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We study a matrix form of time-delay feedback control in the context of discrete time maps of high
dimension. In almost all cases where standard proportional feedback control methods can achieve control,
time-delay feedback controllers containing only static elements can be designed to achieve identical linear
stability properties. Analysis of an example involving a ring of coupled maps that can be controlled at only two
sites demonstrates that the time-delay controller equivalent to a standard optimal controller can be equally
robust in the presence of noise, except at special points in parameter space where the uncontrolled system has
a mode with Floquet multiplier exactly equal to 1. Numerical simulations confirm the results of the analysis.
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I. INTRODUCTION timal SPC for the same system. We then investigate the ro-

Over the past decade, it has become increasingly cledtustness of the time-delay controller in the presence of noise,
that robust and reliable methods of controlling chaotic dy-adapting a method of analysis previously applied to SPC
namical systems would have important applications in a vaf10]. Our results indicate that the time-delay controller is no
riety of engineering and scientific contexts. An important el-less robust than the standard one. This suggests that the ad-
ement of the control problem is the question of whethervantages of time-delay feedback can be realized without an
periodic orbits that would be unstable in the absence of conaccompanying loss in performance.
trol can be stabilized using noninvasive methditiswhich The control scheme we investigate is a generalization of a
the feedback signal vanishes on the desired prBiandard method called “extended time-delay autosynchronization”
proportional control(SPQ methods have been thoroughly (ETDAS) [9]. In ETDAS, the controller has a recursive
investigated in the classical control theory literature andstructure that effectively stores information from previous
well-developed techniques exist for determining whether amperiods, with thenth iterate in the past weighted by a factor
orbit is controllable and for constructing an optingitheary  of R. It is known that such a scheme can dramatically enlarge
controller. In SPC, one compares the current state of théhe domain of control over the=0 case, but also that it fails
system to some external representation of the desired orbit some cases of interegtl]. The generalization involves
and applies appropriate feedback when a difference is degromoting bothR and the feedback gain to matrices that act
tected. The theory is particularly well understood for the cas®n all the system variables available for measurement rather
where the discrete time map is available describing the dythan just one. It was first suggested by Nakajihz] and we
namics of the system on a Poincaré section of its phaswill refer to it as “generalized ETDAS” or GETDAS.
space. Optimal control theory provides constructive methods As noted by Nakajima, GETDAS controllers form a sub-
for designing a noninvasive controller that will render stableset of the dynamic delayed feedback controllers introduced
an intrinsically unstable fixed point of such a map, whichby Yamamotoet al. [13]. This subset has a property that is
corresponds to an unstable periodic orbit of the continuougarticularly important for high-speed applications: all of the
dynamical system. elements in the controller are passive, performing the same

An alternative to SPC is the use of a time-delay elementinear transformations on their inputs at all times. The dy-
in the control loop that allows comparison of the currentnamic controllers, on the other hand, include elements in the
state of the system to its state one or more periods in théeedback loop that must be adjusted at each iteration in re-
past, rather than to an externally produced reference signaponse to the system’s behavior, which requires construction
Time-delay feedback has been shown to be a plausible teclof a dynamical system operating at the same high frequen-
nigue in a variety of theoretical and experimental contextsies as the system being controlled.

[1-6]. It is particularly advantageous in fast systems where In Sec. Il we introduce the generalized form of ETDAS,
the reference state required for SPC cannot be readily pradiscuss its ability to stabilize unstable modes, and show how
duced[7-9]. Analytical understanding of time-delay control- to convert a standard control matrix into an equivalent GET-
lers, however, lags far behind that of SPC. The design oDAS form. In Sec. Ill we illustrate the method with the ex-
optimal time-delay controllers is usually accomplished byample of a ring of diffusively coupled logistic maps. In Sec.
experimentally or numerically scanning the space of paramb/ we derive a formula for the size of deviations from the
eters associated with a given control scheme. fixed point in the long time statistically steady state for a

In this paper we consider a particular form of time-delaylinear system with a given level of intrinsic noise and com-
feedback for discrete time maps. We point out that the optipare the results for the ring of logistic maps controlled by
mal control theory for SPC can be translated directly into aSPC or GETDAS. In Sec. V we discuss the effects of non-
constructive method for designing a time-delay controllerlinearities, comparing numerical results to heuristic formula
whose linear stability properties will be identical to the op-for the maximum tolerable noise level in a GETDAS con-

1539-3755/2004/68)/0562078)/$22.50 69 056207-1 ©2004 The American Physical Society



I. HARRINGTON AND J. E. S. SOCOLAR PHYSICAL REVIEW B9, 056207(2004)

troller. Section VI summarizes our results and frames some The form of a GETDAS control signal may be written in
open questions. three equivalent ways:

Up=G - (Xn=Xp-1) * R - Upy (7)
II. STANDARD CONTROL AND TIME-DELAY CONTROL

The standard approach to stabilizing a fixed point of a R o
dynamical system governed by a discrete time map is to =G- 2R * (Xp-t = Xpe1-1) (8)
apply a feedback signal proportional to the difference be- =0
tween the state of the system and the desired fixed point. For

a system withL dynamical variables, we write - P ~|
=G X+ (R=1)- 2R Xp-1 | (9)
1=0

=F(y,) +Bu,, 1 . . . o
Y1 =F (Vo) " @ Note that expanding,_, in terms ofx,, gives an infinite
sum over previous states of the system, as in the scalar case
Ny discussed by Socolar and Gauthi#b]. When there is only
Up==K(yn=Yy). (2

one variable available for monitoring and one adjustable sys-

tem parameter, or when both the matrié@sandR are just
multiples of the identity matrix, the situation reduces to the
scalar case that has been studied previoLEby16.

system;B is anL X L matrix specifying which system vari- Using Eqs(3) and(7), the GETDAS scheme can be writ-
ables can be adjusted externally and how variations in ten as follows: '

affect them; and<, a matrix we are free to choose, trans-
forms the measured variables into one or more control sig- X _alXx
nals. It is assumed th& has a fixed poiny” that is unstable U/peg Q u/,

in the absence of control; i.e., fé¢t=0.
Defining A as the Jacobean &fevaluated ay” andx, as
the deviationy,—y", the linearized system in the vicinity of R A B
the fixed point is Q=|(. . . .. .| (11)
G[A-1] GB+R

Herey, is anL-dimensional vector, witlm indexing discrete
time stepsy, is the control;F specifies the dynamics of the

(10

with

xn+1=Axn+ éun, (3)  The stability of the controlled system is determined by the

eigenvalues of).
N Much attention has been given to the fact that ETDAS
Un=~KXy. (4)  with scalar parameter& andR is incapable of suppressing

. instabilities in cases wher@ has an odd number of real
We defineM, eigenvalues larger than unitjl7]. Yamamotoet al. sug-
gested a dynamical delayed feedback control scheme that
M = A - BK (5) avoids this weaknesglL3]. In the dynamical delayed feed-
' back control(DDFC) scheme, the feedback signal is given
. by
The control problem is to find a matrik such that all ei- .
genvalues oM have a magnitude smaller than 1, thereby Up = a(Xn = Xp-1) + bW, (12
making the controlled system linearly stable. Using quadrati(\:Nith

optimal control theon|14] an appropriate matrixX can be
constructed wheneveA and B satisfy the controllability Wit = 6% = Xno1) + AW, (13

condition RankC]=L, where The control signall is composed of two parts, the first one is

(the matrix version gfthe traditional TDAS tern{the R=0

C=[B,AB,A%B, ... AL1B]. (6) case of ETDA$ The second term involves an introduced
dynamical variablev.
If one of the eigenvalues oA lies on the unit circle, the ~ Yamamotoet al. showed that for almost any matri, the

uncontrolled system has a marginal eigenvector. In the spd>DFC parameters can be chosen to giye—K -x,, which
cial case where the marginal eigenvalue is exactly 1, ratheneans that the behavior &f, andu, in the DDFC system

than any other complex number of unit magnitude, we sawill be identical to that in a SPC system with the sakie
that the uncontrolled system hastationarymode or eigen- The choices leading to this equivalence are
vector. A stationary eigenvector is completely invariant un-

der the action ofA. a=-K-A-[A-1T1 (14
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b-&=-[K+a]-B -4, (15)
d=¢-al.p. (16) I @ ||
N
The condition for constructing the equivalent DDFC control- A

ler is thatA—I be invertible, which is true as long as the
uncontrolled system does not have a stationary mode. ’
Yamamoto’s result shows that DDFC, which requires no
comparison of a system variable to its fixed point value, can
be almost as versatile as SPC, failing only in cases where the
uncontrolled system has a stationary mode. Some examples
of such modes are the Goldstone modes associated with a
continuous symmetry and therefore cannot be avoided. In
other cases, such as the coupled map lattice discussed below,
stationary modes occur at special isolated points in param-
eter space. We will consider below the effect of isolated sta-
tionary modes on the robustness of a time-delay controller, FIG. 1. Schematic circuit diagram for implementing GETDAS
but first we consider an important drawback of the DDFCto control a dynamical system. Triple lines indicate multiple signals
scheme. that are fed into each element in the loop. The hexagon represents
In order to implement DDFC, it is in general necessary toan element whose only effect is a time delay of all incoming sig-
construct a dynamical system that produces the appropriate@ls. Triangles represent devices that form the difference of each
behavior of the variablev in Eq. (13). Unlike the feedback Pair of incoming signals. Each labeled square represents a device
signalu of GETDAS, w cannot be written as a simple sum that performs a linear transformation on its inputs. The square la-
over past measurementsxfThere must be some element in beledB may be considered as a part of the system that cannot be
the feedback system that generates an independent dynarahanged and may have fewer outputs than the full number of sys-
cal process. In many contexts, this defeats the purpose &m variables. It contains the information about which system vari-
time-delay control, whose primary advantage is the avoidables can be monitored, which system parameters can be adjusted
ance of the need for an externally generated dynamical Signgprough feedback., and how those adjustments affect all of the dif-
that helps determine the feedback. In contrast, the GETDA&Tent system variables.
scheme can be implemented using only passive devices that
repeatedly perform the same linear transformations on sig- (x) A B (x)
n+1l n

=)

nals generated by the system of interest. Moreover, the in-
clusion of the sum over all past iterates can be accomplished

in a simple way by implementing a scheme suggested by E(i:' ) i
(7). A schematic diagram of a GETDAS controller is shown From the general form of GETDAS given in Eq40) and
in Fig. 1. For implementation of the discrete controllers(11), One sees immediately that the two schemes are equiva-

shown here, the output @ is sampled once every period lent if and only if the matrice&s andR are chosen as fol-
and the sampled value determines the feedback signal. lows:

Nakajima, in introducing GETDAS, has pointed out that it . e .
is a special case of DDF{12]. For the casel=¢a b, Eqgs. G=-K[A-1]"A, (19)
(12) and (13) give w,=¢-a*-u,_;, Sow can be eliminated
g'oa\rg 'ilr\;iet)hequatlons, leaving them in a form identical to GET- R=K[A-1]B. (20)

(18

u u

-KA -KB

(Note thatA commutes Witr[A—f]‘l.) The correspondence
fails if and only if A=l is not invertible; i.e., if none of its
N e eigenvalues vanishes. Lt} be the eigenvalues @f. Since

R=bca™. (17 the eigenvalues oh—I are equal to\;—1, the condition for
Here we show that the GETDAS subset of DDFC control-invertibility of A—1 is \; # 1 for all i. Q.E.D

lers is big enough to contain an equivalent controller to any  The reason the GETDAS cannot stabilize a system with a
SPC schemewith the usual exception for stationary moles - stationary mode is conceptually clear. For a long-lived per-

Theorem Given a discrete linear systexq.,=A X, that has  tyrhation in the stationary direction we have-s-s=0,
no stationary eigenvecto(se., for whichA has no eigenval- hencex,.;—X,=0 and no feedback signal is generated.
ues exactly equal to)lif the system can be stabilized using  The matrices in EqY18) and(11) are 4 X 2L matrices.

G=4,

SPC, then it can also be stabilized using GETDAS. In the former case, the obvious degeneracy between the top
Proof: In analogy with Eq(10), the SPC scheme can be and bottonL rows causeg of the eigenvalues to be zero, as
represented in the following form: expected given that the stability of the SPC scheme is deter-
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mined completely by the matrikl. In contrast,Q has 2. 0 0 ... 01
nontrivial eigenvalues. It is only for special choices of the 1 0 O 0
pair G andR thatL of these vanish. Investigation of the most - lo1 o o
general conditions o andR for stability is beyond the J= _ (29
scope of this work. i 0 01 0 o
We have shown that ani that stabilizes the system via
SPC can be converted into a GETDAS control scheme. The o0 .. 01 0_

converse, however, is not true. ThAe syst?m may be stabiliqi has been shown previousig8,19 that for anyL the sym-

able via GETDAS using some oth@r andR which may or  metric system is controllable using SPC if all sites are mea-

may not correspond to a SPC matkx The reverse conver- surable and just two neighboring sites can be directly af-

sion is possible if and only if the GETDAS matrices are fected by the feedback signal.

related by Because stationary modes make GETDAS control impos-
~ A sible, it is important to know the parameter values where
R=-GA™'B. (21 such modes exist. A straightforward analysis reveals that for

éixed v,L, anda, the present CML does indeed have station-

Thus set of GETDAS controllers is larger than the set of SP ary modes, but only for special, isolated valueseofvhich

controllers. we denotee;. Writing out the components of E¢R3) gives
lll. A COUPLED MAP LATTICE XY = (1 = 20" + ved X + X +ah -~ x™)]
(26)

Given the possibility of constructing a time-delay control-
ler that has the same linear stability properties as any givefyr everyl andn. We write a solution axf”):g(n)exp{ilk],

standard one, it is natural to ask whether one must pay @ith k restricted by the periodic boundary conditions to

price for using the time delay. One issue that might be relyaye on the valuessar/L for integers. For a stationary
evant is the sensitivity of the controller to noise. One might,5qe &(n) is constant. This occurs only if

worry that the time-delay controller will be less robust than
its SPC counterpart. As a preliminary investigation of this rv—1 sa\l | (sm) s
issue, we consider a nontrivial example of a high- 2, € Sm(T) sm(—) —ia COS<—) . (@27
dimensional system: a coupled map latti€ML) in which
all variables can be measured but only two adjacent sites aior values ofe satisfying this equation, the uncontrolled sys-
accessible for control. tem will have a stationary mode.

We consider a ring ok diffusively coupled, identical lo- For L even, Eq.27) is satisfied fors=L/2, independent
gistic maps. The general equation describing the uncoref a, by

trolled system is
v—1
Y™ = (1-291(y") + d (1 - (1) + (1 +a)f(yip)]. &= (28)

(59 For a=0 which corresponds to the symmetric diffusive

The subscript indicating spatial position runs from 0 1o cML, additional solutions exist with
-1, and all indices are taken modulo The superscripts in
parentheses indicate temporal iteratéy) is a function de- ~v-1 1
scribing a single site evolution in one time step; the constant €= ?sinz(sﬂL) (29)
e (0,1 indicates the coupling strength between neighbor-
ing sites; anda e (-1,1) is an asymmetry parameter in the for all integerss. For a# 0, there are no stationary modes
coupling strengths to left and right neighbors. a0 the  other than thes=L/2 case.
dynamics are governed by symmetric diffusion and dor As shown by Grigorievet al, control of a symmetric
=+1 we have one-way coupling. CML can be achieved with just two controllers placed at

The fixed point of interest is the homogeneous ope, adjacent site$18].AIn the present notation, this corresponds

=y" for all I. The linearized equations for=y,—y" are writ-  to anL X L matrix B with elementB;,=B,,=1 and all other

ten as elements equal to 0. An appropridte< L control matrixK
XD = Ay 23) may be determined by iterative solution of the Riccati equa-

tion of optimal control theory14]. Due to the structure d
wherex is the vector(x;,X,, ... ,X.) andA has the following  only the first two rows oK are relevant; all other elements
form: vanish identically. Converting any SPC mati into the
(24) GETDAS form results in a matriG with all elements out-

~ side the first two rows equal to 0, and a matRxwith all
wherev= f / dy|,-: | is the identity matrix; and elements vanishing except for the upper lef 2 block.

A=1p(1-2e)l +ve((1-a)J+(L+a)d"),
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IV. NOISE AMPLIFICATION IN THE LINEAR VICINITY
OF THE FIXED POINT

In the presence of bounded noise, the controlled system
may remain confined to a region near the fixed point or may
exhibit deviations from the fixed point limited only by non-
linear saturation effects. To determine which occurs for a
given level of intrinsic noise, the first step is to calculate the
linear amplification of the noise due to non-normality of the
eigenvectors of the controlled systét®]. This amounts to a
computation of the size of the cloud of points that will occur
around the fixed point when the intrinsic noise level is low
enough that the system never leaves the linear regime. We
discuss the effects of nonlinearity in Sec. V below. Here we F|G. 2. Noise amplification in a symmetrically coupled ring of
study the effect of a GETDAS controller on the noise level,linear maps with periodic boundary conditions as a function of the
assuming the noise is so small that even with amplification itoupling constante). The size of the ring i =10 and the map
remains well within the linear regime. The goal is to seemultiplier is v=-1.8. The solid line showy for an optimal SPC
whether the GETDAS controller amplifies noise significantly stabilization scheme and the circles connected by the dotted line for
more strong than its SPC counterpart. a GETDAS scheme. Note the divergenceydbr e=¢ in the latter

We assume that noise enters the system in the form of aggse.
independent random addition to x at every site and on
every time step, witlg drawn from a bounded distribution 0+t
with varianced?. (For the numerical simulations discussed y= \/#’ (35
below we assume a uniform distribution withy L
e [-\30,130].) The equation describing the evolution of yith
the controlled system is

D) = Ax™ 1 By™ 4+ g™ t 5, (leXviv) (36)
n+l) — n n n 1= T x.
X AxV+Bu'™ +q'", (30) So1-a0N
with
. VIViIY(E eV |Re N
<qj(n)>a:0 Dn,], (31) t2:—2§R|: 2 < | >< | ><* | | > :|’ (37)
ir=1 1-NiN
(0" d™)a= 0% 8m (32)
. (VIVIYEIRTV XE[EXVIR]E)
Here the notation(), represents an ensemble average. The tz= > , (38)
SPC case has been analyzed previo{is0;18. birssl 1-Nehs
UsingM as defined in Eq(5) and the GETDAS scheme \ynere we have used the fact thidis real andii™x® goes to
equivalent to SPC with the glvehﬁ Eq. (30) becomes zero for largen, the latter being true by the assumption that
(D) — o 4 () Be(nD) K has been chosen such that SPC renders the noiseless sys-
X =MxT+ g™ - Rq tem asymptotically stable. As previously shown by Egolf and
1 A Socolar{10], the result for the SPC scheme is given by the
D+ > Mg - Rq™Y). (33) term alone. The contributionts and t; describe the effect
1=0 produced in the GETDAS scheme by the repeated passage of

noise signals through the time-delay feedback loop.

A comparison of the noise amplification in SPC and the
- _ equivalent GETDAS schemes is shown in Fig. 2 for a ring of
\; be the eigenvalues d¥ and{|e')} be the corresponding coupled maps witta=0 (the symmetric diffusion cagelt is
eigenvectors. The vectof$v')} are defined by the relation assumed that all of the sites can be monitored, but only two
(€|v))=6;. We may then writey==(v;|q)|e,). adjacent sites can be affected by the feedback. The specific

Defining a noise amplification factor as the ratio of the case shown hag=-1.8. Results for other values of are
standard deviation of the distribution of states around theéualitatively similar. For almost all values of the coupling
fixed point in the controlled system to the standard deviatiorstrength, there is a price paid in amplification for using GET-

Below we use a notation familiar from quantum mechan-
ics:(a|b)=a"-b (with no ensemble average impliedive let

of the intrinsic noise, DAS rather than SPC, but it is rather small—at most a factor
of 2 for very strong coupling. There are special points, how-
V(XD x () ever, where GETDAS generates extremely large amplifica-
Y= Lo ' (34) tions. These are points very close to the coupling strengths
where stationary modes are present in the uncontrolled sys-
an ensemble average of H®J) yields tem.
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FIG. 4. The maximum noise level controlled using GETDAS as
a function of coupling constant in a ring of symmetrically coupled
logistic maps controlled as described in the text at the end of Sec.
lll. The size of the CML id. =10 and the map multiplier at the fixed
ob—t 1 | ob—L 1 | point is v=-1.8.

(n+1)

(b) x(n) () x(l’l)

A simple argument gives a useful estimateagf,, [10].

FIG. 3. (a) The radius of the cloud of points scattered around theFro.m th? point of view of the linear control theory, nonlllin—
fixed point, as a function of the intrinsic noise lewglfor a ring of earities mtmd_uce errors t_hat can be treated as an additional
symmetrically coupled logistic maps controlled via GETDAS asSource of noise for_the linear _anaIy_SIS. Assuming that the
described in the text at the end of Sec. Ill. The size of the CML is€/TOrs associated with the nonlinearity are uncorrelated be-
L=10 and the map multiplier at the fixed pointis-1.8 and the ~tWeen time steps and uncorrelated with the intrinsic noise,
coupling constant ig=0.40.(b) The return map for the site farthest W€ can write the total standard deviation from the fixed point
from the controller forr=10"24 The cloud of points is confined to A as
the vicinity of the fixed point(c) The return map for the site far- s
thest from the controller fos=10723, just beyond the point where A= WUZ + 0'2n|: (39

control is lost. whereay,, is the standard deviation of the errors induced by
nonlinearity. Assuming that the quadratic nonlinearity does
In a purely linear system, noise never destroys the stabilnot vanish, a rough estimate of, for relatively smallx is
ity of a fixed point. Though the cloud of points the systemf”(x")A?/2. The maximum noise levek,,, is then deter-
visits may have a large variance due to non-normal effectgnined by a self-consistency condition @n
that can makey large, the ratio of this variance to the vari-
ance of the intrinsic noise is independent of the intrinsic A= y\a?+2"(x) A%, (40)

noise level. . . . .
which has a real solution for atlk<< o, if and only if

V. STRONG NOISE AND THE TOLERANCE LIMIT 1 41)

Omax— nro*

In a nonlinear system, the situation is different. As the VA6
intrinsic noise levelr is increased, the standard deviation of For a symmetrically coupled ring of identical logistic
the cloud around the fixed point grows in proportion for maps, we have measureg,,, via simulation and compared
small noise levels, but then increases rapidlycasrosses the results to the estimate of E@il). Figure 4 shows that
some threshold. Figure 3 illustrates this behavior in the casghe analytic estimate of,,, for all values of the coupling
of coupled logistic maps controlled via GETDAS. For this constante is lower than the numerically determineg,,. (It
study, the logistic mah(x) = ux(1-x) was modified so as to appears that the correlations neglected in the analytic esti-
avoid the trivial divergence associated with points that leavenate tend to help rather than hurt the controll&igure 5
the domain0,1]. On each iteration, points that fall outside shows that even though the amplification in the GETDAS
the unit interval are reflected about O or 1, as needed. Theontrolled CML is greater than the SPC amplification, which
jump in the plot in Fig. 8), which we interpret as signaling implies a lowero,,,, for GETDAS, the noise level tolerated
a loss of control, occurs when deviations about the fixecby the GETDAS controller is actuallfsigher than that for
point are still much less than 1. The jump is caused by th&SPC over a wide range & It appears that, at least in this
nonlinearity in the map, not by the crossing of an attractorone case, the use of information about past iterates can im-
basin boundary. The value @f at the threshold is denoted prove the robustness of the linear controller against noise.
omax &S it is the maximum noise strength that can be toler- Figure 6 shows the noise tolerance results for both SPC
ated by the given controller. Figuregb3 and 3c) show the and GETDAS, this time as a function of the linear noise
return maps just below and above the transition, respectivelamplification factor. The two branches visible for both
for the site in the ring that is farthest from the two control- schemes correspond to two regimes of coupling: the lower
lers. and upper branches in each case are data é0(0,0.5 and
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FIG. 5. Comparison of the maximum noise level controlled us-

ing SPC or the equivalent GETDAS scheme. The system studied is FIG. 6. Maximum controllable noise levels in a CML control
the same as that of Fig. 4. using SPC or GETDAS as a function of the linear amplification

factor. The upper branch of each data set isefar0.5 and the lower

0.5 tively. H b that f branch is fore>0.5. The system studied is the same as that of Fig.
€< (0.5,1, respectively. Here one o _Serves atlor compay 1he solid line is the estimated maximum tolerable noise level as
rable y, the GETDAS scheme consistently tolerates MOr&omputed from Eq(4l).

noise than the SPC scheme.

Several questions now arise. First and foremost, it will be
important to study the behavior of the GETDAS controller

We have shown a simple way to implement a time-delaywhen applied to a continuous time dynamical system. The
feedback control scheme for discrete-time systems thafiscrete time analysis of maps has proven to be a useful
matches the performance of an optimal controller designe@uide to intuition regarding simpler versions of ETDAS, but
by standard methods. The technique is a generalization of tH8€ connection is not a direct one. Within the context of
ETDAS method that has previously been shown to be usefufliscrete maps, there is also an interesting optimal control
for stabilizing high-speed systems, and suggests the possibiroblem to be solved. Since there is a wider parameter space
ity of controlling more complex high-speed systems thanfor the choice ofG andR than there is for the choice @,
have previously been studied. The one drawback of the GETt is possible that GETDAS schemes having no SPC coun-
DAS scheme is that it cannot be applied to systems that haverpart could be the method of choice for some systems, even
a stationary eigenmode for specific parameter values, but th&high-speed operation is not an issue.
effects of such modes appear to be manifested only when the
parameters are extremely close to those values. A simple
theoretical argument for the maximum noise level that can be
tolerated by the linear controller has been shown to give a ACKNOWLEDGMENTS
reasonable estimate for when control will be lost in the case
of a ring of coupled logistic maps. Detailed comparison of We thank A. Balanov, J. Blakely, D. Gauthier, P. Hovel,
the GETDAS and SPC noise tolerance properties suggesté. Janson, and E. Scholl for helpful conversations. Early
that GETDAS may actually be marginally better over sub-stages of this work were supported by the National Science
stantial ranges of parameter space. Foundation through Grant No. PHY-98-70028.
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