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basis adapted to the dynamics.
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I. INTRODUCTION

The study of the emergence of classical features in sys-
tems ruled by quantum mechanics is as old as quantum me-
chanics itself. When the quantum system is isolated and the
evolution unitary, these features appear in the WKB semi-
classical limit, which is of paramount importance in estab-
lishing the quantum-classical correspondence in integrable
systems. In its more modern form, the Einstein, Brillouin,
Keller (EBK) quantization rule[1], it shows the direct con-
nection between tori in phase space and quantized eigenfunc-
tions in Hilbert space. In chaotic systems, the relationship is
more subtle and is embodied in the celebrated Gutzwiller
trace formula[2], relating sets of unstable periodic orbits to
the density of states. The limits of applicability of these
semiclassical methods and the insight they provide on the
quantum dynamics of isolated chaotic systems have inspired
most of the recent researches in the area of quantum chaos.

In open quantum systems, on the contrary, the emergence
of classical features has been studied mainly in the time evo-
lution of a different set of observables, most notably the rate
of linear entropy growth(or purity decay) [3], the Loschmidt
echo or fidelity [4–6], and the decay of correlations[7].
These studies have demonstrated that in certain well-defined
regimes for chaotic systems the classical Lyapunov exponent
governs these rates and that the evolution of localized quan-
tum densities in phase space becomes classical.

In this paper we consider this question from the point of
view of the spectral properties of the classical and quantum
propagators. Classical densities evolve according to the
Liouville equation whose solution can be written in terms of
a propagator called Perron-Frobenius(PF) operator[41]. It is
unitary on L2. However, for chaotic systems, correlation
functions exhibit oscillations and exponential decay. The de-
cay rates are given by the poles of the resolvent of the PF
operator, the so-called Ruelle-Pollicott(RP) resonances[9].
By limiting the resolution of the functional space, one can
effectively truncate the PF to a nonunitary operator of finite
size (say N3N) with a spectrum lying entirely inside the
unit circle, except for the simply degenerate eigenvalue 1. In

the, properly taken, limit of infinite size and no coarse grain-
ing, the isolated eigenvalues turn out to be the RP resonances
[17,18]. As shown in Ref.[8], the linear entropy and the
Loschmidt echo, for asymptotic times much longer than the
Ehrenfest time,1 also show characteristic decay rates gov-
erned by the classical RP resonances[9]. Experimental evi-
dence of this dependence on RP resonances was observed for
the first time in Ref.[10]. Our approach is similar in spirit to
the calculations performed on the sphere for the dissipative
kicked top by Haake and co-workers[11–13], Fishman
[14,15] and, for the baker’s map, by Hasegawa and Saphir
[16]. We model the unitary dynamics by means of a quantum
map and implement a diffusive superoperator represented by
a Kraus sum. Two recent works by Blanket al. [17] and
Nonnenmacher[18] provide a rigorous theoretical underpin-
ning to our calculations for quantum and classical maps on
the torus.

The plan of the paper is as follows. Section II provides a
short account of the quantization procedure for maps acting
on a classical surface with periodic boundary conditions in
both coordinates and momenta, i.e., a torus. In Sec. III we
implement the open system dynamics with the definition of a
diffusion superoperator represented as a Kraus sum. The gen-
eral spectral properties of both the unitary and the noisy
parts, as well as those of the combined action, are studied.
Section IV deals with the relationship between the classical
and the quantum resonances and, utilizing recently proved
theorems[17,18], how they coincide in specific ranges of"
and of the noise strength. As a consequence we show that the
asymptotic time behavior of several quantities is classical
and depends on the Ruelle-Pollicott resonances closer to the
unit circle. A numerical method that allows the calculation of
the leading spectrum of resonances is developed. Section V
illustrates this correspondence taking the perturbed Arnold
cat map as an example. We relegate to the appendix some
notation concerning the spectral decomposition of superop-
erators and the details of the numerical method.

II. UNITARY DYNAMICS ON THE TORUS T2

We picture the classical phase space as a square of unit
area with sides identified. The classical transformations will
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1In our case the Ehrenfest timenE is related to the time it takes for
an initially localized package to reach the borders of phase space
due to exponential instability(it is sometimes called “log time”).
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map this square onto itself, thus providing a simple model of
Hamiltonian area preserving dynamics. The fact that the
phase space has finite area brings some well-known special
features to the quantization that we briefly review. Refer-
ences[19,20] provide a more extensive account.

A. The Hilbert space

As the phase space has finite area, which we normalize to
unity, the Hilbert spaceHN is finite and its dimensionN sets
the value of Planck’s constant to"=s2pNd−1. The position
and momentum bases are then sets of discrete states
uql , upl ,q,p=0, . . . ,N−1, which are related by the discrete
Fourier transform(DFT) of dimensionN:

kpuql =
1

ÎN
e−s2pi/Ndpq. s1d

A vector uwstdl in HN characterizes pure states of the sys-
tem and can be represented by the amplitudeskquwl ,kpuwl in
the coordinate or momentum basis, respectively.

In the description of open systems it is imperative to rep-
resent states by a density operatorr̂. They form a subset of
self-adjoint, positive semidefinite matrices with unit trace in

HN2 =
def

HN ^ HN
* , the space of complexN3N matrices, usu-

ally called in this context Liouville space. While Hilbert
space is the natural arena for unitary dynamics, this much
larger Liouville space sets the stage for the more general
description of open quantum dynamics. It acquires the struc-
ture of a Hilbert space with the usual introduction of the
matrix scalar product

sÂ,B̂d = TrsÂ†B̂d, s2d

where Â,B̂PHN2. Linear transformations in this space are
termed superoperators; they map operators into operators and
are represented byN23N2 matrices. In Appendix A we re-
view the various notations and properties related to this
space.

B. Translations on the torus

The usual translation operator in the infinite planeR2 is

T̂sq,pd = e−si/"dsqP̂−pQ̂d s3d

=e−si/"dqP̂esi/hdpQ̂esi/2"dqp

= ÛqV̂pesi/2"dqp, s4d

whereÛ andV̂ generate shifts in the position and momentum
eigenbases, respectively. On the torus the main difference is

that the infinitesimal translation operatorsP̂,Q̂ with the
usual commutation rules cannot be defined because position
and momentum eigenstates are discrete. However,finite

translation operatorsÛ and V̂ that have the property

V̂pÛq = ÛqV̂peis2p/Ndqp s5d

can be defined and they generate finite cyclic shifts in the
respective basesf21g. TheN3N grid of coordinate and mo-
mentum states constitutes the quantum phase space for the
torus. Equations5d allows a definition of a translation opera-

tor T̂sq,pd :HN→HN, with q,p being integers, analog to Eq.

s3d. The action ofT̂ on position and momentum eigenstates is

T̂sq1,p1duql = expFi
2p

N
pSq +

q1

2
DGuq + q1l, s6d

T̂sq1,p1dupl = expF− i
2p

N
qSp +

p1

2
DGup + p1l. s7d

These equations confirm thatT̂sq1,p1d are indeed phase space
translations. They satisfy the Weyl group composition rule

T̂sq1,p1dT̂sq2,p2d = T̂sq1+q2,p1,p2de
isp/Ndsp1q2−q1p2d. s8d

The N2 translationsT̂sq,pd ,p,q=0, . . . ,N−1 satisfy the or-
thogonality relation

TrsT̂sq,pd
† T̂sq8,p8dd = Ndqp,q8p8, s9d

thus constituting an orthogonal basis for the Liouville space
HN2.

The expansion of any operatorÂ in this basis constitutes
the chord[19] or characteristic function representation. This

representation assigns to everyÂPHN2 the c-number func-

tion asq,pd=N−1TrsÂT̂sq,pdd and therefore every operator has
the expansion

Â = o
q,p

asq,pdT̂sq,pd. s10d

For representation purposes we also use a basis of “phase
point ” operators that constitute the Weyl, or center[19],
representation. In this basis the density operator is the dis-
crete Wigner function of the quantum state. The peculiar
features of the discrete Wigner function for Hilbert spaces of
finite dimension have been described recently in Ref.[20].

C. Unitary dynamics: Quantum maps

A classical map is a dynamical system that usually, but
not exclusively, arises from the discretization of a continuous
time system(by means of a Poincaré section, for example).
Although it is always possible, by integration of the equa-
tions of motion, to derive the map from a Hamiltonian, this
connection is rather involved and in many instances it is
more useful to model specific features of Hamiltonian dy-
namics by directly specifying the map equations without go-
ing through the integration step. The same is true in quantum
mechanics: instead of modeling the Hamiltonian operator
and integrating it to obtain the unitary propagator, it is sim-
pler to model directly the unitary map. Classically an area
preserving map is characterized by a finite canonical trans-
formation and the corresponding quantum map is the unitary
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propagator that represents this canonical transformation.
There are no exact and systematic procedures to realize this
correspondence. On the two-dimensional planeR2 relatively
standard procedures(see Ref.[22]) give an approximation of
the propagator in the semiclassical limit as

Usq1,q2d = S i

"

]2S

] q1 ] q2
D1/2

expF i

"
Ssq2,q1dG , s11d

whereS is the action along the unique classical path fromq1
to q2, and where, for simplicity, we do not consider the ex-
istence of multiple branches and Maslov indices. Only for
linear symplectic maps onR2 this unitary propagator is ex-
act, and thenS is minus the quadratic generating function of
the linear transformation. On the other hand, severalad hoc
procedures for the quantization of specific maps have been
devised: some integrablestranslationsf21g and shearsd and
chaotic maps, such as cat mapsf23,24g, baker mapsf25,26g,
and the standard mapf27g. Also all maps of a “kicked” na-
ture, realized as compositions of noncommuting nonlinear
shears, can be quantized, as well as periodic time dependent
Hamiltoniansf28g. Once the quantum propagator has been
constructed, the advantages of using quantum maps to model
specific features of quantum dynamics become apparent. The

propagatorÛ is a unitaryN3N matrix, propagation of a
pure state is achieved simply by matrix multiplication, and
finally the classical limit is obtained by lettingN→`.

In Liouville space the evolution of the density operatorr̂

by the mapÛ is given by

r̂8 = ÛrÛ†. s12d

As a linear map acting onHN2 Eq. s12d can be written as

r̂8 = Û ^ Û†sr̂d = Usr̂d. s13d

In what follows the notationÛ ^ Û† is meant to be equiva-
lent to theAdsUd notation customary in group theory. The

linear operatorU =
def

Û ^ Û† is a unitaryN23N2 matrix.

III. NOISY DYNAMICS

Realistic quantum processes always involve a certain de-
gree of interaction between system and environment. In this
case the evolution of the system is not unitary and requires a
description in Liouville space. This loss of unitarity leads to
decoherence and to the emergence of classical features
[29,30] in the evolution. When the environment is taken into
account the evolution of the system is governed by amaster
equation, which takes the form of a hierarchy of integro-
differential equations. A drastic simplification follows from
the assumption that the environment reacts to the system
sufficiently fast in such a manner that the system loses all
prior memory of its state, i.e., the evolution is Markovian.2

The resulting Lindblad equation[33,34]

dr̂

dt
= −

i

"
fĤ,r̂g +

1

"
o

j
SL̂jr̂L̂j

† −
1

2
L̂j

†L̂jr̂ −
1

2
r̂L̂j

†L̂jD
s14d

determines the evolution of open quantum systems through a

Hamiltonian Ĥ that governs the unitary noiseless evolution

and the LindbladL̂i operators that model the interaction with
the environment. The particular structure of the equation en-
sures that the evolution preserves the total probability, the
positive semidefiniteness, and hermiticity of the density ma-
trix. The infinitesimal propagator is a linear operator in Liou-
ville space which can be integrated to yield a finite linear
mapping

r̂ = Ssr̂0d. s15d

This mapping, as a reflection of the structure of the Lindblad
equation, also has a particular form that guarantees the pres-
ervation of the general properties of the density operator.
The general form, called the Kraus representationf35g, is

Ssr̂d = o
m

M̂mr̂M̂m
† = Fo

m

M̂m ^ M̂m
†Gsr̂d. s16d

The only further restriction on theM̂m operators arises from
the preservation of the trace that requires

o
m

M̂m
†M̂m = Î . s17d

In what follows we will select them from a certain complete
family with a specific norm. In that case the representation
takes a more general form

Ssr̂d = o
m

cmM̂mr̂M̂m
† , s18d

where now the positivity requirements arecmù0 and

o
m

cmM̂m
†M̂m = Î . s19d

Within this general framework, just as in the case of quan-
tum maps, we have the choice of modeling the noise through
the Lindblad operators or directly in terms of the integrated
form via the Kraus operators. In what follows we choose the
latter and thus we model the evolution by specifying a quan-
tum map to represent the unitary evolution followed by a
noisy step, modeled by its Kraus superoperator form. An
evolution of the density matrix specified in this way is
known in the literaturef36–39g as aquantum operation. It
includes the special case of unitary evolution when the sum
is limited to only one term. In that case, and only then, the
dynamics is reversible. A general superoperator has no in-
verse.

A. Quantum coarse grained dynamics

We are interested in modeling the effect of a small amount
of noise on the evolution of an otherwise unitary quantum
map [8,13,18,40]. We assume that the one step propagator
results from thecompositionof two superoperators. The first

2For a detailed description of quantum noise and quantum Markov
processes see Refs.[31,32].
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is the unitary propagatorU and the second is a quantum
diffusion superoperatorDe, defined by

De = o
q,p

cesq,pdT̂sq,pd ^ T̂sq,pd
† , s20d

which introduces decoherence. The linear form of the full
propagator is

Le = De + U s21d

and its action on a density matrixr̂ is

Lesr̂d = o
q,p

cesq,pdT̂sq,pdÛr̂Û†T̂sq,pd
† . s22d

As the Kraus operators in this case are unitary the condition
s19d becomes simply

o
q,p

cesq,pd = 1. s23d

Subject to this conditioncesq,pd can be an arbitrary positive
function ofq andp. Its significance in terms of coarse grain-
ing is clear: as long ascesq,pd is peaked arounds0,0d and of
width e, the action that follows the unitary step consists in
displacing the state incoherently over a phase space region of
order e. To avoid a net drift in any particular direction,
cesq,pd must be an even function of the argumentsq andp.
From this imposition and the fact that

T̂sq,pd
† = T̂s−q,−pd s24d

it follows from the properties of the matrix scalar products2d
that De is Hermitianssee Appendix A for details on the sca-
lar productd.

The spectral properties of the separate superoperatorsU
and De are simple to obtain. If the Floquet spectrum of the
quantum map is

Ûufkl = eijkufkl, s25d

then the spectrum ofU is unitary and given by

Usufklkf jud = eisjk−j jdufklkf ju. s26d

To obtain the spectrum ofDe we use the composition rules8d
to show that

T̂sq,pdT̂sm,ndT̂sq,pd
† = expFi

2p

N
snq − mpdGT̂sm,nd. s27d

We then derive

DesT̂sm,ndd = o
q,p

cesq,pdT̂sq,pdT̂sm,ndT̂sq,pd
†

= o
q,p

cesq,pdexpFi
2p

N
snq − mpdGT̂sm,nd

= cẽsm,ndT̂sm,nd. s28d

Therefore, theN2 eigenvalues ofDe are given by the two-

dimensional discrete Fourier transformcẽsm ,nd of the coef-

ficients cesq,pd. The eigenfunctions are the translation op-
erators themselves. Hence, using the bra-ket notation
described in Appendix A, the spectral decomposition ofDe is

De = o
m,n

uTsm,nddcẽsm,ndsTsm,ndu, s29d

in analogy with Eq.sA10d.
Physically, the action ofDe is quite simple in the chord

representation(10): if r̂ is expanded as

r̂ = o
m,n

rm,nT̂sm,nd s30d

then

Desr̂d = o
m,n

cẽsm,ndrm,nT̂sm,nd. s31d

Thus the coefficients in the chord representation are sup-

pressed selectively according tocẽsm ,nd.
It is evident from Eqs.(20) and (29) that the diffusion

superoperator thus defined can be specified indistinctly either

by cesq,pd or by cẽsm ,nd. For an efficient numerical imple-
mentation of its action we have found convenient to specify
the latter as

cẽsm,nd = e−1/2seN/pd2ssin2fpm/Ng+sin2fpn/Ngd. s32d

This is a smooth Gaussian-like periodic function of the inte-
ger variablesm andn. For large values ofN it is very close
to the Gaussian,

c̃sm,nd . e−e2sm2+n2d/2. s33d

This means that the action ofDe will leave essentially unal-
tered the coefficientsrm,n in a region of size,1/seNd sFig.
1, leftd around the origin while strongly suppressing those

outside. The backward DFT ofcẽsm ,nd does not have a
simple analytic expression but from general properties of the
DFT it will also be a Gaussian-like function with the
complementary width,e /2p sFig. 1, rightd.

The action ofDe progressively washes out the quantum
interference. This fact is clearly seen if the density matrix is
represented by the Wigner function. On the torus the Wigner
function exhibits two different types of interference. The
stretching and folding produce quantum interference be-

FIG. 1. The left panelcẽsm ,nd shows the eigenvalues ofDe for
e=0.15 andN=100. The DFT of this function generates the coeffi-
cientscesq,pd (right panel) of the Kraus representation ofDe of Eq.
(20).
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tween different parts of the extended state. Additionally, the
periodicity of the torus introduces interference between the
state and its images. In Fig. 2 we show the difference be-
tween the unitary and the noisy evolution of a coordinate
state by a nonlinear map. The two types of interference are
clearly seen. The long wavelength fringes on the convex side
are produced by nonlinearities. The short wavelength fringes
correspond to the images. The effect of the noise can be seen
in Fig. 2(b): the classical part of the state(in white) has been
broadened and the long wavelength interference has been
significantly erased. This process continues at each step of
the propagation and the quantum state becomes more and
more mixed and more and more classical.

B. Spectrum of the quantum coarse gained propagator

In this section we study the general features of the spec-
trum of the combined action of the unitary map and the
coarse graining operator, given by Eq.(22). For finite values
of e and N, Le is a convex sum of unitary matrices and is
therefore a completely positive,contracting superoperator.
Its spectrum has the following properties:

(1) It is unital, i.e., it has a trivial nondegenerate unit

eigenvalue corresponding to the uniform densityr̂`= Î /N.
(2) The remaining spectrum is entirely contained inside

the unit circle and symmetric with respect to the real axis.
The pair of complex conjugate eigenvalues corresponds to
Hermitian conjugate eigenoperators.

(3) As ÎsLe +Le
†d=De the eigenvalues ofDe are also the

singular values ofLe. Therefore the spectrum is contained
exactly in the annulus,

e−seN/pd2 ø uliu ø e−1/2seN/pd2ssin2fp/Ngd. s34d

In the limit of largeN we can thus write

− SNe

p
D2

ø lnuliu ø −
e2

2
. s35d

The singular values accumulate near the origin, thus forcing
most of the eigenvalues ofLe to be near zero. On the other
hand the allowed eigenvalue region extends exponentially
close to the unit circle in the limite→0.

(4) The superoperator is not normal, and therefore has
distinct left and right eigenoperators corresponding to each

eigenvalue. The left and right eigenvalue problems are then
posed as follows for each pair of complex conjugate eigen-
valuesl ,l* :

LeR̂i = liR̂i, LeR̂i
† = li

*R̂i
†, s36d

Le
†L̂i = li

* L̂i, Le
†L̂i

† = liL̂i
†, s37d

whereL̂i ,R̂i conform a biorthogonal set

TrsLi
†Rjd = TrsLiRjd = TrsLi

†Rj
†d = di,j , s38d

and we assume the normalization TrsLi
†Lid=TrsRi

†Rid=1. In

particular, corresponding tol0=1, we chooseL̂0=R̂0

= Î /N and therefore all the remaining eigenoperators are
traceless.

(5) The spectral decomposition ofLe then becomes

Le = o
i

uRidlisLiu. s39d

The exact numerical calculation of the spectrum is ham-
pered by the need to diagonalize very large non-Hermitian
matrices of dimensionN23N2 for values ofN large enough
to extract semiclassical features from the spectrum. In Sec.
IV B we develop a method, specially adapted to chaotic sys-
tems, that takes account of the dynamics of the map to ex-
tract the part of the leading spectrum relevant to asymptotic
time behavior.

IV. QUANTUM-CLASSICAL CORRESPONDENCE

Chaotic evolution in phase space implies exponential
stretching and squeezing of initially localized densities. On a
time scale of the order of the Ehrenfest timet", significant
quantum corrections to the classical evolution inevitably ap-
pear. However, essentially classical features emerge from
quantum chaotic dynamics when decoherence is introduced,
even in the limit of no decoherence. In this section we relate
the spectra of the propagators of densities(both classical and
quantum) with the underlying, mainly asymptotic, behavior
of time dependent quantities.

Consider the classical analog for the propagation of den-
sities in phase space. Iffsxd is a classical map, andx
=sq,pd a point in phase space, then the evolution of a prob-
ability density is governed by

r8syd =E d„y − fsxd…rsxddx = fLrgsyd, s40d

wherey=sq8 ,p8d andL is the PF operatorf41g. It is unitary
on the space of square integrable functionsL2 and infinite
dimensional. However, one is mostly interested in the decay
properties of observables much smoother thanL2. When the
functional space on whichL operates is restricted by
smoothness, the spectrum of PF changes drastically, moving
to the inside of the unit circle. This smoothing can be at-
tained by convolution with a self-adjoint compactson L2d
coarse graining operatorDe f18,42g, wheree is the coarse
graining parameter. The coarse grained PF takes the form

FIG. 2. Display of the action ofDe. Panel(a) shows the Wigner
function after the stepU has been applied to a position statesr0

= uq0lkq0u d. Panel(b) shows the state after the full propagatorLe

=De +U has acted. The map is the perturbed cat map of Eq.(64),
k=0.02,N=60, e=0.25.
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Le = De + L, s41d

fnotice the analogy with Eq.s21dg. De damps high frequency
modes inL2 and thus effectively truncatesL to a nonunitary
operator. There is substantial difference, however, between
the spectrum of the PF for a regular map and for a chaotic
map. As the coarse graininge tends to zero, parts of the
spectrum ofLe for a regular map can be arbitrarily close to
the unit circle. On the contrary, for a chaotic map there is a
finite gap for any value ofe.0. The isolated eigenvalues
which remain inside the unit circle ase→0 are the Ruelle-
Pollicot resonances. Rughf43g and more recently Blanket
al. [17] made formal descriptions of the spectrum of PF for
Anosov maps on the torus using tailor-made Banach spaces
adapted to the dynamics. Moreover Blanket al. use this to
analyze resonances of noisy propagators and prove that these
resonances arestable, i.e., independent ofe in the limit of
small coarse graining. Blum and Agam[44] proposed a nu-
merical method to approximate the classical spectrum using
similar concepts.

A formal and very thorough recent work by Nonnenma-
cher [18] explores the characteristics of propagators, both
classical and quantum, with noise for maps on the torus, both
regular and chaotic. In that work it is proved that, in the limit
N→`, the spectrum of the coarse grained quantum propaga-
tor Le, for fixed e, tends to that of the coarse grained PFLe

(Theorem 1[18]). These two theorems, taken together, pro-
vide a solid framework for the numerical calculation of
quantum resonances of torus maps and of their classical
manifestations.

A. Asymptotic behavior

The time evolution of the von Neumann entropy was used
by Zurek and Paz[3] to characterize quantum chaotic sys-
tems. They conjectured that the rate of increase of the von
Neumann entropy of the decohering(chaotic) system is in-
dependent of the strength of the coupling to the environment
and is ruled by the Lyapunov exponents. Thus classicality
emerges naturally and correspondence even for chaotic sys-
tems is recovered when decoherence is considered. This as-
sertion was extensively tested numerically[8,40,46,47]
mainly for the linear entropy(closely related to the purity)
which is a lower bound of the von Neumann entropy. Other
quantities, such as the Loschmidt echo[5] which also dis-
plays a noise independent Lyapunov decay, have also be-
come of interest recently, especially in the context of quan-
tum information processing and computing. Besides the
linear entropy, in this section we study the asymptotic behav-
ior of the autocorrelation function and the Loschmidt echo.

For purely chaotic systems, after the initial spread gov-
erned by the Lyapunov exponent, a stater̂ evolvedn times

approaches asymptoticallyr̂`= Î /N and all time dependent
quantities saturate to a constant value. The rate at which
these quantities saturate is given by the largest eigenvalue, in
modulus, smaller than 1. Since according to Ref.[18] the
spectrum ofLe approaches that ofLe, the universality of
these decays can also be used to characterize quantum chaos.

To display the decay towardsr̂` we subtract it from the
initial state. Thus given an arbitrary stater̂, we define

r̂0 = r̂ −
Î

N
, s42d

where it is clear that Trsr̂0d=0. Thus in all computations
instead of evolving an initialstate, we evolve an initial
tracelesspseudostatesuch as the one defined in Eq.s42d,
orthogonal tor̂`. Thus, we study how thedistancebetween
the initial state and the equilibrium state evolves. For ex-
ample, for the linear entropy, after the initial Lyapunov be-
havior, which ends at about the Ehrenfest timesnE, ln Nd,
instead of saturation to the equilibrium stater`, we expect
to get an unbound growth which represents how this dis-
tance decreases exponentially, and the exponent is propor-
tional to ul1u.

Assuming for simplicity that all the eigenvalues are non-

degenerate, and thatR̂i, i =0, . . . ,N2−1, are the right eigen-
functions(see Appendix A), the expansion ofr̂0 in terms of

R̂i is

r̂0 = o
iÞ0

r iR̂i , s43d

where r i =TrsL̂i
†r̂0d and L̂i is the left eigenfunction. The

pseudostater̂0 evolvedn times is given by

r̂n = Le
nr̂0 = o

iÞ0
r ili

nR̂i . s44d

If the eigenvalues are ordered decreasingly, according to
1. ul1uù ul2uù ¯ ùlN2−1, thenr̂0 is a sum of exponentially
decaying modes. Suppose thatl1 is real,3 then it is clear
from Eq. s44d that

r̂n → r1l1
nR̂1 s45d

asn→`. Hence the asymptotic decay to the uniform density
is ruled byl1. As a consequence any quantity which depends
explicitly on r̂n shows an exponential decay. This is the case
for the autocorrelation function

Csnd = Trsr̂0
†r̂nd. s46d

From Eq.s45d we get, for largen,

Csnd → ur1u2l1
n + ¯ , s47d

where we used the fact that TrsR̂1
†R̂1d=1. If l1 is complex

then

r̂ , l1
nr1R̂1 + l1

* n
r1

*R̂1,

andCsnd oscillates aroundl1
n soscillation also appears if, for

example,ul2u<ul1ud. Similarly, we can see that the linear
entropy

Sn = − lnfTrsr̂2
ndg s48d

grows linearly with 2n. Once again, using Eq.s45d, the linear
entropy for largen is

3In all the numerical simulations made, this was indeed the case.
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Sn , − lnfur1u2ul1u2nTrsR̂1
†R̂1dg = − 2n lnful1ug + const.

s49d

Recently the Loschmidt echo has been extensively studied
[5] especially in the context of fidelity decay in quantum
algorithms[6]. The definition of the echo is

Mstd = ukcs0duesi/"dsH+Sdte−si/"dHtucs0dlu2, s50d

which is the return probability of a state evolved forward a
time t with a HamiltonianH and backward with a slightly
perturbed HamiltonianH+S. It can also be viewed as the
overlap between two states evolved forward with slightly
different Hamiltonians. ThenM is just a measure of how fast
the two states “separate.” Most works focus on short times
where several “universal” regimes have been identified. In
particular noise independent Lyapunov decay is observed for
chaotic systems.

In terms of the density operator and discrete time systems,
the Loschmidt echo aftern steps is

Mn = Trfr̂n8r̂ng = TrfsU8†dnsr̂0dUnsr̂0dg, s51d

where the prime represents a slight difference in the map. If
the propagation occurs in a noisy environment, characterized
by De, it is natural to define the echo as

Mnsed = TrfsLe8
†dnsr̂0dLesr̂0d,g s52d

where Eq.s51d is recovered by makinge=0.
Following the same arguments used for the autocorrela-

tion function and for the linear entropy it can be shown that
asymptotically

lnfMng , nflnsul18ud + lnsul1udg. s53d

Notice that Schwartz inequality implies that

Trfr̂n8r̂ng ø ÎTrfsr̂n8d
2gTrfsr̂nd2g. s54d

Taking the natural logarithm of the expression above we get

lnfMng ø
1
2hlnsTrfsr̂n8d

2gd + lnsTrfsr̂nd2gdj

⇒ lnfMng ø − 1
2sSn8 + Snd. s55d

So we can see that the decay of the Loschmidt echo is
bounded by the negative value of the average between the
linear entropy of the original system and the perturbed one
(see Fig. 4 in Ref.[8]).

These three examples illustrate the fact that in the regime
where the leading spectrum ofLe andLe coincide we expect
all time dependent quantities to decay asymptotically with
classical decay rates.

B. Leading spectrum: Dynamics approach

In this section we describe the method used in Ref.[8] to
compute the relevant eigenvalues of the coarse grained
propagator. This method works well for hyperbolic automor-
phisms ofT2 because the nontrivial spectrum of the propa-
gator lies entirely inside the unit circle for all values ofe.
The existence of a gap between 1 andl1 is crucial.

In any complete basis, a superoperator such asLe acting
on HN2 has associated anN23N2 dimensional matrix. For
small N this represents no setback. However, in order to
establish a relationship between quantum and classical we
need to consider the semiclassical limitN→` and the diago-
nalization becomes unmanageable. To overcome this prob-
lem, we use an approach which takes advantage of the dy-
namics of the map to compute an approximation of the most
relevant part of the spectrum by reducingsensiblythe size of
the eigenvalue equation.

Following Refs. [17,43,44] we construct two setsF ,B
PHN2 which are explicitly adapted to the dynamics of the
map.4 Let r̂0 be an arbitrary initial density inHN2, which for
convenience we choose it to be a pure state(projected onto
some space). Then, by repeated application ofLe we gener-
ate

F = hr̂0,r̂1
u, . . . ,r̂n

u, . . .j, s56d

B = hr̂0,r̂1
s, . . . ,r̂n

s, . . .j, s57d

where

r̂u
n = Lesr̂n−1

u d = Le
nsr̂0d, s58d

r̂n
s = Le

†sr̂n−1
s d = Le

†n
sr̂0d. s59d

Notice thatLe
† is the back-step propagator. Therefore, if the

dynamics is chaotic,r̂n
u andr̂n

s are increasingly smooth along
the unstable and stablesclassicald directions, respectively.
Thus they reflect the expected behavior of the left and right
eigenfunctions ofLe ssee Fig. 3d.

Using the bra-ket notation described in Appendix A, we
now construct the matrix

fLegi,j = sri
suLeur j

ud = „ri
suLesr j

ud… = sri
sur j+1

u d, s60d

where sri
su =sLe

†i
sr̂0d u =sr0uLe

i . Then we build the matrix of
overlaps between elements ofF andB,

Oi j = sri
sur j

ud. s61d

Notice that the structure of the matrices is very simple,

sri
sur j

ud = sr0uLe
i ur j

ud = „r0uLe
i sr j

ud… = sr0ur j+i
u d = „Le

†j
sri

sdur0…

= sri+j
s ur0d. s62d

We remark thatr̂0P hr̂`j'. Because by constructionLe is
trace preserving, successive applications on an arbitraryr0
remain inhr`j' and therefore the eigenvalue 1 is explicitly
excluded from our calculations. Moreover, the matrix ele-
ments in Eqs.s60d and s61d decay very rapidly, providing a
natural cutoffnmax to the setsF andB. In Appendix B we
show that an approximation of thenmax leading eigenval-
ues of Le arises from the solution of

4See Ref.[45] for a rigorous review on numerical methods that
can be used to find RP resonances. The method used in[44], as well
as its limitations, is analyzed there.
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Det†fLegi,j − zfOgi,j‡ = 0, s63d

i , j =0,nmax−1. This method resembles the Lanczos itera-
tion methodf48g that uses Krylov matrices.

The combination of small matrix computations plus a
strong dependence on the dynamics makes this method a
very efficient tool to get an approximation of the leading
spectrum of Le for chaotic maps(Fig. 4).

Even when some of the main advantages of this method
are evident(reduced size, leading spectrum, spectral decom-
position, etc.), some drawbacks should be pointed out. When
the classical system is nearly integrable some resonances can
remain close to the unit circle and become unitary in thee
→0 limit, and therefore convergence of the method with
small matrices becomes problematic. Moreover, in that case
there is a strong dependence in the initial stater̂0. If it lies in
a regular island it will not explore all phase space. On the
other hand, if initialized in the chaotic region it will only
explore the chaotic sea, leaving out the regular tori. As a
consequence some part of the relevant spectrum is inevitably
lost. Therefore, the method is useful when the classical dy-
namics is fully chaotic.

V. NUMERICAL RESULTS

To illustrate our approach we utilize the perturbed Arnold
cat(PAC) [23] with a small sinusoidal perturbation. The map
is

p8=p + q − 2pk sinf2pqg smod1d,

q8=q + p8 + 2pk sinf2pp8g smod1d, s64d

wherek is the small perturbation parameter. The map has a
Lyapounov exponent which is almost independent of the
value ofk and equal tol=lnfs3+Î5d /2g. On the other hand
the Ruelle resonances(computed numerically) are very sen-
sitive to it. Thus it is the ideal model to test the asymptotic
results, independent of the short time Lyapunov regime. The
map is a composition of two nonlinear shears and therefore it
is easily quantized as a product of two noncommuting uni-
tary operators. The explicit expression in the mixed represen-
tation is

kpuÛuql = expHi
2p

N
Fq2

2
+ qp−

p2

2
GJ

3 exph2pN kscosf2pq/Ng + cosf2pp/Ngdj.

s65d

The other advantage of using a map of this type is that the
propagation both of pure states and of density matrices can
be done by fast Fourier techniques, thus allowing relatively
large Hilbert spaces with reasonable CPU times. The minor
disadvantage is that the quantization for this particular map
is only valid for even values ofN f23g.

A. Spectrum

In Ref. [8] we have performed the classical calculation of
resonances and shown that the quantum and classical leading
spectra coincide. Here we take a slightly different approach
and just compute the quantum spectra for a range ofe andN
values, as shown in Fig. 5. Observe that there is an extended
region where the spectrum isstableand independent of those
parameters, signifying that the eigenvalues are properties ex-
clusive of the map, and therefore coinciding with the classi-
cal resonances. It is clear from this figure that the limitse
→0 andN→` cannot be independent. In fact, at fixedN the
limit e→0 restores unitarity and the spectrum returns to the
unit circle. Therefore,e must decrease as a certain function
of N. An optimal relationship betweenN and e is yet to be

FIG. 3. Quantum-classical correspondence for the noisy propagator. The top row shows repeated applications of the Perron-Frobenius
operator of the perturbed Arnold cat of Eq.(64), to an initial classical(position) state. The bottom row shows the Husimi representationf of
r0, . . . ,r6, wherer0 is a position eigenstatesN=150,e=0.2,k=0.02d.

FIG. 4. Plot of the matrix elementsOi j =Leis j−1d
, where j + i =n.

They are closely related to the autocorrelationCsnd=sr0urnd. Ex-
ponential decay is observed. The initial state isr̂0= u0,0lk0,0u
whereu0,0l is the coherent state centered ats0,0d, which is a fixed
point of the map.
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established but cannot be inferred from our limited data.
However, in our range of values a dependence likee
,1/ÎN seems suitable.

The method described in Sec. IV B also provides approxi-
mations to the eigenfunctions ofLe corresponding to the
leading eigenvalues. Inside the safe region(see Fig. 5) of N
and e we were able to reconstruct at least eight eigenfunc-
tions successfully with matrices of dimension of order 12.
The accuracy of these eigenfunctions was checked by evalu-
ating the orthogonality properties in Eq.(38) and by comput-
ing the overlaps

1

l j
sLiuLeuRjd,

1

l j
sRiuLeuLjd. s66d

A plot of the absolute value of the Husimi representation for
the first four eigenfunctions can be seen in Fig. 6. As was
expected, the right(left) eigenfunctions corresponding to in-
variant densities of the propagator are smooth along the clas-

FIG. 5. Leading spectrum ofLe for different values ofe andN. If li is the ith eignvalue, then lnli =lnsr id+ ifi (wherer i = uliu) and the
coordinates in the plots are(f ,−lnsrd). The ranges of the axes aref[f−p ,pg and lnsrd[f0,6g. The map is the PAC withk=0.02 and the
matrix was truncated to dim=12.
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sical unstable(stable) manifold of the corresponding map.
The right(left) eigenfunctions are not uniform along the un-
stable (stable) manifold showing pronounced peaks at the
position of short periodic points. We intend to make a sys-
tematic analysis of this connection in a future work.

B. Asymptotic decay

In this section we study numerically the asymptotic be-
havior of the autocorrelation function, the linear entropy, and
the Loschmidt echo for the PAC. In Fig. 7 we see the growth
of Cn=−lnfCsndg and the growth ofSn for the perturbed Ar-
nold cat defined in Eq.(64) in Sec. V. In both cases there are
two well-defined regimes. Initially both grow with the slope
determined by the Lyapunov exponent of the map. For the

PAC the Lyapunov is essentially the same for a wide range of
perturbations. On the other hand, the Ruelle resonances de-
pend strongly on the perturbation.5 Taking as initial density a
traceless pseudostate[see Eq.(42)], time evolution of quan-
tities shows how the state approaches uniformity exponen-
tially with a rate given by the largest RP resonance. We ob-
serve that, after the Lyapunov regime(around the Eherenfest
time6 nE), the slope of the growth ofCn is given by lnul1u
whereas the slope ofSn is given by 2lnul1u as predicted. This
factor 2 arises from the square in the definition ofSn and is
clearly seen in Fig. 5. The solid lines represent these two
slopes and were obtained by computingl1 using the method
described in Sec. IV B.

In order to show the universality of the decay of the linear
entropy and the Loschmidt echo, in terms of classical quan-
tities, in Fig. 8 we showSn and lnsMnsedd for various values
of the parametere. The linear entropy is simply the negative
logarithm of the purity Trsr̂n

2d. Whene,0 the purity is con-
served and equal to 1, so the linear entropy does not grow.
However wheneÞ0 the purity will decay at a rate propor-
tional to e. At one point, as predicted in Ref.[3], the growth
of the linear entropy saturates and no longer depends one.
Since we evolved a traceless pseudostate, with no component
on the uniform density, after the Lyapunov growth the
Ruelle-Pollicot regime appears. In the same way as for the
entropy, for small values ofe the asymptotic decay rate ise
dependent but it saturates when rate determined by the first
Ruelle resonance is attained. This phenomenon can clearly
be seen in Fig. 8(top). In the bottom panel we display the
echo and illustrate exactly the same feature.

5See Fig. 3 in Ref.[8].
6In Fig. 7 N=450 sonE, ln N=6.11.

FIG. 6. Top(bottom) row shows the first four right(left) eigenfunctions showing the unstable(stable) manifolds for the quantum PAC
with N=100,e=0.3, k=0.02, and matrices truncated to dim=12.

FIG. 7. Purity decay and correlation decay for the PAC[(Eq.
(64)] with N=450, e=0.05, k=0.005, and initial pseudo stater̂

= u0,0lk0,0u− Î /N, whereu0,0l is a coherent state centered ats0,0d.
The inset shows the evolution ofSn for r̂= u0,0lk0,0u and how it
saturates to the constant value lnN.
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VI. CONCLUSIONS

We have developed a method to study numerically the
spectral properties of open quantum maps on the torus. The
method is particularly well suited to chaotic maps and pro-
vides reliable eigenvalues and eigenfunctions. The noise
model that we implemented utilizes phase space translations
as Kraus operators and is equivalent to coarse graining quan-
tum Markovian master equations. Therefore it brings out
classical properties of the map and we have shown that these
properties are reflected in the asymptotic decay of several
quantities. The same method can be used to study other noise
models in the context of quantum information theory, if one
thinks of the quantum map as an algorithm to be imple-
mented and the noise as the error source present in any
implementation.
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APPENDIX A: ADJOINT AND LINEAR ACTION

Let HN be a complex Hilbert space of dimensionN. The
space of linear operators acting onHN is called Liouville
spaceL;HN2. Elements inL are usually represented by
sN3Nd-dimensional complex matrices. However, given

Â,B̂PHN2 the “canonical” inner product, which induces the
norm, is

sÂ,B̂d = TrsÂ†B̂d. sA1d

ThusHN2 is a Hilbert space itself. Now, superoperators are a
subset of the space of linear operators acting onHN2. We
introduce a bra-ket notation to simplify inner product expres-
sions but also to distinguish the two types of decompositions

we use for superopertors. LetÂ,B̂PHN2 then the action of a
superoperatorS :HN2→HN2 can be written as

B̂ = SsÂd sA2d

or as

uBd = SuAd sA3d

indistinctly. The adjoint, in the bra-ket form, is defined as
usual by

„AuSsB̂d… = „AuSuB… = „S†sÂduB…, sA4d

which settles thatsAuS=sS†sÂdu. Summarizing,

Â ; uAd, sÂ, · d ; sAu,

sÂ,B̂d ; sAuBd, SsÂd ; SuAd. sA5d

One way to think about it(not absolutely necessary but help-

ful) is to think of Â as an operator, or matrix, in an operator
space, acting on vectors, anduAd as a vector in a vector
space, acted on by superoperators.

Now, a completely positive superoperator has a Kraus op-
erator sum representation. SupposeS is a completely posi-
tive superoperator then there exists a set of operators

hM̂mjm=0
N2−1PHN2, such that

S = o
m

M̂m ^ M̂m
† , sA6d

whereM̂m are the Kraus operators. Without loss of general-
ity, if the number of operators is smaller thanN2 we can
always complete the set with zeros. Theadjoint action ofS
on an operatorÂ is defined through the Kraus representation
suitable for the case of Eq.sA2d:

FIG. 8. Linear entropy growth(a) and Loschmidt echo decay(b)
for various values ofe, ranging from 0.001 to 0.1 and for the PAC
with N=450,k=0.005. Both Lyapunov and Ruelle regimes can be
seen when the rates saturate at ane-independent value.
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SsÂd = o
m

M̂mÂM̂m
† . sA7d

EquationsA7d determines how the Kronecker product sym-
bol ^ should be interpreted throughout this work.

On the other hand, a superoperatorS can be written as an

expansion of spectral projectors. LetR̂i and L̂i be right and
left eigenoperators ofL, respectively, such that

SsR̂id = liRi ,

S†sL̂id = li
*Li, i = 1, . . . ,N2, sA8d

and let us assume for simplicity thatli are nondegenerate.
Then the spectral projectors are

R̂iTrsL̂i
†, · d = uRidsLiu, sA9d

and the spectral decomposition is given by

S = o
i

uRidlisLiu, sA10d

S† = o
i

uLidli
*sRiu. sA11d

Therefore, given the spectral decomposition, the two ways of

expressing the action ofS on Â are

SuAd = o
i

uRidlisLiuAd ; o
i

M̂mÂMm
† = SsÂd. sA12d

In more general terms Cavesf39g identifies and describes the
two different ways a superoperator acts asordinary action
sA2d and left-right action sA3d. This provides two distinct
decompositions of the same superoperator.

APPENDIX B: LEADING EIGENVALUES OF A LARGE
MATRIX

In this section we describe in a general way the method
used to compute the leading eigenvalues of the superoperator
Le in Sec IV B. It is based on the Lanczos power iteration
method[48] but was inspired by a recent work by Blum and
Agam [44]. This method is useful when only a few of the
largest(in modulus) eigenvalues is needed and also, since it
deals with large matrices, when there is an efficient subrou-
tine to implement the matrix-vector product but there is no
need to store the whole matrix in an array variable. More-
over, convergence and accuracy depend strongly on the dis-
tance part of the spectrum one wants to calculate and the part
to be neglected.

In this work we do not address the question of the esti-
mation of errors.

Proposition 1. SupposeA is a large, sparse matrix inCn3n

and assume each of its eigenvaluesli has multiplicity one
and that 1ù ul0u. ul1u. ¯ . uln−1u. Supposehl iji=0

n−1 and
hr iji=0

n−1 are the corresponding left and right eigenvectors,

Ar i = lir i , sB1d

A†l j = l j
* l j , sB2d

and letu0PCn be a vector such that

usl i,u0du . 0 and usr i,u0du . 0 ∀ i , k sB3d

for somekøn, wheres , d represents as usual the inner prod-
uct. Then the firstk eigenvalues can be estimated from the
reducedsk3kd eigenvalue equation

DetfKTsA†,u0,kdAKsA,u0,kd − zKTsA†,u0,kdKsA,u0,kdg

= 0, sB4d

whereKsA ,u0,kd is the Krylov matrix whose columns are
the iterates ofu0,

KsA,u0,kd = fu0,Au0,A
2u0, . . . ,Ak−1u0g sB5d

andT as usual denotes matrix transposition.
Proof. We sketch a rather straightforward proof(though

perhaps not entirely rigorous). The setshl iji=0
n−1 and hr iji=0

n−1 of
left and right eigenvectors ofA are complete, and they can
be normalized according to

sl i,r jd = di j . sB6d

Therefore there exist two distinct expansions ofu0,

u0 = o
i=0

n−1

air i , sB7d

u0 = o
i=0

n−1

bil i . sB8d

In terms of these expansions we obtain

KTsA†,u0,kdKsA,u0,kd

= 3
o

i

bil i

o
i

bili
* l i

A

o
i

bili
* k−1

l i
4Foj

a jr j,o
j

a jl jr j, ... ,o
j

a jl j
k−1r jG ,

sB9d

which yields

fKTsA†,u0,kdKsA,u0,kdgmn = o
i,j

a jbil j
nli

* m
sl i,r jd

=o
i

aibili
nli

* m
, sB10d

and similarly
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fKTsA†,u0,kdAKsA,u0,kdgmn = o
i,j

bia jl j
n+1li

* m
sl i,r jd

=o
i

biaili
n+1li

* m
. sB11d

Thus, Eq.sB4d can be rewritten as

DetFo
i=0

n−1

aibili
nli

* m
sli − zdG = 0. sB12d

If all the conditions of the proposition are met, this equation
is equivalent to the original full eigenvalue equation. Now,
since li are ordered by decreasing modulus and assuming
that the eigenvalues accumulate around zero, leaving only a
few, sayk of them, with significant modulussas is the case
for the maps studied in Sec. IV Bd, we can neglect the con-
tribution of the lastn−k terms in the sum.7 Thus Eq.sB12d is
just the determinant of the product of threek3k square ma-
trices:

DetfL† J Lg = DetfL†gDetfJgDetfLg = 0, sB13d

where

L =1
1 l0 l0

2
¯ l0

k−1

1 l1 l1
2

¯ l1
k−1

A A A � A
1 lk−1 lk−1

2
¯ lk−1

k−1
2 ,

J

=1
a0b0sl0 − zd 0 ¯ 0

0 a1b1sl1 − zd ¯ 0

A A � A
0 ¯ 0 ak−1bk−1slk−1 − zd

2 .

sB14d

The matrixL is a Vandermonde matrix. The determinant of

a Vandermonde matrixLksl0, . . . ,lk−1d is given by

DetfLksl0, . . . ,lk−1dg = p
0øiø jøk−1

sl j − lid. sB15d

From Eq.sB15d it can be readily seen that if the spectrum of
A is nondegenerate thenL is invertible. Moreover, the struc-
ture of L determinesk because in the limit ofk “too large,”
L is singular, at least to within computing precision. So,
using properties of the determinant in the secular equation
sB13d, we get

DetfJg = p
m

ambmslm − zd = 0. sB16d

Since, from the hypothesis,ambmÞ0 Eq. sB16d yields the
desired solution, i.e., the firstk eigenvalues ofA. h

In practice, the usefulness of the method depends upon
the gaps1−ul1u d, because it determines how fast the terms of
the sum in Eq.(B13) decay.

In Sec. IV B the span of the setsF and B are just the
Krylov spaces[48] of Le andLe

†, and using the present no-
tation Eq.(63) becomes

DetfK†sLe
†,r̂0,nmaxdLeKsLe,r̂0,nmaxd

− zK†sLe
†,r̂0,nmaxdKsLe,r̂0,nmaxdg = 0, sB17d

in analogy with Eq.sB13d. The efficiency of this method
depends strongly on the spectrum configuration. The case of
the coarse-grained propagator of hyperbolic maps on the
torusf17,18g is particularly favorable because of the signifi-
cant gap between 1 andl1 and because 0 is an accumulation
point, so a large number of resonances can be discarded and
the size of the matrices is reduced dramatically.
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