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Domain of attraction for stabilized orbits in time delayed feedback controlled Duffing systems
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Time delayed feedback control is well known as a practical method for stabilizing unstable periodic orbits
embedded in chaotic attractors. However, this control method still has an open problem of estimating domain
of attraction for target unstable periodic orbits. In this paper, we numerically discuss the domain of attraction
in Duffing systems under the control method. The disturbance to initial conditions reveals that the domain of
attraction possibly exhibits self-similar structures in its boundaries.
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[. INTRODUCTION feedback loop[14]. Despite these intractable properties,
study on the domain of attraction is essential for engineering
Controlling chaos has become an energetic research fieldse of the control method.
in nonlinear science in this decafld. The key concept pro-  In this paper, we numerically discuss the domain of at-
posed by Ott, Grebogi, and Yor{€] has highly motivated traction in the Duffing systems under the control method.
researchers to devise and develop several advanced method¥s paper deals with two types of Duffing systems exhibit-
for stabilizing unstable periodic orbits embedded in chaotidNd chaos under certain parameter regions. These Duffing
attractors. Among them, the time delayed feedback controSystems are here considered as a model of the magnetoelastic
proposed by Pyragas, is endowed with crucial advantage fdfysten{15] or hard symmetric spring in a mechanical system
control of practical chaotic systenf8]. Without any exact [16]. The controlling chaos of Duffing systems is an impor-
model of controlled objects and complicated computer profant subject of research in engineering field, since it is rel-
cessing for reconstruction of underlying dynamics, theevant to elimination of the chaotic vibration in these me-
method can stabilize target unstable periodic orbits by usin§hanical systems.
the difference between present output signals and past ones. This paper consists of the following sections. Section I
So far, the control method has been experimentally examinedescribes mathematical representation of the time delayed
in diverse research areas : electronic circ{itl laser sys- feedback controlled Duffing systems. The above two types of
tems[5], mechanical oscillator§6], chemical system§7], Duffing systems are introduced as controlled objects with
and so on. Moreover, the control mechanism has been thegcalar input and output. The control method is implemented
retically studied on the basis of linearization technigsee t0 these Duffing systems with use of velocity feedback or
Ref.[8] and references thergirOne of the notable results is displacement one. Section Il systematically investigates the
referred to as the odd number condition. The odd numbefependence of stabilized states on initial conditions in func-
condition gives a class of unstable periodic orbits which theion space. The investigation is performed in a parameter
control method and its extensid®] cannot stabilize. The Plane concerning onset time of control and feedback gain. In
odd number condition was first proved for discrete System§ec. 1V, the structure of the domain of attraction is discussed
[10] and subsequently extended to continuous system® function space. The boundaries of the domain of attraction
[11,12. Against this negative result, Pyragas has recentljre examined with additional disturbance to initial conditions
improved the control method to overcome the odd numbepelected from chaotic trajectories.
condition[13].
On the other hand, there still remain open problems for

clarification of the control performand@&]. One of them is Il. DUFFING SYSTEM WITH TIME DELAYED
the estimation of the domain of attraction for the target un- FEEDBACK CONTROL
stable periodic orbits. The estimation of the domain of attrac-

tion is indispensable for the application of the control ous svstems oriinating in a model of svnchronous ma-
method. The largeness and structure of the domain of attrad© y 9 9 : y
chines[17]. The two types of Duffing systems are here

tion is closely related to the practical problems such as de .
ciding onset timing of control and estimating the effect ofﬂgfge: %smaemgdselrci)rl: thii r:aggs;c;ilizﬁlc;bsgrg]sy{ﬂté}m
noise. However, the estimation of the domain of attraction is Thisy section filr?st gives eneral desc% tion .of the time
hard to tackle owing to the following two reasons. One rea-.1aved feedback gt I % Duffi tp The Duff
son is that, in general, the domain of attraction is closely elayed feedback controfied Dufling systems. -The Dufling
linked with global dynamics of controlled systems. Thus, thesyst(?ms coupled with a scalar control input are given as fol-
problem is obviously beyond the scope of linearization in the
neighborhood of the target unstable periodic orbits. The other

is that the domain of attraction exists in function space and

then in infinite dimensional space under the control method. d

This characteristic comes from the time delay included in the dt

The Duffing systems are two-dimensional nonautono-
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where x and y denote the displacement and velocity of In this paper, two types of Duffing systems are treated as
Duffing systems, respectivelyu is control signal ando  for the controlled objects. In the following discussion, one is
two-dimensional vector concerning coupling of the controlreferred to aswo-well Duffing systerand the other is simply
signal. called Duffing systemThe two-well Duffing system is a

In the time delayed feedback control, the control signal ismodel for the first-mode vibration in magnetoelastic beam
determined without any information of the target orbits ex-System with sinusoidal forcin§l5]. The two-well Duffing
cept their governed periods. The control signal is simplySystem is given by Eq1) at (a, ¥)=(1.0,1.0). The details
given by the difference between present output signal an@f the dynamics unde&=1.0 was discussed in Ref18].

past one: The stabilization of chaos in the magnetoelastic beam system
was experimentally achieved with velocity feedback control
0:(0<t<ty) [6]. The feature of the phase propagation of the control sig-
u= (2) nals was discussed in Ref19]. The Duffing system is a
KL9(X;,y-) —9(x,y) ];(t=to), model for a hard symmetric spring in a mechanical system

[16]. The Duffing system is described by Efl) under
whereK is feedback gain ant) is onset time of control. The («,y)=(0,1.0). The dynamics undes=1.0 was summa-
g(x,y)=g(x(t),y(t)) and g(x,,y,)=g(x(t—7),y(t—7)) rized in Ref[16]. In Eq.(1), x andy denote the displacement
imply present and past scalar output signals, respectiveljand velocity of mechanical vibration, respectivel§, is
The 7 is time delay, which is adjusted to the period of adamping coefficientA indicates forcing amplitude ana
target unstable periodic orbit embedded in a chaotic attractoflenotes its frequency. In the following sections, the system
This simple control strategy is easily implemented to experifparameter §,A) is fixed at the values where the Duffing
mental systems without exact models of controlled objectsystems generate the chaotic attractors uadef.0[16,18].
and reconstruction of underlying dynamics from experimen- is adjusted at z for stabilizing two symmetric period-2
tal data. The control Signa| converges to null when the Sysunstable' periodic orbits embedded .in each chaotic attractor.
tem is stabilized at one of the target orbits. As a result of thidt is €asily confirmed that both velocity feedback control and
convergence, the controlled system degenerates from the ifiSplacement feedback control can stabilize the two symmet-
finite dimensional system with time delay to the original [IC Period-2m target orbits under certain ranges of feedback
two-dimensional system without time delay. Note that the9ain- However, systematic design of feedback gain still re-
domain of attraction for target orbits is characterized by thdnains another open problem in the control metfi2al.
infinite dimensional space under remarkable control input.
Thus, the estimation of the domain of attraction goes beyond
the scope of linearization in the neighborhood of the original An initial condition is selected from a segment of the
system. chaotic trajectory generated by Ed) underu(t)=0. In this

The onset time of control is a substantial control paramsection, the dependence of stabilized states on initial condi-
eter, which determines the initial conditions of the controlledtions is discussed.

IIl. INITIAL CONDITION

system. The initial condition at, consists of the following Initial conditions vary with onset time of control because
initial values and initial function: of chaotic motion of original systems. It implies that onset
time of control is a substantial control parameter to deter-
X(to):Xto, mine initial conditions. Then the convergence characteristics

concerning onset time give crucial information of the depen-
dence on initial conditions. When the control starts at onset
time ty under feedback gaiK, the initial condition is deter-
mined with relation to a point int,K) surface, as illus-

Uy (D) =K[g(X;.y)—g(x,y)lite[to—7t].  (3)  trated in Fig. 1a). The (to,K) surface runs along the chaotic

trajectory and is extended in the direction lkfaxis. The

In this paper, we identify the initial condition with a segment classification of points in thet§,K) surface with stabilized
of the chaotic trajectoryx(t),y(t)]™; te[to— 7.to] gener- states enables the systematic investigation of the dependence
ated by Eq(1) underu(t)=0. The reason is a specific initial on initial conditions. Figure (b) is a schematic diagram of a
condition described as Ed3) is essentially transformed (og,K) plane which covers thet{,K) surface over th&,th
from the segment of the chaotic trajectory through E). period with respect to the sinusoidal external force. Hgye

y(to) =Y,

without loss of generality. is a non-negative integeery denotes the onset phase gov-
The implementation of the control method is specifically erned by the sinusoidal forcing and then is includefdr).
described by the couplinly and output signag(x,y). Two Figure 2 shows §,,K) planes in the two-well Duffing

simple types of implementation are introduced here. One isystem with velocity feedback control. FiguréaRis ob-
velocity feedback contrapecially given by replacing with  tained at ¢,A)=(0.3,0.34). Figure @) corresponds to
[01]T andg(x,y) with y in Eq. (1). The velocity feedback (&8,A)=(0.16,0.27). Figure @) shows the classification of
control employs the velocity component for the control sig-tones. This classification does not distinguish periodic states
nal. The other idisplacement feedback contm@presented which have the same period. In FiggaRand 2b), there is a

by Eq.(1) underb=[10]" andg(x,y) =x. The displacement dominant region in which the state converges to the target
feedback control uses the displacement component for theeriod- orbits. However, convergence to other periodic or-
control signal. bits often occurs at several values of feedback gain. For ex-
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FIG. 1. A schematic diagram of initial condition embedded into onset time and feedback gain parameter plane. S(afatspiays
chaotic trajectory generated by uncontrolled system; the surface is extended in the direction of feedback gain axis. Initial condition yielded
at onset timé, under feedback gail{ is related to a pointtg,K) in the surface(b) shows @y,K) plane which coverstf,K) surface from
to=6p7 to to=(09+ 1) T whered, is non-negative integer ang, is included in[0,7). Gaussian-like curve ifb) shows schematic diagram
of external disturbance(t) employed for disturbing initial condition in function space.

ample, one clearly recognizes the convergence to period-3sented figures do not cover the whole span. Once the con-
orbits atK~0.935 or period-6 orbits within 0.9<K=<0.93 trolled system converges to stable coexisting orbits, some
in Fig. 2(@). In Fig. 2b), one easily observes the convergenceexternal operation is needed to change the state of the con-
to period-6r orbits in 1.0155K=<1.035 or period-12 orbits  trolled system to the target states. Therefore, the convergence
at K~1.01. These periodic orbits coexist with the target or-to coexisting orbits implies the failure of control as a concept
bits under control signal. Theseoexisting orbitsbecome  of controlling chaos.

stable within ranges of feedback gain inherent to each coex- Note that there is a difference in the distribution of initial
isting orbit. The same results are also obtained for variety otonditions toward the coexisting orbits. In Figiag initial
selected spans of the onset time of control, although the presonditions of this kind of cluster within 0:9K=<0.935. The

1.05 1.1

K=0.92
l 10=0.25t+187

L ] |l|,?

K=0.92 K=1.025
08 10=0.91H81 0.85 1=0.687+187

It 2T 4t 3t 6t 127 241 chaos others
(c)
FIG. 2. Classification of stabilized orbits in onset time and feedback gain parameter (@aaad (b) are obtained for the two-well
Duffing system with velocity feedback control af,A)=(0.3,0.34) for6,=18 and (0.16,0.27) fow,=18, respectively(c) displays
classification of tones which distinguishes period of stabilized orbitéa)land (b), convergence to coexisting orbits is found in particular
values of feedback gain. Each point indicated by arrow corresponds to initial condition and value of feedback gain used in calculation of Fig.
5(a): (ty,K)=(0.25r+187,0.92), Fig. %b): (0.97+187,0.92), and Fig. 6: (0.68+187,1.025). The same classification of tones is used in
Figs. 3, 4, and @) again.
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FIG. 3. Classification of stabilized orbits in onset time and feed-

back gain parameter plane. The classification is obtained for two- FIG. 4 Classification of stabilized 0_”?“3_‘“ o_nset time and feed-
well Duffing system with displacement feedback control &) back gain parameter plane. The classification is obtained for Duff-

=(0.46,0.4) ford,=18. The classification of tones is displayed in ing system with Ve_",’C“Y feedback C‘_’””P' at.f) =,(0'1_’13'3) for
Fig. 2(c). Convergence to coexisting period-6orbits appears 0,=18. The classification of tones is displayed in Figc)2Con-

aroundK =0.28. Initial condition corresponding to indicated point VEr9ence to coexisting periodr3orbits is observed aroun&
(to,K)=(0.88r+187,0.28) is used in calculation of Fig. 7. =0.35. Initial condition corresponding to pointy(K)=(0.56r
+187,0.35) indicated by arrow is used in calculation of Fig. 8.

Clustering distribution suggests the small shift of the initia|the control method and Speciﬁc controlled Objects_

condition does not cause the change of the stabilized state. In |n this section, the dependence of stabilized states on ini-
contrast, initial conditions of the above kind scatter withintjal conditions has been discussed. The investigation shows
1.015sK=1.035 in Fig. 2b). The scattering distribution im-  the possibility of the convergence to coexisting orbits. This
plies stabilized states alternate between the target orbits an@énvergence characteristics must be directly related to struc-
coexisting ones, sensitively depending on small change afires of the domain of attraction. In the following section, we

the initial condition. Therefore, the difference between theare going to investigate the structure of the domain of attrac-
clustering and scattering distribution reflects the difference injon in function space.

sensitivity of the dependence on initial conditions.

The convergence to coexisting orbits are also repognized, IV. DOMAIN OF ATTRACTION
even when the displacement feedback control is imple-
mented. Figure 3 shows a§,K) plane in the two-well Duf- Once an initial condition is selected, the control with con-

fing system with displacement feedback control &tA) stant feedback gain uniquely achieves the convergence to an
=(0.46,0.4). There are many initial conditions toward coex-orbit. Then the systematic estimation of the effect of external
isting period-G orbits atk~0.28. The clustering distribu- disturbance on the convergence gives us substantial informa-
tion of initial conditions is observed aroung,=7/2. The tion of the domain of attraction in function space. Here the
scattering distribution is also found around the initial condi-external vector disturbance(t)=[«(t),e(t)]" is addition-
tion pointed in Fig. 3. Note that both velocity feedback con-ally given to an initial condition.s(t) is represented as
trol and displacement one are implemented without any defollows:
pendence on specific information of the two-well Duffing
system. Therefore, one can at least conjecture that the con- t—u)?
vergence to coexisting orbits is not limited to particular S(t):pex’){_(_) ] )
implementation of the control method.

Furthermore, it can be confirmed that convergence to cowheret and x are included inty— 7,ty], to denotes onset
existing orbits occurs, when the controlled object is replacedime of control. In the following discussios,is fixed at7/2,
with the Duffing system. Figure 4 is arf,K) plane in the  which determines the distribution of the external disturbance.
Duffing system with velocity feedback control a®,A) p is a non-negative value sufficiently smaller than the ampli-
=(0.1,13.3). Initial conditions toward coexisting perio@-3 tude of the motion of Duffing systemp.implies the inten-
orbits are observed &~0.35. The clustering distribution is sity of the external disturbance. defines the center of the
found aroundoy=0.97. The scattering distribution is also distribution along temporal axis. The disturbane@) is
seen around an initial condition pointed by arrow in Fig. 4.physically interpreted as a small impact force externally
Thus, convergence to coexisting orbits is not specific to thejiven to the mechanical oscillator in a period just before
two-well Duffing system. Taking account of the previous onset of control. The disturbance is evaluated at every center
conjecture, we suggest that convergence to coexisting orbitsf impact u with introduction of the(u,||(t)||,) space. The
does not necessarily depend on particular implementation dffe(t)||, denotes.? norm of £(t).
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FIG. 5. Domains of attraction ofy, | &(t)||,) space in two-well Duffing system with velocity feedback control &tA) = (0.3,0.34).
Dark and light gray points represent convergence to target peratiit and coexisting period-6one, respectivelya) and(b) are obtained
around initial conditions pointed by arrow in left side and right side in Fig), 2espectively(c) displays enlargement of boundaries within
rectangular area ith).

The disturbance is additionally given to a selected initialappearance of additional boundaries. In contrast, the bound-
condition. The selection of an initial condition is based onaries in Fig. 6a) have a self-similar structure. This self-
the results in the preceding section. The results suggest thgmilar structure is obtained around the initial condition
possibility of the convergence to other orbits different frompointed in Fig. 2b). The boundaries exhibit rough curves in
targets. The results consequently reflect the global dynamicgistinction to the previous smooth case of Fig¢b)5and
in function Space. The ClUStering and Scattering d|Str|but|0r5(C) More precise'y, many fine Striped structures are ob_
of initial conditions toward coexisting orbits in ther,K)  served along each boundary. The self-similarity of the
planes is directly connected to the sensitivity of dependencgoyndaries is confirmed by enlarging the fine stripes. When

on initial conditions. _ o one enlarges a part of the stripes, the same fine stripes appear
First, we discuss the domain of attraction in the two-well 5ain ‘a5 shown in Fig.(6). When one enlarges a part of the

D“ff".‘Q system with velocny feedback_control.. The .|n|t|al enlargement, the same structures can be found, as displayed

condition pointed by arrow in the left side of Fig(a lies in Fig. 6(c). In general, self-similar structures are yielded in

apart from initial conditions toward coexisting orbits. This . . .
A . I o the phase space of chaotic dynamical systems. The crucial
implies the pointed initial condition is not close to the

boundaries of the domain of attraction. Therefore, the dodifference is that the domain of attraction is here defined in

main of attraction around this initial condition is quite domi- Unction space apart from the target orbits. More precisely,
nant by the convergence to target orbits as shown in Figt_he (. ()] spaces represent the domain of attraction
5(a). On the other hand, the initial condition pointed in the @ound the selected initial condition along temporal axis. The
right side of Fig. 2a) lies close to initial conditions toward Self-similarity in the(u,[[£(t)] ;) spaces implies the sensitive
coexisting orbits. It suggests that the pointed initial conditiondependence of stabilized states on intensity and timing of
is located near the boundaries between the domain of attragmall external disturbance to the selected initial condition. It
tion for target orbits and for coexisting ones. Thus, the doimplies that the controlled system loses the robustness for the
main of attraction around this initial condition is found to initial condition. Then the global structure governing the sys-
have clear boundaries as shown in Fig)5 tem cannot be simple in function space.

Here we concentrate on the boundaries of the domain of Figure 7 shows a self-similar structure in the two-well
attraction. In Fig. &), the boundaries smoothly curve from Duffing system with displacement feedback control at
top right to right side. A part of the boundaries are clearly(d,A)=(0.46,0.4). This structure is obtained around the ini-
enlarged as shown in Fig(d. The enlargement shows no tial condition pointed by the arrow in Fig. 3. Many fine
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le@lke

(b)

FIG. 6. Domain of attraction o, | &(t)||,) space in two-well Duffing system with velocity feedback control &tA)=(0.16,0.27).
Dark and light gray points represent convergence to target periodit and coexisting period<6 one, respectively(b) and (c) are
enlargement of rectangular areas(@ and (b), respectively. They show self-similar structures around initial condition pointed by arrow in
Fig. 2(b).

stripes are found along the boundaries from lower left totarget orbits and one of the coexisting orbits, respectively.
right side in Fig. 7a). The enlargement of a part of the Among additional two middle tones, dark and light gray
stripes displays fine striped structures again, as shown in Figpoints show the initial conditions toward the other target and
7(b). On the other hand, the difference from the previouscoexisting orbit, respectively. These four types of initial con-
case is that smooth boundaries are partly observed in tHditions are spread from left to right side in Figa8 Besides,
upper left of Fig. Ta). The enlargement also shows more the four types are mixed with one another. The mixed struc-
smooth boundaries than the previous rough case of Fig. 6. ft'e iS also observed in the upper right corner. It is clearly
seems that the self-similarity is truncated or localized inSHOWn that the mixed structure is sandwiched by many layers
function space. of dark and light gray points. When a part of the mixed
Figure 8 represents a self-similar structure in the Duﬁings:]ructur_e |s|:_enla}8rbg)e(#r;the szi\me struc::ures can b de (_)bhse(;vzd, as
, . o shown in Fig. 8b). The enlargements are sandwiched be-

e Sl UL o dar ar gt ey yers aga, I i cose, gl

. . ; . of the domains of attraction corresponding to the four types
Fig. 4. The difference from the previous two cases is tha

A e _thalyt solutions are intrinsic in function space.
there are all four types of initial conditions. Dark and light 1o apove self-similar structures reveal that the conver-
gray points represent initial conditions toward one of thegence to target orbits sensitively depends on initial condition

0.05 0.007

lle@ife
lle@lke

0.005

(@) M (b)

FIG. 7. Domain of attraction or(u,|(t)|,)-space in two-well Duffing system with displacement feedback control saf)(
=(0.46,0.4). Dark and light gray points represent convergence to target peddat and coexisting period-6one, respectively(b) is
enlargement of rectangular area(a. They display self-similar structures around initial condition pointed by arrow in Fig. 3.
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FIG. 8. Domain of attraction ofy, | &(t)||,) space in Duffing system with velocity feedback control &%) = (0.1,13.3). Dark and light
gray points represent convergence to one of target periadbits and one of coexisting period=®rbits, respectively. Among middle tones,

dark and light gray points show the other target orbit and coexisting one, respedtely.enlargement ofa). They show self-similar
structures around initial condition pointed by arrow in Fig. 4.

in function space. In other words, successful prediction oplane in the two-well Duffing system with displacement

controlling chaos is difficult before the control is achieved. Itfeedback control at§,A) =(0.16,0.27). The classification of

is clearly understood that this unpredictability is a disadvantones distinguishes the convergence to the two symmetric

tage for engineering use of the control method. However, ntarget orbits with additional dark tone. In Fig(a® one

detailed discussion for the characteristics has been obtainedearly recognizes that initial conditions toward the two sym-
Note that we have not considered selective stabilization ofmetric target orbits are mixed in 0.48=<0.7. Correspond-

two symmetric target orbits in the foregoing discussion.ingly, the domain of attraction exhibits a mixed structure, as

However, the selective stabilization is important for engi-shown in Fig. 8b). The same mixed structure holds even in

neering use. Here we apply the same approach to the domatine enlargement shown in Fig(c9. The mixed structure is

of attraction for each target orbit. Figuréad is a (o,K) here obtained close to the initial condition pointed in Fig.

0.9

K=0.58
to=0.751+161

A0 S R [ e = D

N 0.65

0 /2 T

0.014

lle@fe
lle@fe

(b)

FIG. 9. Classification of stabilized orbit®) and domain of attractiofi(b) and (c)] in two-well Duffing system with displacement
feedback control at§,A)=(0.16,0.27). In(a), classification distinguishes two symmetric target orbits with additional dark tbhes

obtained around initial condition pointed by arrom@). (c) displays enlargement of rectangular areéain (b) and(c) show stabilized states
almost randomly alternate between each target orbit by external disturbance.
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9(a). However, one easily observes the structure covers the V. CONCLUSION
whole onset time of control in theo(;,K) plane. Therefore,
it is inevitable that the stabilized states almost randomly al- |n this paper, we numerically discussed the domain of

ternate between each target orbit with onset timing of controgttraction for the target unstable periodic orbits in the time
or influence of external disturban21]. In other words, the  gelayed feedback controlled Duffing systems. The approach
targeting scheme based on linearization has no possibility qf completely far from local stability analysis of the target

effective convergence. _ o , orbits. The approach is directly related to the application of
In this section, the domain of attraction in function spacetﬁtln

has b di d Th its indicat licated alob e control method to practical systems; decision of onset
as been discussed. The results indicate complicated glo e control, and estimation of influence of noise. The nu-

structure of phase space in function space. It should b.e Melerical results reveal complicated global dynamics in func-
tioned that these complicated structures are substantially in:

duced by applying the control method to the Duffing sys-.ion. space, as oppos_ite to clear re_sults e_xpected ffor.“ Ii_near-
tems. This is because all the parameters used in this paper AF@'[IOI"I. The domain of attraction with sgl_f-5|m|lar|ty
selected from the regions where the basins of attractions origgests Fh"’.“ the success of the control sensitively depends
the chaotic attractors have simple structures with smootf" Onset timing of control and disturbance on controlled sys-
boundaries before onset time of control, if the uncontrolled®M$- In addition, another quite complicated structure implies
systems have multistability. that the targeting scheme based on linearization does not

Furthermore, we need to emphasize one inevitab'y reperform eﬁectively. We I’leed to emphasize that the domain
marks g|oba| dynamics of controlled systems. This is be.Of attraction with Self-similarity is not restricted within par-
cause the exact model of controlled objects is often unknowticular implementation of the control method or specific con-
in practical systems. Then one possibly starts the contrdrolled objects. Therefore, further extension of the control
apart from the neighborhood of the target orbits. However, itmethod should be established in the light of the global struc-
obviously goes beyond the scope of linearization techniqueture in function space.
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