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Domain of attraction for stabilized orbits in time delayed feedback controlled Duffing systems
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Department of Electrical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan
~Received 20 June 2003; published 17 May 2004; publisher error corrected 28 May 2004!

Time delayed feedback control is well known as a practical method for stabilizing unstable periodic orbits
embedded in chaotic attractors. However, this control method still has an open problem of estimating domain
of attraction for target unstable periodic orbits. In this paper, we numerically discuss the domain of attraction
in Duffing systems under the control method. The disturbance to initial conditions reveals that the domain of
attraction possibly exhibits self-similar structures in its boundaries.
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I. INTRODUCTION

Controlling chaos has become an energetic research
in nonlinear science in this decade@1#. The key concept pro-
posed by Ott, Grebogi, and Yorke@2# has highly motivated
researchers to devise and develop several advanced me
for stabilizing unstable periodic orbits embedded in chao
attractors. Among them, the time delayed feedback con
proposed by Pyragas, is endowed with crucial advantage
control of practical chaotic systems@3#. Without any exact
model of controlled objects and complicated computer p
cessing for reconstruction of underlying dynamics, t
method can stabilize target unstable periodic orbits by us
the difference between present output signals and past o
So far, the control method has been experimentally exam
in diverse research areas : electronic circuits@4#, laser sys-
tems @5#, mechanical oscillators@6#, chemical systems@7#,
and so on. Moreover, the control mechanism has been t
retically studied on the basis of linearization technique~see
Ref. @8# and references therein!. One of the notable results i
referred to as the odd number condition. The odd num
condition gives a class of unstable periodic orbits which
control method and its extension@9# cannot stabilize. The
odd number condition was first proved for discrete syste
@10# and subsequently extended to continuous syst
@11,12#. Against this negative result, Pyragas has rece
improved the control method to overcome the odd num
condition @13#.

On the other hand, there still remain open problems
clarification of the control performance@8#. One of them is
the estimation of the domain of attraction for the target u
stable periodic orbits. The estimation of the domain of attr
tion is indispensable for the application of the cont
method. The largeness and structure of the domain of att
tion is closely related to the practical problems such as
ciding onset timing of control and estimating the effect
noise. However, the estimation of the domain of attraction
hard to tackle owing to the following two reasons. One re
son is that, in general, the domain of attraction is clos
linked with global dynamics of controlled systems. Thus,
problem is obviously beyond the scope of linearization in
neighborhood of the target unstable periodic orbits. The o
is that the domain of attraction exists in function space a
then in infinite dimensional space under the control meth
This characteristic comes from the time delay included in
1539-3755/2004/69~5!/056209~8!/$22.50 69 0562
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feedback loop@14#. Despite these intractable propertie
study on the domain of attraction is essential for engineer
use of the control method.

In this paper, we numerically discuss the domain of
traction in the Duffing systems under the control metho
This paper deals with two types of Duffing systems exhib
ing chaos under certain parameter regions. These Duf
systems are here considered as a model of the magnetoe
system@15# or hard symmetric spring in a mechanical syste
@16#. The controlling chaos of Duffing systems is an impo
tant subject of research in engineering field, since it is r
evant to elimination of the chaotic vibration in these m
chanical systems.

This paper consists of the following sections. Section
describes mathematical representation of the time dela
feedback controlled Duffing systems. The above two type
Duffing systems are introduced as controlled objects w
scalar input and output. The control method is implemen
to these Duffing systems with use of velocity feedback
displacement one. Section III systematically investigates
dependence of stabilized states on initial conditions in fu
tion space. The investigation is performed in a parame
plane concerning onset time of control and feedback gain
Sec. IV, the structure of the domain of attraction is discus
in function space. The boundaries of the domain of attract
are examined with additional disturbance to initial conditio
selected from chaotic trajectories.

II. DUFFING SYSTEM WITH TIME DELAYED
FEEDBACK CONTROL

The Duffing systems are two-dimensional nonauton
mous systems originating in a model of synchronous m
chines @17#. The two types of Duffing systems are he
treated as a model of the magnetoelastic beam system@15# or
hard symmetric spring in a mechanical system@16#.

This section first gives general description of the tim
delayed feedback controlled Duffing systems. The Duffi
systems coupled with a scalar control input are given as
lows:

d

dt Fx

yG5F y

2dy1ax2gx31A cosvtG1bu, ~1!
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K. YAMASUE AND T. HIKIHARA PHYSICAL REVIEW E 69, 056209 ~2004!
where x and y denote the displacement and velocity
Duffing systems, respectively.u is control signal andb
two-dimensional vector concerning coupling of the cont
signal.

In the time delayed feedback control, the control signa
determined without any information of the target orbits e
cept their governed periods. The control signal is sim
given by the difference between present output signal
past one:

u5H 0;~0<t,t0!

K@g~xt ,yt!2g~x,y!#;~ t>t0!,
~2!

whereK is feedback gain andt0 is onset time of control. The
g(x,y)5g„x(t),y(t)… and g(xt ,yt)5g„x(t2t),y(t2t)…
imply present and past scalar output signals, respectiv
The t is time delay, which is adjusted to the period of
target unstable periodic orbit embedded in a chaotic attrac
This simple control strategy is easily implemented to exp
mental systems without exact models of controlled obje
and reconstruction of underlying dynamics from experim
tal data. The control signal converges to null when the s
tem is stabilized at one of the target orbits. As a result of t
convergence, the controlled system degenerates from th
finite dimensional system with time delay to the origin
two-dimensional system without time delay. Note that t
domain of attraction for target orbits is characterized by
infinite dimensional space under remarkable control inp
Thus, the estimation of the domain of attraction goes bey
the scope of linearization in the neighborhood of the origi
system.

The onset time of control is a substantial control para
eter, which determines the initial conditions of the controll
system. The initial condition att0 consists of the following
initial values and initial function:

x~ t0!5xt0
,

y~ t0!5yt0
,

ut0
~ t !5K@g~xt ,yt!2g~x,y!#;tP@ t02t,t0#. ~3!

In this paper, we identify the initial condition with a segme
of the chaotic trajectory@x(t),y(t)#T; tP@ t02t,t0# gener-
ated by Eq.~1! underu(t)50. The reason is a specific initia
condition described as Eq.~3! is essentially transformed
from the segment of the chaotic trajectory through Eq.~2!
without loss of generality.

The implementation of the control method is specifica
described by the couplingb and output signalg(x,y). Two
simple types of implementation are introduced here. On
velocity feedback controlspecially given by replacingb with
@01#T and g(x,y) with y in Eq. ~1!. The velocity feedback
control employs the velocity component for the control s
nal. The other isdisplacement feedback controlrepresented
by Eq.~1! underb5@10#T andg(x,y)5x. The displacemen
feedback control uses the displacement component for
control signal.
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In this paper, two types of Duffing systems are treated
for the controlled objects. In the following discussion, one
referred to astwo-well Duffing systemand the other is simply
called Duffing system. The two-well Duffing system is a
model for the first-mode vibration in magnetoelastic be
system with sinusoidal forcing@15#. The two-well Duffing
system is given by Eq.~1! at (a, g)5(1.0,1.0). The details
of the dynamics underv51.0 was discussed in Ref.@18#.
The stabilization of chaos in the magnetoelastic beam sys
was experimentally achieved with velocity feedback cont
@6#. The feature of the phase propagation of the control s
nals was discussed in Ref.@19#. The Duffing system is a
model for a hard symmetric spring in a mechanical syst
@16#. The Duffing system is described by Eq.~1! under
(a,g)5(0,1.0). The dynamics underv51.0 was summa-
rized in Ref.@16#. In Eq.~1!, x andy denote the displacemen
and velocity of mechanical vibration, respectively,d is
damping coefficient.A indicates forcing amplitude andv
denotes its frequency. In the following sections, the syst
parameter (d,A) is fixed at the values where the Duffin
systems generate the chaotic attractors underv51.0 @16,18#.
t is adjusted at 2p for stabilizing two symmetric period-2p
unstable periodic orbits embedded in each chaotic attrac
It is easily confirmed that both velocity feedback control a
displacement feedback control can stabilize the two symm
ric period-2p target orbits under certain ranges of feedba
gain. However, systematic design of feedback gain still
mains another open problem in the control method@20#.

III. INITIAL CONDITION

An initial condition is selected from a segment of th
chaotic trajectory generated by Eq.~1! underu(t)50. In this
section, the dependence of stabilized states on initial co
tions is discussed.

Initial conditions vary with onset time of control becau
of chaotic motion of original systems. It implies that ons
time of control is a substantial control parameter to det
mine initial conditions. Then the convergence characteris
concerning onset time give crucial information of the depe
dence on initial conditions. When the control starts at on
time t0 under feedback gainK, the initial condition is deter-
mined with relation to a point in (t0 ,K) surface, as illus-
trated in Fig. 1~a!. The (t0 ,K) surface runs along the chaot
trajectory and is extended in the direction ofK axis. The
classification of points in the (t0 ,K) surface with stabilized
states enables the systematic investigation of the depend
on initial conditions. Figure 1~b! is a schematic diagram of
(s0 ,K) plane which covers the (t0 ,K) surface over theu0th
period with respect to the sinusoidal external force. Hereu0
is a non-negative integer.s0 denotes the onset phase go
erned by the sinusoidal forcing and then is included in@0,t).

Figure 2 shows (s0 ,K) planes in the two-well Duffing
system with velocity feedback control. Figure 2~a! is ob-
tained at (d,A)5(0.3,0.34). Figure 2~b! corresponds to
(d,A)5(0.16,0.27). Figure 2~c! shows the classification o
tones. This classification does not distinguish periodic sta
which have the same period. In Figs. 2~a! and 2~b!, there is a
dominant region in which the state converges to the tar
period-t orbits. However, convergence to other periodic o
bits often occurs at several values of feedback gain. For
9-2
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FIG. 1. A schematic diagram of initial condition embedded into onset time and feedback gain parameter plane. Surface in~a! displays
chaotic trajectory generated by uncontrolled system; the surface is extended in the direction of feedback gain axis. Initial conditio
at onset timet0 under feedback gainK is related to a point (t0 ,K) in the surface.~b! shows (s0 ,K) plane which covers (t0 ,K) surface from
t05u0t to t05(u011)t whereu0 is non-negative integer ands0 is included in@0,t). Gaussian-like curve in~b! shows schematic diagram
of external disturbance«(t) employed for disturbing initial condition in function space.
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ample, one clearly recognizes the convergence to periodt
orbits atK'0.935 or period-6t orbits within 0.9&K&0.93
in Fig. 2~a!. In Fig. 2~b!, one easily observes the convergen
to period-6t orbits in 1.015&K&1.035 or period-12t orbits
at K'1.01. These periodic orbits coexist with the target
bits under control signal. Thesecoexisting orbitsbecome
stable within ranges of feedback gain inherent to each co
isting orbit. The same results are also obtained for variety
selected spans of the onset time of control, although the
05620
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sented figures do not cover the whole span. Once the c
trolled system converges to stable coexisting orbits, so
external operation is needed to change the state of the
trolled system to the target states. Therefore, the converg
to coexisting orbits implies the failure of control as a conce
of controlling chaos.

Note that there is a difference in the distribution of initi
conditions toward the coexisting orbits. In Fig. 2~a!, initial
conditions of this kind of cluster within 0.9&K&0.935. The
l

lar
n of Fig.
in
FIG. 2. Classification of stabilized orbits in onset time and feedback gain parameter plane.~a! and ~b! are obtained for the two-wel
Duffing system with velocity feedback control at (d,A)5(0.3,0.34) foru0518 and (0.16,0.27) foru0518, respectively.~c! displays
classification of tones which distinguishes period of stabilized orbits. In~a! and~b!, convergence to coexisting orbits is found in particu
values of feedback gain. Each point indicated by arrow corresponds to initial condition and value of feedback gain used in calculatio
5~a!: (t0 ,K)5(0.25t118t,0.92), Fig. 5~b!: (0.9t118t,0.92), and Fig. 6: (0.68t118t,1.025). The same classification of tones is used
Figs. 3, 4, and 9~a! again.
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K. YAMASUE AND T. HIKIHARA PHYSICAL REVIEW E 69, 056209 ~2004!
clustering distribution suggests the small shift of the init
condition does not cause the change of the stabilized stat
contrast, initial conditions of the above kind scatter with
1.015&K&1.035 in Fig. 2~b!. The scattering distribution im
plies stabilized states alternate between the target orbits
coexisting ones, sensitively depending on small change
the initial condition. Therefore, the difference between
clustering and scattering distribution reflects the difference
sensitivity of the dependence on initial conditions.

The convergence to coexisting orbits are also recogniz
even when the displacement feedback control is imp
mented. Figure 3 shows a (s0 ,K) plane in the two-well Duf-
fing system with displacement feedback control at (d,A)
5(0.46,0.4). There are many initial conditions toward coe
isting period-6t orbits atK'0.28. The clustering distribu
tion of initial conditions is observed arounds05t/2. The
scattering distribution is also found around the initial con
tion pointed in Fig. 3. Note that both velocity feedback co
trol and displacement one are implemented without any
pendence on specific information of the two-well Duffin
system. Therefore, one can at least conjecture that the
vergence to coexisting orbits is not limited to particu
implementation of the control method.

Furthermore, it can be confirmed that convergence to
existing orbits occurs, when the controlled object is repla
with the Duffing system. Figure 4 is a (s0 ,K) plane in the
Duffing system with velocity feedback control at (d,A)
5(0.1,13.3). Initial conditions toward coexisting period-3t
orbits are observed atK'0.35. The clustering distribution i
found arounds050.9t. The scattering distribution is als
seen around an initial condition pointed by arrow in Fig.
Thus, convergence to coexisting orbits is not specific to
two-well Duffing system. Taking account of the previo
conjecture, we suggest that convergence to coexisting o
does not necessarily depend on particular implementatio

FIG. 3. Classification of stabilized orbits in onset time and fe
back gain parameter plane. The classification is obtained for t
well Duffing system with displacement feedback control at (d,A)
5(0.46,0.4) foru0518. The classification of tones is displayed
Fig. 2~c!. Convergence to coexisting period-6t orbits appears
aroundK50.28. Initial condition corresponding to indicated poi
(t0 ,K)5(0.88t118t,0.28) is used in calculation of Fig. 7.
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the control method and specific controlled objects.
In this section, the dependence of stabilized states on

tial conditions has been discussed. The investigation sh
the possibility of the convergence to coexisting orbits. T
convergence characteristics must be directly related to st
tures of the domain of attraction. In the following section, w
are going to investigate the structure of the domain of attr
tion in function space.

IV. DOMAIN OF ATTRACTION

Once an initial condition is selected, the control with co
stant feedback gain uniquely achieves the convergence t
orbit. Then the systematic estimation of the effect of exter
disturbance on the convergence gives us substantial infor
tion of the domain of attraction in function space. Here t
external vector disturbance«(t)5@«(t),«̇(t)#T is addition-
ally given to an initial condition.«(t) is represented as
follows:

«~ t !5r expH 2S t2m

s D 2J , ~4!

where t and m are included in@ t02t,t0#, t0 denotes onse
time of control. In the following discussion,s is fixed att/2,
which determines the distribution of the external disturban
r is a non-negative value sufficiently smaller than the am
tude of the motion of Duffing systems.r implies the inten-
sity of the external disturbance.m defines the center of the
distribution along temporal axis. The disturbance«(t) is
physically interpreted as a small impact force externa
given to the mechanical oscillator in a period just befo
onset of control. The disturbance is evaluated at every ce
of impactm with introduction of the„m,i«(t)it… space. The
i«(t)it denotesL2 norm of «(t).

-
o- FIG. 4. Classification of stabilized orbits in onset time and fee
back gain parameter plane. The classification is obtained for D
ing system with velocity feedback control at (d,A)5(0.1,13.3) for
u0518. The classification of tones is displayed in Fig. 2~c!. Con-
vergence to coexisting period-3t orbits is observed aroundK
50.35. Initial condition corresponding to point (t0 ,K)5(0.56t
118t,0.35) indicated by arrow is used in calculation of Fig. 8.
9-4
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FIG. 5. Domains of attraction on„m,i«(t)it… space in two-well Duffing system with velocity feedback control at (d,A)5(0.3,0.34).
Dark and light gray points represent convergence to target period-t orbit and coexisting period-6t one, respectively.~a! and~b! are obtained
around initial conditions pointed by arrow in left side and right side in Fig. 2~a!, respectively.~c! displays enlargement of boundaries with
rectangular area in~b!.
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The disturbance is additionally given to a selected ini
condition. The selection of an initial condition is based
the results in the preceding section. The results sugges
possibility of the convergence to other orbits different fro
targets. The results consequently reflect the global dynam
in function space. The clustering and scattering distribut
of initial conditions toward coexisting orbits in the (s0 ,K)
planes is directly connected to the sensitivity of depende
on initial conditions.

First, we discuss the domain of attraction in the two-w
Duffing system with velocity feedback control. The initi
condition pointed by arrow in the left side of Fig. 2~a! lies
apart from initial conditions toward coexisting orbits. Th
implies the pointed initial condition is not close to th
boundaries of the domain of attraction. Therefore, the
main of attraction around this initial condition is quite dom
nant by the convergence to target orbits as shown in
5~a!. On the other hand, the initial condition pointed in t
right side of Fig. 2~a! lies close to initial conditions toward
coexisting orbits. It suggests that the pointed initial condit
is located near the boundaries between the domain of at
tion for target orbits and for coexisting ones. Thus, the
main of attraction around this initial condition is found
have clear boundaries as shown in Fig. 5~b!.

Here we concentrate on the boundaries of the domai
attraction. In Fig. 5~b!, the boundaries smoothly curve from
top right to right side. A part of the boundaries are clea
enlarged as shown in Fig. 5~c!. The enlargement shows n
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appearance of additional boundaries. In contrast, the bou
aries in Fig. 6~a! have a self-similar structure. This sel
similar structure is obtained around the initial conditio
pointed in Fig. 2~b!. The boundaries exhibit rough curves
distinction to the previous smooth case of Figs. 5~b! and
5~c!. More precisely, many fine striped structures are o
served along each boundary. The self-similarity of t
boundaries is confirmed by enlarging the fine stripes. Wh
one enlarges a part of the stripes, the same fine stripes ap
again, as shown in Fig. 6~b!. When one enlarges a part of th
enlargement, the same structures can be found, as displ
in Fig. 6~c!. In general, self-similar structures are yielded
the phase space of chaotic dynamical systems. The cru
difference is that the domain of attraction is here defined
function space apart from the target orbits. More precis
the „m,i«(t)it… spaces represent the domain of attract
around the selected initial condition along temporal axis. T
self-similarity in the„m,i«(t)it… spaces implies the sensitiv
dependence of stabilized states on intensity and timing
small external disturbance to the selected initial condition
implies that the controlled system loses the robustness for
initial condition. Then the global structure governing the sy
tem cannot be simple in function space.

Figure 7 shows a self-similar structure in the two-w
Duffing system with displacement feedback control
(d,A)5(0.46,0.4). This structure is obtained around the i
tial condition pointed by the arrow in Fig. 3. Many fin
9-5
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FIG. 6. Domain of attraction on„m,i«(t)it… space in two-well Duffing system with velocity feedback control at (d,A)5(0.16,0.27).
Dark and light gray points represent convergence to target period-t orbit and coexisting period-6t one, respectively.~b! and ~c! are
enlargement of rectangular areas in~a! and~b!, respectively. They show self-similar structures around initial condition pointed by arro
Fig. 2~b!.
t
e
F
u
t

re
6.
in

n
c
in
ha
ht
he

ely.
y
nd
n-

uc-
rly
ers
d
d, as
e-
les
es

er-
ion
stripes are found along the boundaries from lower left
right side in Fig. 7~a!. The enlargement of a part of th
stripes displays fine striped structures again, as shown in
7~b!. On the other hand, the difference from the previo
case is that smooth boundaries are partly observed in
upper left of Fig. 7~a!. The enlargement also shows mo
smooth boundaries than the previous rough case of Fig.
seems that the self-similarity is truncated or localized
function space.

Figure 8 represents a self-similar structure in the Duffi
system with velocity feedback control. The self-similar stru
ture is found around the initial condition pointed by arrow
Fig. 4. The difference from the previous two cases is t
there are all four types of initial conditions. Dark and lig
gray points represent initial conditions toward one of t
05620
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ig.
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he
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t

target orbits and one of the coexisting orbits, respectiv
Among additional two middle tones, dark and light gra
points show the initial conditions toward the other target a
coexisting orbit, respectively. These four types of initial co
ditions are spread from left to right side in Fig. 8~a!. Besides,
the four types are mixed with one another. The mixed str
ture is also observed in the upper right corner. It is clea
shown that the mixed structure is sandwiched by many lay
of dark and light gray points. When a part of the mixe
structure is enlarged, the same structures can be observe
shown in Fig. 8~b!. The enlargements are sandwiched b
tween dark and light gray layers again. In this case, tang
of the domains of attraction corresponding to the four typ
of solutions are intrinsic in function space.

The above self-similar structures reveal that the conv
gence to target orbits sensitively depends on initial condit
FIG. 7. Domain of attraction on„m,i«(t)it…-space in two-well Duffing system with displacement feedback control at (d,A)
5(0.46,0.4). Dark and light gray points represent convergence to target period-t orbit and coexisting period-6t one, respectively.~b! is
enlargement of rectangular area in~a!. They display self-similar structures around initial condition pointed by arrow in Fig. 3.
9-6
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FIG. 8. Domain of attraction on„m,i«(t)it… space in Duffing system with velocity feedback control at (d,A)5(0.1,13.3). Dark and light
gray points represent convergence to one of target period-t orbits and one of coexisting period-3t orbits, respectively. Among middle tones
dark and light gray points show the other target orbit and coexisting one, respectively.~b! is enlargement of~a!. They show self-similar
structures around initial condition pointed by arrow in Fig. 4.
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in function space. In other words, successful prediction
controlling chaos is difficult before the control is achieved
is clearly understood that this unpredictability is a disadv
tage for engineering use of the control method. However
detailed discussion for the characteristics has been obta

Note that we have not considered selective stabilization
two symmetric target orbits in the foregoing discussio
However, the selective stabilization is important for en
neering use. Here we apply the same approach to the do
of attraction for each target orbit. Figure 9~a! is a (s0 ,K)
05620
f
t
-
o

ed.
f

.
-
ain

plane in the two-well Duffing system with displaceme
feedback control at (d,A)5(0.16,0.27). The classification o
tones distinguishes the convergence to the two symme
target orbits with additional dark tone. In Fig. 9~a!, one
clearly recognizes that initial conditions toward the two sy
metric target orbits are mixed in 0.48&K&0.7. Correspond-
ingly, the domain of attraction exhibits a mixed structure,
shown in Fig. 9~b!. The same mixed structure holds even
the enlargement shown in Fig. 9~c!. The mixed structure is
here obtained close to the initial condition pointed in F
t
FIG. 9. Classification of stabilized orbits~a! and domain of attraction@~b! and ~c!# in two-well Duffing system with displacemen
feedback control at (d,A)5(0.16,0.27). In~a!, classification distinguishes two symmetric target orbits with additional dark tone.~b! is
obtained around initial condition pointed by arrow in~a!. ~c! displays enlargement of rectangular area in~a!. ~b! and~c! show stabilized states
almost randomly alternate between each target orbit by external disturbance.
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K. YAMASUE AND T. HIKIHARA PHYSICAL REVIEW E 69, 056209 ~2004!
9~a!. However, one easily observes the structure covers
whole onset time of control in the (s0 ,K) plane. Therefore,
it is inevitable that the stabilized states almost randomly
ternate between each target orbit with onset timing of con
or influence of external disturbance@21#. In other words, the
targeting scheme based on linearization has no possibilit
effective convergence.

In this section, the domain of attraction in function spa
has been discussed. The results indicate complicated g
structure of phase space in function space. It should be m
tioned that these complicated structures are substantially
duced by applying the control method to the Duffing sy
tems. This is because all the parameters used in this pape
selected from the regions where the basins of attraction
the chaotic attractors have simple structures with smo
boundaries before onset time of control, if the uncontrol
systems have multistability.

Furthermore, we need to emphasize one inevitably
marks global dynamics of controlled systems. This is
cause the exact model of controlled objects is often unkno
in practical systems. Then one possibly starts the con
apart from the neighborhood of the target orbits. Howeve
obviously goes beyond the scope of linearization techniq
s,
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V. CONCLUSION

In this paper, we numerically discussed the domain
attraction for the target unstable periodic orbits in the tim
delayed feedback controlled Duffing systems. The appro
is completely far from local stability analysis of the targ
orbits. The approach is directly related to the application
the control method to practical systems; decision of on
time control, and estimation of influence of noise. The n
merical results reveal complicated global dynamics in fu
tion space, as opposite to clear results expected from lin
ization. The domain of attraction with self-similarit
suggests that the success of the control sensitively dep
on onset timing of control and disturbance on controlled s
tems. In addition, another quite complicated structure imp
that the targeting scheme based on linearization does
perform effectively. We need to emphasize that the dom
of attraction with self-similarity is not restricted within pa
ticular implementation of the control method or specific co
trolled objects. Therefore, further extension of the cont
method should be established in the light of the global str
ture in function space.
er,
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