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We study a matrix form of time-delay feedback control in the context of discrete time maps of high
dimension. In almost all cases where standard proportional feedback control methods can achieve control,
time-delay feedback controllers containing only static elements can be designed to achieve identical linear
stability properties. Analysis of an example involving a ring of coupled maps that can be controlled at only two
sites demonstrates that the time-delay controller equivalent to a standard optimal controller can be equally
robust in the presence of noise, except at special points in parameter space where the uncontrolled system has
a mode with Floquet multiplier exactly equal to 1. Numerical simulations confirm the results of the analysis.
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I. INTRODUCTION

Over the past decade, it has become increasingly clear
that robust and reliable methods of controlling chaotic dy-
namical systems would have important applications in a va-
riety of engineering and scientific contexts. An important el-
ement of the control problem is the question of whether
periodic orbits that would be unstable in the absence of con-
trol can be stabilized using noninvasive methods(in which
the feedback signal vanishes on the desired orbit). Standard
proportional control(SPC) methods have been thoroughly
investigated in the classical control theory literature and
well-developed techniques exist for determining whether an
orbit is controllable and for constructing an optimal(linear)
controller. In SPC, one compares the current state of the
system to some external representation of the desired orbit
and applies appropriate feedback when a difference is de-
tected. The theory is particularly well understood for the case
where the discrete time map is available describing the dy-
namics of the system on a Poincaré section of its phase
space. Optimal control theory provides constructive methods
for designing a noninvasive controller that will render stable
an intrinsically unstable fixed point of such a map, which
corresponds to an unstable periodic orbit of the continuous
dynamical system.

An alternative to SPC is the use of a time-delay element
in the control loop that allows comparison of the current
state of the system to its state one or more periods in the
past, rather than to an externally produced reference signal.
Time-delay feedback has been shown to be a plausible tech-
nique in a variety of theoretical and experimental contexts
[1–6]. It is particularly advantageous in fast systems where
the reference state required for SPC cannot be readily pro-
duced[7–9]. Analytical understanding of time-delay control-
lers, however, lags far behind that of SPC. The design of
optimal time-delay controllers is usually accomplished by
experimentally or numerically scanning the space of param-
eters associated with a given control scheme.

In this paper we consider a particular form of time-delay
feedback for discrete time maps. We point out that the opti-
mal control theory for SPC can be translated directly into a
constructive method for designing a time-delay controller
whose linear stability properties will be identical to the op-

timal SPC for the same system. We then investigate the ro-
bustness of the time-delay controller in the presence of noise,
adapting a method of analysis previously applied to SPC
[10]. Our results indicate that the time-delay controller is no
less robust than the standard one. This suggests that the ad-
vantages of time-delay feedback can be realized without an
accompanying loss in performance.

The control scheme we investigate is a generalization of a
method called “extended time-delay autosynchronization”
(ETDAS) [9]. In ETDAS, the controller has a recursive
structure that effectively stores information from previous
periods, with thenth iterate in the past weighted by a factor
of R. It is known that such a scheme can dramatically enlarge
the domain of control over theR=0 case, but also that it fails
in some cases of interest[11]. The generalization involves
promoting bothR and the feedback gain to matrices that act
on all the system variables available for measurement rather
than just one. It was first suggested by Nakajima[12] and we
will refer to it as “generalized ETDAS” or GETDAS.

As noted by Nakajima, GETDAS controllers form a sub-
set of the dynamic delayed feedback controllers introduced
by Yamamotoet al. [13]. This subset has a property that is
particularly important for high-speed applications: all of the
elements in the controller are passive, performing the same
linear transformations on their inputs at all times. The dy-
namic controllers, on the other hand, include elements in the
feedback loop that must be adjusted at each iteration in re-
sponse to the system’s behavior, which requires construction
of a dynamical system operating at the same high frequen-
cies as the system being controlled.

In Sec. II we introduce the generalized form of ETDAS,
discuss its ability to stabilize unstable modes, and show how
to convert a standard control matrix into an equivalent GET-
DAS form. In Sec. III we illustrate the method with the ex-
ample of a ring of diffusively coupled logistic maps. In Sec.
IV we derive a formula for the size of deviations from the
fixed point in the long time statistically steady state for a
linear system with a given level of intrinsic noise and com-
pare the results for the ring of logistic maps controlled by
SPC or GETDAS. In Sec. V we discuss the effects of non-
linearities, comparing numerical results to heuristic formula
for the maximum tolerable noise level in a GETDAS con-
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troller. Section VI summarizes our results and frames some
open questions.

II. STANDARD CONTROL AND TIME-DELAY CONTROL

The standard approach to stabilizing a fixed point of a
dynamical system governed by a discrete time map is to
apply a feedback signal proportional to the difference be-
tween the state of the system and the desired fixed point. For
a system withL dynamical variables, we write

yn+1 = Fsynd + B̂un, s1d

un = − K̂ syn − y*d. s2d

Hereyn is anL-dimensional vector, withn indexing discrete
time steps;un is the control;F specifies the dynamics of the

system;B̂ is anL3L matrix specifying which system vari-
ables can be adjusted externally and how variations inu
affect them; andK̂ , a matrix we are free to choose, trans-
forms the measured variables into one or more control sig-
nals. It is assumed thatF has a fixed pointy* that is unstable

in the absence of control; i.e., forK̂ =0.

Defining Â as the Jacobean ofF evaluated aty* andxn as
the deviationyn−y* , the linearized system in the vicinity of
the fixed point is

xn+1 = Âxn + B̂un, s3d

un = − K̂ xn. s4d

We defineM̂ ,

M̂ ; Â − B̂K̂ . s5d

The control problem is to find a matrixK̂ such that all ei-

genvalues ofM̂ have a magnitude smaller than 1, thereby
making the controlled system linearly stable. Using quadratic

optimal control theoryf14g an appropriate matrixK̂ can be

constructed wheneverÂ and B̂ satisfy the controllability

condition RankfĈg=L, where

Ĉ ; fB̂,ÂB̂,Â2B̂, . . . ,ÂL−1B̂g. s6d

If one of the eigenvalues ofÂ lies on the unit circle, the
uncontrolled system has a marginal eigenvector. In the spe-
cial case where the marginal eigenvalue is exactly 1, rather
than any other complex number of unit magnitude, we say
that the uncontrolled system has astationarymode or eigen-
vector. A stationary eigenvector is completely invariant un-

der the action ofÂ.

The form of a GETDAS control signal may be written in
three equivalent ways:

un = Ĝ · sxn − xn−1d + R̂ ·un−1 s7d

=Ĝ ·o
l=0

`

R̂l · sxn−l − xn−l−1d s8d

=Ĝ ·Fxn + sR̂ − Î d ·o
l=0

`

R̂l ·xn−l−1G . s9d

Note that expandingun−1 in terms ofxn−l gives an infinite
sum over previous states of the system, as in the scalar case
discussed by Socolar and Gauthierf15g. When there is only
one variable available for monitoring and one adjustable sys-

tem parameter, or when both the matricesĜ and R̂ are just
multiples of the identity matrix, the situation reduces to the
scalar case that has been studied previouslyf15,16g.

Using Eqs.(3) and(7), the GETDAS scheme can be writ-
ten as follows:

Sx

u
D

n+1
= Q̂Sx

u
D

n
s10d

with

Q̂ ;F Â B̂

ĜfÂ − Î g ĜB̂ + R̂
G . s11d

The stability of the controlled system is determined by the

eigenvalues ofQ̂.
Much attention has been given to the fact that ETDAS

with scalar parametersG andR is incapable of suppressing

instabilities in cases whereÂ has an odd number of real
eigenvalues larger than unity[17]. Yamamotoet al. sug-
gested a dynamical delayed feedback control scheme that
avoids this weakness[13]. In the dynamical delayed feed-
back control(DDFC) scheme, the feedback signal is given
by

un = âsxn − xn−1d + b̂wn s12d

with

wn+1 = ĉsxn − xn−1d + d̂wn. s13d

The control signalu is composed of two parts, the first one is
sthe matrix version ofd the traditional TDAS termsthe R=0
case of ETDASd. The second term involves an introduced
dynamical variablew.

Yamamotoet al.showed that for almost any matrixK̂ , the

DDFC parameters can be chosen to giveun=−K̂ ·xn, which
means that the behavior ofxn and un in the DDFC system

will be identical to that in a SPC system with the sameK̂ .
The choices leading to this equivalence are

â = − K̂ · Â · fÂ − Î g−1, s14d
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b̂ · ĉ = − fK̂ + âg · B̂ · â, s15d

d̂ = ĉ · â−1 · b̂. s16d

The condition for constructing the equivalent DDFC control-

ler is that Â − Î be invertible, which is true as long as the
uncontrolled system does not have a stationary mode.

Yamamoto’s result shows that DDFC, which requires no
comparison of a system variable to its fixed point value, can
be almost as versatile as SPC, failing only in cases where the
uncontrolled system has a stationary mode. Some examples
of such modes are the Goldstone modes associated with a
continuous symmetry and therefore cannot be avoided. In
other cases, such as the coupled map lattice discussed below,
stationary modes occur at special isolated points in param-
eter space. We will consider below the effect of isolated sta-
tionary modes on the robustness of a time-delay controller,
but first we consider an important drawback of the DDFC
scheme.

In order to implement DDFC, it is in general necessary to
construct a dynamical system that produces the appropriate
behavior of the variablew in Eq. (13). Unlike the feedback
signalu of GETDAS, w cannot be written as a simple sum
over past measurements ofx. There must be some element in
the feedback system that generates an independent dynami-
cal process. In many contexts, this defeats the purpose of
time-delay control, whose primary advantage is the avoid-
ance of the need for an externally generated dynamical signal
that helps determine the feedback. In contrast, the GETDAS
scheme can be implemented using only passive devices that
repeatedly perform the same linear transformations on sig-
nals generated by the system of interest. Moreover, the in-
clusion of the sum over all past iterates can be accomplished
in a simple way by implementing a scheme suggested by Eq.
(7). A schematic diagram of a GETDAS controller is shown
in Fig. 1. For implementation of the discrete controllers

shown here, the output ofB̂ is sampled once every period
and the sampled value determines the feedback signal.

Nakajima, in introducing GETDAS, has pointed out that it

is a special case of DDFC[12]. For the cased̂= ĉâ−1b̂, Eqs.
(12) and (13) give wn= ĉ·â−1·un−1, so w can be eliminated
from the equations, leaving them in a form identical to GET-
DAS with

Ĝ = â,

R̂ = b̂ĉâ−1. s17d

Here we show that the GETDAS subset of DDFC control-
lers is big enough to contain an equivalent controller to any
SPC scheme(with the usual exception for stationary modes).
Theorem. Given a discrete linear systemxn+1=Â ·xn that has

no stationary eigenvectors(i.e., for whichÂ has no eigenval-
ues exactly equal to 1), if the system can be stabilized using
SPC, then it can also be stabilized using GETDAS.

Proof: In analogy with Eq.(10), the SPC scheme can be
represented in the following form:

Sx

u
D

n+1
=F Â B̂

− K̂ Â − K̂ B̂
GSx

u
D

n
. s18d

From the general form of GETDAS given in Eqs.s10d and
s11d, one sees immediately that the two schemes are equiva-

lent if and only if the matricesĜ and R̂ are chosen as fol-
lows:

Ĝ = − K̂ fÂ − Î g−1Â , s19d

R̂ = K̂ fÂ − Î g−1B̂. s20d

sNote thatÂ commutes withfÂ − Î g−1.d The correspondence

fails if and only if Â − Î is not invertible; i.e., if none of its

eigenvalues vanishes. Lethlij be the eigenvalues ofÂ. Since

the eigenvalues ofÂ − Î are equal toli −1, the condition for

invertibility of Â − Î is li Þ1 for all i. Q.E.D
The reason the GETDAS cannot stabilize a system with a

stationary mode is conceptually clear. For a long-lived per-

turbation in the stationary direction we haveÂ ·s−s=0,
hencexn+1−xn=0 and no feedback signal is generated.

The matrices in Eqs.(18) and (11) are 2L32L matrices.
In the former case, the obvious degeneracy between the topL
and bottomL rows causesL of the eigenvalues to be zero, as
expected given that the stability of the SPC scheme is deter-

FIG. 1. Schematic circuit diagram for implementing GETDAS
to control a dynamical system. Triple lines indicate multiple signals
that are fed into each element in the loop. The hexagon represents
an element whose only effect is a time delay of all incoming sig-
nals. Triangles represent devices that form the difference of each
pair of incoming signals. Each labeled square represents a device
that performs a linear transformation on its inputs. The square la-

beledB̂ may be considered as a part of the system that cannot be
changed and may have fewer outputs than the full number of sys-
tem variables. It contains the information about which system vari-
ables can be monitored, which system parameters can be adjusted
through feedback, and how those adjustments affect all of the dif-
ferent system variables.
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mined completely by the matrixM̂ . In contrast,Q̂ has 2L
nontrivial eigenvalues. It is only for special choices of the

pair Ĝ andR̂ thatL of these vanish. Investigation of the most

general conditions onĜ and R̂ for stability is beyond the
scope of this work.

We have shown that anyK̂ that stabilizes the system via
SPC can be converted into a GETDAS control scheme. The
converse, however, is not true. The system may be stabiliz-

able via GETDAS using some otherĜ andR̂ which may or

may not correspond to a SPC matrixK̂ . The reverse conver-
sion is possible if and only if the GETDAS matrices are
related by

R̂ = − ĜÂ−1B̂. s21d

Thus set of GETDAS controllers is larger than the set of SPC
controllers.

III. A COUPLED MAP LATTICE

Given the possibility of constructing a time-delay control-
ler that has the same linear stability properties as any given
standard one, it is natural to ask whether one must pay a
price for using the time delay. One issue that might be rel-
evant is the sensitivity of the controller to noise. One might
worry that the time-delay controller will be less robust than
its SPC counterpart. As a preliminary investigation of this
issue, we consider a nontrivial example of a high-
dimensional system: a coupled map lattice(CML) in which
all variables can be measured but only two adjacent sites are
accessible for control.

We consider a ring ofL diffusively coupled, identical lo-
gistic maps. The general equation describing the uncon-
trolled system is

yl
sn+1d = s1 − 2edfsyl

sndd + efs1 − adfsyl−1
snd d + s1 + adfsyl+1

snd dg.

s22d

The subscriptl indicating spatial position runs from 0 toL
−1, and all indices are taken moduloL. The superscripts in
parentheses indicate temporal iterates.fsyd is a function de-
scribing a single site evolution in one time step; the constant
eP s0,1d indicates the coupling strength between neighbor-
ing sites; andaP s−1,1d is an asymmetry parameter in the
coupling strengths to left and right neighbors. Fora=0 the
dynamics are governed by symmetric diffusion and fora
= ±1 we have one-way coupling.

The fixed point of interest is the homogeneous one,yl
=y* for all l. The linearized equations forxl =yl −y* are writ-
ten as

xsn+1d = Âxsnd, s23d

wherex is the vectorsx1,x2, . . . ,xLd andÂ has the following
form:

Â = ns1 − 2edÎ + ne„s1 − adĴ + s1 + adĴT
…, s24d

wheren; ]f / ]y uy=y* : Î is the identity matrix; and

Ĵ = 3
0 0 . . . 0 1

1 0 0 . . . 0

0 1 0 0 . . .

�

0 . . . 0 1 0 0

0 0 . . . 0 1 0

4 . s25d

It has been shown previouslyf18,19g that for anyL the sym-
metric system is controllable using SPC if all sites are mea-
surable and just two neighboring sites can be directly af-
fected by the feedback signal.

Because stationary modes make GETDAS control impos-
sible, it is important to know the parameter values where
such modes exist. A straightforward analysis reveals that for
fixed n ,L, anda, the present CML does indeed have station-
ary modes, but only for special, isolated values ofe, which
we denotees. Writing out the components of Eq.(23) gives

xl
sn+1d = ns1 − 2edxl

snd + nesfxl−1
snd + xl+1

snd + asxl+1
snd − xl−1

snd dg
s26d

for every l andn. We write a solution asxl
snd=jsndexpfilkg,

with k restricted by the periodic boundary conditions to
take on the values 2sp /L for integer s. For a stationary
mode,jsnd is constant. This occurs only if

n − 1

4n
= e sinSsp

L
DFsinSsp

L
D − ia cosSsp

L
DG . s27d

For values ofe satisfying this equation, the uncontrolled sys-
tem will have a stationary mode.

For L even, Eq.(27) is satisfied fors=L /2, independent
of a, by

es =
n − 1

4n
. s28d

For a=0 which corresponds to the symmetric diffusive
CML, additional solutions exist with

es =
n − 1

4n

1

sin2ssp/Ld
s29d

for all integerss. For aÞ0, there are no stationary modes
other than thes=L /2 case.

As shown by Grigorievet al., control of a symmetric
CML can be achieved with just two controllers placed at
adjacent sites[18]. In the present notation, this corresponds

to anL3L matrix B̂ with elementsB11=B22=1 and all other

elements equal to 0. An appropriateL3L control matrixK̂
may be determined by iterative solution of the Riccati equa-

tion of optimal control theory[14]. Due to the structure ofB̂
only the first two rows ofK̂ are relevant; all other elements

vanish identically. Converting any SPC matrixK̂ into the

GETDAS form results in a matrixĜ with all elements out-

side the first two rows equal to 0, and a matrixR̂ with all
elements vanishing except for the upper left 232 block.
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IV. NOISE AMPLIFICATION IN THE LINEAR VICINITY
OF THE FIXED POINT

In the presence of bounded noise, the controlled system
may remain confined to a region near the fixed point or may
exhibit deviations from the fixed point limited only by non-
linear saturation effects. To determine which occurs for a
given level of intrinsic noise, the first step is to calculate the
linear amplification of the noise due to non-normality of the
eigenvectors of the controlled system[10]. This amounts to a
computation of the size of the cloud of points that will occur
around the fixed point when the intrinsic noise level is low
enough that the system never leaves the linear regime. We
discuss the effects of nonlinearity in Sec. V below. Here we
study the effect of a GETDAS controller on the noise level,
assuming the noise is so small that even with amplification it
remains well within the linear regime. The goal is to see
whether the GETDAS controller amplifies noise significantly
more strong than its SPC counterpart.

We assume that noise enters the system in the form of an
independent random additionq to x at every site and on
every time step, withq drawn from a bounded distribution
with variances2. (For the numerical simulations discussed
below we assume a uniform distribution withq
P f−Î3s ,Î3sg.) The equation describing the evolution of
the controlled system is

xsn+1d = Âxsnd + B̂usnd + qsnd, s30d

with

kqj
sndla = 0 ∀ n, j , s31d

kqj
sndqi

smdla = s2di jdnm. s32d

Here the notationkla represents an ensemble average. The
SPC case has been analyzed previouslyf10,18g.

Using M̂ as defined in Eq.(5) and the GETDAS scheme

equivalent to SPC with the givenK̂ , Eq. (30) becomes

xsn+1d = M̂xsnd + qsnd − R̂qsn−1d

= M̂ nxs1d + o
l=0

n−1

M̂ lsqsn−ld − R̂qsn−l−1dd. s33d

Below we use a notation familiar from quantum mechan-
ics: kaubl;a* ·b (with no ensemble average implied). We let

l j be the eigenvalues ofM̂ and huejlj be the corresponding
eigenvectors. The vectorshuvilj are defined by the relation
kei uv jl=di j . We may then writeq=okvi uqlueil.

Defining a noise amplification factorg as the ratio of the
standard deviation of the distribution of states around the
fixed point in the controlled system to the standard deviation
of the intrinsic noise,

g ;
Îkxsn+1d ·xsn+1dla

Ls
, s34d

an ensemble average of Eq.s33d yields

g =Î t1 + t2 + t3
L

s35d

with

t1 = o
i,j=1

L keiuejlkv juvil
1 − li

*l j

, s36d

t2 = − 2RF o
i,j ,r=1

L kv juvilkeiuerlkvruR̂uejlli
*

1 − li
*lr

G , s37d

t3 = o
i,j ,r,s=1

L kv juvilkeiuR̂TuvrlkerueslkvsuR̂uejl
1 − lr

*ls

, s38d

where we have used the fact thatR̂ is real andM̂ nxs1d goes to
zero for largen, the latter being true by the assumption that

K̂ has been chosen such that SPC renders the noiseless sys-
tem asymptotically stable. As previously shown by Egolf and
Socolarf10g, the result for the SPC scheme is given by thet1
term alone. The contributionst2 and t3 describe the effect
produced in the GETDAS scheme by the repeated passage of
noise signals through the time-delay feedback loop.

A comparison of the noise amplification in SPC and the
equivalent GETDAS schemes is shown in Fig. 2 for a ring of
coupled maps witha=0 (the symmetric diffusion case). It is
assumed that all of the sites can be monitored, but only two
adjacent sites can be affected by the feedback. The specific
case shown hasn=−1.8. Results for other values ofn are
qualitatively similar. For almost all values of the coupling
strength, there is a price paid in amplification for using GET-
DAS rather than SPC, but it is rather small—at most a factor
of 2 for very strong coupling. There are special points, how-
ever, where GETDAS generates extremely large amplifica-
tions. These are points very close to the coupling strengths
where stationary modes are present in the uncontrolled sys-
tem.

FIG. 2. Noise amplification in a symmetrically coupled ring of
linear maps with periodic boundary conditions as a function of the
coupling constantsed. The size of the ring isL=10 and the map
multiplier is n=−1.8. The solid line showsg for an optimal SPC
stabilization scheme and the circles connected by the dotted line for
a GETDAS scheme. Note the divergence ofg for e=es in the latter
case.
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In a purely linear system, noise never destroys the stabil-
ity of a fixed point. Though the cloud of points the system
visits may have a large variance due to non-normal effects
that can makeg large, the ratio of this variance to the vari-
ance of the intrinsic noise is independent of the intrinsic
noise level.

V. STRONG NOISE AND THE TOLERANCE LIMIT

In a nonlinear system, the situation is different. As the
intrinsic noise levels is increased, the standard deviation of
the cloud around the fixed point grows in proportion for
small noise levels, but then increases rapidly ass crosses
some threshold. Figure 3 illustrates this behavior in the case
of coupled logistic maps controlled via GETDAS. For this
study, the logistic mapfsxd=mxs1−xd was modified so as to
avoid the trivial divergence associated with points that leave
the domainf0,1g. On each iteration, points that fall outside
the unit interval are reflected about 0 or 1, as needed. The
jump in the plot in Fig. 3(a), which we interpret as signaling
a loss of control, occurs when deviations about the fixed
point are still much less than 1. The jump is caused by the
nonlinearity in the map, not by the crossing of an attractor
basin boundary. The value ofs at the threshold is denoted
smax, as it is the maximum noise strength that can be toler-
ated by the given controller. Figures 3(b) and 3(c) show the
return maps just below and above the transition, respectively,
for the site in the ring that is farthest from the two control-
lers.

A simple argument gives a useful estimate ofsmax [10].
From the point of view of the linear control theory, nonlin-
earities introduce errors that can be treated as an additional
source of noise for the linear analysis. Assuming that the
errors associated with the nonlinearity are uncorrelated be-
tween time steps and uncorrelated with the intrinsic noise,
we can write the total standard deviation from the fixed point
D as

D = gÎs2 + snl
2 , s39d

wheresnl is the standard deviation of the errors induced by
nonlinearity. Assuming that the quadratic nonlinearity does
not vanish, a rough estimate ofsnl for relatively smallx is
f9sx*dD2/2. The maximum noise levelsmax is then deter-
mined by a self-consistency condition onD:

D = gÎs2 + 1
2 f9sx*dD4, s40d

which has a real solution for alls,smax if and only if

smax=
1

g2uf9sx*du
. s41d

For a symmetrically coupled ring of identical logistic
maps, we have measuredsmax via simulation and compared
the results to the estimate of Eq.(41). Figure 4 shows that
the analytic estimate ofsmax for all values of the coupling
constante is lower than the numerically determinedsmax. (It
appears that the correlations neglected in the analytic esti-
mate tend to help rather than hurt the controller.) Figure 5
shows that even though the amplification in the GETDAS
controlled CML is greater than the SPC amplification, which
implies a lowersmax for GETDAS, the noise level tolerated
by the GETDAS controller is actuallyhigher than that for
SPC over a wide range ofe. It appears that, at least in this
one case, the use of information about past iterates can im-
prove the robustness of the linear controller against noise.

Figure 6 shows the noise tolerance results for both SPC
and GETDAS, this time as a function ofg, the linear noise
amplification factor. The two branches visible for both
schemes correspond to two regimes of coupling: the lower
and upper branches in each case are data foreP s0,0.5d and

FIG. 3. (a) The radius of the cloud of points scattered around the
fixed point, as a function of the intrinsic noise levels, for a ring of
symmetrically coupled logistic maps controlled via GETDAS as
described in the text at the end of Sec. III. The size of the CML is
L=10 and the map multiplier at the fixed point isn=−1.8 and the
coupling constant ise=0.40.(b) The return map for the site farthest
from the controller fors=10−2.4. The cloud of points is confined to
the vicinity of the fixed point.(c) The return map for the site far-
thest from the controller fors=10−2.3, just beyond the point where
control is lost.

FIG. 4. The maximum noise level controlled using GETDAS as
a function of coupling constant in a ring of symmetrically coupled
logistic maps controlled as described in the text at the end of Sec.
III. The size of the CML isL=10 and the map multiplier at the fixed
point is n=−1.8.
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eP s0.5,1d, respectively. Here one observes that for compa-
rable g, the GETDAS scheme consistently tolerates more
noise than the SPC scheme.

VI. CONCLUSION

We have shown a simple way to implement a time-delay
feedback control scheme for discrete-time systems that
matches the performance of an optimal controller designed
by standard methods. The technique is a generalization of the
ETDAS method that has previously been shown to be useful
for stabilizing high-speed systems, and suggests the possibil-
ity of controlling more complex high-speed systems than
have previously been studied. The one drawback of the GET-
DAS scheme is that it cannot be applied to systems that have
a stationary eigenmode for specific parameter values, but the
effects of such modes appear to be manifested only when the
parameters are extremely close to those values. A simple
theoretical argument for the maximum noise level that can be
tolerated by the linear controller has been shown to give a
reasonable estimate for when control will be lost in the case
of a ring of coupled logistic maps. Detailed comparison of
the GETDAS and SPC noise tolerance properties suggests
that GETDAS may actually be marginally better over sub-
stantial ranges of parameter space.

Several questions now arise. First and foremost, it will be
important to study the behavior of the GETDAS controller
when applied to a continuous time dynamical system. The
discrete time analysis of maps has proven to be a useful
guide to intuition regarding simpler versions of ETDAS, but
the connection is not a direct one. Within the context of
discrete maps, there is also an interesting optimal control
problem to be solved. Since there is a wider parameter space

for the choice ofĜ andR̂ than there is for the choice ofK̂ ,
it is possible that GETDAS schemes having no SPC coun-
terpart could be the method of choice for some systems, even
if high-speed operation is not an issue.
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