simple,
So we can see that the decay of the Loschmidt echo is _
bounded by the negative value of the average between the(pﬂp}*) = (Po|LL|P,-U) = (P0|LL(PJ”)) = (P0|Pju+i) = (LIJ(PMPO)
linear entropy of the original system and the perturbed one s
(see Fig. 4 in Ref[8]). = (pisjlpo)- (62)
These three examples illustrate the fact that in the regimg\,e remark thatp, e {p.}-. Because by construction, is

W”hizirrsl thg Ieag:jngntspect:::irt? b@tangﬁé cO'”C'(:s \;v?iexlrl)e(\::/ithtrace preserving, successive applications on an arbipgry
a € dependent quantities to decay asymptotically remain in{p..}> and therefore the eigenvalue 1 is explicitly

classical decay rates. excluded from our calculations. Moreover, the matrix ele-
ments in Eqs(60) and (61) decay very rapidly, providing a
B. Leading spectrum: Dynamics approach natural cutoffn,,, to the setsF and 5. In Appendix B we

In this section we describe the method used in R&fto show that an approximation of thénay leading eigenval-
yes of L, arises from the solution of

compute the relevant eigenvalues of the coarse graine
propagator. This method works well for hyperbolic automor-
phisms of I? because the nontrivial spectrum of the propa- “See Ref[45] for a rigorous review on numerical methods that
gator lies entirely inside the unit circle for all values @f  can be used to find RP resonances. The method ugéd]iras well
The existence of a gap between 1 ands crucial. as its limitations, is analyzed there.
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L~

FIG. 3. Quantum-classical correspondence for the noisy propagator. The top row shows repeated applications of the Perron-Frobenius
operator of the perturbed Arnold cat of E§4), to an initial classica(position) state. The bottom row shows the Husimi representationf of
Pos - - - P Wherepg is a position eigenstatédN=150,e=0.2 k=0.02.

Def[L.Ji;—40];]1=0, (63 p'=p+qg-2nksiN2m7q] (modl),
i,j=0,nmax—1. This method resembles the Lanczos itera- . , ] )
tion method[48] that uses Krylov matrices. q'=q+p’ + 27k sif2z7p’] (modl), (64)

The combination of small matrix computations plus a,\herek is the small perturbation parameter. The map has a
strong dependence on the dynamics makes this method|,54,n0v exponent which is almost independent of the

very efficient tool to get an approximation of the leading value ofk and equal tO\:In[(3+V’§)/2]. On the other hand

spectrum of L. for chaotic mapgFig. 4). :
pEven whelr: some of the rr?:in g:i\dil/)antages of this methoH?(.a Ruel!e resongn.cegsom_puted nhumericallyare very sen- .
sSitive to it. Thus it is the ideal model to test the asymptotic

are evideni{reduced size, leading spectrum, spectral decom . . .
position, etc), some drawbacks should be pointed out. Whenresults, independent of the short time Lyapunov regime. The

the classical system is nearly integrable some resonances clg}?p |s"a comrf)t(i)zsnéon of tw? gonltm?a}[\rlvshﬁa:ls a:lndmthg;eforﬁi I
remain close to the unit circle and become unitary in ¢he S €aslly quantized as a product of two noncommuting u

.0 limit, and therefore convergence of the method withtary operators.The explicit expression in the mixed represen-
small matrices becomes problematic. Moreover, in that casition 1s

there is a strong dependence in the initial sfgtdf it lies in - 2m| p?
(plU|g) = exp)i—

a regular island it will not explore all phase space. On the P +qp- 5

other hand, if initialized in the chaotic region it will only

explore the chaotic sea, leaving out the regular tori. As a X exp{27N k(cog§27g/N] + cog 27p/N])}.

consequence some part of the relevant spectrum is inevitably (65)

lost. Therefore, the method is useful when the classical dy-

namics is fully chaotic. The other advantage of using a map of this type is that the

propagation both of pure states and of density matrices can

V. NUMERICAL RESULTS be done by fast Fourier techniques, thus allowing relatively

To illustrate our approach we utilize the perturbed Arnoldlarge Hilbert spaces with reasonable CPU times. The minor

cat(PAC) [23] with a small sinusoidal perturbation. The map disadvantage is that the quantization for this particular map
is is only valid for even values ofl [23].

\ A. Spectrum

[ ] In Ref. [8] we have performed the classical calculation of

o5k i resonances and shown that the quantum and classical leading

; spectra coincide. Here we take a slightly different approach

] and just compute the quantum spectra for a rangeasfdN

Al values, as shown in Fig. 5. Observe that there is an extended

o5 S ‘? B ——— region where the spectrumssableand independent of those
parameters, signifying that the eigenvalues are properties ex-
clusive of the map, and therefore coinciding with the classi-

FIG. 4. Plot of the matrix elemen@ij:Lei(j_l), wherej+i=n. cal resonances. It is clear from this figure that the lingts
They are closely related to the autocorrelat®fm)=(p,|p,). Ex- — 0 andN— o cannot be independent. In fact, at fixddhe

(Polpn)

C(n)=
»

ponential decay is observed. The initial statepig=|0,0)0,0| limit e— O restores unitarity and the spectrum returns to the
where|0,0) is the coherent state centered @t0), which is a fixed ~ unit circle. Thereforee must decrease as a certain function
point of the map. of N. An optimal relationship betweeN and € is yet to be
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FIG. 5. Leading spectrum df, for different values ofe andN. If \; is theith eignvalue, then In;=In(r;) +i¢; (wherer;=|\;|) and the
coordinates in the plots afg,-In(r)). The ranges of the axes age=[-, 7] and Inr)E[0,6]. The map is the PAC witlk=0.02 and the
matrix was truncated to dim=12.

established but cannot be inferred from our limited data. 1
However, in our range of values a dependence like ;(Li|Le|RJ)'
~1/VN seems suitable. J

The method described in Sec. IV B also provides approxi-
mations to the eigenfunctions df, corresponding to the i(Ra“- L) (66)
leading eigenvalues. Inside the safe regisee Fig. 5 of N A e
and e we were able to reconstruct at least eight eigenfunc-
tions successfully with matrices of dimension of order 12.A plot of the absolute value of the Husimi representation for
The accuracy of these eigenfunctions was checked by evaldhe first four eigenfunctions can be seen in Fig. 6. As was
ating the orthogonality properties in E@8) and by comput-  expected, the rightleft) eigenfunctions corresponding to in-
ing the overlaps variant densities of the propagator are smooth along the clas-
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FIG. 6. Top(bottom) row shows the first four rightleft) eigenfunctions showing the unstalgktablg manifolds for the quantum PAC
with N=100, €=0.3,k=0.02, and matrices truncated to dim=12.

sical unstablgstablg manifold of the corresponding map. PAC the Lyapunov is essentially the same for a wide range of
The right(left) eigenfunctions are not uniform along the un- perturbations. On the other hand, the Ruelle resonances de-
stable (stable manifold showing pronounced peaks at thepend strongly on the perturbatidifaking as initial density a
position of short periodic points. We intend to make a sys-raceless pseudostdigee Eq(42)], time evolution of quan-

tematic analysis of this connection in a future work. tities shows how the state approaches uniformity exponen-
tially with a rate given by the largest RP resonance. We ob-
B. Asymptotic decay serve that, after the Lyapunov regirt@ound the Eherenfest

. . . . time® ng), the slope of the growth of, is given by I\,

In this section we study numerically the asymptotic be'whereas the slope &, is given by 2If\,| as predicted. This
havior of the autocorrelation function, the linear entropy, and, tor 2 arises from the square in the definitionSpfand is

the Loschmidt echo for the PAC. In Fig. 7 we see the growthy, ooy seen in Fig. 5. The solid lines represent these two

of C,=-In[C(n)] and the growth of, for the perturbed Ar- 5,05 and were obtained by computingusing the method
nold cat defined in Eq64) in Sec. V. In both cases there are yoscribed in Sec. IV B.

two well-defined regimes. Initially both grow with the slope | grder to show the universality of the decay of the linear

determined by the Lyapunov exponent of the map. For theniony and the Loschmidt echo, in terms of classical quan-
tities, in Fig. 8 we shovwg, and I(M(e)) for various values

A0 . ] of the parametee. The linear entropy is simply the negative
i « T logarithm of the purity Tﬁ)ﬁ). Whene~ 0 the purity is con-
32+ . :
i 1 served and equal to 1, so the linear entropy does not grow.
oal ] However whene# 0 the purity will decay at a rate propor-
[ ] tional to e. At one point, as predicted in Rgf3], the growth
16F ] of the linear entropy saturates and no longer depends. on
el Since we evolved a traceless pseudostate, with no component
8 N H on the uniform density, after the Lyapunov growth the
O L * T Ruelle-Pollicot regime appears. In the same way as for the
00 B ‘L — entropy, for small values of the asymptotic decay rate &

dependent but it saturates when rate determined by the first

Ruelle resonance is attained. This phenomenon can clearly
FIG. 7. Purity decay and correlation decay for the PREq. D€ S€en in Fig. &top). In the bottom panel we display the

(64)] with N=450, €=0.05, k=0.005, and initial pseudo stae ~ ©Cho and illustrate exactly the same feature.

:|0,0)<0,0|—i/N, where|0,0) is a coherent state centered@t0).

The inset shows the evolution &; for p=]0,00,0 and how it 5See Fig. 3 in Ref[8].

saturates to the constant valueNn ®In Fig. 7N=450 song~In N=6.11.
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APPENDIX A: ADJOINT AND LINEAR ACTION

Let Hy be a complex Hilbert space of dimensibih The
0r 7 space of linear operators acting 6ty is called Liouville
| space£L="Hy2. Elements ing are usually represented by
< (N X N)-dimensional complex matrices. However, given

4 | A,Be ‘Hn2 the “canonical” inner product, which induces the
4 g norm, is

o 4 8 12 16 20 24 (A,B)=TrA'B). (A1)

a n . . .
@ ThusHjyz is a Hilbert space itself. Now, superoperators are a

0 ————— subset of the space of linear operators actingtgp. We
introduce a bra-ket notation to simplify inner product expres-
N ] sions but also to distinguish the two types of decompositions
we use for superopertors. LAt B e Hy2 then the action of a

N superoperato$ : Hy2— Hyz can be written as

ok \ § B=S(A) (A2)

or as

In(M)

IB) =S|A) (A3)

indistinctly. The adjoint, in the bra-ket form, is defined as
_20 F . usual by

A’ (AIS(B)) = (AlS|B) = (ST(A)|B), (A4)

0 4 8 12 6 20 24 which settles thatA|S=(S'(A)|. Summarizing,
(b) n

| | A=IA), (A )= @A,
FIG. 8. Linear entropy growtte) and Loschmidt echo decalp)

for various values og, ranging from 0.001 to 0.1 and for the PAC A .

with N=450,k=0.005. Both Lyapunov and Ruelle regimes can be (A,B)=(A|B), S(A)=S|A). (AB)

seen when the rates saturate atedndependent value.
One way to think about itnot absolutely necessary but help-

VI. CONCLUSIONS ful) is to think of A as an operator, or matrix, in an operator

space, acting on vectors, afd) as a vector in a vector

We have developed a method to study numerically thesPace, acted on by superoperators.
spectral properties of open quantum maps on the torus. The Now, a completely positive superoperator has a Krau; Op-
method is particularly well suited to chaotic maps and pro_grator sum representation. Supp&e_ns a completely posi-
vides reliable eigenvalues and eigenfunctions. The noislY® Superoperator then there exists a set of operators
model that we implemented utilizes phase space translatio .} € Hyz such that
as Kraus operators and is equivalent to coarse graining quan- ~ ~
tum Markovian master equations. Therefore it brings out S=> M, ® M’ (AB)
classical properties of the map and we have shown that these ©
properties are reflected in the asymptotic decay of several N ]
guantities. The same method can be used to study other noi¥é'ereM,, are the Kraus operators. Without loss of general-
models in the context of quantum information theory, if onelty. if the number of operators is smaller thatf we can
thinks of the quantum map as an algorithm to be imple-2lways complete the set with zeros. Tagjoint action of S
mented and the noise as the error source present in armmn an operatoA is defined through the Kraus representation

implementation. suitable for the case of E4A2):
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S(A) =X M,AM!,. (A7) INTESW (B2)
"

. i and letuy € C" be a vector such that
Equation(A7) determines how the Kronecker product sym-

bol ® should be interpreted throughout this work. I(i,u)| >0 and |(r,u)|>0 Oi<k (B3
On the other hand, a superoperafocan be written as an : v

expansion of spectral projectors. LRtandL; be right and for somek=<n, where( , ) represents as usual the inner prod-
left eigenoperators df, respectively, such that uct. Then the firsk eigenvalues can be estimated from the
. reduced(k X k) eigenvalue equation
S(R)=\R;,

Def ICT(AT,ug, KIAKC (A, Ug, k) — ZICT(AT, ug, KV IC(A, Ug, K) ]
S'Ly=NL, i=1,...N2 (A8) -0, (B4)

and let us assume for simplicity that are nondegenerate.

Then the spectral projectors are where IC(A, Up,K) is the Krylov matrix whose columns are

the iterates ofl,
R, ) =R, (A9)

and the spectral decomposition is given by

IC(A, Ug,K) = [ug, Aug, AU, ... A ug] (B5)

andT as usual denotes matrix transposition.
S=2 [RN(L], (A10) Proof. We sketch a rather straightforward pragfiough
i perhaps not entirely rigorousThe setg; {‘;01 and({r; i“;Ol of
left and right eigenvectors ok are complete, and they can

ST=> LN (RY. (A11)  be normalized according to
i
. » (Ii,ry) = 6. (B6)
Therefore, given the spectral decomposition, the two ways of
expressing the action & on A are Therefore there exist two distinct expansionsugf
S[A) = 2 [RIN(LIA) = 2 M,AML =S(A). (A12) 1
i i UOZE aily, (B?)
i=0

In more general terms Cavg39] identifies and describes the
two different ways a superoperator actsasdinary action

(A2) and left-right action (A3). This provides two distinct n-1
decompositions of the same superoperator. U= > Bili. (B8)
i=0
APPENDIX B: LEADING EIGENVALUES OF A LARGE In terms of these expansions we obtain
MATRIX

. . o ICT(AT, ug, K IC(A, Ug, k)
In this section we describe in a general way the method B 7

used to compute the leading eigenvalues of the superoperator E Bl
L. in Sec IV B. It is based on the Lanczos power iteration [
method[48] but was inspired by a recent work by Blum and E ,3-7\”‘
[ R |
i

Agam [44]. This method is useful when only a few of the
largest(in modulug eigenvalues is needed and also, since it
deals with large matrices, when there is an efficient subrou-

E C(jrj,z aj)\jr]-, ,2 aj)\]k_lrj y
J I J

tine to implement the matrix-vector product but there is no > ﬁi)\:k_lli

need to store the whole matrix in an array variable. More- [

over, convergence and accuracy depend strongly on the dis- - - (B9)
tance part of the spectrum one wants to calculate and the part

to be neglected. which yields

In this work we do not address the question of the esti-
mation of errors.

Proposition 1 SupposeA is a large, sparse matrix itl"
and assume each of its eigenvalugshas multiplicity one
and that =|\g|>[\y|>"-->|\,_4]. Suppose{l;}’ s and => aBNN", (B10)
{r {‘;01 are the corresponding left and right eigenvectors, i

[ICT(AT, g, KIC (A, Ug, K ], = 2 i BN (1iT))
)

Ari = \iri, (B1)  and similarly
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[ICT(A*,uo,k)AIC(A,uo,k)]WzE IBiaj)\jwl)\:#(li,rj) a Vandermonde matrid,(\g, ... ,\1) IS given by
i

=> BN\, (B11
2 'Bl I)\' )\l ( ) Det[Ak()\o, v !)\k—l)] = H ()\J - )\I) (815)

Osisj=k-1
Thus, Eq.(B4) can be rewritten as
n-1
Detl 2 aiIBi)\iVAi*H()\i -2 |=o0. (B12) Frpm Eq.(B15) it can be r_ea_dily seen that if the spectrum of
i=0 A is nondegenerate thetis invertible. Moreover, the struc-

. . i . ture of A determinek because in the limit ok “too large,”
If all the conditions of the proposition are met, this equationy g singular, at least to within computing precision. So

is equivalent to the original full eigenvalue equation. Now, sing properties of the determinant in the secular equation
since \; are ordered by decreasing modulus and assumingz13) we get

that the eigenvalues accumulate around zero, leaving only a

few, sayk of them, with significant modulugas is the case

for the maps studied in Sec. IV)Bwe can neglect the con- _

tribution of the lash—k terms in the suM.Thus Eq.(B12) is De{=]=11 a,B,(\,~2)=0. (B16)
just the determinant of the product of thriex k square ma- "

trices:

DefA" E A]=Def{A"|De{=]De{A]=0, (B13)  Since, from the hypothesisy,B,+0 Eq. (B16) yields the
desired solution, i.e., the firét eigenvalues of\. O

where In practice, the usefulness of the method depends upon
(D VD V- Y the gap(1—|\|), because it determines how fast the terms of
1 \ A2 e K1 the sum in Eq(B13) decay.

A=|" .1 '1 . 1 ) In Sec. IV B the span of the set& and B are just the

P : - E Krylov spaceq48] of L, and LZ, and using the present no-
1 Nt Aoy o0 NG tation Eq.(63) becomes

= . R

aoBo(No—2) 0 . 0 DefIC (Le!poynmax)l-e’C(LapO!nmax)
_ 0 alﬁl()\l—z) 0 _Z’CT(LLFSO!nmax)IC(LE!ﬁOvnmax)]:Oa (Bl7)
0 0 a1B-1Me1—2) in analogy with Eq.(B13). The efficiency of this method

(B14)  depends strongly on the spectrum configuration. The case of
the coarse-grained propagator of hyperbolic maps on the
torus[17,1§ is particularly favorable because of the signifi-
cant gap between 1 ard and because 0 is an accumulation
Although they can be computed, in this work we do not providepoint, so a large number of resonances can be discarded and

The matrixA is a Vandermonde matrix. The determinant of

estimations of the errors due to this truncation. the size of the matrices is reduced dramatically.
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